JP2005046831A - Ozone water treatment system - Google Patents

Ozone water treatment system Download PDF

Info

Publication number
JP2005046831A
JP2005046831A JP2003386711A JP2003386711A JP2005046831A JP 2005046831 A JP2005046831 A JP 2005046831A JP 2003386711 A JP2003386711 A JP 2003386711A JP 2003386711 A JP2003386711 A JP 2003386711A JP 2005046831 A JP2005046831 A JP 2005046831A
Authority
JP
Japan
Prior art keywords
ozone
water
treated
ejector
reaction tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003386711A
Other languages
Japanese (ja)
Other versions
JP4003231B2 (en
Inventor
Hideaki Ike
池  英昭
Takayuki Akaboshi
孝行 赤星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003386711A priority Critical patent/JP4003231B2/en
Publication of JP2005046831A publication Critical patent/JP2005046831A/en
Application granted granted Critical
Publication of JP4003231B2 publication Critical patent/JP4003231B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ozone water treatment system with small size, without backflow of water to be treated, thereby having high reliability, having a high ozone dissolving performance, and having excellent energy efficiency of a pump facility. <P>SOLUTION: The ozone water treatment system comprises an ozone supply part 11, an ozone dissolving part 12, an ozone reaction column 7, and a waste ozone decomposition part 9. Furthermore, in the ozone supply part 11, the highest part of an ozone gas supply line 5 connecting an ozone generator 4 and an ejector 3 is arranged at a position higher than a water level at full capacity in the ozone reaction column. A gas switching valve 14 is arranged at a branching part of a bypass line 13 branching from the midway of the ozone gas supply line 5, and connecting the line 5 and the waste ozone decomposing part 9. Furthermore, a waste water means 15 is provided in the midway part of the ozone gas supply line 5. When the ozone treatment is operated, communication path between the ozone generator 4 and the ejector 3 is opened to communicate with each other while the communication path between the gas switching valve 14 and the waste ozone decomposing part 9 is closed. When the ozone treatment is stopped, the communication path between the gas switching valve 14 and the ejector 3 is closed while the communication path between the ozone generater 4 and the waste ozone decomposing part 9 is opened to communicate with each other. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、上下水道や、雨水、し尿、産業排水等を被処理水とし、オゾンにより殺菌、脱臭、脱色、有機物の分解等の処理を行うための高い性能を保持するとともに、狭小スペースにも設置が可能なコンパクトなオゾン水処理装置に関する。   The present invention uses water and sewage, rainwater, human waste, industrial wastewater, etc. as water to be treated, and maintains high performance for processing such as sterilization, deodorization, decolorization, and decomposition of organic matter with ozone, and also in a narrow space. The present invention relates to a compact ozone water treatment apparatus that can be installed.

近年、原水の水質悪化や用水のリサイクルが行われる中、オゾンを利用して水を浄化する処理方式が定着しつつある。
オゾン発生装置により生成されるオゾンはそれ自身がもつ強力な酸化力で水中に溶解している溶存性の有害物質を酸化除去する作用があり、上下水のみならず雨水、し尿、産業排水やプール水等各種用水の処理に利用されている。
オゾン処理は、一般にオゾンを含んだ気泡をエゼクタやディフューザにより被処理水中に溶け込ませ、一定時間滞留することにより溶存オゾンで被処理水中の除去対象物質と酸化反応を生じさせて被処理水の殺菌・脱臭・脱色、有機物の分解等の処理を行うものである。
このような従来のオゾン水処理装置の一例を図4に示す(例えば、特許文献1参照)。図において、1は被処理水供給ポンプ、2は被処理水、3はエゼクタ、4はオゾン発生装置、5はオゾンガス供給ライン、6はスタティックミキサ、7はオゾン反応塔、8はオゾン処理水送水ライン、9は排オゾン分解部、10は逆止弁である。
オゾン供給部11は、オゾン発生装置4とオゾンガス供給ライン5、および逆止弁10等で構成され、オゾン溶解部12はエゼクタ3とスタティックミキサ6等で構成されている。オゾン発生装置4は、酸素を原料とする場合、一般には空気圧縮機、PSA式酸素生成機、オゾン発生機等から構成される。排オゾン分解部9は、排オゾンガス中に含まれるミストや泡を除去するミストセパレータや排オゾン分解装置から構成され、触媒や活性炭を利用した方式や高温加熱方式等がある。
つぎに、このオゾン水処理装置の動作について述べる。
被処理水供給ポンプ1により被処理水2がエゼクタ3に圧送され、エゼクタ3内部のオリフィスを通過するときに生じる動圧差により、オゾンガスの導入部分は負圧となる。このとき、オゾン発生装置4で生成されたオゾンガスがオゾンガス供給ライン5を経てエゼクタ3内部に導入され被処理水2と混合される。このときオゾンが被処理水中に吸収され、さらにスタティックミキサ6により攪拌・混合される。その後、オゾン反応塔7に導入されて一定時間オゾンと接触反応することにより、被処理水の殺菌、脱臭、脱色、有機物の分解処理が行われ、オゾン処理水送水ライン8を経て後段に送られる。
被処理水中に未溶解のオゾンは被処理水と分離され、排オゾン分解部9で無害化されて大気中に放出される。
なお、オゾンガス供給ラインに配設してある逆止弁10は、運転停止時やエゼクタのオリフィス部分における動圧差の不足により、オゾンガスの導入部分が負圧にならないときに、被処理水の逆流によるオゾン発生装置への浸水を防止している。
特開平11−319859号公報(第2頁、第1図)
In recent years, while the quality of raw water has deteriorated and water has been recycled, treatment methods that purify water using ozone are becoming established.
Ozone generated by the ozone generator has the ability to oxidize and remove dissolved harmful substances dissolved in water with its strong oxidizing power, and not only water and sewage but also rainwater, human waste, industrial wastewater, and pools. It is used for the treatment of various water such as water.
In ozone treatment, bubbles containing ozone are generally dissolved in the water to be treated by an ejector or diffuser, and stays for a certain period of time, so that dissolved ozone causes an oxidation reaction with the substance to be removed in the water to be treated, thereby sterilizing the water to be treated.・ Processes such as deodorization / decolorization and decomposition of organic substances.
An example of such a conventional ozone water treatment apparatus is shown in FIG. 4 (see, for example, Patent Document 1). In the figure, 1 is a treated water supply pump, 2 is treated water, 3 is an ejector, 4 is an ozone generator, 5 is an ozone gas supply line, 6 is a static mixer, 7 is an ozone reaction tower, and 8 is an ozone treated water feed. Line 9 is an exhaust ozone decomposing unit, and 10 is a check valve.
The ozone supply unit 11 includes an ozone generator 4, an ozone gas supply line 5, a check valve 10, and the like, and the ozone dissolution unit 12 includes an ejector 3 and a static mixer 6. The ozone generator 4 is generally composed of an air compressor, a PSA oxygen generator, an ozone generator and the like when oxygen is used as a raw material. The exhaust ozone decomposing unit 9 includes a mist separator and an exhaust ozone decomposing apparatus that remove mist and bubbles contained in the exhaust ozone gas, and includes a method using a catalyst and activated carbon, a high temperature heating method, and the like.
Next, the operation of this ozone water treatment apparatus will be described.
The treated water 2 is pumped to the ejector 3 by the treated water supply pump 1, and the introduction portion of the ozone gas becomes negative pressure due to the dynamic pressure difference generated when passing through the orifice inside the ejector 3. At this time, the ozone gas generated by the ozone generator 4 is introduced into the ejector 3 through the ozone gas supply line 5 and mixed with the treated water 2. At this time, ozone is absorbed into the water to be treated, and is further stirred and mixed by the static mixer 6. After that, it is introduced into the ozone reaction tower 7 and contacted with ozone for a certain period of time to sterilize, deodorize, decolorize, and decompose organic matter in the treated water, and send it to the subsequent stage through the ozone treated water feed line 8. .
Ozone that is not dissolved in the water to be treated is separated from the water to be treated, detoxified by the exhaust ozone decomposing unit 9, and released into the atmosphere.
The check valve 10 provided in the ozone gas supply line is caused by the backflow of the water to be treated when the operation is stopped or when the ozone gas introduction portion does not become negative pressure due to insufficient dynamic pressure difference in the orifice portion of the ejector. Prevents water from entering the ozone generator.
Japanese Patent Laid-Open No. 11-319859 (2nd page, FIG. 1)

