JP2005046937A - Method of manufacturing saw wire - Google Patents

Method of manufacturing saw wire Download PDF

Info

Publication number
JP2005046937A
JP2005046937A JP2003204257A JP2003204257A JP2005046937A JP 2005046937 A JP2005046937 A JP 2005046937A JP 2003204257 A JP2003204257 A JP 2003204257A JP 2003204257 A JP2003204257 A JP 2003204257A JP 2005046937 A JP2005046937 A JP 2005046937A
Authority
JP
Japan
Prior art keywords
plating
abrasive grains
wire
current density
core wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003204257A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ogami
寛之 大上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003204257A priority Critical patent/JP2005046937A/en
Publication of JP2005046937A publication Critical patent/JP2005046937A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for fixing a large number of abrasive grains uniformly and firmly on the whole periphery of a long core in a method of manufacturing an abrasive grain fixed type saw wire by a plating method. <P>SOLUTION: The large number of abrasive grains are fixed to the metal core by compound Ni plating, and current density in a compound Ni plating tank 13 is set to limit current density or more. Surface unevenness thereby appears due to this unusual plating simultaneously with producing many hydrogen bubbles, and the abrasive grains are trapped by the unevenness and hydrogen bubbles to fix the abrasive grains uniformly and firmly in the circumferential direction of the core. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、固定砥粒式ソーワイヤ製造方法に関し、特に金属製芯線に砥粒を電気メッキ(以下「メッキ」という)で固定するようにしたソーワイヤ製造方法に関する。
【0002】
【従来の技術】
一般に、固定砥粒式ソーワイヤは、長尺の金属製芯線に多数個の砥粒を固定することにより製造される。そしてその固定方法として、従来は、砥粒をレジンに混入してこのレジンごと芯線に固定する方法が採用されている。(例えば特許文献1参照)
【0003】
【特許文献1】
特開2000−246542号公報(第2〜3頁、図1)
【0004】
【発明が解決しようとする課題】
特許文献1に記載のような、砥粒をレジンに混入してこのレジンごと芯線に固定する方法で製造されたソーワイヤは、レジンによる砥粒の固定力が低く、ソーワイヤによる切断作業中に砥粒の芯線からの離脱が発生し、作業時間の経過とともにソーワイヤの切断能力が低下するという、課題がある。
このような課題に対処すべく、砥粒を(電気)メッキにより芯線に固定するソーワイヤの製造方法も試みられている(特許文献1[0003]参照)が、製造に多大の時間を必要とするばかりか、長尺の芯線の全周に均等に砥粒が固定されておらず、砥粒の固定されていない面で切断が行われる時に、切断速度が低下するという課題がある。
本発明は、従来のソーワイヤの製造方法における上述のような課題を解決しようとするもので、複合Niメッキにより砥粒をワイヤ(芯線)に固定する方式を採用し、かつ同複合Niメッキ工程における電流密度を限界電流密度以上に設定した異常メッキ状態下で複合Niメッキを行うことにより、長尺の芯線の全周に多数個の砥粒を均等にかつ強固に固定できるようにした点を特徴とするものである。
【0005】
【課題を解決するための手段】
本発明は、金属製芯線に多数個の砥粒を固定してソーワイヤを製造するソーワイヤの製造方法において、上記の金属製芯線に対する多数個の砥粒の固定を複合Niメッキ方式とするとともに、同複合Niメッキ方式における電流密度を、限界電流密度以上として課題解決の手段としている。
【0006】
また、上記複合Niメッキ方式における電流密度を限界電流密度以上としたときに発生するH2 気泡にトラップされた上記砥粒をNiメッキの成長とともに共析させて、金属製芯線に多数個の砥粒を固定するようにして課題解決の手段としている。
【0007】
さらに、上記複合Niメッキ方式における電流密度を限界電流密度以上とすることにより上記金属製芯線の表面に粗いNiメッキを形成させることで同金属製芯線の表面に凹凸を発生させ、同凹凸により上記砥粒をトラップして上記金属製芯線に多数個の砥粒を固定するようにして課題解決の手段としている。
