JP2005050979A - Photoelectric conversion device - Google Patents

Photoelectric conversion device Download PDF

Info

Publication number
JP2005050979A
JP2005050979A JP2003205168A JP2003205168A JP2005050979A JP 2005050979 A JP2005050979 A JP 2005050979A JP 2003205168 A JP2003205168 A JP 2003205168A JP 2003205168 A JP2003205168 A JP 2003205168A JP 2005050979 A JP2005050979 A JP 2005050979A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion device
carrier generation
electron transport
generation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003205168A
Other languages
Japanese (ja)
Inventor
Manabu Komota
学 古茂田
Hisashi Higuchi
永 樋口
Keisuke Aramaki
慶輔 荒巻
Hisao Arimune
久雄 有宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003205168A priority Critical patent/JP2005050979A/en
Publication of JP2005050979A publication Critical patent/JP2005050979A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric conversion device that is high in efficiency and excellent in reliability. <P>SOLUTION: The photoelectric conversion device is provided with a carrier generating section 4 which performs photoelectric conversion, an electron transporting section 3 which transports the electron generated in the carrier generating section 4, and a Hall mobile section 7 which transports the Hall generated in the carrier generating section 4. The carrier generating section 4 has an inorganic semiconductor which reveals a quantum size effect. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は太陽電池や光センサなどの光電変換装置に関する。
【0002】
【従来の技術】
従来、太陽電池の主流となっているSiバルク型太陽電池またはSi系薄膜太陽電池は、内部に形成された電位勾配によって、活性層で生じたキャリアを拡散またはドリフトさせて電極に収集するタイプのものである。これらの太陽電池においては各要素技術の熟成化により、高い変換効率を達成するに至っているが、Siバルク型太陽電池では、高価な半導体基板を使用する上に、素子化プロセスにおいて多数の工程を必要とするために生産性に劣るといった問題を抱えている。また、Si系薄膜太陽電池においても、殆どの工程において真空薄膜形成装置を必要とすることから、装置コストおよび生産性に大きな問題を抱えていた。
【0003】
一方、近年開発が盛んとなっている低コスト型太陽電池の主流として、色素増感型太陽電池が挙げられる(例えば、特許文献1参照。)。この太陽電池では、多孔質形状を有する酸化チタン薄膜に有機色素を担持させ、この有機色素で励起されたキャリアを、酸化チタン薄膜での主としてホッピング伝導により、電極に収集するといったものである。この太陽電池は、真空装置を用いないこと、低温プロセスであること、材料コストが安価であることから、製造コストが安いことが特長である。
【0004】
【特許文献1】
特開平1−220380号公報
【0005】
【特許文献2】
特開2000−195569号公報
【0006】
【特許文献2】
特開2000−285979号公報
【0007】
【発明が解決しようとする課題】
色素増感型太陽電池は、有機色素の吸収波長領域が狭いこと、色素自体が変質劣化すること等が報告されており、高効率化,高信頼性化といった面において多くの問題を抱えている。
【0008】
まず、高効率化に対する対策としては、光吸収領域を広げるために少なくとも2種の異なる色素からなるキャリア発生部を用いる例が挙げられる(例えば、特許文献2参照。)。
【0009】
しかし、この例においては異なる色素が互いに逆の極性を有するために、色素間に電位障壁が生じてキャリアの移動度が低下するといった問題を抱えている。
【0010】
また、高信頼性化については、その劣化原因が未だ明確になっていないことから、その原因を特定した上で有効な対策を施していく必要がある。
【0011】
紫外線が例えばTiO等から成る電子輸送部に照射されると有機色素が直接分解したり、TiOの光触媒効果が発現して、これにより発生したフリーラジカルが吸着している錯体色素を酸化分解するなどして、電荷発生能力が低下するという説が広く知られている。これに基づいた対策としては、紫外線カット層となる半導体電極を形成する例が挙げられる(例えば、特許文献3参照。)。
【0012】
しかし、この例においては色素への入射光量自体の低下により短絡電流の低下が避けらず、高信頼性と高効率の両立が困難である。
【0013】
そこで、本発明は上述の問題点に鑑みてなされたものであり、その目的は高効率で信頼性に優れた光電変換装置を提供することにある。
【0014】
【課題を解決するための手段】
