JP2005048984A - Heat treatment furnace - Google Patents

Heat treatment furnace Download PDF

Info

Publication number
JP2005048984A
JP2005048984A JP2003203652A JP2003203652A JP2005048984A JP 2005048984 A JP2005048984 A JP 2005048984A JP 2003203652 A JP2003203652 A JP 2003203652A JP 2003203652 A JP2003203652 A JP 2003203652A JP 2005048984 A JP2005048984 A JP 2005048984A
Authority
JP
Japan
Prior art keywords
furnace
atmosphere
heat treatment
gas
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003203652A
Other languages
Japanese (ja)
Inventor
Koji Yamada
浩治 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2003203652A priority Critical patent/JP2005048984A/en
Priority to CN 200310100617 priority patent/CN1576764A/en
Publication of JP2005048984A publication Critical patent/JP2005048984A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treatment furnace capable of shortening a time necessary for replacing an initial furnace atmosphere with a desired furnace atmosphere, precisely performing the replacement, and lowering a concentration of residual initial furnace atmospheric gas in comparison with a conventional one, for example, when the furnace atmosphere is replaced with a nitrogen gas. <P>SOLUTION: In this heat treatment furnace, a refractory 2 having air permeability, is mounted along a wall face of a furnace wall 1 at the inside of the furnace wall 1. A clearance 3 is formed between the furnace wall 1 and the refractory 2, and a gas for adjusting the atmosphere, of a specific composition introduced into the clearance 3 is sent into the furnace through the inside of the refractor 2, in adjusting the furnace atmosphere. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、フェライト等の電子部品の生産炉のような、炉内の雰囲気調整を必要とする熱処理炉に関する。
【0002】
【従来の技術】フェライト等の電子部品を熱処理炉内で焼成する場合には、炉内雰囲気を、ある所定の酸素濃度に調整する必要がある。通常、そのような酸素濃度の雰囲気は、炉内に窒素ガスと空気とを所定の比率で混合したガスを導入して、導入前の初期の炉内雰囲気ガス(通常は空気)と置換することによって作り出される。
【0003】図5は、従来このような雰囲気調整を必要とする熱処理に使用されてきた熱処理炉の一例を示す概要図である。この熱処理炉は、鋼板からなる炉壁11の内側に、セラミックファイバー等の綿状で通気性を有する耐火物12が、炉壁11の壁面に沿って炉壁11と接する状態で配置されており、また、炉外から炉壁11及び耐火物12を貫通して炉内に通じるパイプ状のガス導入用ノズル16が設けられている。
【0004】そして、炉内雰囲気の調整に際しては、台車8にて熱処理対象となる製品9を炉内に搬送した後、排気口17より炉内ガスの排気を行いつつ、ガス導入用ノズル16から所定組成の雰囲気調整用ガス(例えば窒素ガス)を直接炉内に導入し、初期の炉内雰囲気ガスを導入された雰囲気調整用ガスで置換するという方法が採られていた(当該従来技術に関する先行技術文献は特に見当たらない。)。
【0005】
【発明が解決しようとする課題】しかしながら、前記従来の熱処理炉においては、綿状の耐火物12内部の空隙に存在する初期の炉内雰囲気ガスが、導入された雰囲気調整用ガスで置換されにくく、また、この耐火物12内部に残留した初期の炉内雰囲気ガスが、雰囲気調整用ガスの導入開始後に、ゆっくりと時間をかけて炉内に拡散してくるため、炉内雰囲気の置換に長時間を要するとともに、初期の炉内雰囲気ガスの残存濃度を低下させることにも限界があった。
【0006】例えば、炉内に窒素ガスを導入して、炉内雰囲気を初期の空気状態(酸素濃度20.6%)から、残存酸素濃度1000ppmになるまで酸素濃度を低下させるには90分程度の置換時間を要し、また、残存酸素濃度は300ppm程度まで低下させるのが限界であった。
【0007】本発明は、このような従来の事情に鑑みてなされたものであり、その目的とするところは、炉内雰囲気を調整するに際して、初期の炉内雰囲気を所望の炉内雰囲気に置換するのに要する時間を短縮できるとともに、より精密な置換が可能であり、更に例えば炉内雰囲気を窒素ガスに置換するような場合において、初期の炉内雰囲気ガスの残存濃度を従来よりも低下させることができるような熱処理炉を提供することにある。
【0008】
【課題を解決するための手段】本発明によれば、炉壁の内側に当該炉壁の壁面に沿って通気性を有する耐火物を配置した熱処理炉であって、前記炉壁と前記耐火物との間に間隙を設け、炉内雰囲気の調整に際して、前記間隙に導入された所定組成の雰囲気調整用ガスが、前記耐火物の内部を通過してから炉内に送り込まれるようにしたことを特徴とする熱処理炉、が提供される。
【0009】
【発明の実施の形態】図1は、本発明に係る熱処理炉の実施形態の一例を示す概要図である。本発明の熱処理炉は、鋼板からなる炉壁1の内側に、炉壁1の壁面に沿ってセラミックファイバー等の通気性を有する耐火物(断熱材)2が配置されたものであるが、前記した従来の熱処理炉のように耐火物を炉壁と接する状態で配置するのではなく、炉壁1から所定の間隔を置いて配置し、炉壁1と耐火物2との間に間隙3を設けるようにしている。
【0010】そして、炉内雰囲気の調整に際しては、台車8にて熱処理対象となる製品9を炉内に搬送した後、排気口7より炉内ガスの排気を行いつつ、炉壁1と耐火物2との間の間隙3に所定組成の雰囲気調整用ガス(例えば窒素ガス)を導入する。この間隙3に導入された雰囲気調整用ガスは、セラミックファイバー等の綿状の耐火物2の内部、すなわち耐火物2を構成する繊維等の間の空隙を通過して、製品9が置かれた内部へと送り込まれる。
【0011】本発明では、このように雰囲気調整用ガスが耐火物2内部を通過してから炉内に送り込まれるようにしたことにより、雰囲気調整用ガスが導入される前に耐火物2内部の空隙に存在していた初期の炉内雰囲気ガス(例えば空気)が、導入された雰囲気調整用ガスによって前記空隙から押し出され、早期に雰囲気調整用ガスに置換される。
【0012】このため、本発明の熱処理炉を用いれば、炉内雰囲気を調整するに際して、初期の炉内雰囲気を所望の炉内雰囲気に置換するのに要する時間を大幅に短縮することが可能となる。例えば、雰囲気調整用ガスとして窒素ガスと空気とを所定の比率で混合して得た酸素濃度1000ppmのガスを導入し、炉内雰囲気を空気(酸素濃度20.6%)から当該ガスに置換する場合において、雰囲気中の残存酸素濃度が1000ppmになるまでに要する時間は、従来の熱処理炉を用いた場合の1/2〜1/4程度となる。