【0008】
さらにまた、上記複合Niメッキ方式における電流密度を限界電流密度以上とすることにより、H2 気泡を発生させ同H2 気泡に上記砥粒をトラップさせて同砥粒をNiメッキの成長とともに共析させるとともに、上記金属製芯線の表面に粗いNiメッキを形成させることで同金属製芯線の表面に凹凸を発生させ、同凹凸により上記砥粒をトラップさせて、上記金属製芯線に多数個の砥粒を固定するようにして課題解決の手段としている。
【0009】
この発明のソーワイヤの製造方法によれば、複合メッキ槽の電流を限界電流密度以上とすることにより、多数の水素気泡を発生させると同時に、この異常メッキにより表面凹凸を形成し、この凹凸と多数の水素気泡とで砥粒をトラップ(捕捉)して芯線の周方向に均一に砥粒を固定することができる。
【0010】
【発明の実施の形態】
次に、図面とともに本発明の実施形態について説明する。図1は本発明に係るソーワイヤの製造方法を実施するのに好適なソーワイヤの製造装置の系統図、図2はワイヤ表面の気泡の状態を示す模試図で気泡接触角θ1 <90°の場合を示す図、図3はワイヤ表面の気泡の状態を示す模試図で気泡接触角θ2 >90°の場合を示す図、図4は複合Niメッキ槽の模試横断面図、図5はNiメッキ成長と砥粒固定メカニズムの説明模試図、図6は水素気泡による砥粒のトラップ状態を示す模試図、図7は砥粒固着状態を拡大して示すソーワイヤの側面図、図8は部分的に砥粒がサ−クル状に固定された状態を示す外観写真、図9、10はこの実施例により製造方法に係るソーワイヤと従来の製造方法に係るソーワイヤとの比較結果を示す図である。
【0011】
図1は、本発明に係るソーワイヤの製造方法を実施するのに好適なソーワイヤの製造装置10の1例を示しており、この製造装置10は、前処理部11、下地Niメッキ槽12、複合メッキ槽13、Niメッキ槽14および後処理部15から構成されている。そして、芯線1を製造装置10内の各部を上記の順に通過させることにより、ソーワイヤが製造されるようになっている。
【0012】
金属製の芯線(ワイヤ)1には、初めに、前処理部11において、脱脂、水洗、酸洗、水洗の各処理がこの順に施される。芯線1としては、例えば、0.2mm径程度の細径の鋼線が好適である。
前処理部11を施された芯線1は、下地Niメッキ槽12に送られて下地Niメッキ処理される。
【0013】
下地Niメッキ槽12で下地Niメッキ処理された後、芯線1は複合Niメッキ槽13に送られ、ここで複合メッキ処理される。この複合メッキ処理により芯線1に対する砥粒2の固定が行われる。つまり複合Niメッキ槽13は砥粒固定部を構成するものである。複合Niメッキの具体例については、後に実施例により詳述する。複合Niメッキ槽13で複合Niメッキ処理されて複合Niメッキ槽13から送り出された芯線1は、次にNiメッキ槽14で埋め込み処理された後、水洗、乾燥の工程をこの順に施される後処理15を経て、製品として製造装置10から取り出される。
【0014】
次に、上記の複合Niメッキの実施例について説明する。
【実施例1】この実施例では、複合Niメッキ槽13として、透明アクリル製の直径30mm、長さ450mmの観察用の簡易槽を製作し、メッキ液13bとしてスルファミン酸ニッケルを上記簡易槽(複合Niメッキ槽13に相当)に注入し、同メッキ液内に砥粒として粒径30〜40μmの人工ダイヤモンドを混入し、電流密度を限界電流密度以上の1.5Aに設定した。芯線1として0.213mm径の鋼線に下地Niメッキ処理を行ったものを用い、この線材1を、複合メッキ槽13の底部に形成されている砥粒堆積層13a内を移動させながら10秒間複合メッキ処理を行った。図4中の符号1aは線材1の表面に固定された砥粒を示す。なお、電流密度については、限界電流密度の80%程度としても、砥粒堆積層13a内における砥粒密度、メッキ処理時間(砥粒堆積層13a内でのワイヤ1の速度)などを調節することにより、上述のものとほぼ同様の効果が得られることも実験の結果確認されている。したがって、本明細書において「電流密度を限界電流密度以上」とは、下限が限界電流密度の80%程度以上を意味するものである。
【0015】
上記観察用のメッキ槽内における複合Niメッキ工程において砥粒2がワイヤ1近傍にてどのような動きを行っているのかを観察することにより、次の通りの事実を確認することができた。
すなわち、複合Niメッキの場合、電流密度が高いほど水素の発生量が多くなることが判明した。そして、砥粒堆積部に入る前のメッキ液中(砥粒堆積部外)のワイヤ表面には水素の気泡が付着しており、側面から観察したところ上面に多数、下面に少数の水素気泡が確認された(上部と下部との気泡付着比は5:1程度)。
また、ワイヤ表面に付着した水素気泡3は砥粒堆積部に入る際、その一部は、図3に示すように、離脱して水面へ上昇するが、図2に示すように、サイズおよび接触角度θ1 が小さいもの(θ1 <90°)は、砥粒堆積部に入るものもあることが判明した。図2、3、中の矢印は芯線1の移動方向を、図3のθ2 (θ2 >90°)はサイズの大きな気泡3の接触角度を、1aはトラップされた砥粒を示している。
この結果より、スルファミン酸ニッケル浴の液の表面張力は非常に大きく、接触角がθ1 と小さい気泡は、砥粒1aの堆積による抵抗力以上に大きな付着力を有するものと推測される。
【0016】
側面よりの観察により、砥粒堆積部内のワイヤから離脱した水素気泡が堆積表面から出てくる際の大きさは、砥粒堆積表面からワイヤまでの距離によって異なり、この距離が短いほど多数で細かい気泡が現れ、距離が長いほど少数で大きな気泡が現れることも判明した。
以上の結果から、発生した水素の気泡は、メッキ液が持つ表面張力による力にてワイヤ表面に付着しており、場合によっては砥粒の堆積部に入る際も離脱しない程度の力となっている。また、砥粒堆積部内のワイヤから発生した水素の気泡は、離脱した際にワイヤ上部の砥粒を巻き込みながら上昇し、水面で破裂している。この状態は砥粒をある程度攪拌している状態となっている。つまり、水素の気泡は砥粒を動かすために十分な付着力を持っており、砥粒堆積部内部でも水素の凹凸が芯線(ワイヤ)1の表面に出てきており、砥粒1aのキャリア効果(ボンデ処理のように)を発揮している可能性があると推測される。