しかしながら、上記従来のオゾン水処理装置において、オゾン供給部、オゾン溶解部およびオゾン反応塔には下記の問題がある。
(1)オゾン供給部
逆止弁や電磁弁等による被処理水の逆流防止手段では不十分な場合があり、少量の逆流水によりオゾン発生装置が浸水して故障に至るケースがある。また、オゾン発生装置はオゾンを発生する前に原料ガスの酸素濃度や露点等が一定状態に達するまでの準備運転が必要であり、この段階で被処理水を通水すると未処理のまま送水され処理できない。
(2)オゾン溶解部
オゾン溶解性能は通水時のエゼクタ内部のオリフィス部分における動圧差の影響をうける。そのため、被処理水の流量の変動により動圧差が変動し、流量が過少となる場合は溶解性能が低下する。一方、流量が過大となる場合はオリフィス通過時の圧力損失が増大し、被処理水供給ポンプのエネルギー効率が低下する。
また、被処理水の通水量がエゼクタの性能に応じた通水量未満である場合、エゼクタの溶解性能は著しく低下するため、エゼクタの規定水量未満では安定した処理効率を得ることが困難であった。
(3)オゾン反応塔
水中におけるオゾンの半減期は数十分程度と短く、例えば下水処理水中では消費物質が多いため、数十秒〜数分にも満たない。したがって、従来構造のオゾン反応空間にオゾンガス混合直後の被処理水を導入するのみでは、導入直後に処理済みの被処理水と混和して溶存オゾン濃度が希釈され、反応効率が低下する。このため、目標水質をクリアするためのオゾン反応時間は10〜20分と長く、大容量のオゾン反応塔が必要となり、装置全体の大型化を招いていた。つまり、エゼクタによるオゾン溶解方式はディフューザと比較して、混合直後に高い溶存オゾン濃度に達するといった特徴を持ちながらも、オゾン反応塔に導入直後に希釈されてしまうために効率的なオゾン接触反応がなされていないという問題があった。
そこで、本発明はこのような問題点に鑑みてなされたものであり、小型で、被処理水の逆流がなく信頼性の高い、かつオゾンの溶解性能や反応効率が高く、ポンプ設備のエネルギー効率のよいオゾン水処理装置を提供することを目的とする。
However, in the conventional ozone water treatment apparatus, the ozone supply unit, the ozone dissolution unit, and the ozone reaction tower have the following problems.
(1) Ozone supply unit The means for preventing the backflow of water to be treated by a check valve, a solenoid valve or the like may be insufficient, and the ozone generator may be submerged by a small amount of backflow water, leading to failure. In addition, the ozone generator requires a preparatory operation until the oxygen concentration and dew point of the raw material gas reach a certain state before generating ozone. At this stage, if the water to be treated is passed, it will be sent untreated. It cannot be processed.
(2) Ozone dissolution part The ozone dissolution performance is affected by the dynamic pressure difference in the orifice part inside the ejector during water flow. Therefore, the dynamic pressure difference fluctuates due to fluctuations in the flow rate of the water to be treated, and the dissolution performance decreases when the flow rate is too low. On the other hand, when the flow rate is excessive, the pressure loss when passing through the orifice increases, and the energy efficiency of the water supply pump to be treated decreases.
In addition, when the flow rate of the water to be treated is less than the flow rate according to the performance of the ejector, the dissolution performance of the ejector is remarkably lowered. Therefore, it is difficult to obtain a stable treatment efficiency when the flow rate is less than the specified amount of water. .
(3) Ozone reaction tower The half-life of ozone in water is as short as several tens of minutes. For example, since there are many consumption substances in sewage treated water, it is less than tens of seconds to several minutes. Therefore, simply introducing the water to be treated immediately after mixing the ozone gas into the ozone reaction space having the conventional structure mixes with the water to be treated immediately after the introduction to dilute the dissolved ozone concentration, thereby reducing the reaction efficiency. For this reason, the ozone reaction time for clearing the target water quality is as long as 10 to 20 minutes, and a large-capacity ozone reaction tower is required, resulting in an increase in the size of the entire apparatus. In other words, the ozone dissolution method by the ejector has a feature that it reaches a high dissolved ozone concentration immediately after mixing compared to the diffuser, but it is diluted immediately after being introduced into the ozone reaction tower. There was a problem that was not done.
Therefore, the present invention has been made in view of such problems, and is small in size, has no backflow of water to be treated, is highly reliable, has high ozone dissolving performance and high reaction efficiency, and has energy efficiency of pump equipment. An object of the present invention is to provide a good ozone water treatment apparatus.

