JP2005049016A - Geothermal heat pump system - Google Patents

Geothermal heat pump system Download PDF

Info

Publication number
JP2005049016A
JP2005049016A JP2003281512A JP2003281512A JP2005049016A JP 2005049016 A JP2005049016 A JP 2005049016A JP 2003281512 A JP2003281512 A JP 2003281512A JP 2003281512 A JP2003281512 A JP 2003281512A JP 2005049016 A JP2005049016 A JP 2005049016A
Authority
JP
Japan
Prior art keywords
heat
water
water tank
underground
pump system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003281512A
Other languages
Japanese (ja)
Inventor
Akio Kiyono
明男 清野
Tadashi Tsunoda
正 角田
Teruyuki Kato
輝行 加藤
Toshihiko Ishizawa
敏彦 石沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SATO SOGO KEIKAKU KK
Shin Nippon Air Technologies Co Ltd
Original Assignee
SATO SOGO KEIKAKU KK
Shin Nippon Air Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SATO SOGO KEIKAKU KK, Shin Nippon Air Technologies Co Ltd filed Critical SATO SOGO KEIKAKU KK
Priority to JP2003281512A priority Critical patent/JP2005049016A/en
Publication of JP2005049016A publication Critical patent/JP2005049016A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a geothermal heat pump system which can use a general-purpose article as a heat collecting pipe, save the labor of the installation, reduce the expense and thereby restrain the equipping investment to the minimum. <P>SOLUTION: Heat collecting pipes are buried along a substantially horizontal surface in a submundane shallow layer, and underground heat is adopted from groundwater or subsoil water existing in the submundane shallow layer. The heat collecting pipe uses rain water as a heating medium. A heat source water tank for using subterranean heat and a service water tank using rain water as raw water are commonly used, and the heat carrier of the heat source tank for using the subterranean heat is directly or indirectly heat-exchanged. Thereby, the heat source tank and the service water tank are used as a heat source for the pre-heating and pre-cooling of an outside air conditioner. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、地中内に配設した採熱管によって取り出した熱エネルギーを冷暖房、融雪、給湯、床暖房等に利用する地熱利用ヒートポンプシステムに関する。   The present invention relates to a geothermal heat pump system that uses thermal energy extracted by a heat collecting pipe disposed in the ground for cooling and heating, snow melting, hot water supply, floor heating, and the like.

近年、自然エネルギーの利用、C0の排出量の抑制、環境保全、省エネルギー等の利点から、地中熱を利用した冷暖房システム、融雪システム、給湯システム、床暖房システムなどが盛んに設置されている。 Recently, use of natural energy, the inhibition of C0 2 emissions, environmental protection, the advantage of energy saving such as air conditioning and heating system using ground heat, snow melting system, hot water supply systems, such as floor heating systems has been actively installed .