【0017】
この実施例により、メッキ表面の凹凸が大きく、また砥粒の側面をグリップしながら成長していることが判明した。つまり、通常のメッキ成長過程と違った状態となっており、砥粒の底部から順次メッキが成長して固定するのではなく、金属製の芯線1の表面に、粗いNiメッキが形成されて芯線1の表面に凹凸2aが発生し、この凹凸2aで砥粒1aがトラップ(図6)され、最終的に金属製の芯線1に多数個の砥粒2の固定が行われると考えられる。図7はこの状態を模試的に示す芯線1の側面図である。
【0018】
さらに、メッキ処理中のワイヤ上部側において、図8に示すように、部分的に砥粒がサークル状に固定されていることが見い出された。これは、図8に示すように、大きな水素気泡の周辺に砥粒1aがトラップされ、その間ニッケルが析出したことによって時間とともに共析したのではないかと推測される。
【0019】
上述の通り、この実施例1の複合Niメッキでは、複合メッキ槽13の電流を限界電流密度以上にするという異常メッキにより多数の水素気泡を発生させ、この水素気泡の砥粒キャリア効果を利用して、砥粒を固定して芯線1の表面に大きな表面凹凸を持たせ、その周辺でトラップされた砥粒1aをNiメッキの成長とともに共析させて、金属製芯線に多数個の砥粒の固定が行われる。
また、上記の異常メッキにより芯線1の表面に粗いNiメッキによる多数の表面凹凸2aを発生させ、凹凸2aで砥粒2をトラップさせる現象により、芯線1に多数個の砥粒の固定が行われるようにした。なお、上記の2つの現象は、同時に発生して芯線1に多数個の砥粒の固定が行われるが、各現象は単独でも砥粒2の固定作用は奏される。
【0020】
限界電流密度はメッキ浴およびその条件により異なるが、限界電流密度の近くで複合Niメッキ処理が行われたときには、複合Niメッキ処理後のワイヤ表面に「くもり」や「焦げ」が見られるので、処理後のワイヤ表面およびワイヤ断面を分析することにより、限界電流密度の近くで複合Niメッキ処理が行われたかどうかを判断することができる。また、複合メッキ処理の所要時間は少なくとも10秒は必要であることも判明した。
【0021】
この実施例1により製造されたソーワイヤは、上記の従来のレジンボンドによる砥粒の固定方法によるソーワイヤに較べて、約1.5倍の切れ味を有することが実験により確認された。また、作業中での砥粒2の離脱が少ないので長寿命のソーワイヤを得ることができる。なお、電流密度とソーワイヤの表面粗さとは図10に示す通りの関係となることが実験の結果判明した。つまり電流密度を大きくするほど表面粗さは大きくなり、それだけ切れ味が増加することとなる。
さらに、砥粒を(通常の電気)メッキにより芯線に固定するソーワイヤの製造方法に較べて、図9に示す通り約3倍の製造速度でソーワイヤを製造することが可能となった。
【0022】
【発明の効果】
以上説明したように、本発明によれば、次のような効果が得られる。
(1)ワイヤの周方向に、砥粒を強固にかつ均一に固定することができ、その結果、ソーワイヤの切断速度の向上および長寿命化が可能なソーワイヤを得ることが可能となる。
(2)ソーワイヤの製造速度を早くすることができ、製造効率の向上が可能となる。
【図面の簡単な説明】
【図1】本発明に係るソーワイヤの製造方法を実施するのに好適なソ ーワイヤの製造装置の系統図。
【図2】ワイヤ表面の気泡の状態を示す模試図で接触角θ1 <90°の場合を示す図。
【図3】ワイヤ表面の気泡の状態を示す模試図接触角θ2 >90°の場合を示す図。
【図4】複合Niメッキ槽の模試横断面図。
【図5】Niメッキ成長と砥粒固定メカニズムの説明模試図。
【図6】水素気泡により砥粒トラップ模試図。
【図7】砥粒固着状態を拡大して示すソーワイヤの側面図。
【図8】部分的に砥粒がサークル状に固定された状態を示す外観写真。
【図9】従来の製造方法との製造速度の比較結果の1例を示すグラフ。
【図10】電流密度とソーワイヤの表面粗さと関係を示すグラフ。
【符号の説明】1:金属製の芯線、1a:線材1の表面に固定された砥粒、2:砥粒、2a:(芯線1の表面に発生した粗いNiメッキによる多数の表面)凹凸、3:水素気泡、10:製造装置、11:前処理部、12:下地Niメッキ槽、13:複合Niメッキ槽、13a:砥粒堆積層、13:bメッキ液、14:Niメッキ槽、15:後処理部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a fixed abrasive saw wire, and more particularly to a method of manufacturing a saw wire in which abrasive particles are fixed to a metal core wire by electroplating (hereinafter referred to as “plating”).
[0002]
[Prior art]
In general, a fixed abrasive saw wire is manufactured by fixing a large number of abrasive grains to a long metal core wire. As a fixing method, conventionally, a method is adopted in which abrasive grains are mixed into the resin and the resin is fixed together with the core wire. (For example, see Patent Document 1)
[0003]
[Patent Document 1]
JP 2000-246542 A (pages 2 and 3, FIG. 1)
[0004]
[Problems to be solved by the invention]