上記問題を解決するため、本発明は、次のように構成したものである。
(1)請求項1に記載のオゾン水処理装置は、オゾン発生装置と逆止弁を配設したオゾンガス供給ラインとからなるオゾン供給部と、被処理水供給ポンプ後段の被処理水通水ラインに配設したエゼクタとその直後に接続した混合部とからなるオゾン溶解部と、前記オゾンが溶解した被処理水を反応させるオゾン反応塔と、前記被処理水に未溶解の余剰オゾンを分解して無害化する排オゾン分解部とからなるオゾン水処理装置において、前記オゾン供給部は、前記オゾン発生装置と前記エゼクタとを接続するオゾンガス供給ラインの最高部を前記オゾン反応塔内の満水時の水位レベルよりも高位置に配置し、前記オゾンガス供給ラインとその中途部から分岐し、前記排オゾン分解部とを接続するバイパスラインの分岐部にガス切換弁を設置し、前記オゾンガス供給ラインの中途部に排水手段を設け、オゾン処理運転時は前記オゾン発生装置と前記エゼクタとの間を開通するとともに前記ガス切換弁と排オゾン分解部との間を閉塞し、運転停止時は前記ガス切換弁と前記エゼクタとの間を閉塞するとともに前記オゾン発生装置と前記排オゾン分解部との間を開通する動作を行うものである。
本構成によれば、運転停止時やエゼクタのオリフィス部分における動圧差の不足により、オゾンガスの導入部分が負圧にならない時、逆止弁で逆流水が漏洩した場合においても、ガス切換弁でオゾン供給ラインが閉塞することによりオゾン発生装置側への逆流を防ぐことができる。万一、ガス切換弁の動作不良等により逆流が生じた場合でも、排水手段により排水されるためオゾン発生装置が浸水することはない。また、オゾン処理運転時以外は排オゾン分解部間を開通するため、被処理水を通水することなく原料ガスの酸素濃度や露点等が一定状態に達するまでの準備運転が可能である。さらに、オゾン処理装置停止直後において、管内に残留したオゾンは排オゾン分解部に通じているため、オゾンを外部に漏洩することがない。すなわち、信頼性および安全性が向上する。
(2)請求項2に記載のオゾン水処理装置は、オゾン発生装置と逆止弁を配設したオゾンガス供給ラインからなるオゾン供給部と、被処理水供給ポンプ後段の被処理水通水ラインの中途部に配設したエゼクタと、エゼクタの直後に接続したスタティックミキサからなるオゾン溶解部と、オゾン反応塔と、被処理水に未溶解の余剰オゾンを分解して無害化する排オゾン分解部から構成されるオゾン水処理装置において、
前記オゾン溶解部は、被処理水通水ラインを分岐した通水分岐ラインと、オゾン反応塔あるいはその後段から分岐した処理水返送ラインと、その合流点に設置した通水切換弁と、その後段の加圧ポンプ、エゼクタ前後の差圧を調整する圧力調整手段、エゼクタ前後の差圧を検出する圧力検出手段、およびエゼクタとからなり、前記エゼクタの後段を前記被処理水通水ラインに合流させて、合流部またはその後段にオゾンガスを混合し攪拌する混合・攪拌手段を配設するとともに、被処理水の流量に応じて前記通水切換弁を動作するものである。
本構成によれば、被処理水の流量が変動しても、エゼクタに通水される通水量は一定に維持することができるとともに、任意の動圧差に設定した通水が可能で高いオゾンの溶解性能が得られる。さらには、被処理水の流量がエゼクタの性能に応じた水量未満である場合においても、通水切換弁を動作して処理水返送ラインから処理水を導入することにより、エゼクタに通水される通水量を一定に維持することができる。すなわち、被処理水の変動によらず高いオゾン溶解性能を安定して維持することが可能となる。
(3)請求項3に記載のオゾン処理装置は、前記圧力調整手段を、前記エゼクタの前段またはエゼクタと並列に配設した配管に設けた開度調整弁、または前記加圧ポンプの出力周波数を調整するインバータとしたものである。
本構成によれば、エゼクタを通過する被処理水の通水量およびエゼクタ内部のオリフィス通過時の動圧差を任意に設定した通水が可能となる。すなわち、高いオゾン溶解性能を安定して維持することができる。
(4)請求項4に記載のオゾン処理装置は、前記オゾンガスの混合・攪拌手段を、前記被処理水とオゾンの混合流体を一旦2方向以上に分岐し、その後対向させて衝突・合流させる構造、または配管内にインペラを設け強制回転させる構造としたものである。
本構成によれば、分岐ラインでオゾンと混合された被処理水が、オゾンが未溶解の被処理水と再混合される際にも、オゾンが効率よく被処理水中に吸収される。その結果、オゾン処理効率が向上する。
(5)請求項5に記載のオゾン水処理装置は、オゾン発生装置と逆止弁を配設したオゾンガス供給ラインとからなるオゾン供給部と、被処理水供給ポンプ後段の被処理水通水ラインに配設したエゼクタとその直後に接続した混合部とからなるオゾン溶解部と、前記オゾンが溶解した被処理水を反応させるオゾン反応塔と、前記被処理水に未溶解の余剰オゾンを分解して無害化する排オゾン分解部とからなるオゾン水処理装置において、円筒形状のオゾン反応塔の内部に円筒形の内管を設置し、前記内管の外周で旋回流を生じさせるように、前記被処理水通水ラインを前記オゾン反応塔の下部に接線方向から接続し、前記内管内側のオゾン反応塔の底部にオゾン処理水送水ラインを接続したものである。
本構成によれば、オゾン反応塔と内管の間の空間において、オゾン混合直後の被処理水は、内管の外周に沿って旋回流となって上昇し、滞留時間の長いものから連続的に内管の上部より内方に案内されるような押し出し流れが形成される。そのため、オゾン混合直後の被処理水は、消費や自己分解により溶存オゾン濃度の低下した処理済のオゾン処理水と混合されることなく、溶存オゾン濃度の高い状態から消費されて低下するまで一定時間滞留する。これにより反応効率が向上してオゾン反応時間が短縮され、オゾン反応塔の小型化が実現できる。また、内管の設置により気泡は確実に被処理水と分離されるため、オゾンガスが漏洩することがない。
(6)請求項6に記載のオゾン水処理装置は、オゾン発生装置と逆止弁を配設したオゾンガス供給ラインとからなるオゾン供給部と、被処理水供給ポンプ後段の被処理水通水ラインに配設したエゼクタとその直後に接続した混合部とからなるオゾン溶解部と、前記オゾンが溶解した被処理水を反応させるオゾン反応塔と、前記被処理水に未溶解の余剰オゾンを分解して無害化する排オゾン分解部とからなるオゾン水処理装置において、直方体形状のオゾン反応塔内に仕切り板を設置し、上下あるいは左右迂回流流路を形成するときの水流速が0.01〜0.03m/secになるように仕切り板の設置間隔を設定するものである。
本構成によれば、オゾン反応塔内の流速をこの範囲内に設定することにより、死水域の形成を防止するとともに、安定した押し出し流れが形成される。このため、オゾン混合直後の被処理水は、消費や自己分解により溶存オゾン濃度の低下した処理済みのオゾン処理水と混合されることなく、溶存オゾン濃度の高い状態から消費されて低下するまでの一定時間滞留する。これにより反応効率が向上してオゾン反応時間が短縮されるに伴いオゾン反応塔の小型化が可能になる。
In order to solve the above problems, the present invention is configured as follows.
(1) The ozone water treatment apparatus according to claim 1 is an ozone supply unit composed of an ozone generator and an ozone gas supply line provided with a check valve, and a treated water flow line downstream of the treated water supply pump. An ozone dissolving part composed of an ejector disposed in the mixing part and a mixing part connected immediately thereafter; an ozone reaction tower for reacting the treated water in which the ozone is dissolved; and surplus ozone undissolved in the treated water is decomposed. In the ozone water treatment apparatus comprising an exhaust ozone decomposing unit that is detoxified, the ozone supply unit is configured so that the highest part of an ozone gas supply line that connects the ozone generator and the ejector is at the time of full water in the ozone reaction tower. Arranged at a position higher than the water level, branching from the ozone gas supply line and its middle part, installing a gas switching valve at the branch part of the bypass line connecting the exhaust ozone decomposition part, A drainage means is provided in the middle of the ozone gas supply line, and during the ozone treatment operation, the ozone generator and the ejector are opened and the gas switching valve and the exhaust ozone decomposing unit are closed to stop the operation. In some cases, the gas switching valve and the ejector are closed, and the ozone generator and the exhaust ozone decomposition section are opened.
According to this configuration, even when backflow water leaks through the check valve when the ozone gas introduction part does not become negative due to a lack of dynamic pressure difference at the orifice part of the ejector or when the operation is stopped, the gas switching valve The backflow to the ozone generator side can be prevented by closing the supply line. Even if a reverse flow occurs due to malfunction of the gas switching valve, etc., the ozone generator will not be submerged because it is drained by the drainage means. Further, since the exhaust ozone decomposing section is opened except during the ozone treatment operation, it is possible to perform a preparation operation until the oxygen concentration, the dew point, etc. of the raw material gas reach a certain state without passing the water to be treated. Furthermore, immediately after the ozone treatment apparatus is stopped, the ozone remaining in the pipe communicates with the exhaust ozone decomposing unit, so that ozone is not leaked to the outside. That is, reliability and safety are improved.
(2) The ozone water treatment apparatus according to claim 2 includes an ozone supply unit composed of an ozone gas supply line provided with an ozone generator and a check valve, and a treated water flow line downstream of the treated water supply pump. From an ejector disposed in the middle, an ozone dissolution part consisting of a static mixer connected immediately after the ejector, an ozone reaction tower, and an exhaust ozone decomposition part that decomposes and detoxifies surplus ozone undissolved in the water to be treated In the configured ozone water treatment device,
The ozone dissolving part includes a water branch line branched from the water flow line to be treated, a treated water return line branched from the ozone reaction tower or the subsequent stage, a water flow switching valve installed at the junction, and a subsequent stage. A pressure pump, a pressure adjusting means for adjusting the differential pressure before and after the ejector, a pressure detecting means for detecting the differential pressure before and after the ejector, and an ejector. The latter stage of the ejector is joined to the treated water flow line. In addition, a mixing / stirring means for mixing and stirring the ozone gas is disposed in the merging section or the subsequent stage, and the water flow switching valve is operated according to the flow rate of the water to be treated.
According to this configuration, even if the flow rate of the water to be treated fluctuates, the amount of water that is passed through the ejector can be kept constant, and water that is set to an arbitrary dynamic pressure difference is possible and high ozone flow rate is maintained. Dissolution performance is obtained. Furthermore, even when the flow rate of the water to be treated is less than the amount of water corresponding to the performance of the ejector, the treated water is introduced into the ejector by operating the water flow switching valve and introducing the treated water from the treated water return line. The amount of water flow can be kept constant. That is, it is possible to stably maintain high ozone dissolution performance regardless of fluctuations in the water to be treated.
(3) The ozone treatment apparatus according to claim 3, wherein the pressure adjusting means includes an opening degree adjusting valve provided in a pipe disposed in front of the ejector or in parallel with the ejector, or an output frequency of the pressurizing pump. This is an inverter to be adjusted.
According to this configuration, it is possible to pass water in which the amount of treated water passing through the ejector and the dynamic pressure difference when passing through the orifice inside the ejector are arbitrarily set. That is, high ozone dissolution performance can be stably maintained.
(4) The ozone treatment apparatus according to claim 4, wherein the ozone gas mixing / stirring means is configured to once divide the mixed fluid of the water to be treated and ozone into two or more directions and then collide and collide with each other. Alternatively, an impeller is provided in the pipe and forcedly rotated.
According to this configuration, even when the water to be treated mixed with ozone in the branch line is remixed with the water to be treated in which ozone is not dissolved, ozone is efficiently absorbed into the water to be treated. As a result, the ozone treatment efficiency is improved.
(5) The ozone water treatment apparatus according to claim 5 is an ozone supply unit comprising an ozone generator and an ozone gas supply line provided with a check valve, and a treated water flow line downstream of the treated water supply pump. An ozone dissolving part composed of an ejector disposed in the mixing part and a mixing part connected immediately thereafter; an ozone reaction tower for reacting the treated water in which the ozone is dissolved; and surplus ozone undissolved in the treated water is decomposed. In the ozone water treatment apparatus comprising the waste ozone decomposing unit to be detoxified, a cylindrical inner pipe is installed inside the cylindrical ozone reaction tower, and the swirling flow is generated on the outer periphery of the inner pipe. A treated water flow line is connected to the lower part of the ozone reaction tower from a tangential direction, and an ozone treated water water supply line is connected to the bottom of the ozone reaction tower inside the inner tube.
According to this configuration, in the space between the ozone reaction tower and the inner pipe, the water to be treated immediately after mixing with ozone rises as a swirling flow along the outer circumference of the inner pipe, and continues from a long residence time. Thus, an extruding flow that is guided inward from the upper part of the inner pipe is formed. Therefore, the treated water immediately after ozone mixing is not mixed with the treated ozone-treated water whose dissolved ozone concentration has decreased due to consumption or self-decomposition, and is consumed for a certain period of time until it is consumed from a high dissolved ozone concentration and decreases. Stay. Thereby, reaction efficiency improves, ozone reaction time is shortened, and size reduction of an ozone reaction tower is realizable. Further, since the bubbles are reliably separated from the water to be treated by the installation of the inner pipe, ozone gas does not leak.
(6) The ozone water treatment apparatus according to claim 6 is an ozone supply unit comprising an ozone generator and an ozone gas supply line provided with a check valve, and a treated water flow line downstream of the treated water supply pump. An ozone dissolving part composed of an ejector disposed in the mixing part and a mixing part connected immediately thereafter; an ozone reaction tower for reacting the treated water in which the ozone is dissolved; and surplus ozone undissolved in the treated water is decomposed. In the ozone water treatment apparatus comprising the waste ozone decomposing unit that is rendered harmless, the partition plate is installed in a rectangular parallelepiped ozone reaction tower, and the water flow rate when forming a vertical or left and right bypass flow path is 0.01 to The installation interval of the partition plates is set so as to be 0.03 m / sec.
According to this configuration, by setting the flow velocity in the ozone reaction tower within this range, formation of a dead water area is prevented and a stable extrusion flow is formed. For this reason, the treated water immediately after ozone mixing is consumed and reduced from a high dissolved ozone concentration without being mixed with the treated ozone-treated water whose dissolved ozone concentration has decreased due to consumption or self-decomposition. Stay for a certain time. As a result, the reaction efficiency is improved, and the ozone reaction tower can be reduced in size as the ozone reaction time is shortened.