本発明の光電変換装置は、1)光電変換を行なうキャリア発生部と、該キャリア発生部で生じた電子を輸送する電子輸送部と、前記キャリア発生部で生じたホールを輸送するホール輸送部とを備えた光電変換装置であって、前記キャリア発生部が量子サイズ効果を発現している無機物半導体を有していることを特徴とする。
【0015】
2)1)において、前記無機物半導体は、平均粒径が20nm以下の微粒子、または膜厚が20nm以下の薄膜であることを特徴とする。
【0016】
3)1)または2)において、前記無機物半導体がSi,Ge,C,Al,P,Ga,As,In,Sbの1種以上の元素を含むことを特徴とする。
【0017】
4)1)〜3)のいずれかにおいて、前記電子輸送部が金属酸化物半導体であることを特徴とする。
【0018】
5)1)〜4)のいずれかにおいて、前記キャリア発生部が前記電子輸送部およびホール輸送部に接触して形成されていることが好ましい。また、前記電子輸送部が金属酸化物半導体であること、また、前記電子輸送部が多孔質形状、針状、または円柱状であるとよい。
【0019】
【発明の実施の形態】
以下、本発明に係る光電変換装置の実施形態について図面に基づき詳細に説明する。
【0020】
図1に示すように、本発明の光電変換装置は、光電変換を行なうキャリア発生部4と、このキャリア発生部4で生じた電子を輸送する電子輸送部3と、キャリア発生部4で生じたホールを輸送するホール輸送部7とを備えたものであり、キャリア発生部4が量子サイズ効果を発現している無機物半導体を有していることを特徴とする。
【0021】
さらに、前記無機物半導体は、平均粒径が20nm以下の微粒子、または膜厚が20nm以下の薄膜であること、前記無機物半導体がSi,Ge,C,Al,P,Ga,As,In,Sbの1種以上の元素を含むこと、前記電子輸送部3が金属酸化物半導体であることを特徴とする。
【0022】
そして、キャリア発生部4が電子輸送部3およびホール輸送部7に接触して形成されていることが好ましい。また、電子輸送部3が金属酸化物半導体であること、また、電子輸送部3が多孔質形状、針状、または円柱状であるとよい。
【0023】
一般に平均粒径が20nm以下の半導体微粒子は、量子論的閉じ込め効果や表面効果により、バルク状態とは異なる電気的、光学的性質を示す。総原子数が極めて小さい微粒子では、半導体の電子エネルギー状態はバンド構造から次第に離散的になり始め、エネルギー準位が広範囲に分布する。この準位の離散化は電子の緩和時間や波動関数の非局在化にも影響を与え、このように発現した効果は総じて量子サイズ効果と呼ばれる。この量子サイズ効果によって、例えばシリコンではバンドギャップが1.1eVから2.5eV程度に広くなると同時に、励起された電子が直接遷移するようになる等のことが知られている。また、極微粒子については、バンドギャップが粒子径の2乗に反比例して大きくなるといわれており、これを応用すると、同物質において粒径の異なる微粒子の混合物を用いることで、広範囲波長領域において高い光吸収特性を得ることが可能となる。
【0024】
本発明においては、この微粒子群をキャリア発生部4に適用することで、短絡電流値が大幅に向上することが期待できる。同時に、キャリア発生部4を無機半導体にて構成することで光照射に対する安定性や耐候性が格段に向上する。
【0025】
また、微粒子内で発生したキャリアは電子輸送部3までの拡散距離がnmオーダーと極めて短いために、バルク内再結合損失を低く抑えることが可能であり、高効率化に有利なキャリア輸送構造になると考えられる。
【0026】
ここで、微粒子物質を扱う場合には材料によって以下の問題が生ずる場合がある。すなわち帯電による粒子の融合や凝集、または表面露出原子の割合が大きいために不純物拡散の影響が顕著で、且つこれが特性を低下せしめる場合である。このような場合には20nm以下の膜厚を有する薄膜を用いることで、上記の量子サイズ効果を発現させることが可能である。但し、量子論的閉じ込めの空間的次元数が一次元減ずるため、量子サイズ効果の効果自体は微粒子形状の場合と比して低下すると考えられる。
【0027】
一方、キャリア発生部4の材料については熱的および化学的に安定な無機半導体を用いることが好ましい。これにより有機色素を用いた色素増感型太陽電池等に比して格段に優れた信頼性を得ることができる。このとき、無機半導体がSi,Ge,C,Al,P,Ga,As,In,Sbの少なくとも一種またはその化合物から成ることが好ましい。具体的には、Si,Ge,C,SiGe,SiC,GaAs,AlGaAs,InP,InAs,InSb,AsSb,InGaAs,GaN,InGaN等が挙げられる。上記の物質は光感度に優れ、且つ製造が比較的容易であり、化学的にも安定である。特にこの中でSiおよびSiGeは安価に製造でき、光感度も比較的高いことから、最も望ましい。
【0028】
また、上記のキャリア発生部4を電子輸送部3に接触して形成することで、キャリア発生部4から電子輸送部3へのキャリアの拡散距離が小さくなり、注入効率が向上する。キャリア発生部4および電子輸送部3の伝導帯準位が大きく異なる場合や、欠陥による表面再結合が顕著な場合には、キャリア発生部4へのバッファ層のコーティング、パッシベーション処理、表面モフォロジーの最適化を行ってもよい。
【0029】
一方、電子輸送部3は金属酸化物半導体を用いることが好ましい。これは金属酸化物が金属と比較して安定であり、反応性も比較的低く、電子授受性も高いという理由によるものである。具体的には、In,SnO,WO,ZnO,TiO,Nb,ZrO,Ta,AgO,MnO,Cu,Fe,V,Cr,NiO,SrTiO,KNbO17等が挙げられる。また、上記の材料を複合して用いてもよい。
【0030】
上記電子輸送部3の形状は多孔質形状または、針状や円柱状物質の集合体であることが好ましい。これにより、キャリア発生部の形成面積の拡大と電荷発生材料の拡散経路の確保を両立させることができるため、高効率化が容易となる。また、針状や円柱状物質を用いる場合には、長軸方向へのキャリアの拡散係数が大きいため、伝導過程における再結合ロスが低減されるといったメリットがある。
【0031】
【実施例】
次に、本発明の光電変換装置のさらに具体化した実施例について説明する。図1に示すように、本実施例の光電変換装置は透光性基板1、透明導電膜2、電子輸送部3、キャリア発生部4、対向基板5、スぺーサー6、ホール輸送部である電解液7から構成される。
【0032】