【0013】また、前記のとおり、耐火物2内部の空隙に存在していた初期の炉内雰囲気ガスは、導入された雰囲気調整用ガスによって前記空隙から押し出されるため、ほとんど空隙内に残留することがなくなり、この結果、初期の炉内雰囲気ガスの残存濃度を従来の熱処理炉よりも低下させることが可能となる。例えば、雰囲気調整用ガスとして窒素ガスを導入し、炉内雰囲気を空気から窒素に置換する場合、従来の熱処理炉(実際に生産炉として使用できるレベルのもの)では、雰囲気中の残存酸素濃度を300ppm程度まで低下させるのが限界であったが、本発明の熱処理炉を用いれば50ppm以下に低下させることも可能である。
【0014】更に、本発明では、炉壁1と耐火物2との間に雰囲気調整用ガスを導入することにより、炉壁1が雰囲気調整用ガスで冷却されて、炉壁1の表面温度が従来よりも低下し、炉の熱効率や作業の安全性が向上する。具体的には、従来の熱処理炉における炉壁1の表面温度が120〜180℃程度であったものが、本発明の熱処理炉では80〜150℃程度まで低下した。
【0015】なお、従来の熱処理炉のように耐火物2を炉壁1に接触させず、炉壁1との間に間隙3ができるように炉壁1から所定の間隔をおいて耐火物2を配置するには、耐火物2を何らかの方法で支持する必要がある。このため、図1の例では、炉壁1の内側に、多数の孔部4を有する穴明板5で構成した内壁を、炉壁1から所定の間隔をおいて配置し、この内壁にて耐火物2を支持するようにしている。
【0016】ただし、耐火物2を支持する方法としては、これに限られるものではなく、間隙3から耐火物2へのガスの移動を遮断するようなものでなければ、どのような支持部材を用いてもよい。例えば、図1の穴明板5の代わりに、鋼板等を耐火物2の支持が可能なピッチで隙間を空けて取り付けてもよい。
【0017】また、本発明の熱処理炉においては、図2に示すように、炉外から炉壁1及び耐火物2を貫通して炉内に通じるガス導入用ノズル6を設け、炉内雰囲気の調整に際して、炉壁1と耐火物2との間の間隙3への雰囲気調整用ガスの導入と併せて、従来の熱処理炉のように、ガス導入用ノズル6からも雰囲気調整用ガスを炉内に導入できるようにしてもよい。このように2つの導入方法を併用できるようにすることにより、炉内雰囲気の置換時間を一層短縮することが可能となる。
【0018】更にまた、本発明においては、必ずしも炉の全面から雰囲気調整用ガスが導入されなくてもよく、例えば、炉壁と一部の耐火物との間にのみ雰囲気調整用ガスを導入するための間隙を設け、残りの耐火物は炉壁に接した状態となっていてもよい。また、製品を炉内に搬入する台車について、同様な間隙構造を設けるようにしてもよい。
【0019】
【実施例】以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0020】図5に示すような従来の熱処理炉と、図1に示すような本発明の熱処理炉とを使用して、炉内の雰囲気を空気から、窒素ガスと空気とを所定の比率で混合して得た酸素濃度1000ppmの混合ガスに置換した。従来の熱処理炉においては、ガス導入用ノズル16から直接炉内に前記混合ガスを導入し、また、本発明の熱処理炉においては、炉壁1と耐火物2との間の間隙3に前記混合ガスを導入し、この混合ガスが耐火物2の内部を通過してから炉内に送り込まれるようにした。このようにして炉内雰囲気を空気(酸素濃度20.6%)から前記混合ガスに置換し、雰囲気中の残存酸素濃度が設定酸素濃度の1000ppm(0.1%)に低下するまでに要する時間と雰囲気の制御性とを調べ、結果を図3のグラフに示した。また、両熱処理炉に窒素ガスを導入して、炉内雰囲気を空気から窒素に置換した場合における、炉内雰囲気中の残存酸素濃度の低下の限界を調べ、結果を図4のグラフに示した。
【0021】図3に示すとおり、本発明の熱処理炉は、従来の熱処理炉の1/3以下の時間で炉内雰囲気を、目的とする残存酸素濃度1000ppmの雰囲気に切り替えることができ、雰囲気の制御も非常に精密に行うことが可能であった。また、図4に示すとおり、従来の熱処理炉(実際に生産炉として使用できるレベルのもの)では、残存酸素濃度を300ppm程度まで低下させるのが限界であったが、本発明の熱処理炉では、短時間の内に残存酸素濃度が50ppmまで低下し、最終的には5ppmまで低下させることができた。
【0022】
【発明の効果】以上説明したように、本発明の熱処理炉を用いれば、炉内雰囲気を調整するに際して、初期の炉内雰囲気を所望の炉内雰囲気に置換するのに要する時間を大幅に短縮することができ、更に雰囲気の制御性が向上する。また、置換後における初期の炉内雰囲気ガスの残存濃度を従来の熱処理炉よりも低下させることが可能となる。更にまた、炉壁の表面温度が従来よりも低下し、炉の熱効率や作業の安全性が向上する。
【図面の簡単な説明】
【図1】本発明に係る熱処理炉の実施形態の一例を示す概要図である。
【図2】本発明に係る熱処理炉の実施形態の他の一例を示す概要図である。
【図3】実施例の結果を示すグラフである。
【図4】実施例の結果を示すグラフである。
【図5】雰囲気調整を必要とする熱処理に使用されてきた従来の熱処理炉の一例を示す概要図である。
【符号の説明】
1…炉壁、2…耐火物、3…間隙、4…孔部、5…穴明板、6…ガス導入用ノズル、7…排気口、8…台車、9…製品、11…炉壁、12…耐火物、16…ガス導入用ノズル、17…排気口。
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment furnace such as a furnace for producing electronic parts such as ferrite that requires adjustment of the atmosphere in the furnace.
[0002]
2. Description of the Related Art When firing electronic parts such as ferrite in a heat treatment furnace, it is necessary to adjust the furnace atmosphere to a predetermined oxygen concentration. Normally, the atmosphere with such an oxygen concentration is to replace the initial furnace atmosphere gas (usually air) before introduction by introducing a gas in which nitrogen gas and air are mixed in a predetermined ratio into the furnace. Produced by.
FIG. 5 is a schematic diagram showing an example of a heat treatment furnace conventionally used for heat treatment that requires such an atmosphere adjustment. In this heat treatment furnace, a cotton-like refractory material 12 having air permeability, such as ceramic fiber, is disposed along the wall surface of the furnace wall 11 inside the furnace wall 11 made of a steel plate. Moreover, a pipe-like gas introduction nozzle 16 is provided which penetrates the furnace wall 11 and the refractory 12 from the outside of the furnace and communicates with the inside of the furnace.
When adjusting the atmosphere in the furnace, the product 9 to be heat-treated is transported into the furnace by means of the carriage 8 and then the gas in the furnace is exhausted from the exhaust port 17 while being discharged from the gas introduction nozzle 16. A method has been adopted in which an atmosphere adjusting gas (for example, nitrogen gas) having a predetermined composition is directly introduced into the furnace, and the initial atmosphere gas in the furnace is replaced with the introduced atmosphere adjusting gas (prior to the prior art). No technical literature is found.)