本発明のオゾン水処理装置は、つぎの効果がある。
(1)オゾン供給部は、オゾン発生装置とエゼクタを接続するオゾンガス供給ラインの最高部をオゾン反応塔内の満水時の水位レベルよりも高位置に配置し、オゾンガス供給ラインとその中途部から分岐して排オゾン処理装置と接続するバイパスラインの分岐部にガス切換弁を設置して、オゾン発生装置後段のオゾンガス供給ラインの中途部に排水手段を設け、オゾン処理運転時はエゼクタ間を開通して排オゾン分解部間を閉塞し、運転停止時はエゼクタ間を閉塞して排オゾン分解部間を開通する動作を行うので、被処理水が逆流してオゾン発生装置が浸水することがなくなり、信頼性・安全性が飛躍的に向上する。
(2)オゾン溶解部は、エゼクタの前後に圧力検出手段を設け、エゼクタ前後の差圧を調整可能な圧力調整手段を設け、合流部の後段に被処理水とオゾンガスの混合・攪拌手段を設けたので、被処理水の流量が変動しても、エゼクタに通水される通水量は一定に維持することができるとともに、任意の動圧差に設定した通水が可能となる。また、被処理水の流量に応じて通水切換弁を動作することにより、被処理水の流量がエゼクタの性能に応じた水量未満となる場合においても、エゼクタに通水される通水量を一定に保ち、高いオゾン溶解性能を安定して維持することができる。
(3)オゾン反応塔は、円筒形状のオゾン反応塔については内部に円筒形の内管を設置し、内管の外周で旋回流を生じさせるべく、被処理水通水ラインをオゾン反応塔の下部に接線方向から接続し、内管内側のオゾン反応塔の底部にオゾン処理水送水ラインを接続する。また、直方体形状のオゾン反応塔については、内部に仕切り板を設置し、上下あるいは左右迂回流流路を形成するときの水流速が0.01〜0.03m/secになるように仕切り板の設置間隔を設定する。以上により、死水域の形成を防止するとともに、安定した押し出し流れが形成され、反応効率が向上してオゾン反応時間が短縮されるため、オゾン反応塔の小型化が可能になる。
以上により、信頼性、安全性が高く、高性能でコンパクトなオゾン水処理装置が得られる。
The ozone water treatment apparatus of the present invention has the following effects.
(1) The ozone supply unit places the highest part of the ozone gas supply line connecting the ozone generator and ejector at a position higher than the water level at the time of full water in the ozone reaction tower, and branches from the ozone gas supply line and its middle part A gas switching valve is installed at the branch part of the bypass line connected to the exhaust ozone treatment device, and a drainage means is provided in the middle of the ozone gas supply line after the ozone generator, and the ejector is opened during the ozone treatment operation. Therefore, when the operation is stopped, the ejector is closed and the exhaust ozone decomposition unit is opened, so that the water to be treated does not flow backward and the ozone generator is not inundated. Reliability and safety are dramatically improved.
(2) The ozone dissolving part is provided with pressure detecting means before and after the ejector, pressure adjusting means capable of adjusting the differential pressure before and after the ejector, and mixing / stirring means for water to be treated and ozone gas is provided at the subsequent stage of the merging part. Therefore, even if the flow rate of the water to be treated fluctuates, the amount of water that is passed through the ejector can be kept constant, and water that is set to an arbitrary dynamic pressure difference can be passed. In addition, by operating the water flow switching valve according to the flow rate of the water to be treated, even when the flow rate of the water to be treated is less than the water volume according to the performance of the ejector, the water flow rate that is passed through the ejector is constant. And high ozone dissolution performance can be stably maintained.
(3) Regarding the ozone reaction tower, a cylindrical inner tube is installed inside the ozone reaction tower, and the water flow line to be treated is connected to the ozone reaction tower in order to generate a swirling flow on the outer periphery of the inner tube. Connect to the bottom from the tangential direction, and connect the ozone-treated water feed line to the bottom of the ozone reaction tower inside the inner tube. In addition, for a rectangular parallelepiped ozone reaction tower, a partition plate is installed inside the partition plate so that the water flow rate is 0.01 to 0.03 m / sec when forming a vertical or left and right bypass flow path. Set the installation interval. As described above, the formation of a dead water zone is prevented, a stable extrusion flow is formed, the reaction efficiency is improved, and the ozone reaction time is shortened, so that the ozone reaction tower can be downsized.
Thus, a highly reliable and safe ozone water treatment apparatus with high performance can be obtained.