この地中熱を利用したシステムは、地中部分、例えば10〜100mの熱エネルギー(約15〜18℃)を熱交換器により抽出して様々な用途に活用するものである。前記地中熱を利用した冷暖房システムとしては、例えば下記特許文献1に記載されるものがある。同冷暖房システムは、穿設した井戸の坑井内に挿入された循環パイプと、この循環パイプ内を循環する不凍液等の媒体と、媒体循環ポンプと、坑井内の熱対流層に設けられた坑井内熱交換器と、室内機と、循環パイプを循環する媒体と熱交換媒体間で熱交換を行う室外熱交換器とで構成される第1ヒートポンプと、室外熱交換器と媒体が循環する他の循環パイプと、媒体を圧縮する圧縮機と、圧縮媒体を減圧する膨張装置と、室内機と室内熱交換器と、送風装置とで構成される第2ヒートポンプとから構成され、前記熱対流層により坑井内熱交換器は高効率のエネルギーを得て、前記第1、第2ヒートポンプで熱交換し、室内熱交換器で冷暖房を行うものである。また、地中熱交換器としては、下記特許文献2に示されるように、土中深層部に垂直に埋設される採熱管の他、例えば下記特許文献3に示されるように、架橋ポリエチレン、ポリブデン等からなるチューブを使用するとともに、架橋ポリエチレン、ポリブデン等の樹脂やステンレススチール、チタン等の金属からなるヘッドカバーを使用した樹脂製多管式熱交換器も提案されている。   The system using the underground heat extracts a portion of the ground, for example, 10 to 100 m of thermal energy (about 15 to 18 ° C.) by a heat exchanger and uses it for various applications. As an air-conditioning system using the underground heat, for example, there is one described in Patent Document 1 below. The cooling / heating system includes a circulation pipe inserted into a well bored, a medium such as antifreeze circulating in the circulation pipe, a medium circulation pump, and a well provided in a thermal convection layer in the well. A first heat pump composed of a heat exchanger, an indoor unit, an outdoor heat exchanger for exchanging heat between the medium circulating through the circulation pipe and the heat exchange medium, and other outdoor heat exchanger and other medium circulating medium A circulation pipe, a compressor that compresses the medium, an expansion device that decompresses the compression medium, an indoor unit, an indoor heat exchanger, and a second heat pump that includes a blower, The well heat exchanger obtains highly efficient energy, performs heat exchange with the first and second heat pumps, and performs air conditioning with the indoor heat exchanger. As the underground heat exchanger, as shown in Patent Document 2 below, in addition to a heat collecting pipe buried vertically in a deep underground part, for example, as shown in Patent Document 3 below, crosslinked polyethylene, polybutadiene In addition, a resin multi-tube heat exchanger using a head cover made of a resin such as crosslinked polyethylene or polybuden, or a metal such as stainless steel or titanium has been proposed.

さらに地熱を回収する方法としては、地中に埋設した熱交換器の他に、下記特許文献4に示されるように、井戸を2本掘り、一方を揚水井戸とし、他方を還水井戸とし、前記揚水井戸から汲み上げた井水をヒートポンプの採熱源として利用した後、これを還水井戸に返送するものもある。
特開平9−137972号公報 特開平9−60983号公報 特開2001−116471号公報 特開2002−54857号公報
Furthermore, as a method of recovering geothermal heat, in addition to a heat exchanger buried in the ground, as shown in the following Patent Document 4, two wells are dug, one is a pumping well, the other is a return water well, In some cases, the well water pumped up from the pumping well is used as a heat source for the heat pump, and then returned to the return water well.
JP-A-9-137972 JP-A-9-60983 JP 2001-116471 A JP 2002-54857 A

しかしながら、特許文献1〜4等に示されるように、ヒートポンプの熱源として地熱を利用する場合には、地盤を縦方向に穿孔(井戸堀)して地中に熱交換器を設置することになるが、この場合には前記井戸堀に多大な工事費用を要するため、多額な初期投資が必要となり、地熱を利用する省エネルギー設備の経済性を悪化させているとともに、採熱時間が短く、熱の移動に時間がかかるため、熱交換率が悪いという欠点があった。また、大規模な施設への適用の場合には、井戸を多数穿設しなければならず、この工事費用が膨大となっていた。   However, as shown in Patent Documents 1 to 4, etc., when using geothermal heat as a heat source of a heat pump, the ground is perforated in the vertical direction (well well) and a heat exchanger is installed in the ground. However, in this case, since the construction work for the well moat requires a large amount of construction cost, a large initial investment is required, which deteriorates the economic efficiency of the energy-saving equipment using geothermal heat, and the heat collection time is short. Since it takes time to move, there was a drawback that the heat exchange rate was poor. In addition, in the case of application to a large-scale facility, many wells had to be drilled, and this construction cost was enormous.

また、2本の井戸を掘り、一方を揚水井戸とし、他方を還水井戸とする特許文献4に係る方法の場合には、自治体の条例により地下水の汲み上げが規制される場合があるため採用が制限されることがあるとともに、還水を還水井戸に返送するためにポンプ動力を必要とするなどの問題がある。   In the case of the method according to Patent Document 4 in which two wells are dug, one is a pumping well and the other is a return water well, pumping of groundwater may be regulated by local ordinances. In addition to being limited, there are problems such as requiring pump power to return the return water to the return well.