[0005]
However, in the conventional heat treatment furnace, the initial atmosphere gas in the furnace existing in the voids inside the cotton-like refractory 12 is not easily replaced by the introduced atmosphere adjusting gas. In addition, since the initial furnace atmosphere gas remaining inside the refractory 12 diffuses slowly into the furnace after the start of the introduction of the atmosphere adjustment gas, it is long for replacement of the furnace atmosphere. In addition to the time required, there was a limit to reducing the residual concentration of the initial atmosphere gas in the furnace.
For example, in order to reduce the oxygen concentration from the initial air state (oxygen concentration of 20.6%) to the residual oxygen concentration of 1000 ppm by introducing nitrogen gas into the furnace, it takes about 90 minutes. And the remaining oxygen concentration was limited to about 300 ppm.
The present invention has been made in view of such a conventional situation, and its object is to replace the initial furnace atmosphere with a desired furnace atmosphere when adjusting the furnace atmosphere. The time required for the operation can be shortened and more precise replacement is possible. Further, for example, in the case of replacing the furnace atmosphere with nitrogen gas, the residual concentration of the initial atmosphere gas in the furnace is reduced as compared with the conventional case. An object of the present invention is to provide such a heat treatment furnace.
[0008]
According to the present invention, there is provided a heat treatment furnace in which a breathable refractory is disposed along the wall of the furnace wall inside the furnace wall, the furnace wall and the refractory. When adjusting the furnace atmosphere, the atmosphere adjusting gas having a predetermined composition introduced into the gap passes through the inside of the refractory and is sent into the furnace. A heat treatment furnace is provided.
[0009]
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic diagram showing an example of an embodiment of a heat treatment furnace according to the present invention. In the heat treatment furnace of the present invention, a refractory material (insulating material) 2 having air permeability such as ceramic fiber is disposed along the wall surface of the furnace wall 1 inside the furnace wall 1 made of a steel plate. Instead of arranging the refractory in contact with the furnace wall as in the conventional heat treatment furnace, the gap 3 is arranged between the furnace wall 1 and the refractory 2 with a predetermined distance from the furnace wall 1. I am trying to provide it.
When the atmosphere in the furnace is adjusted, the product 9 to be heat-treated is transported into the furnace by the carriage 8, and the furnace wall 1 and the refractory are discharged while exhausting the furnace gas from the exhaust port 7. An atmosphere adjusting gas (for example, nitrogen gas) having a predetermined composition is introduced into the gap 3 between the two. The atmosphere adjusting gas introduced into the gap 3 passed through the inside of the cotton-like refractory 2 such as ceramic fiber, that is, the gap between the fibers constituting the refractory 2, and the product 9 was placed. It is sent inside.
In the present invention, since the atmosphere adjusting gas passes through the inside of the refractory 2 and is fed into the furnace in this way, the atmosphere inside the refractory 2 is introduced before the atmosphere adjusting gas is introduced. The initial atmosphere gas (for example, air) in the furnace existing in the gap is pushed out of the gap by the introduced atmosphere adjusting gas, and is quickly replaced with the atmosphere adjusting gas.