The saw wire manufactured by the method of mixing abrasive grains in the resin and fixing the resin together with the core wire as described in Patent Document 1 has a low fixing force of the abrasive grains by the resin, and the abrasive grains are cut during the cutting operation by the saw wire. Detachment from the core wire occurs, and there is a problem that the cutting ability of the saw wire decreases with the lapse of working time.
In order to cope with such a problem, a method of manufacturing a saw wire in which abrasive grains are fixed to a core wire by (electro) plating has been tried (see Patent Document 1 [0003]), but requires a long time for manufacturing. In addition, there is a problem that the cutting speed is reduced when the abrasive grains are not fixed uniformly around the entire circumference of the long core wire and the cutting is performed on the surface where the abrasive grains are not fixed.
The present invention is intended to solve the above-described problems in the conventional saw wire manufacturing method, adopts a method of fixing abrasive grains to a wire (core wire) by composite Ni plating, and in the composite Ni plating step. It is characterized in that a large number of abrasive grains can be fixed uniformly and firmly on the entire circumference of a long core wire by performing composite Ni plating under abnormal plating conditions where the current density is set to be higher than the limit current density It is what.
[0005]
[Means for Solving the Problems]
The present invention provides a saw wire manufacturing method in which a large number of abrasive grains are fixed to a metal core wire to manufacture a saw wire, wherein the fixing of the multiple abrasive grains to the metal core wire is a composite Ni plating method. The current density in the composite Ni plating method is set to be equal to or higher than the limit current density, which is a means for solving the problem.
[0006]
Further, the abrasive grains trapped in the H2 bubbles generated when the current density in the composite Ni plating method is equal to or higher than the limit current density are eutectoid together with the growth of the Ni plating, and a large number of abrasive grains are formed on the metal core wire. Is fixed as a means to solve the problem.
[0007]
Furthermore, by forming a rough Ni plating on the surface of the metal core wire by setting the current density in the composite Ni plating method to be equal to or higher than the limit current density, the surface of the metal core wire is uneven, and the unevenness causes the above The abrasive grains are trapped and a large number of abrasive grains are fixed to the metal core wire as means for solving the problems.