以下、本発明の実施形態を図に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の実施例1を図1に示す。図1は、本発明のオゾン水処理装置を示す全体構成図である。同じ部品には同じ符号を付している。本実施例のオゾン水処理装置は、オゾン供給部11と、オゾン溶解部12と、オゾン反応塔7と、排オゾン分解部9で構成されている。図において、13はバイパスライン、14はガス切換弁、15は排水手段、16は被処理水通水ライン、17は通水分岐ライン、18は処理水返送ライン、19は通水切換弁、20は加圧ポンプ、21は圧力調整手段、22は圧力検出手段、23は混合・攪拌手段、24は内管である。
オゾン供給部11は、オゾン発生装置4とエゼクタ3を接続するオゾンガス供給ライン5の最高部をオゾン反応塔内の満水時の水位レベルよりも高位置に配置している。また、オゾンガス供給ライン5とその中途部から分岐して排オゾン分解部9と接続するバイパスライン13の分岐部にガス切換弁14を設置する。このガス切換弁14はオゾン処理運転時にエゼクタ間を開通して排オゾン分解部間を閉塞し、運転停止時はエゼクタ間を閉塞して排オゾン分解部間を開通する動作を行う。さらに、オゾン発生装置後段のオゾンガス供給ラインの中途部に15排水手段を設けている。
つぎに、動作について説明する。
被処理水通水ライン16に導入された被処理水2の一部は通水分岐ライン17に分流され、加圧ポンプ18で加圧されてエゼクタ3に圧送される。このとき、オゾン発生装置4で生成されたオゾンガスがオゾンガス供給ライン5を経てエゼクタ3内部に導入され被処理水2と混合される。ただし、オゾン処理運転時以外はエゼクタ3間を閉塞し、排オゾン分解部間9を開通するため、原料ガスの酸素濃度や露点等が一定状態に達するまでの準備運転ができ、かつ被処理水がオゾンガス供給ラインを逆流することはない。万一逆流した場合でも、排水手段15が作動するため、オゾン発生装置が浸水する可能性は極めて少ない。
本実施例によれば、次の効果が得られる。
オゾン供給部は、ガス切換弁を設置したので、運転停止時等に逆止弁から逆流水が漏洩した場合においても、オゾン供給ラインが閉塞することによりオゾン発生装置側への被処理水の逆流を防ぐことができる。また、オゾン処理運転時以外は排オゾン分解部間を開通するため、被処理水を通水することなく原料ガスの酸素濃度や露点等が一定状態に達するまでの準備運転が可能となる。さらに、オゾン処理装置停止直後に管内に残留したオゾンは排オゾン分解部に通じているため、オゾンを外部に漏洩することがない。
また、排水手段を設置したので、万一、ガス切換弁の動作不良等により逆流が生じた場合でも、排水手段により排水されるためオゾン発生装置が浸水する可能性はきわめて低い。
A first embodiment of the present invention is shown in FIG. FIG. 1 is an overall configuration diagram showing an ozone water treatment apparatus of the present invention. The same parts are denoted by the same reference numerals. The ozone water treatment apparatus according to the present embodiment includes an ozone supply unit 11, an ozone dissolution unit 12, an ozone reaction tower 7, and an exhaust ozone decomposition unit 9. In the figure, 13 is a bypass line, 14 is a gas switching valve, 15 is drainage means, 16 is a treated water passage line, 17 is a water passage branch line, 18 is a treated water return line, 19 is a water passage switching valve, 20 Is a pressure pump, 21 is a pressure adjusting means, 22 is a pressure detecting means, 23 is a mixing / stirring means, and 24 is an inner tube.
The ozone supply part 11 arrange | positions the highest part of the ozone gas supply line 5 which connects the ozone generator 4 and the ejector 3 in a position higher than the water level level at the time of the water full in an ozone reaction tower. Moreover, the gas switching valve 14 is installed in the branch part of the bypass line 13 branched from the ozone gas supply line 5 and the middle part thereof and connected to the exhaust ozone decomposition part 9. The gas switching valve 14 opens between the ejectors during the ozone treatment operation and closes the exhaust ozone decomposing unit. When the operation is stopped, the gas switching valve 14 closes the ejectors and opens the exhaust ozone decomposing unit. Furthermore, 15 drainage means are provided in the middle of the ozone gas supply line after the ozone generator.
Next, the operation will be described.
A part of the treated water 2 introduced into the treated water passage line 16 is diverted to the passage branch line 17, pressurized by the pressurizing pump 18, and pumped to the ejector 3. At this time, the ozone gas generated by the ozone generator 4 is introduced into the ejector 3 through the ozone gas supply line 5 and mixed with the treated water 2. However, except during the ozone treatment operation, the ejector 3 is closed and the exhaust ozone decomposition section 9 is opened, so that the preparatory operation until the oxygen concentration, dew point, etc. of the raw material gas reaches a certain state can be performed. Does not flow back through the ozone gas supply line. Even in the event of a reverse flow, the drainage means 15 operates, so that the ozone generator is very unlikely to be submerged.
According to the present embodiment, the following effects can be obtained.
Since the ozone supply unit is equipped with a gas switching valve, even when backflow water leaks from the check valve when the operation is stopped, etc., the ozone supply line is blocked, causing the backflow of water to be treated to the ozone generator side. Can be prevented. Further, since the exhaust ozone decomposing unit is opened except during the ozone treatment operation, it is possible to perform a preparation operation until the oxygen concentration, the dew point, etc. of the raw material gas reach a certain state without passing the water to be treated. Furthermore, since ozone remaining in the pipe immediately after the ozone treatment apparatus is stopped communicates with the exhaust ozone decomposition section, ozone is not leaked to the outside.
In addition, since the drainage means is installed, even if a reverse flow occurs due to a malfunction of the gas switching valve or the like, the ozone generator is very unlikely to be submerged because it is drained by the drainage means.