For this reason, when the heat treatment furnace of the present invention is used, the time required for replacing the initial furnace atmosphere with the desired furnace atmosphere can be greatly reduced when adjusting the furnace atmosphere. Become. For example, a gas having an oxygen concentration of 1000 ppm obtained by mixing nitrogen gas and air at a predetermined ratio is introduced as an atmosphere adjusting gas, and the atmosphere in the furnace is replaced with the gas from air (oxygen concentration 20.6%). In some cases, the time required for the residual oxygen concentration in the atmosphere to reach 1000 ppm is about ½ to ¼ that when a conventional heat treatment furnace is used.
Further, as described above, the initial furnace atmosphere gas existing in the gap inside the refractory 2 is pushed out of the gap by the introduced atmosphere adjusting gas, so that it almost remains in the gap. As a result, the residual concentration of the atmosphere gas in the initial furnace can be reduced as compared with the conventional heat treatment furnace. For example, when nitrogen gas is introduced as the atmosphere adjustment gas and the atmosphere in the furnace is replaced with nitrogen from air, in a conventional heat treatment furnace (at a level that can actually be used as a production furnace), the residual oxygen concentration in the atmosphere is reduced. Although it was the limit to reduce to about 300 ppm, if it uses the heat treatment furnace of this invention, it can also be reduced to 50 ppm or less.
Furthermore, in the present invention, by introducing the atmosphere adjusting gas between the furnace wall 1 and the refractory 2, the furnace wall 1 is cooled with the atmosphere adjusting gas, and the surface temperature of the furnace wall 1 is increased. It is lower than before, and the thermal efficiency of the furnace and the safety of work are improved. Specifically, the surface temperature of the furnace wall 1 in the conventional heat treatment furnace was about 120 to 180 ° C., but decreased to about 80 to 150 ° C. in the heat treatment furnace of the present invention.
It should be noted that the refractory 2 is not brought into contact with the furnace wall 1 as in the conventional heat treatment furnace, and the refractory 2 is spaced from the furnace wall 1 so that a gap 3 is formed between the refractory 2 and the furnace wall 1. It is necessary to support the refractory 2 by some method in order to arrange. For this reason, in the example of FIG. 1, an inner wall composed of a perforated plate 5 having a large number of holes 4 is arranged inside the furnace wall 1 at a predetermined interval from the furnace wall 1. The refractory 2 is supported.
However, the method for supporting the refractory 2 is not limited to this, and any support member may be used as long as it does not block the movement of gas from the gap 3 to the refractory 2. It may be used. For example, instead of the perforated plate 5 in FIG. 1, a steel plate or the like may be attached with a gap at a pitch that can support the refractory 2.
Further, in the heat treatment furnace of the present invention, as shown in FIG. 2, a gas introduction nozzle 6 is provided through the furnace wall 1 and the refractory 2 from the outside of the furnace to reach the inside of the furnace. At the time of adjustment, in addition to the introduction of the atmosphere adjusting gas into the gap 3 between the furnace wall 1 and the refractory 2, the atmosphere adjusting gas is also introduced into the furnace from the gas introducing nozzle 6 as in the conventional heat treatment furnace. May be introduced. Thus, by making it possible to use the two introduction methods in combination, it is possible to further shorten the replacement time of the furnace atmosphere.