[0008]
Furthermore, by setting the current density in the composite Ni plating method to be equal to or higher than the limit current density, H2 bubbles are generated, the abrasive grains are trapped in the H2 bubbles, and the abrasive grains are eutectoid with the growth of the Ni plating. By forming a rough Ni plating on the surface of the metal core wire, unevenness is generated on the surface of the metal core wire, and the abrasive particles are trapped by the unevenness, and a large number of abrasive particles are put on the metal core wire. It is fixed as a means to solve the problem.
[0009]
According to the saw wire manufacturing method of the present invention, by making the current of the composite plating tank equal to or higher than the limit current density, a large number of hydrogen bubbles are generated, and at the same time, surface irregularities are formed by the abnormal plating. Abrasive grains can be trapped (captured) with the hydrogen bubbles, and the abrasive grains can be fixed uniformly in the circumferential direction of the core wire.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram of a saw wire manufacturing apparatus suitable for carrying out the saw wire manufacturing method according to the present invention, and FIG. 2 is a schematic diagram showing the state of bubbles on the surface of the wire when the bubble contact angle θ1 <90 °. FIG. 3 is a schematic diagram showing the state of bubbles on the wire surface, showing a case where the bubble contact angle θ2> 90 °, FIG. 4 is a schematic cross-sectional view of a composite Ni plating tank, and FIG. FIG. 6 is a schematic diagram illustrating an abrasive grain trapping state by hydrogen bubbles, FIG. 7 is a side view of a saw wire showing an enlarged state of abrasive grain fixing, and FIG. 8 is a partial abrasive grain. FIG. 9 and FIG. 10 are diagrams showing a comparison result between the saw wire according to the manufacturing method and the saw wire according to the conventional manufacturing method according to this embodiment.
[0011]
FIG. 1 shows an example of a saw wire manufacturing apparatus 10 suitable for carrying out the saw wire manufacturing method according to the present invention. The manufacturing apparatus 10 includes a pretreatment section 11, a base Ni plating tank 12, a composite It comprises a plating tank 13, a Ni plating tank 14 and a post-processing unit 15. And a saw wire is manufactured by passing each part in the manufacturing apparatus 10 through the core wire 1 in said order.
[0012]
The metal core wire (wire) 1 is first subjected to degreasing, water washing, pickling and water washing in this order in the pretreatment section 11. As the core wire 1, for example, a steel wire having a small diameter of about 0.2 mm is suitable.
The core wire 1 subjected to the pretreatment unit 11 is sent to the base Ni plating tank 12 and subjected to the base Ni plating process.
[0013]
After being subjected to the base Ni plating process in the base Ni plating tank 12, the core wire 1 is sent to the composite Ni plating tank 13, where it is subjected to the composite plating process. The abrasive grains 2 are fixed to the core wire 1 by this composite plating process. That is, the composite Ni plating tank 13 constitutes an abrasive grain fixing part. Specific examples of the composite Ni plating will be described later in detail with reference to examples. After the core wire 1 that has been subjected to the composite Ni plating treatment in the composite Ni plating bath 13 and is sent out from the composite Ni plating bath 13 is then embedded in the Ni plating bath 14, it is subjected to washing and drying steps in this order. After processing 15, the product is taken out from the manufacturing apparatus 10.
[0014]
Next, examples of the above composite Ni plating will be described.
[Embodiment 1] In this embodiment, an observation simple tank made of transparent acrylic having a diameter of 30 mm and a length of 450 mm is manufactured as the composite Ni plating tank 13, and nickel sulfamate is used as the plating liquid 13b in the above simple tank (composite). Ni equivalent to the Ni plating tank 13), artificial diamond having a particle size of 30 to 40 μm was mixed as abrasive grains in the plating solution, and the current density was set to 1.5 A which is equal to or higher than the limit current density. As the core wire 1, a steel wire having a diameter of 0.213 mm subjected to a base Ni plating process is used, and the wire 1 is moved for 10 seconds while moving in the abrasive grain deposition layer 13 a formed at the bottom of the composite plating tank 13. A composite plating process was performed. Reference numeral 1 a in FIG. 4 indicates abrasive grains fixed on the surface of the wire 1. Note that the current density is about 80% of the limit current density, and the abrasive density in the abrasive grain deposition layer 13a, the plating time (the speed of the wire 1 in the abrasive grain deposition layer 13a), and the like are adjusted. As a result of the experiment, it is confirmed that substantially the same effects as those described above can be obtained. Therefore, in this specification, “the current density is equal to or higher than the limit current density” means that the lower limit is about 80% or more of the limit current density.