まず、#1737ガラス基板(コーニング製)等の透光性基板1上に、熱CVD法によってフッ素をドープしたSnOから成る透明導電膜2をシート抵抗が約10Ω/□となるように形成した。このとき、更に実質的にシート抵抗値を下げる場合には、アルミニウム、銅、銀等の金属からなる取り出し電極を透明導電膜2形成前にスパッタ法等の手法を用いて予めパターン形成しておいてもよい。また、透光性基板1については、セル形成プロセスの熱履歴に耐え得るものであれば、透明ポリマーフィルム等の樹脂に代えてもよい。
【0033】
次に、透明導電膜2上に電子輸送部3となるTiO層を形成した。具体的には、ゾルゲル法から作製した平均粒径約10nmのTiOペーストをドクターブレード法で塗布し、室温にて予備乾燥させた後、マッフル炉内で450℃×30分の焼結熱処理を行った。
【0034】
さらに、平均粒径約50〜100nmのTiOペーストを先のペースト量の30%程度の分量でドクターブレード法により塗布し、同じく室温にて予備乾燥させた後、マッフル炉内で450℃×30分の焼結熱処理を行った。このとき、焼結後のTiO層の膜厚は約9μmであり、多孔質形状であった。TiO層の形成手法としては、ナノチューブ状またはナノロッド状としたTiOを溶媒に溶かしてペースト状にしたものを上記と同様にして焼結、形成することも可能である。
【0035】
次に、キャリア発生層4となるSi微粒子を電子輸送層3上に形成する。Si微粒子は、SiHガスおよびHガスをプロセスガスとしたプラズマCVD法を用い、ガス圧力を3torr以下に保持して形成した。このとき、ガス圧力やRFパワー密度が高い場合にはプラズマ領域におけるSiラジカルの高次化反応が急速に進行するため、粒径が巨大化してしまう。結果として、量子サイズ効果を発現し得る数nmオーダーの微粒子の収率が低下するため好ましくない。上記の手法以外には、触媒CVD法やMOCVD法等の真空製膜手法のほか、有機ポリシランを出発原料としたウェットケミカルプロセスを用いてSi微粒子を作製することができる。後者の手法においては、電子輸送層3との結合力を強化する官能基を有するSi微粒子を合成することが好ましく、例えば電子輸送層3がTiOで構成される場合には、上記官能基としてCOOH基、OH基、SOH基、シアノ基、−P(O)(OH)基、−OP(O)(OH)基等が例として挙げられる。
【0036】
以上の手法により形成された平均粒径20nm以下のサイズのSi微粒子を含有するSi粒をテトラヒドロフランに混合し懸濁液を得た。Si微粒子の溶媒にはエーテル類,ニトリル類,アミド類を用いることが可能である。次に、この懸濁液に基板を浸漬させ、約12時間放置して電子輸送層3上にSi微粒子を付着させた。この後、電気的コンタクト性の向上のために、500℃×30分の熱処理を行った。ここで、上記のSi微粒子は不純物をドープして弱p型としてもよい。
【0037】
一方、キャリア発生層4を薄膜状のものとする場合には、電子輸送層3上にCVD法、スパッタ法、蒸着法等の真空製膜手法を用いて、膜厚が20nm以下となるように形成する。ステップカバレッジの観点から、CVD法による製膜が最も好ましい。
【0038】
なお、キャリア発生部4においては微粒子の場合はその粒径が、薄膜の場合はその膜厚がともに20nm以下であることが好ましい。20nmより大きな場合には、量子サイズ効果の発現が薄れ、吸収端の短波長シフトが生じなくなる結果、短絡電流値が極端に低下してしまう。
【0039】
次に、上述のようにして作製した基板を、白金をスパッタ法にて形成した対向基板5にポリエチレン製のスペーサー6を介して対向配置させ、電解液注入孔(不図示)を残してエポキシ樹脂にて周囲を封止した。引き続き、電解液注入孔より、電解液7となるアセトニトリル:ヨウ化テトラプロピルアンモニウム:ヨウ化リチウム:ヨウ素混合液を注入した。最後に、電解液注入孔をエポキシ樹脂により封止した。電解液はヨウ化リチウム:ヨウ素:メトキシアセトニトリル:t−ブチルピリジン混合液等を用いてもよい。また、ゲル電解質に代えてもよく、CuI,CuAlO,NiO,CuGaO,SrCu等のp型無機半導体を用いても良い。また、対向基板5は導電性を有するものであればよく、電解液に対する腐食耐性を高めるために保護層をコーティングした金属等を用いてもよい。
【0040】
上記のようにして作製した光電変換素子に入射光強度が100W/cmに調整された擬似太陽光を照射し、特性評価を行った。その結果を表1に示す。
【0041】
【表1】

Figure 2005050979
【0042】
この表1の結果によれば、初期短絡電流値が高く、且つ光照射後の変換効率も劣化がみられず、本発明の光電変換装置により、短絡電流値が向上し光安定性に優れることが判明した。
【0043】
【発明の効果】
本発明の光電変換装置によれば、光電変換を行なうキャリア発生部と、該キャリア発生部で生じた電子を輸送する電子輸送部と、前記キャリア発生部で生じたホールを輸送するホール輸送部とを備え、前記キャリア発生部が量子サイズ効果を発現している無機物半導体を有しているので、光照射に対する劣化が無く、広波長領域にわたって高い量子効率を維持することが可能となり、特に短絡電流値の向上した、光安定性に優れる光電変換装置を提供できる。
【0044】
また、前記無機物半導体は、平均粒径が20nm以下の微粒子、または膜厚が20nm以下の薄膜であるので、量子サイズ効果が顕著となり、ワイドバンドギャップ化に伴って特に短波長感度が向上することから、素子特性の向上が期待できる。
【0045】
また、前記無機物半導体がSi,Ge,C,Al,P,Ga,As,In,Sbの1種以上の元素を含むので、光感度および光照射に対する安定性がともに高く、高効率且つ高信頼性を有する光電変換装置を提供できる。
【0046】
また、前記電子輸送部が金属酸化物半導体であるので、化学的に非常に安定であり、信頼性の高い光電変換装置を提供できる。
【図面の簡単な説明】
【図1】本発明に係る光電変換装置を模式的に説明する断面図である。
【符号の説明】
1:透光性基板
2:透明導電膜
3:電子輸送部
4:キャリア発生部
5.対向基板
6.スぺーサー
7:電解液(ホール輸送部)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photoelectric conversion device such as a solar cell or an optical sensor.
[0002]
[Prior art]