さらに、上記特許文献2等に示されるように、土中深層部に垂直に埋設される採熱管の場合は、土圧に耐える強度を有する必要があるとともに、往水路と復水路を同一管路内に形成するために、二重管構造等の特注構造の管材を使用しなければならず、製作コストも嵩んでいた。   Furthermore, as shown in the above-mentioned Patent Document 2 and the like, in the case of a heat collecting pipe embedded vertically in a deep underground part, it is necessary to have strength to withstand earth pressure, and the outlet pipe and the condensate pipe are connected to the same pipe line. In order to form inside, the pipe material of custom-order structures, such as a double pipe structure, had to be used, and the manufacturing cost was also expensive.

そこで本発明の主たる課題は、採熱管として樹脂管等の汎用品を使用でき、かつ設置手間及び費用が廉価で済むようになり、もって設備投資を最小限に抑えることのできる地熱利用ヒートポンプシステムを提供することにある。   Therefore, the main problem of the present invention is to provide a geothermal heat pump system that can use a general-purpose product such as a resin tube as a heat collection tube, can be installed at low cost, and can minimize capital investment. It is to provide.

前記課題を解決するために請求項1に係る本発明として、採熱管を地中浅層部に略水平面に沿って埋設し、前記地中浅層部に存在する地下水または伏流水から地熱を採取することを特徴とする地熱利用ヒートポンプシステムが提供される。   In order to solve the above-mentioned problem, as the present invention according to claim 1, a heat collecting tube is embedded in a shallow underground layer along a substantially horizontal plane, and geothermal heat is collected from groundwater or underground water existing in the shallow underground layer. A geothermal heat pump system is provided.

上記請求項1記載の発明においては、採熱管を地中浅層部に略水平面に沿って埋設するようにする。例えば、建物の基礎工事(根切り工事)時に、開削された底盤面に水平面に沿って採熱管を敷設するようにする。従って、建築物の施工に必要な根切り工事の範囲内で或いは多少の追加掘削工事を要する範囲内で納めることができるとともに、採熱管の設置領域も縮小化できるようになるため、採熱管の設置に必要な土木工事費を最小限に抑えることが可能となる。   In the first aspect of the present invention, the heat collecting tube is embedded in the underground shallow layer portion along a substantially horizontal plane. For example, at the time of foundation construction (root cutting work) of a building, a heat collecting pipe is laid along the horizontal plane on the bottom surface of the cut. Therefore, it can be accommodated within the range of the root cutting work required for the construction of the building or within the range that requires some additional excavation work, and the installation area of the heat collection pipe can be reduced. It is possible to minimize civil engineering costs required for installation.

また、配管用管材としては、架橋ポリエチレン管などの汎用品を利用することが可能となり、設置手間および費用が廉価で済むようになる。また、地盤掘削した底盤面に敷設するため、距離の長い採熱管を簡単に敷設できるようになるため、採熱時間を長く確保できるようになり、熱交換率も良好となる。なお、具体的な採熱管の埋設深さは基礎の掘削深さによるが、数m〜十数m程度とされる。   In addition, a general-purpose product such as a cross-linked polyethylene pipe can be used as the pipe material for piping, and installation labor and cost can be reduced. In addition, since it is laid on the bottom surface of the ground excavated, it becomes possible to easily lay a long-distance heat collection tube, so that a long heat collection time can be secured and the heat exchange rate is also good. In addition, although the concrete embedding depth of the heat collection pipe depends on the excavation depth of the foundation, it is set to about several m to several tens of m.