本実施例は、オゾン溶解部に特徴を有するものであり、実施例1と同じく図1を用いて説明する。
オゾン溶解部12は、被処理水2が供給される被処理水通水ライン16を分岐し、通水分岐ライン17を設ける。また、オゾン反応塔の後段から分岐した処理水返送ライン18を設け、その合流点に通水切換弁19を設置する。その後段に、加圧ポンプ20、開度の調整が可能な弁等による圧力調整手段21、エゼクタ3を配設する。また、エゼクタ3の前後にはエゼクタ前後の差圧を検出するための圧力検出手段22を設置している。その後段は被処理水通水ライン16と再度合流しており、その合流部または合流部の後段に混合攪拌手段23を配設している。
つぎに、動作について説明する。
被処理水の流量がエゼクタの性能を充たす規定水量以上である場合、被処理水の一部は通水分岐ラインを経て加圧ポンプ20で圧送されエゼクタ3に導入される。このとき、エゼクタ3を通過する際の動圧差を圧力検出手段22で監視し、圧力調整手段21により、0.05〜0.15MPaの最適な差圧に設定する。このときの圧力調整手段は、エゼクタの前段またはエゼクタと並列にバイパスを設け、その中途部に弁を設置して開度を調整する方法や、加圧ポンプ20の出力周波数をインバータで調整するといった方法がある。
エゼクタによってオゾンガスと混合された被処理水は、被処理水通水ライン16と再度合流する。このとき、合流部または合流部の後段に設置した混合・攪拌手段23により、本流の被処理水とさらに強く混合・攪拌され、オゾンが被処理水中に高い効率で吸収される。このような混合・攪拌手段は、被処理水とオゾンによる混合流体を一旦2方向以上に分岐して対向から衝突速度を速めて衝突させるような方法や、インペラを配管の内部にて高速で回転させて強制的に気液をせん断する方法や、スタティックミキサ等の方法がある。
また、被処理水の流量がエゼクタの性能を充たせない規定水量未満である場合は、通水切換弁19を動作させて、処理水返送ライン18を開通し、通水分岐ライン17を閉塞する。これにより、オゾン反応塔内の処理水の一部がエゼクタの設定水量分だけ処理水返送ラインを経てエゼクタに導入され、オゾンガスとの混合が行われる。
本実施例によれば、次の効果が得られる。
オゾン溶解部は、加圧ポンプ、圧力調整手段、エゼクタを配置し、エゼクタの前後に圧力検出手段を配設するとともに、被処理水通水ラインとの合流部または後段に混合攪拌手段を設置するので、被処理水の流量が変動しても、エゼクタに通水される通水量は一定に維持することができるとともに、任意の動圧差に設定した通水が可能であり、高いオゾン溶解性能を安定して維持することができる。さらには、通水分岐ラインと処理水返送ラインを設け、その合流点に通水切換弁を設置したので、被処理水の流量がエゼクタの性能に応じた水量未満となる場合においても、通水切換弁を動作して処理水返送ラインから処理水を導入することにより、エゼクタに通水される通水量を一定に維持することができる。すなわち、被処理水の変動によらず高いオゾン溶解性能を安定して維持することが可能となる。
The present embodiment has a feature in the ozone dissolving portion, and will be described with reference to FIG.
The ozone dissolving part 12 branches the to-be-processed water flow line 16 to which the to-be-processed water 2 is supplied, and provides the water flow branch line 17. Moreover, the treated water return line 18 branched from the back | latter stage of the ozone reaction tower is provided, and the water flow switching valve 19 is installed in the junction. In the subsequent stage, a pressure pump 20, a pressure adjusting means 21 using a valve or the like whose opening degree can be adjusted, and the ejector 3 are disposed. Further, pressure detection means 22 for detecting the differential pressure before and after the ejector is installed before and after the ejector 3. The subsequent stage is rejoined with the to-be-treated water flow line 16, and the mixing and stirring means 23 is disposed at the joining part or after the joining part.
Next, the operation will be described.
When the flow rate of the water to be treated is equal to or greater than the specified water amount satisfying the performance of the ejector, a part of the water to be treated is pumped by the pressurizing pump 20 through the water flow branch line and introduced into the ejector 3. At this time, the dynamic pressure difference when passing through the ejector 3 is monitored by the pressure detecting means 22, and the optimum differential pressure of 0.05 to 0.15 MPa is set by the pressure adjusting means 21. The pressure adjusting means at this time is a method in which a bypass is provided in front of the ejector or in parallel with the ejector, and a valve is installed in the middle thereof to adjust the opening, or the output frequency of the pressurizing pump 20 is adjusted by an inverter. There is a way.
The treated water mixed with the ozone gas by the ejector joins the treated water flow line 16 again. At this time, the mixing / stirring means 23 installed at the merging section or the subsequent stage of the merging section mixes and stirs more strongly with the main treated water, and ozone is absorbed into the treated water with high efficiency. Such a mixing / stirring means is a method in which the mixed fluid of water to be treated and ozone is once branched into two or more directions and collided by increasing the collision speed from the opposite side, or the impeller is rotated at high speed inside the pipe. There are a method of forcibly shearing gas and liquid, a method of static mixer, and the like.
In addition, when the flow rate of the water to be treated is less than the specified water amount that does not satisfy the ejector performance, the water flow switching valve 19 is operated to open the treated water return line 18 and close the water flow branch line 17. . Thereby, a part of the treated water in the ozone reaction tower is introduced into the ejector through the treated water return line by an amount set by the ejector, and mixed with ozone gas.
According to the present embodiment, the following effects can be obtained.
The ozone dissolving part is provided with a pressure pump, pressure adjusting means, and an ejector, and pressure detecting means are arranged before and after the ejector, and a mixing and stirring means is installed at the junction with the treated water passage line or at the subsequent stage. Therefore, even if the flow rate of the water to be treated fluctuates, the amount of water that is passed through the ejector can be kept constant, and water flow that is set to any dynamic pressure difference is possible, resulting in high ozone dissolution performance. It can be maintained stably. Furthermore, since a water flow branching line and a treated water return line are provided and a water flow switching valve is installed at the junction, even if the flow rate of the water to be treated is less than the water volume corresponding to the performance of the ejector, By operating the switching valve and introducing the treated water from the treated water return line, it is possible to maintain a constant amount of water that is passed through the ejector. That is, it is possible to stably maintain high ozone dissolution performance regardless of fluctuations in the water to be treated.