Furthermore, in the present invention, the atmosphere adjusting gas may not necessarily be introduced from the entire surface of the furnace. For example, the atmosphere adjusting gas is introduced only between the furnace wall and a part of the refractory. The remaining refractory may be in contact with the furnace wall. Moreover, you may make it provide the same clearance structure about the trolley | bogie which carries a product in a furnace.
[0019]
The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.
Using the conventional heat treatment furnace as shown in FIG. 5 and the heat treatment furnace of the present invention as shown in FIG. 1, the atmosphere in the furnace is changed from air to nitrogen gas and air at a predetermined ratio. The mixed gas obtained by mixing was replaced with a mixed gas having an oxygen concentration of 1000 ppm. In the conventional heat treatment furnace, the mixed gas is directly introduced into the furnace from the gas introduction nozzle 16, and in the heat treatment furnace of the present invention, the mixing is performed in the gap 3 between the furnace wall 1 and the refractory 2. Gas was introduced, and this mixed gas was sent into the furnace after passing through the inside of the refractory 2. Thus, the time required for the atmosphere in the furnace to be replaced from the air (oxygen concentration 20.6%) by the mixed gas and the residual oxygen concentration in the atmosphere to be reduced to 1000 ppm (0.1%) of the set oxygen concentration. And the controllability of the atmosphere were examined, and the results are shown in the graph of FIG. In addition, when nitrogen gas was introduced into both heat treatment furnaces and the atmosphere in the furnace was replaced with nitrogen from air, the limit of decrease in residual oxygen concentration in the furnace atmosphere was investigated, and the results are shown in the graph of FIG. .
As shown in FIG. 3, the heat treatment furnace of the present invention can switch the atmosphere in the furnace to a target atmosphere having a residual oxygen concentration of 1000 ppm in a time of 1/3 or less of the conventional heat treatment furnace. Control was also possible with very high precision. Further, as shown in FIG. 4, in the conventional heat treatment furnace (one that can actually be used as a production furnace), it was the limit to reduce the residual oxygen concentration to about 300 ppm, but in the heat treatment furnace of the present invention, The residual oxygen concentration decreased to 50 ppm within a short time, and finally could be decreased to 5 ppm.
[0022]
As described above, when the heat treatment furnace of the present invention is used, the time required for replacing the initial furnace atmosphere with the desired furnace atmosphere is greatly reduced when the furnace atmosphere is adjusted. In addition, the controllability of the atmosphere is improved. In addition, it is possible to lower the residual concentration of the initial atmosphere gas in the furnace after replacement as compared with the conventional heat treatment furnace. Furthermore, the surface temperature of the furnace wall is lower than before, and the thermal efficiency of the furnace and the safety of work are improved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of an embodiment of a heat treatment furnace according to the present invention.
FIG. 2 is a schematic view showing another example of the embodiment of the heat treatment furnace according to the present invention.
FIG. 3 is a graph showing the results of Examples.
FIG. 4 is a graph showing the results of Examples.
FIG. 5 is a schematic diagram showing an example of a conventional heat treatment furnace that has been used for heat treatment requiring atmosphere adjustment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Furnace wall, 2 ... Refractory material, 3 ... Gap, 4 ... Hole, 5 ... Hole plate, 6 ... Gas introduction nozzle, 7 ... Exhaust port, 8 ... Dolly, 9 ... Product, 11 ... Furnace wall, 12 ... Refractory, 16 ... Nozzle for gas introduction, 17 ... Exhaust port.