本発明において地熱は、地中浅層部に存在する地下水または伏流水から採熱するようにしている。地中浅層部に存在する地下水または伏流水は、恒温水というわけにはいかず、所定範囲内での温度変化を有するが、夏季における熱媒の冷却、冬季における熱媒の昇温によって冷暖房、給湯に適する冷却・加熱源を得ることが可能である。また、熱交換率については、長距離の採熱管を敷設することによりカバーすることが可能である。この場合、特に伏流水を利用する場合には、地下水温度にタイムラグ(時期遅れ)が生じて、一季節前の温度の低い水/高い水を利用できる場合には大きなメリットが生じる。   In the present invention, geothermal heat is collected from groundwater or underground water existing in the underground shallow layer. Groundwater or underground water existing in the shallow underground layer is not constant temperature water and has a temperature change within a predetermined range, but cooling and heating by cooling of the heat medium in summer, heating of the heat medium in winter, It is possible to obtain a cooling / heating source suitable for hot water supply. The heat exchange rate can be covered by laying a long-distance heat collection tube. In this case, in particular, when underground water is used, a time lag (time delay) occurs in the groundwater temperature, and a large merit is obtained when water having a low temperature / high water one season before can be used.

請求項2に係る本発明として、前記採熱管は雨水を熱媒として使用し、地中熱利用のための熱源水槽と、雨水を原水とする雑用水槽とを兼用している請求項1記載の地熱利用ヒートポンプシステムが提供される。   According to a second aspect of the present invention, the heat collecting pipe uses rainwater as a heat medium, and serves both as a heat source water tank for use of underground heat and a miscellaneous water tank using rainwater as raw water. A geothermal heat pump system is provided.

上記請求項2記載の本発明では、採熱管は雨水を熱媒として使用することにより特に不凍液等の熱媒が不要になることはもちろんであるが、地中熱利用のための熱源水槽と、雨水を原水とする雑用水槽とを兼用できるようになり、水槽の工事費をおよそ半減することができる。   In the present invention described in claim 2 above, the heat collecting pipe uses rainwater as a heat medium, and of course, a heat medium such as antifreeze is not necessary, but a heat source water tank for use of underground heat, It can be used as a miscellaneous water tank that uses rainwater as raw water, and the construction cost of the water tank can be halved.

請求項3に係る本発明として、前記地中熱利用のための熱源水槽の熱媒を直接または間接熱交換により、外気調和機の予熱及び予冷の熱源として用いる請求項2記載の地熱利用ヒートポンプシステムが提供される。   The geothermal heat pump system according to claim 2, wherein the heat medium of the heat source water tank for use of geothermal heat is used as a heat source for preheating and precooling of an outdoor air conditioner by direct or indirect heat exchange. Is provided.

上記請求項3記載の本発明では、前記熱源水槽の水(雨水)を外気調和機の予熱及び予冷の熱源としても用いることにより、設備の省力化、簡略化、低コスト化が図れるようになる。   In the present invention according to the third aspect, the water (rain water) in the heat source water tank is also used as a heat source for preheating and precooling of the outdoor air conditioner, so that labor saving, simplification, and cost reduction of the equipment can be achieved. .

以上詳説のとおり本発明によれば、採熱管を地中浅層部に略水平面に沿って埋設し、前記地中浅層部に存在する地下水または伏流水から地熱を採取するようにしたため、採熱管として汎用品を使用できるようになるとともに、設置手間及び費用が廉価で済むようになり、もって地熱利用ヒートポンプシステムの導入に掛かる設備投資を最小限に抑えることができるようになる。   As described above in detail, according to the present invention, the heat collection pipe is embedded in the shallow underground layer along a substantially horizontal plane, and the ground heat is collected from the groundwater or underground water existing in the shallow underground layer. A general-purpose product can be used as the heat pipe, and the labor and cost of installation can be reduced, so that the capital investment required for the introduction of the heat pump system using geothermal heat can be minimized.

以下、本発明の実施の形態について図面を参照しながら詳述する。
図1は本発明に係る地熱利用ヒートポンプシステムの構成ブロック図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a configuration block diagram of a geothermal heat pump system according to the present invention.

本発明に係る地熱利用ヒートポンプシステムでは、図1に示されるように、熱源水槽1が設置され、この熱源水槽1内に貯水されている雨水が熱媒として使用されるようになっている。   In the geothermal heat pump system according to the present invention, as shown in FIG. 1, a heat source water tank 1 is installed, and rainwater stored in the heat source water tank 1 is used as a heat medium.