本実施例は、オゾン反応塔に特徴を有するものであり、実施例1と同じく図1を用いて説明する。
オゾン反応塔7は、円筒形状のオゾン反応塔内の底部に円筒形の内管24を設置して、内管の外周で旋回流を生じさせるべく、被処理水通水ライン16をオゾン反応塔7の下部に接線方向から接続している。また、オゾン反応塔底部の内管内側にオゾン処理水送水ライン8を接続している。
つぎに、動作について説明する。
オゾン反応塔7に導入された被処理水は、内管24の外周を旋回流となって上昇し、滞留時間の長いものから連続的に内管の上部より内方に案内される。この間に溶存オゾン濃度の高い状態から消費されて低下するまで一定時間滞留することにより、被処理水の殺菌、脱臭、脱色、有機物の分解処理が効率的に行われる。その後、オゾン反応塔の底部からオゾン処理水送水ライン8を経て後段に送られる。
また、被処理水中に未溶解のオゾンは被処理水と分離され、排オゾン分解部9で無害化されて大気中に放出される。
本実施例によれば、次のような効果が得られる。
オゾン反応塔は、円筒形状のオゾン反応塔内の底部に円筒形の内管を設置して、被処理水通水ラインをオゾン反応塔下部に接線方向から接続し、オゾン反応塔底部の内管内側にオゾン処理水送水ラインを接続するので、オゾン混合後の被処理水は、内管の外側では下→上方向の旋回流による押し出し流れが形成され、内管の内側では上→下方向への押し出し流れが形成されることにより、消費や自己分解により溶存オゾン濃度の低下した処理済のオゾン処理水と混合されることなく、溶存オゾン濃度の高い状態から消費されて低下するまで一定時間滞留する。これにより反応効率が向上してオゾン反応時間が短縮されるため、オゾン反応塔の小型化が実現できる。
また、気泡は確実に被処理水と分離されるため、オゾンガスが漏洩しない。
This embodiment is characterized by an ozone reaction tower, and will be described with reference to FIG.
The ozone reaction tower 7 has a cylindrical inner pipe 24 installed at the bottom of a cylindrical ozone reaction tower, and the treated water flow line 16 is connected to the ozone reaction tower so as to generate a swirling flow on the outer periphery of the inner pipe. 7 is connected from the tangential direction to the lower part. Further, an ozone-treated water feed line 8 is connected to the inner tube inside the bottom of the ozone reaction tower.
Next, the operation will be described.
The water to be treated introduced into the ozone reaction tower 7 rises as a swirling flow around the outer circumference of the inner pipe 24, and is continuously guided inward from the upper part of the inner pipe from a long residence time. During this time, the water to be treated is retained for a certain period of time until it is consumed and lowered, so that the water to be treated is sterilized, deodorized, decolored, and decomposed organically. Then, it is sent from the bottom of the ozone reaction tower to the subsequent stage through the ozone treated water feed line 8.
In addition, undissolved ozone in the water to be treated is separated from the water to be treated, detoxified by the exhaust ozone decomposing unit 9, and released into the atmosphere.
According to the present embodiment, the following effects can be obtained.
In the ozone reaction tower, a cylindrical inner tube is installed at the bottom of the cylindrical ozone reaction tower, the water flow line to be treated is connected to the bottom of the ozone reaction tower from the tangential direction, and the inner tube at the bottom of the ozone reaction tower. Since the ozone-treated water supply line is connected to the inside, the water to be treated after ozone mixing forms an extruding flow with a swirling flow from the bottom to the top on the outside of the inner pipe, and from the top to the bottom on the inside of the inner pipe As a result of the formation of an extruded flow of water, it stays for a certain period of time until it is consumed and lowered from a high dissolved ozone concentration without being mixed with the treated ozone-treated water whose dissolved ozone concentration has decreased due to consumption or self-decomposition. To do. As a result, the reaction efficiency is improved and the ozone reaction time is shortened, so that the ozone reaction tower can be downsized.
Further, since the bubbles are reliably separated from the water to be treated, ozone gas does not leak.

本発明の実施例4を図2に示す。 図2は実施例4を示すオゾン反応塔の概略図である。
オゾン反応塔が直方体形状の場合は、オゾン反応塔7の内部で、上下迂回流流路を形成するように仕切り板25を設置する。このとき、エゼクタ等のインライン型のオゾン溶解装置を採用する場合は、ディフューザ採用時のように4〜6mの水深を必要とせず、1〜1.5m程度の水深があれば良い。
また、下水処理水を本方式で処理する際、押し出し流れを形成することにより、図3に示すように1分程度の反応時間で色度等の除去が可能である。なお、添加したオゾン量に対し、90%以上の反応を完結させるには全反応時間を2〜5分程度に設定すれば良い。したがって、1〜1.5m程度の水深においては仕切り板により1槽で1分程度の反応時間になるように2〜5槽程度に分割しつつ、死水域を形成することなく押し出し流れを形成するためには各分割槽内における水流速が0.01〜0.03m/secの範囲になるように仕切り板の設置間隔を設定すれば良い。
本実施例によれば、次のような効果が得られる。
直方体形状のオゾン反応塔の内部に仕切り板を設置する際、各分割槽内における水流速が0.01〜0.03m/secになるように仕切り板の設置間隔を設定するので、押し出し流れが形成されて、消費や自己分解により溶存オゾン濃度の低下した処理済のオゾン処理水と混合されることなく、溶存オゾン濃度の高い状態から消費されて低下するまで一定時間滞留する。これにより反応効率が向上してオゾン反応時間が短縮され、オゾン反応塔の小型化が実現できる。
A fourth embodiment of the present invention is shown in FIG. FIG. 2 is a schematic view of an ozone reaction tower showing Example 4.
When the ozone reaction tower has a rectangular parallelepiped shape, the partition plate 25 is installed inside the ozone reaction tower 7 so as to form a vertical detour flow path. At this time, when an in-line type ozone dissolving apparatus such as an ejector is employed, a water depth of 4 to 6 m is not required as in the case of using a diffuser, and a water depth of about 1 to 1.5 m is sufficient.
Further, when the sewage treated water is treated by this method, by forming an extrusion flow, chromaticity and the like can be removed in a reaction time of about 1 minute as shown in FIG. In addition, what is necessary is just to set the total reaction time to about 2 to 5 minutes in order to complete 90% or more of reaction with respect to the added ozone amount. Therefore, at a water depth of about 1 to 1.5 m, an extrusion flow is formed without forming a dead water area while dividing it into about 2 to 5 tanks so that the reaction time is about 1 minute per tank by a partition plate. For this purpose, it is only necessary to set the installation interval of the partition plates so that the water flow rate in each divided tank is in the range of 0.01 to 0.03 m / sec.
According to the present embodiment, the following effects can be obtained.
When installing a partition plate inside a rectangular parallelepiped ozone reaction tower, the partition plate installation interval is set so that the water flow rate in each divided tank is 0.01 to 0.03 m / sec. It is formed and stays for a certain period of time until it is consumed and lowered from a state where the dissolved ozone concentration is high, without being mixed with the treated ozone-treated water whose concentration of dissolved ozone is reduced due to consumption or self-decomposition. Thereby, the reaction efficiency is improved, the ozone reaction time is shortened, and the ozone reaction tower can be downsized.