Conventionally, Si bulk solar cells or Si-based thin-film solar cells, which have been the mainstream of solar cells, are of the type in which carriers generated in the active layer are diffused or drifted by the potential gradient formed inside and collected on the electrodes. Is. In these solar cells, high conversion efficiency has been achieved by aging each elemental technology, but in Si bulk type solar cells, in addition to using an expensive semiconductor substrate, many steps are required in the device fabrication process. There is a problem that it is inferior in productivity because it is necessary. In addition, the Si-based thin film solar cell also requires a vacuum thin film forming apparatus in most processes, and thus has a large problem in apparatus cost and productivity.
[0003]
On the other hand, a dye-sensitized solar cell is a mainstream low-cost solar cell that has been actively developed in recent years (see, for example, Patent Document 1). In this solar cell, an organic dye is supported on a titanium oxide thin film having a porous shape, and carriers excited by the organic dye are collected on an electrode mainly by hopping conduction in the titanium oxide thin film. This solar cell is characterized in that it does not use a vacuum device, is a low-temperature process, and has a low material cost, so that the manufacturing cost is low.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 1-220380
[Patent Document 2]
Japanese Patent Laid-Open No. 2000-19569
[Patent Document 2]
Japanese Patent Laid-Open No. 2000-28579
[Problems to be solved by the invention]
Dye-sensitized solar cells have been reported to have a narrow absorption wavelength range for organic dyes and to deteriorate and deteriorate themselves, and have many problems in terms of higher efficiency and higher reliability. .
[0008]
First, as a countermeasure against high efficiency, there is an example in which a carrier generation unit made of at least two different dyes is used to widen the light absorption region (see, for example, Patent Document 2).
[0009]
However, in this example, since different dyes have opposite polarities, there is a problem that a potential barrier is generated between the dyes and carrier mobility is lowered.
[0010]
As for high reliability, the cause of deterioration has not been clarified yet, and it is necessary to take effective measures after identifying the cause.
[0011]
When the electron transport part made of, for example, TiO 2 is irradiated with ultraviolet rays, the organic dye is directly decomposed, or the photocatalytic effect of TiO 2 is manifested, and oxidative decomposition of the complex dye adsorbed by the generated free radicals As a result, the theory that the charge generation capability decreases is widely known. As a countermeasure based on this, there is an example in which a semiconductor electrode to be an ultraviolet cut layer is formed (for example, see Patent Document 3).