[0015]
By observing the movement of the abrasive grains 2 in the vicinity of the wire 1 in the composite Ni plating step in the observation plating tank, the following facts could be confirmed.
That is, in the case of composite Ni plating, it was found that the amount of hydrogen generated increases as the current density increases. Then, hydrogen bubbles are attached to the wire surface in the plating solution (outside the abrasive deposit part) before entering the abrasive deposit part, and when observed from the side, a large number of hydrogen bubbles are present on the upper face and a small number of hydrogen bubbles on the lower face. It was confirmed (the bubble adhesion ratio between the upper part and the lower part was about 5: 1).
Further, when hydrogen bubbles 3 adhering to the wire surface enter the abrasive grain depositing part, a part of them is detached and rises to the water surface as shown in FIG. 3, but as shown in FIG. It has been found that some of the angles θ1 are small (θ1 <90 °) may enter the abrasive grain accumulation portion. The arrows in FIGS. 2 and 3 indicate the moving direction of the core wire 1, θ 2 (θ 2> 90 °) in FIG. 3 indicates the contact angle of the large bubble 3, and 1 a indicates the trapped abrasive grains.
From this result, it is presumed that the surface tension of the liquid in the nickel sulfamate bath is very large, and bubbles having a contact angle as small as θ1 have a larger adhesive force than the resistance due to the accumulation of the abrasive grains 1a.
[0016]
From the observation from the side, the size of the hydrogen bubbles released from the wire in the abrasive grain deposition part when coming out of the deposition surface differs depending on the distance from the abrasive grain deposition surface to the wire. It was also found that bubbles appeared, and as the distance increased, fewer and larger bubbles appeared.
From the above results, the generated hydrogen bubbles are attached to the wire surface by the force of the surface tension of the plating solution. Yes. In addition, the hydrogen bubbles generated from the wire in the abrasive grain depositing part rise while entraining the abrasive grains on the upper part of the wire and break up on the water surface. This state is a state where the abrasive grains are being stirred to some extent. That is, the hydrogen bubbles have sufficient adhesion to move the abrasive grains, and hydrogen irregularities appear on the surface of the core wire (wire) 1 even inside the abrasive grain accumulation portion, and the carrier effect of the abrasive grains 1a. It is speculated that there is a possibility of exhibiting (like bond processing).
[0017]
According to this example, it was found that the unevenness of the plating surface was large, and it grew while gripping the side surfaces of the abrasive grains. That is, it is in a state different from the normal plating growth process, and the plating is not grown and fixed sequentially from the bottom of the abrasive grains, but a rough Ni plating is formed on the surface of the metal core wire 1 to form the core wire. It is considered that irregularities 2a are generated on the surface of 1 and abrasive grains 1a are trapped by these irregularities 2a (FIG. 6), and finally a large number of abrasive grains 2 are fixed to the metal core wire 1. FIG. 7 is a side view of the core wire 1 schematically showing this state.
[0018]
Furthermore, it was found that the abrasive grains were partially fixed in a circle shape on the upper side of the wire during the plating process, as shown in FIG. As shown in FIG. 8, it is presumed that the abrasive grains 1a were trapped around a large hydrogen bubble and nickel was precipitated during that time, so that it was eutectoid with time.
[0019]
As described above, in the composite Ni plating of Example 1, a large number of hydrogen bubbles are generated by abnormal plating in which the current in the composite plating tank 13 is set to be equal to or higher than the limit current density, and the abrasive carrier effect of the hydrogen bubbles is utilized. Then, the abrasive grains are fixed so that the surface of the core wire 1 has large surface irregularities, and the abrasive grains 1a trapped around the core are eutectoid together with the growth of the Ni plating, so that a large number of abrasive grains are formed on the metal core wire. Fixing is performed.
Also, a large number of surface irregularities 2a due to rough Ni plating are generated on the surface of the core wire 1 by the abnormal plating, and a large number of abrasive grains are fixed to the core wire 1 by the phenomenon of trapping the abrasive grains 2 by the irregularities 2a. I did it. The above two phenomena occur at the same time, and a large number of abrasive grains are fixed to the core wire 1, but each phenomenon alone has the effect of fixing the abrasive grains 2.