すなわち、前記熱源水槽1は、内部が隔壁によって水槽1A〜1Cの3つに画成され、水槽1Aから水槽1Cに至る多数本の採熱管2,2…が地中浅層部、例えば数m〜十数mの地盤深さ位置に略水平面に沿って敷設され、前記水槽1A内に貯留された水がポンプ2aにより水槽1Cに輸送される過程で、地盤浅層部に存在する地下水または伏流水と熱交換が行われ、水槽1C内に低温化または高温化された水が貯水されるようになっている。なお、前記水槽1Cに加水されると、溢れた水が水槽1Bに溢流し、さらに水槽1Bから溢れた水が水槽1Aに溢流するようになっており、水槽1内の各水槽1Aから1Cの水位は常時一定に保たれるようになっている。   That is, the heat source water tank 1 is internally divided into three water tanks 1A to 1C by partition walls, and a large number of heat collecting tubes 2, 2... From the water tank 1A to the water tank 1C are shallow underground, for example, several m. Groundwater or subsidence existing in shallow ground in the process where the water stored in the aquarium 1A is transported to the aquarium 1C by the pump 2a at a ground depth position of about tens of meters Heat exchange is performed with water, and water that has been reduced in temperature or increased in temperature is stored in the water tank 1C. When water is added to the water tank 1C, the overflowing water overflows into the water tank 1B, and the water overflowing from the water tank 1B overflows into the water tank 1A. The water level is always kept constant.

前記採熱管2としては、例えばφ10〜20mm程度の架橋ポリエチレン、ポリプロピレン、ポリブデン等の樹脂管が好適に用いられる。また、1本当たりの敷設長は建物規模(空調規模)等によって大きく異なるが50m〜数百mとするのがよい。   As the heat collection tube 2, for example, a resin tube such as cross-linked polyethylene, polypropylene, or polybuden having a diameter of about 10 to 20 mm is preferably used. In addition, the laying length per one varies greatly depending on the building scale (air conditioning scale) and the like, but is preferably 50 m to several hundred m.

前記水槽1Cに貯水された熱媒(水)は、熱媒送水管3により熱交換器4,4…に送られ、ここで他との熱交換により熱源が利用され、熱媒が熱媒還水管5により水槽1Aに戻されるようになっている。   The heat medium (water) stored in the water tank 1C is sent to the heat exchangers 4, 4... By the heat medium water supply pipe 3, where a heat source is used by heat exchange with the other, and the heat medium is returned to the heat medium. The water pipe 5 returns the water tank 1A.

なお、図示の例では前記熱媒送水管3から冷却塔7を循環して熱媒送水管3に戻る分岐送給路8が形成されているとともに、熱媒送水管3の途中に熱交換器6が設けられ、他の温熱源と熱交換が行われるようになっている、これらは補助熱源として利用されるものである。   In the illustrated example, a branch feed path 8 that circulates from the heat medium water pipe 3 through the cooling tower 7 and returns to the heat medium water pipe 3 is formed, and a heat exchanger is provided in the middle of the heat medium water pipe 3. 6 are provided to exchange heat with other heat sources, and these are used as auxiliary heat sources.

ところで、本地熱利用ヒートポンプシステムにおいて前記熱源水槽1は、雨水を原水とする雑用水槽を兼用するものである。雨水が沈砂水槽10に導入され、ここで固形物が沈殿除去された後、さらに微小な固形物が濾過機11で除去され、熱源水槽1に導入される。そして、水槽1A内の水が、トイレ洗浄水、植裁への散水、災害時の緊急飲料(浄水器別途必要)、近隣火災時の防火水などの中水として使用されるようになっている。   By the way, in the heat pump system using geothermal heat, the heat source water tank 1 also serves as a miscellaneous water tank using rainwater as raw water. Rainwater is introduced into the settling water tank 10, where solids are precipitated and removed, and further fine solids are removed by the filter 11 and introduced into the heat source water tank 1. And the water in 1A of water tanks is used as middle water, such as toilet washing water, watering to planting, emergency drinks at the time of disaster (necessary water purifier is necessary), fire prevention water at the time of a nearby fire, etc. .