[0012]
However, in this example, the short-circuit current is inevitably reduced due to a decrease in the amount of light incident on the dye itself, and it is difficult to achieve both high reliability and high efficiency.
[0013]
Accordingly, the present invention has been made in view of the above-described problems, and an object thereof is to provide a photoelectric conversion device having high efficiency and excellent reliability.
[0014]
[Means for Solving the Problems]
The photoelectric conversion device of the present invention includes: 1) a carrier generation unit that performs photoelectric conversion, an electron transport unit that transports electrons generated in the carrier generation unit, and a hole transport unit that transports holes generated in the carrier generation unit. The carrier generation unit has an inorganic semiconductor that exhibits a quantum size effect.
[0015]
2) In 1), the inorganic semiconductor is a fine particle having an average particle diameter of 20 nm or less or a thin film having a film thickness of 20 nm or less.
[0016]
3) In 1) or 2), the inorganic semiconductor contains one or more elements of Si, Ge, C, Al, P, Ga, As, In, and Sb.
[0017]
4) In any one of 1) to 3), the electron transport portion is a metal oxide semiconductor.
[0018]
5) In any one of 1) to 4), it is preferable that the carrier generation part is formed in contact with the electron transport part and the hole transport part. The electron transporting portion may be a metal oxide semiconductor, and the electron transporting portion may have a porous shape, a needle shape, or a cylindrical shape.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a photoelectric conversion device according to the present invention will be described in detail with reference to the drawings.
[0020]
As shown in FIG. 1, the photoelectric conversion device of the present invention is generated in a carrier generation unit 4 that performs photoelectric conversion, an electron transport unit 3 that transports electrons generated in the carrier generation unit 4, and a carrier generation unit 4. And a hole transport part 7 for transporting holes, wherein the carrier generation part 4 has an inorganic semiconductor exhibiting a quantum size effect.
[0021]
Further, the inorganic semiconductor is a fine particle having an average particle diameter of 20 nm or less, or a thin film having a film thickness of 20 nm or less, and the inorganic semiconductor is made of Si, Ge, C, Al, P, Ga, As, In, or Sb. It contains one or more elements, and the electron transport portion 3 is a metal oxide semiconductor.
[0022]
The carrier generating part 4 is preferably formed in contact with the electron transport part 3 and the hole transport part 7. Moreover, the electron transport part 3 is a metal oxide semiconductor, and the electron transport part 3 is good in a porous shape, a needle shape, or a column shape.
[0023]
In general, semiconductor fine particles having an average particle size of 20 nm or less exhibit electrical and optical properties different from the bulk state due to quantum confinement effects and surface effects. In fine particles having a very small total number of atoms, the electronic energy state of the semiconductor gradually begins to become discrete from the band structure, and the energy levels are distributed over a wide range. This discretization of levels also affects the relaxation time of electrons and the delocalization of wave functions, and the effects thus produced are generally called quantum size effects. Due to this quantum size effect, it is known that, for example, in silicon, the band gap widens from about 1.1 eV to about 2.5 eV, and at the same time, the excited electrons directly transition. In addition, for ultrafine particles, the band gap is said to increase in inverse proportion to the square of the particle diameter. By applying this, it is possible to use a mixture of fine particles having different particle diameters in the same substance, and the band gap is high in a wide wavelength range. Light absorption characteristics can be obtained.
[0024]
In the present invention, it can be expected that the short-circuit current value is greatly improved by applying the fine particle group to the carrier generation unit 4. At the same time, the stability and weather resistance against light irradiation are remarkably improved by configuring the carrier generating part 4 with an inorganic semiconductor.
[0025]
In addition, since the carriers generated in the fine particles have a very short diffusion distance to the electron transport part 3 on the order of nm, recombination loss in the bulk can be kept low, and the carrier transport structure is advantageous for high efficiency. It is considered to be.
[0026]
Here, the following problems may occur depending on the material when handling fine particles. That is, this is a case where the influence of impurity diffusion is significant due to the large proportion of particles fused or aggregated by charging or surface exposed atoms, and this deteriorates the characteristics. In such a case, by using a thin film having a thickness of 20 nm or less, the above quantum size effect can be expressed. However, since the number of spatial dimensions of quantum confinement is reduced by one dimension, it is considered that the effect of the quantum size effect itself is reduced as compared with the case of the fine particle shape.
[0027]
On the other hand, it is preferable to use a thermally and chemically stable inorganic semiconductor for the material of the carrier generating part 4. Thereby, it is possible to obtain remarkably superior reliability as compared to a dye-sensitized solar cell using an organic dye. At this time, the inorganic semiconductor is preferably made of at least one of Si, Ge, C, Al, P, Ga, As, In, and Sb or a compound thereof. Specific examples include Si, Ge, C, SiGe, SiC, GaAs, AlGaAs, InP, InAs, InSb, AsSb, InGaAs, GaN, and InGaN. The above substances have excellent photosensitivity, are relatively easy to produce, and are chemically stable. Among these, Si and SiGe are most desirable because they can be manufactured at low cost and have relatively high photosensitivity.