[0020]
The limit current density varies depending on the plating bath and its conditions, but when the composite Ni plating process is performed near the limit current density, “cloudy” and “burn” are seen on the wire surface after the composite Ni plating process. By analyzing the wire surface and wire cross section after the treatment, it can be determined whether the composite Ni plating treatment has been performed near the limit current density. It has also been found that the time required for the composite plating process is at least 10 seconds.
[0021]
Experiments have confirmed that the saw wire manufactured in Example 1 has a sharpness of about 1.5 times that of the conventional saw wire by the resin-bonded abrasive grain fixing method. Further, since there is little separation of the abrasive grains 2 during work, a long-life saw wire can be obtained. As a result of experiments, it has been found that the current density and the surface roughness of the saw wire have the relationship shown in FIG. That is, as the current density is increased, the surface roughness is increased and the sharpness is increased accordingly.
Furthermore, compared to a saw wire manufacturing method in which abrasive grains are fixed to a core wire by (normal electric) plating, a saw wire can be manufactured at a manufacturing speed approximately three times as shown in FIG.
[0022]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
(1) Abrasive grains can be firmly and uniformly fixed in the circumferential direction of the wire. As a result, it is possible to obtain a saw wire capable of improving the cutting speed and extending the life of the saw wire.
(2) The production speed of the saw wire can be increased, and the production efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is a system diagram of a saw wire manufacturing apparatus suitable for carrying out the saw wire manufacturing method according to the present invention.
FIG. 2 is a schematic diagram showing the state of bubbles on the surface of a wire and showing a case where the contact angle θ1 <90 °.
FIG. 3 is a schematic diagram showing a state of bubbles on a wire surface when a contact angle θ2> 90 °.
FIG. 4 is a schematic cross-sectional view of a composite Ni plating tank.
FIG. 5 is a schematic diagram illustrating Ni plating growth and an abrasive fixing mechanism.
FIG. 6 is a schematic diagram of an abrasive trap by hydrogen bubbles.
FIG. 7 is an enlarged side view of the saw wire showing the state where the abrasive grains are fixed.
FIG. 8 is an external photograph showing a state in which abrasive grains are partially fixed in a circle shape.
FIG. 9 is a graph showing an example of a comparison result of manufacturing speed with a conventional manufacturing method.
FIG. 10 is a graph showing the relationship between current density and saw wire surface roughness.
[Explanation of Symbols] 1: Metal core wire, 1a: Abrasive grains fixed on the surface of the wire 1; 2: Abrasive grains; 3: hydrogen bubbles, 10: manufacturing apparatus, 11: pretreatment section, 12: base Ni plating tank, 13: composite Ni plating tank, 13a: abrasive deposition layer, 13: b plating solution, 14: Ni plating tank, 15 : Post-processing section.

Claims (4)

金属製芯線に多数個の砥粒を固定してソーワイヤを製造するソーワイヤの製造方法において、
上記の金属製芯線に対する多数個の砥粒の固定を複合Niメッキ方式とするとともに、同複合Niメッキ方式における電流密度を、限界電流密度以上としたことを特徴とするソーワイヤの製造方法。
In a saw wire manufacturing method for manufacturing a saw wire by fixing a large number of abrasive grains to a metal core wire,
A method for manufacturing a saw wire, characterized in that a plurality of abrasive grains are fixed to the metal core wire by a composite Ni plating method, and a current density in the composite Ni plating method is set to be equal to or higher than a limit current density.
上記複合Niメッキ方式における電流密度を限界電流密度以上とすることにより発生するH2 気泡にトラップされた上記砥粒をNiメッキの成長とともに共析させて、上記金属製芯線に多数個の砥粒の固定が行われるようにしたことを特徴とする請求項1記載のソーワイヤの製造方法。The abrasive grains trapped in the H2 bubbles generated by setting the current density in the composite Ni plating method to be equal to or higher than the limit current density are co-deposited with the growth of the Ni plating, and a large number of abrasive grains are formed on the metal core wire. 2. The saw wire manufacturing method according to claim 1, wherein the fixing is performed. 上記複合Niメッキ方式における電流密度を限界電流密度以上とすることにより上記金属製芯線の表面に粗いNiメッキが形成されて同金属製芯線の表面に凹凸が発生し、同凹凸で上記砥粒がトラップされて上記金属製芯線に多数個の砥粒の固定が行われるようにしたことを特徴とする請求項1記載のソーワイヤの製造方法。By setting the current density in the composite Ni plating method to be equal to or higher than the limit current density, a rough Ni plating is formed on the surface of the metal core wire, and irregularities are generated on the surface of the metal core wire. 2. The method of manufacturing a saw wire according to claim 1, wherein a plurality of abrasive grains are fixed to the metal core wire by being trapped. 上記複合Niメッキ方式における電流密度を限界電流密度以上とすることにより、H2 気泡を発生させ同H2 気泡に上記砥粒をトラップさせて同砥粒をNiメッキの成長とともに共析させるとともに、上記金属製芯線の表面に形成される粗いNiメッキによる表面凹凸を発生させ、同凹凸で上記砥粒をトラップさせて、上記金属製芯線に多数個の砥粒の固定が行われるようにしたことを特徴とする請求項1記載のソーワイヤの製造方法。By setting the current density in the composite Ni plating method to be equal to or higher than the limit current density, H2 bubbles are generated, the abrasive grains are trapped in the H2 bubbles, and the abrasive grains are co-deposited with the growth of the Ni plating. The surface of the core wire is roughened by rough Ni plating, and the abrasive grains are trapped by the unevenness so that a large number of abrasive grains are fixed to the metal core wire. The method for producing a saw wire according to claim 1.