一方で、前記熱源水槽1の内の中間水槽1Bには、架橋ポリエチレン等からなる多管式熱交換器12が配設され、この多管式熱交換器12を巡る循環路が外気取入れ用空調機13に導かれ、外気調和機13内の熱交換器(コイル)14により外気の予熱及び予冷の熱源として使用されるようになっている。   On the other hand, in the intermediate water tank 1B of the heat source water tank 1, a multitubular heat exchanger 12 made of crosslinked polyethylene or the like is disposed, and a circulation path around the multitubular heat exchanger 12 is an air conditioning system for taking in outside air. The heat exchanger (coil) 14 in the outside air conditioner 13 is guided to the machine 13 and used as a heat source for preheating and precooling the outside air.

想定した建物において、従来の都市ガス方式による冷房運転及び暖房運転を採用した場合と、本発明に係る地熱利用ヒートポンプシステムを用いた空調システムを採用した場合とで、冷温熱100kWを得るのに必要なランニングコストを試算した。なお、採熱管を敷設条件は、架橋ポリエチレンパイプ(φ13mm):120m×44本とした。   Necessary for obtaining 100 kW of cold and hot energy in the assumed building when adopting conventional city gas cooling and heating operations and adopting an air conditioning system using the geothermal heat pump system according to the present invention. Estimated the running cost. In addition, the conditions for laying the heat collection tube were a crosslinked polyethylene pipe (φ13 mm): 120 m × 44.

その結果を下表1に示す。

Figure 2005049016
The results are shown in Table 1 below.
Figure 2005049016

本発明に係る地熱利用ヒートポンプシステムの構成ブロック図である。1 is a configuration block diagram of a geothermal heat pump system according to the present invention.

符号の説明Explanation of symbols

1…熱源水槽、2…採熱管、3…熱媒送水管、4…熱交換器、5…熱媒還水管、6…熱交換器、7…冷却塔、8…分岐送給路、10…沈砂水槽、11…濾過機、12…多管式熱交換器、13…外気取入れ用空調機、14…熱交換器   DESCRIPTION OF SYMBOLS 1 ... Heat source water tank, 2 ... Heat collection pipe, 3 ... Heat-medium water supply pipe, 4 ... Heat exchanger, 5 ... Heat-medium return water pipe, 6 ... Heat exchanger, 7 ... Cooling tower, 8 ... Branch supply path, 10 ... Sedimentation water tank, 11 ... filter, 12 ... multi-tubular heat exchanger, 13 ... air conditioner for taking in outside air, 14 ... heat exchanger

Claims (3)

採熱管を地中浅層部に略水平面に沿って埋設し、前記地中浅層部に存在する地下水または伏流水から地熱を採取することを特徴とする地熱利用ヒートポンプシステム。 A heat pump system using geothermal heat, characterized in that a heat collecting tube is embedded in a shallow underground layer along a substantially horizontal plane, and geothermal heat is collected from groundwater or underground water existing in the shallow underground layer. 前記採熱管は雨水を熱媒として使用し、地中熱利用のための熱源水槽と、雨水を原水とする雑用水槽とを兼用している請求項1記載の地熱利用ヒートポンプシステム。 The geothermal heat pump system according to claim 1, wherein the heat collecting pipe uses rainwater as a heat medium, and serves both as a heat source water tank for use of underground heat and a miscellaneous water tank using rainwater as raw water. 前記地中熱利用のための熱源水槽の熱媒を直接または間接熱交換により、外気調和機の予熱及び予冷の熱源として用いる請求項2記載の地熱利用ヒートポンプシステム。
3. The geothermal heat pump system according to claim 2, wherein the heat medium in the heat source water tank for use of the underground heat is used as a heat source for preheating and precooling of the outdoor air conditioner by direct or indirect heat exchange.
JP2003281512A 2003-07-29 2003-07-29 Geothermal heat pump system Pending JP2005049016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003281512A JP2005049016A (en) 2003-07-29 2003-07-29 Geothermal heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003281512A JP2005049016A (en) 2003-07-29 2003-07-29 Geothermal heat pump system