[0028]
Moreover, by forming the carrier generation part 4 in contact with the electron transport part 3, the carrier diffusion distance from the carrier generation part 4 to the electron transport part 3 is reduced, and the injection efficiency is improved. When the conduction band levels of the carrier generating part 4 and the electron transporting part 3 are greatly different, or when surface recombination due to defects is remarkable, the coating of the buffer layer on the carrier generating part 4, passivation treatment, and the optimal surface morphology May also be performed.
[0029]
On the other hand, the electron transport portion 3 is preferably a metal oxide semiconductor. This is because metal oxides are more stable than metals, have relatively low reactivity, and high electron-accepting properties. Specifically, In 2 O 3 , SnO 2 , WO 3 , ZnO, TiO 2 , Nb 2 O 5 , ZrO 2 , Ta 2 O 5 , Ag 2 O, MnO 2 , Cu 2 O 3 , Fe 2 O 3 , V 2 O 5 , Cr 2 O 3 , NiO, SrTiO 3 , K 4 NbO 17 and the like. Further, the above materials may be used in combination.
[0030]
The shape of the electron transport portion 3 is preferably a porous shape or an aggregate of acicular or cylindrical substances. As a result, it is possible to achieve both the expansion of the formation area of the carrier generation portion and the securing of the diffusion path of the charge generation material, which facilitates high efficiency. Further, when a needle-like or cylindrical substance is used, there is a merit that the recombination loss in the conduction process is reduced because the carrier diffusion coefficient in the major axis direction is large.
[0031]
【Example】
Next, a more specific example of the photoelectric conversion device of the present invention will be described. As shown in FIG. 1, the photoelectric conversion device of the present embodiment is a translucent substrate 1, a transparent conductive film 2, an electron transport unit 3, a carrier generation unit 4, a counter substrate 5, a spacer 6, and a hole transport unit. It is comprised from the electrolyte solution 7.
[0032]
First, a transparent conductive film 2 made of SnO 2 doped with fluorine was formed on a light-transmitting substrate 1 such as a # 1737 glass substrate (manufactured by Corning) so as to have a sheet resistance of about 10Ω / □. . At this time, in order to further reduce the sheet resistance value, the extraction electrode made of a metal such as aluminum, copper, silver or the like is patterned in advance using a sputtering method or the like before forming the transparent conductive film 2. May be. The translucent substrate 1 may be replaced with a resin such as a transparent polymer film as long as it can withstand the thermal history of the cell formation process.
[0033]
Next, a TiO 2 layer to be the electron transport portion 3 was formed on the transparent conductive film 2. Specifically, a TiO 2 paste having an average particle diameter of about 10 nm prepared from a sol-gel method is applied by a doctor blade method, preliminarily dried at room temperature, and then subjected to a sintering heat treatment in a muffle furnace at 450 ° C. for 30 minutes. went.
[0034]
Further, a TiO 2 paste having an average particle size of about 50 to 100 nm was applied by a doctor blade method in an amount of about 30% of the amount of the previous paste, and preliminarily dried at room temperature, and then 450 ° C. × 30 in a muffle furnace. For 2 minutes. At this time, the thickness of the sintered TiO 2 layer was about 9 μm, and was a porous shape. As a method for forming the TiO 2 layer, it is also possible to sinter and form a paste obtained by dissolving TiO 2 in the form of nanotubes or nanorods in a solvent.
[0035]
Next, Si fine particles to be the carrier generation layer 4 are formed on the electron transport layer 3. The Si fine particles were formed using a plasma CVD method using SiH 4 gas and H 2 gas as process gases and maintaining the gas pressure at 3 torr or less. At this time, when the gas pressure or the RF power density is high, the higher order reaction of Si radicals in the plasma region proceeds rapidly, and the particle size becomes enormous. As a result, the yield of fine particles on the order of several nanometers capable of exhibiting the quantum size effect is unfavorable. In addition to the above methods, Si fine particles can be produced by using a wet chemical process using organic polysilane as a starting material, in addition to a vacuum film forming method such as catalytic CVD method or MOCVD method. In the latter method, it is preferable to synthesize Si fine particles having a functional group that reinforces the binding force with the electron transport layer 3. For example, when the electron transport layer 3 is composed of TiO 2 , Examples include COOH group, OH group, SO 3 H group, cyano group, —P (O) (OH) 2 group, —OP (O) (OH) 2 group and the like.
[0036]
Si particles containing Si fine particles having an average particle size of 20 nm or less formed by the above method were mixed with tetrahydrofuran to obtain a suspension. Ethers, nitriles, and amides can be used as the solvent for the Si fine particles. Next, the substrate was immersed in this suspension and allowed to stand for about 12 hours to deposit Si fine particles on the electron transport layer 3. Thereafter, a heat treatment was performed at 500 ° C. for 30 minutes in order to improve electrical contact. Here, the Si fine particles may be doped with impurities to be weak p-type.