JP2003204257A 2003-07-31 2003-07-31 Method of manufacturing saw wire Pending JP2005046937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003204257A JP2005046937A (en) 2003-07-31 2003-07-31 Method of manufacturing saw wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003204257A JP2005046937A (en) 2003-07-31 2003-07-31 Method of manufacturing saw wire

Publications (1)

Publication Number Publication Date
JP2005046937A true JP2005046937A (en) 2005-02-24

Family

ID=34263313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003204257A Pending JP2005046937A (en) 2003-07-31 2003-07-31 Method of manufacturing saw wire

Country Status (1)

Country Link
JP (1) JP2005046937A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203393A (en) * 2006-01-31 2007-08-16 Nippon Seisen Co Ltd Saw wire and its manufacturing method
KR101121309B1 (en) 2009-09-14 2012-03-23 주식회사 엘지실트론 Method and apparatus for processing wire for wire saw
KR101902754B1 (en) * 2011-03-15 2018-10-01 가부시키가이샤 나카무라초코 Method and device for manufacturing saw wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203393A (en) * 2006-01-31 2007-08-16 Nippon Seisen Co Ltd Saw wire and its manufacturing method
KR101121309B1 (en) 2009-09-14 2012-03-23 주식회사 엘지실트론 Method and apparatus for processing wire for wire saw
KR101902754B1 (en) * 2011-03-15 2018-10-01 가부시키가이샤 나카무라초코 Method and device for manufacturing saw wire

Similar Documents

Publication Publication Date Title
US7704127B2 (en) Electrodeposited wire tool
JP5356071B2 (en) Diamond wire saw, diamond wire saw manufacturing method
US5074970A (en) Method for applying an abrasive layer to titanium alloy compressor airfoils
JP2009066689A (en) Fixed abrasive grain wire saw
KR101734454B1 (en) Nickel plating liquid, and method for manufacturing wire coated with solid microparticles
CN102392286B (en) Device for preparing diamond wire saw and method for preparing diamond wire saw by device
JP6352176B2 (en) Fixed abrasive wire saw, manufacturing method thereof, and work cutting method using the same
JP2007152485A (en) Manufacturing method of saw wire
JP2011016208A (en) Fixed-abrasive grain wire and method for manufacturing the same
CN110076705B (en) Bare powder sanding diamond wire electroplating process
TW201011885A (en) Lead frame and method for manufacturing the same
JP2006181701A (en) Electro-deposited wire tool and manufacturing method thereof
JP4157724B2 (en) Wire saw manufacturing method and manufacturing apparatus
JP5066508B2 (en) Fixed abrasive wire saw
CN104152972A (en) Manufacturing method for diamond wire saw
JP2006219752A5 (en)
JP2005046937A (en) Method of manufacturing saw wire
CN110438550B (en) Preparation method of ultra-sharp diamond wire saw and diamond wire saw
JPWO2013039097A1 (en) Solid particulate adhering wire and method for producing the solid particulate adhering wire
KR20110048659A (en) Wire saw and method for the manufacture of wire saw
CN109352544B (en) Diamond wire saw and preparation method thereof
JP2009101441A (en) Electrocast carrier and method of manufacturing the same
JP5665558B2 (en) Method for manufacturing fixed abrasive wire
CN113275659A (en) Superfine high-strength alloy tungsten wire diamond wire saw and preparation method thereof
JP2014172115A (en) Fixed abrasive grain wire, and method for production thereof