Claims (3)

炉壁の内側に当該炉壁の壁面に沿って通気性を有する耐火物を配置した熱処理炉であって、
前記炉壁と前記耐火物との間に間隙を設け、炉内雰囲気の調整に際して、前記間隙に導入された所定組成の雰囲気調整用ガスが、前記耐火物の内部を通過してから炉内に送り込まれるようにしたことを特徴とする熱処理炉。
A heat treatment furnace in which a refractory material having air permeability is arranged along the wall surface of the furnace wall inside the furnace wall,
A gap is provided between the furnace wall and the refractory, and when adjusting the furnace atmosphere, an atmosphere adjusting gas having a predetermined composition introduced into the gap passes through the interior of the refractory and then enters the furnace. A heat treatment furnace characterized by being sent in.
前記炉壁の内側に、多数の孔部を有する穴明板で構成した内壁を、前記炉壁から所定の間隔をおいて配置し、当該内壁にて前記耐火物を支持するようにした請求項1記載の熱処理炉。An inner wall constituted by a perforated plate having a large number of holes inside the furnace wall is disposed at a predetermined interval from the furnace wall, and the refractory is supported by the inner wall. The heat treatment furnace according to 1. 炉外から前記炉壁及び前記耐火物を貫通して炉内に通じるガス導入用ノズルを設け、炉内雰囲気の調整に際して、当該ガス導入用ノズルからも雰囲気調整用ガスを炉内に導入できるようにした請求項1又は2に記載の熱処理炉。A gas introduction nozzle that penetrates the furnace wall and the refractory from the outside of the furnace and communicates with the inside of the furnace is provided so that the atmosphere adjustment gas can be introduced into the furnace from the gas introduction nozzle when adjusting the atmosphere in the furnace. The heat treatment furnace according to claim 1 or 2.
JP2003203652A 2003-07-30 2003-07-30 Heat treatment furnace Pending JP2005048984A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003203652A JP2005048984A (en) 2003-07-30 2003-07-30 Heat treatment furnace
CN 200310100617 CN1576764A (en) 2003-07-30 2003-10-10 Heat processing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003203652A JP2005048984A (en) 2003-07-30 2003-07-30 Heat treatment furnace