[0037]
On the other hand, when the carrier generation layer 4 is a thin film, the film thickness is set to 20 nm or less on the electron transport layer 3 by using a vacuum film forming method such as a CVD method, a sputtering method, or an evaporation method. Form. From the viewpoint of step coverage, film formation by the CVD method is most preferable.
[0038]
In the carrier generation part 4, the particle diameter is preferably 20 nm or less in the case of fine particles and the film thickness in the case of a thin film. If it is larger than 20 nm, the expression of the quantum size effect is weakened, and the short wavelength shift of the absorption edge does not occur, resulting in an extremely low short circuit current value.
[0039]
Next, the substrate manufactured as described above is placed opposite to the counter substrate 5 formed of platinum by sputtering through a polyethylene spacer 6, leaving an electrolyte injection hole (not shown) and an epoxy resin. The periphery was sealed with. Subsequently, a mixed solution of acetonitrile: tetrapropylammonium iodide: lithium iodide: iodine to be the electrolyte solution 7 was injected from the electrolyte solution injection hole. Finally, the electrolyte injection hole was sealed with an epoxy resin. As the electrolytic solution, a lithium iodide: iodine: methoxyacetonitrile: t-butylpyridine mixed solution or the like may be used. It is also possible in place of the gel electrolyte, CuI, CuAlO 2, NiO, may be a p-type inorganic semiconductor such CuGaO 2, SrCu 2 O 2. Further, the counter substrate 5 may be any material as long as it has conductivity, and a metal or the like coated with a protective layer may be used in order to increase the corrosion resistance against the electrolytic solution.
[0040]
The photoelectric conversion element produced as described above was irradiated with simulated sunlight whose incident light intensity was adjusted to 100 W / cm 2 , and the characteristics were evaluated. The results are shown in Table 1.
[0041]
[Table 1]
Figure 2005050979
[0042]
According to the results in Table 1, the initial short-circuit current value is high, and the conversion efficiency after light irradiation is not deteriorated, and the short-circuit current value is improved and the light stability is excellent by the photoelectric conversion device of the present invention. There was found.
[0043]
【The invention's effect】
According to the photoelectric conversion device of the present invention, a carrier generation unit that performs photoelectric conversion, an electron transport unit that transports electrons generated in the carrier generation unit, and a hole transport unit that transports holes generated in the carrier generation unit, And the carrier generation part has an inorganic semiconductor that exhibits a quantum size effect, so that there is no deterioration against light irradiation, and it is possible to maintain high quantum efficiency over a wide wavelength region. A photoelectric conversion device having an improved value and excellent light stability can be provided.
[0044]
In addition, since the inorganic semiconductor is a fine particle having an average particle diameter of 20 nm or less or a thin film having a film thickness of 20 nm or less, the quantum size effect becomes remarkable, and particularly the short wavelength sensitivity is improved with the wide band gap. Therefore, improvement of element characteristics can be expected.
[0045]
Further, since the inorganic semiconductor contains one or more elements of Si, Ge, C, Al, P, Ga, As, In, and Sb, both photosensitivity and stability against light irradiation are high, and high efficiency and high reliability. A photoelectric conversion device having a property can be provided.
[0046]
In addition, since the electron transport portion is a metal oxide semiconductor, a highly reliable photoelectric conversion device that is chemically very stable can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically illustrating a photoelectric conversion device according to the present invention.
[Explanation of symbols]
1: Translucent substrate 2: Transparent conductive film 3: Electron transport part 4: Carrier generation part Counter substrate 6. Spacer 7: Electrolyte (hole transport part)

Claims (4)

光電変換を行なうキャリア発生部と、該キャリア発生部で生じた電子を輸送する電子輸送部と、前記キャリア発生部で生じたホールを輸送するホール輸送部とを備えた光電変換装置であって、前記キャリア発生部が量子サイズ効果を発現している無機物半導体を有していることを特徴とする光電変換装置。A photoelectric conversion device comprising a carrier generation unit that performs photoelectric conversion, an electron transport unit that transports electrons generated in the carrier generation unit, and a hole transport unit that transports holes generated in the carrier generation unit, The photoelectric conversion device, wherein the carrier generation unit includes an inorganic semiconductor exhibiting a quantum size effect. 前記無機物半導体は、平均粒径が20nm以下の微粒子、または膜厚が20nm以下の薄膜であることを特徴とする請求項1に記載の光電変換装置。The photoelectric conversion device according to claim 1, wherein the inorganic semiconductor is a fine particle having an average particle diameter of 20 nm or less or a thin film having a film thickness of 20 nm or less. 前記無機物半導体がSi,Ge,C,Al,P,Ga,As,In,Sbの1種以上の元素を含むことを特徴とする請求項1または請求項2に記載の光電変換装置。The photoelectric conversion device according to claim 1, wherein the inorganic semiconductor includes one or more elements of Si, Ge, C, Al, P, Ga, As, In, and Sb. 前記電子輸送部が金属酸化物半導体であることを特徴とする請求項1乃至3のいずれかに記載の光電変換装置。The photoelectric conversion device according to claim 1, wherein the electron transport portion is a metal oxide semiconductor.