Publications (1)

Publication Number Publication Date
JP2005049016A true JP2005049016A (en) 2005-02-24

Family

ID=34266991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003281512A Pending JP2005049016A (en) 2003-07-29 2003-07-29 Geothermal heat pump system

Country Status (1)

Country Link
JP (1) JP2005049016A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313034A (en) * 2005-05-06 2006-11-16 Nippon Steel Engineering Co Ltd Geothermal unit
KR100754418B1 (en) 2007-06-15 2007-08-31 삼양에코너지 주식회사 Hybrid heat pump system using ground and water heat source
JP2008014530A (en) * 2006-07-04 2008-01-24 Mitsubishi Materials Natural Resources Development Corp Heat pump device utilizing well
KR100812316B1 (en) * 2007-01-24 2008-03-10 한국에너지기술연구원 Heat pump system for using heat of rainwater heat source and geothermal
JP2009545716A (en) * 2006-07-31 2009-12-24 シムカ,パベル Thermal energy collection and transport system with modular air conditioning
CZ301756B6 (en) * 2007-02-05 2010-06-16 Fite A. S. Apparatus for utilization of geothermal energy of forcibly pumped mine liquid
KR100973328B1 (en) 2008-11-19 2010-07-30 한국에너지기술연구원 Unitary cascade heat pump system using geothermal heat source near the sea
JP2010255976A (en) * 2009-04-28 2010-11-11 Nishimatsu Constr Co Ltd Hot water supply system
CN101893348A (en) * 2010-07-30 2010-11-24 山东同方能源工程技术有限公司 Heating and cooling system using swallet waste heat by industrial and mining enterprises
JP2011033233A (en) * 2009-07-30 2011-02-17 Sumitomo Fudosan Kk Underground heat using air conditioning system
KR101124361B1 (en) 2009-07-01 2012-03-15 농업회사법인 농산무역 유한회사 Hybrid form Subterranean-heat of Heat pump system
KR101186883B1 (en) 2011-01-31 2012-10-02 주식회사 티알엑서지 Cooling and heating system for subway station building
JP2013137187A (en) * 2011-11-30 2013-07-11 Daiken:Kk Water utilization system
JP2013148257A (en) * 2012-01-18 2013-08-01 Kawada Industries Inc Underground waterway forming plate
CN103256670A (en) * 2013-01-16 2013-08-21 上海申通地铁集团有限公司 Ground source heat pump combined air conditioning system
CN103375860A (en) * 2012-04-20 2013-10-30 高忠义 Centralized indoor cooling system for residence communities
CN103629848A (en) * 2012-08-27 2014-03-12 昆山开思拓节能技术有限公司 Geotherm cooling device
CN105020845A (en) * 2015-03-09 2015-11-04 厦门立思科技股份有限公司 Linkage energy-saving control system and method for air conditioning system
CN106382759A (en) * 2016-09-30 2017-02-08 宁波大学 Outdoor ground energy heat exchange device of ground source heat pump system
CN110345667A (en) * 2019-07-31 2019-10-18 青岛理工大学 Multifunctional tail end heat pump system and method for subway composite energy