Publications (1)

Publication Number Publication Date
JP2005048984A true JP2005048984A (en) 2005-02-24

Family

ID=34262930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003203652A Pending JP2005048984A (en) 2003-07-30 2003-07-30 Heat treatment furnace

Country Status (2)

Country Link
JP (1) JP2005048984A (en)
CN (1) CN1576764A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015031487A (en) * 2013-08-06 2015-02-16 Jfeスチール株式会社 Atmosphere heat treatment furnace
US11029090B2 (en) 2016-03-24 2021-06-08 Ngk Insulators, Ltd. Industrial furnace and method of utilizing heat therefrom

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015031487A (en) * 2013-08-06 2015-02-16 Jfeスチール株式会社 Atmosphere heat treatment furnace
US11029090B2 (en) 2016-03-24 2021-06-08 Ngk Insulators, Ltd. Industrial furnace and method of utilizing heat therefrom

Also Published As

Publication number Publication date
CN1576764A (en) 2005-02-09

Similar Documents

Publication Publication Date Title
JP5202810B2 (en) Graphite heating furnace and optical fiber manufacturing method
JP2010001567A (en) Method and apparatus for heat-treating metallic material
JP2005048984A (en) Heat treatment furnace
JP2001064032A (en) Porous preform vitrification apparatus
JP3848816B2 (en) High-purity metal purification method and apparatus
US5254180A (en) Annealing of carbon steels in a pre-heated mixed ambients of nitrogen, oxygen, moisture and reducing gas
JP2008201670A (en) Method of manufacturing non-oxide ceramic sintered compact
EP0584691B1 (en) Binder removal from multilayer ceramic structures
JP2018505376A (en) Apparatus and method for controlling a sintering process
JP5428032B2 (en) Carburizing method
JPS58214528A (en) Production of carbon fiber
WO2016110450A1 (en) Gas mixture and method for controlling a carbon potential of a furnace atmosphere
JP2017106054A (en) Carburization system and production method of surface hardened steel
JPH02267108A (en) Desulfurization of graphite sheet and desulfurizer therefor
JPH03158696A (en) Kiln
JPH09292180A (en) Furnace wall with function of controlling atmosphere and carriage for sintering
KR20120044410A (en) Insulator for molten steel and steel manufactured by using the same
JP2008045227A (en) Carbonization furnace and method for producing carbonized fiber
JP2007204283A (en) Carbon material and method for manufacturing the same
JP4519302B2 (en) Sintered product manufacturing apparatus and method
JPH0350130A (en) Production of quartz-based doped glass
JP4463050B2 (en) Carbon fiber firing furnace
US6802269B2 (en) Alumina refractories and methods of treatment
JPH04308225A (en) Heat treatment apparatus for carbon fiber
SU1054427A1 (en) Method of preparing ultra-low carbon melt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070328

A131 Notification of reasons for refusal

Effective date: 20070424

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20070821

Free format text: JAPANESE INTERMEDIATE CODE: A02