JP2003205168A 2003-07-31 2003-07-31 Photoelectric conversion device Pending JP2005050979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003205168A JP2005050979A (en) 2003-07-31 2003-07-31 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003205168A JP2005050979A (en) 2003-07-31 2003-07-31 Photoelectric conversion device

Publications (1)

Publication Number Publication Date
JP2005050979A true JP2005050979A (en) 2005-02-24

Family

ID=34263906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003205168A Pending JP2005050979A (en) 2003-07-31 2003-07-31 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2005050979A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286526A (en) * 2005-04-04 2006-10-19 Teijin Dupont Films Japan Ltd Electrode for dye-sensitized solar cell and its manufacturing method
JP2010192214A (en) * 2009-02-17 2010-09-02 Ulvac Japan Ltd Photoelectric conversion element and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012908A (en) * 1996-06-21 1998-01-16 Toshiba Corp Manufacture of semiconductor device and particulate semiconductor film, and photoelectric conversion element
JP2002111031A (en) * 2000-07-28 2002-04-12 Ecole Polytechnic Federal De Lausanne (Epfl) Solid hetero junction and solid sensitization (photosensitive) photovoltaic cell
JP2002141531A (en) * 2000-11-01 2002-05-17 Sharp Corp Solar cell and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012908A (en) * 1996-06-21 1998-01-16 Toshiba Corp Manufacture of semiconductor device and particulate semiconductor film, and photoelectric conversion element
JP2002111031A (en) * 2000-07-28 2002-04-12 Ecole Polytechnic Federal De Lausanne (Epfl) Solid hetero junction and solid sensitization (photosensitive) photovoltaic cell
JP2002141531A (en) * 2000-11-01 2002-05-17 Sharp Corp Solar cell and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286526A (en) * 2005-04-04 2006-10-19 Teijin Dupont Films Japan Ltd Electrode for dye-sensitized solar cell and its manufacturing method
JP2010192214A (en) * 2009-02-17 2010-09-02 Ulvac Japan Ltd Photoelectric conversion element and method of manufacturing the same

Similar Documents

Publication Publication Date Title
Yuan et al. Boosted charge extraction of NbO x-enveloped SnO 2 nanocrystals enables 24% efficient planar perovskite solar cells
Ding et al. Low-temperature SnO 2-modified TiO 2 yields record efficiency for normal planar perovskite solar modules
Kong et al. Graphene/Si Schottky solar cells: a review of recent advances and prospects
Zhang et al. CuGaO2: A promising inorganic hole‐transporting material for highly efficient and stable perovskite solar cells
Alwadai et al. High-performance ultraviolet-to-infrared broadband perovskite photodetectors achieved via inter-/intraband transitions
Ye et al. Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes
Zhang et al. Boosting the efficiency and the stability of low cost perovskite solar cells by using CuPc nanorods as hole transport material and carbon as counter electrode
Shi et al. Interfaces in perovskite solar cells
Xu et al. La-doped SnO2 as ETL for efficient planar-structure hybrid perovskite solar cells
Zhai et al. Recent developments in one‐dimensional inorganic nanostructures for photodetectors
Akin et al. Inorganic CuFeO2 delafossite nanoparticles as effective hole transport materials for highly efficient and long-term stable perovskite solar cells
Moon et al. Sb2S3-based mesoscopic solar cell using an organic hole conductor
JP2022519403A (en) MXene modified hybrid optical converter
Li et al. Amino-functionalized conjugated polymer electron transport layers enhance the UV-photostability of planar heterojunction perovskite solar cells
JP2014042082A (en) Solid hetero junction and solid sensitization (photosensitive) photovoltaic cell
KR101322646B1 (en) Nanocrystal solar cells processed from solution
US7042029B2 (en) Solid state heterojunction and solid state sensitized photovoltaic cell
US20080041446A1 (en) Dye-sensitized solar cells and method for fabricating same
Guo et al. Enhanced Lifetime and Photostability with Low‐Temperature Mesoporous ZnTiO3/Compact SnO2 Electrodes in Perovskite Solar Cells
JP2014212322A (en) Method and structure for thin-film photovoltaic materials using semiconductor materials
US20110203650A1 (en) Optical converter device and electronic equipment including the optical converter device
US20140060639A1 (en) Copper oxide core/shell nanocrystals for use in photovoltaic cells
KR100964182B1 (en) Dye-sensitized solar cells and method of manufacturing the same
Pudasaini et al. Aluminum oxide passivated radial junction sub-micrometre pillar array textured silicon solar cells
Tao et al. Polyoxometalate doped tin oxide as electron transport layer for low cost, hole-transport-material-free perovskite solar cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706