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313034A (en) * 2005-05-06 2006-11-16 Nippon Steel Engineering Co Ltd Geothermal unit
JP2008014530A (en) * 2006-07-04 2008-01-24 Mitsubishi Materials Natural Resources Development Corp Heat pump device utilizing well
JP2009545716A (en) * 2006-07-31 2009-12-24 シムカ,パベル Thermal energy collection and transport system with modular air conditioning
KR100812316B1 (en) * 2007-01-24 2008-03-10 한국에너지기술연구원 Heat pump system for using heat of rainwater heat source and geothermal
CZ301756B6 (en) * 2007-02-05 2010-06-16 Fite A. S. Apparatus for utilization of geothermal energy of forcibly pumped mine liquid
KR100754418B1 (en) 2007-06-15 2007-08-31 삼양에코너지 주식회사 Hybrid heat pump system using ground and water heat source
KR100973328B1 (en) 2008-11-19 2010-07-30 한국에너지기술연구원 Unitary cascade heat pump system using geothermal heat source near the sea
JP2010255976A (en) * 2009-04-28 2010-11-11 Nishimatsu Constr Co Ltd Hot water supply system
KR101124361B1 (en) 2009-07-01 2012-03-15 농업회사법인 농산무역 유한회사 Hybrid form Subterranean-heat of Heat pump system
JP2011033233A (en) * 2009-07-30 2011-02-17 Sumitomo Fudosan Kk Underground heat using air conditioning system
CN101893348A (en) * 2010-07-30 2010-11-24 山东同方能源工程技术有限公司 Heating and cooling system using swallet waste heat by industrial and mining enterprises
KR101186883B1 (en) 2011-01-31 2012-10-02 주식회사 티알엑서지 Cooling and heating system for subway station building
JP2013137187A (en) * 2011-11-30 2013-07-11 Daiken:Kk Water utilization system
JP2013148257A (en) * 2012-01-18 2013-08-01 Kawada Industries Inc Underground waterway forming plate
CN103375860A (en) * 2012-04-20 2013-10-30 高忠义 Centralized indoor cooling system for residence communities
CN103375860B (en) * 2012-04-20 2016-01-27 高忠义 Cold supply system in the concentration chamber of residential quarters
CN103629848A (en) * 2012-08-27 2014-03-12 昆山开思拓节能技术有限公司 Geotherm cooling device
CN103256670A (en) * 2013-01-16 2013-08-21 上海申通地铁集团有限公司 Ground source heat pump combined air conditioning system
CN105020845A (en) * 2015-03-09 2015-11-04 厦门立思科技股份有限公司 Linkage energy-saving control system and method for air conditioning system
CN106382759A (en) * 2016-09-30 2017-02-08 宁波大学 Outdoor ground energy heat exchange device of ground source heat pump system
CN110345667A (en) * 2019-07-31 2019-10-18 青岛理工大学 Multifunctional tail end heat pump system and method for subway composite energy
US11898779B2 (en) 2019-07-31 2024-02-13 Qingdao university of technology Subway hybrid-energy multifunctional-end-integrated heat pump system and method

Similar Documents

Publication Publication Date Title
JP2005049016A (en) Geothermal heat pump system
US7363769B2 (en) Electromagnetic signal transmission/reception tower and accompanying base station employing system of coaxial-flow heat exchanging structures installed in well bores to thermally control the environment housing electronic equipment within the base station
Watzlaf et al. Underground mine water for heating and cooling using geothermal heat pump systems
US20070017243A1 (en) Coaxial-flow heat transfer structures for use in diverse applications
JP2011149690A (en) Underground heat exchanger burying structure
JP5389565B2 (en) Geothermal air conditioning system
KR101641507B1 (en) Cooling heating system using heat exchanged bleeding underground water
US20100251710A1 (en) System for utilizing renewable geothermal energy
Lund Geothermal heat pump utilization in the United States
JP2010151351A (en) Underground heat exchanger burying structure
Drijver et al. Groundwater as a heat source for geothermal heat pumps
JP2005337569A (en) Ground heat insulating wall structure for ground heat utilizing system, its constructing method, and ground heat utilizing system operation method
Lawrence et al. Capturing condensate
JP2019219159A (en) Waste hot water heat regenerator and waste hot water heat regeneration system using the same
JP5951263B2 (en) Plate for underground water channel formation
Lienau et al. Klamath County geo-heating district feasibility study
EP4056923A1 (en) Geothermal system
CN106196662B (en) A kind of deep water flat underground pipe system and its laying method
Schubert et al. Using mine waters for heating and cooling
Lohrenz et al. District Feasibility Assessment for Wastewater Heat Exchanger Integrated Ground Source Heat Pump System
Lund Geothermal energy utilization for the homeowner
Lund et al. GEO-HEAT CENTER
Takahashi et al. Update of geothermal heat pump use in Japan
Popovski Energy source completion for geothermal district heating systems
Watzlaf et al. Flooded underground coal mines: a significant source of inexpensive geothermal energy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090611