本発明の実施例1〜3を示すオゾン水処理装置の概略図Schematic of an ozone water treatment apparatus showing Examples 1 to 3 of the present invention 本発明の実施例4を示すオゾン反応塔の概略図Schematic of ozone reaction tower showing Example 4 of the present invention 本発明の色度とオゾン反応時間との関係を示すグラフThe graph which shows the relationship between chromaticity and ozone reaction time of this invention 従来のオゾン水処理装置を示す概略図Schematic showing a conventional ozone water treatment device

符号の説明Explanation of symbols

1 被処理水供給ポンプ
2 被処理水
3 エゼクタ
4 オゾン発生装置
5 オゾンガス供給ライン
6 スタティックミキサ
7 オゾン反応塔
8 オゾン処理水送水ライン
9 排オゾン分解部
10 逆止弁
11 オゾン供給部
12 オゾン溶解部
13 バイパスライン
14 ガス切換弁
15 排水手段
16 被処理水通水ライン
17 通水分岐ライン
18 処理水返送ライン
19 通水切換弁
20 加圧ポンプ
21 圧力調整手段
22 圧力検出手段
23 混合・攪拌手段
24 内管
25 仕切り板
DESCRIPTION OF SYMBOLS 1 Treated water supply pump 2 Treated water 3 Ejector 4 Ozone generator 5 Ozone gas supply line 6 Static mixer 7 Ozone reaction tower 8 Ozone treated water water supply line 9 Waste ozone decomposition part 10 Check valve 11 Ozone supply part 12 Ozone dissolution part 13 Bypass line 14 Gas switching valve 15 Drainage means 16 To-be-treated water passage line 17 Water passage branch line 18 Treated water return line 19 Water passage switching valve 20 Pressure pump 21 Pressure adjustment means 22 Pressure detection means 23 Mixing / stirring means 24 Inner tube 25 Partition plate

Claims (6)

オゾン発生装置と逆止弁を配設したオゾンガス供給ラインとからなるオゾン供給部と、被処理水供給ポンプ後段の被処理水通水ラインに配設したエゼクタとその直後に接続した混合部とからなるオゾン溶解部と、前記オゾンが溶解した被処理水を反応させるオゾン反応塔と、前記被処理水に未溶解の余剰オゾンを分解して無害化する排オゾン分解部とからなるオゾン水処理装置において、
前記オゾン供給部は、前記オゾン発生装置と前記エゼクタとを接続するオゾンガス供給ラインの最高部を前記オゾン反応塔内の満水時の水位レベルよりも高位置に配置し、前記オゾンガス供給ラインとその中途部から分岐し前記排オゾン分解部とを接続するバイパスラインの分岐部にガス切換弁を設置し、前記オゾンガス供給ラインの中途部に排水手段を設け、オゾン処理運転時は前記オゾン発生装置と前記エゼクタとの間を開通するとともに前記ガス切換弁と排オゾン分解部との間を閉塞し、運転停止時は前記ガス切換弁と前記エゼクタとの間を閉塞するとともに前記オゾン発生装置と前記排オゾン分解部との間を開通する動作を行うことを特徴とするオゾン水処理装置。
From an ozone supply unit composed of an ozone generator and an ozone gas supply line provided with a check valve, an ejector disposed in the treated water flow line downstream of the treated water supply pump, and a mixing unit connected immediately thereafter An ozone water treatment apparatus comprising: an ozone dissolving part, an ozone reaction tower for reacting the treated water in which the ozone is dissolved, and an exhaust ozone decomposing part for decomposing and detoxifying surplus ozone not dissolved in the treated water In
The ozone supply unit is arranged such that a highest part of an ozone gas supply line connecting the ozone generator and the ejector is positioned higher than a water level level when the ozone reaction tower is full, and the ozone gas supply line and its middle A gas switching valve is installed at a branch part of a bypass line that branches from the part and connects to the exhaust ozone decomposing part, a drainage means is provided in the middle part of the ozone gas supply line, and during the ozone treatment operation, the ozone generator and the The gap between the gas switching valve and the exhaust ozone decomposing unit is closed while the space between the ejector is opened, and the gap between the gas switching valve and the ejector is closed when the operation is stopped. An ozone water treatment apparatus characterized by performing an operation of opening between the decomposition section.
オゾン発生装置と逆止弁を配設したオゾンガス供給ラインとからなるオゾン供給部と、被処理水供給ポンプ後段の被処理水通水ラインの中途部に配設したエゼクタと、エゼクタの直後に接続したスタティックミキサからなるオゾン溶解部と、オゾン反応塔と、被処理水に未溶解の余剰オゾンを分解して無害化する排オゾン分解部から構成されるオゾン水処理装置において、
前記オゾン溶解部は、被処理水通水ラインを分岐した通水分岐ラインと、オゾン反応塔あるいはその後段から分岐した処理水返送ラインと、その合流点に設置した通水切換弁と、その後段の加圧ポンプ、エゼクタ前後の差圧を調整する圧力調整手段、エゼクタ前後の差圧を検出する圧力検出手段、およびエゼクタとからなり、前記エゼクタの後段を前記被処理水通水ラインに合流させて、合流部またはその後段にオゾンガスを混合し攪拌する混合・攪拌手段を配設するとともに、被処理水の流量に応じて前記通水切換弁を動作することを特徴とするオゾン水処理装置。
Connected immediately after the ejector, an ozone supply unit consisting of an ozone generator and an ozone gas supply line with a check valve, an ejector disposed in the middle of the treated water flow line downstream of the treated water supply pump In an ozone water treatment apparatus composed of an ozone dissolution part composed of a static mixer, an ozone reaction tower, and an exhaust ozone decomposition part that decomposes and detoxifies surplus ozone not dissolved in the water to be treated,
The ozone dissolving part includes a water branch line branched from the water flow line to be treated, a treated water return line branched from the ozone reaction tower or the subsequent stage, a water flow switching valve installed at the junction, and a subsequent stage. A pressure pump, a pressure adjusting means for adjusting the differential pressure before and after the ejector, a pressure detecting means for detecting the differential pressure before and after the ejector, and an ejector. The latter stage of the ejector is joined to the treated water flow line. The ozone water treatment apparatus is characterized in that mixing / stirring means for mixing and stirring ozone gas is disposed at the junction or the subsequent stage, and the water flow switching valve is operated according to the flow rate of the water to be treated.
前記圧力調整手段は、前記エゼクタの前段またはエゼクタと並列に配設した配管に設けた開度調整弁、または前記加圧ポンプの出力周波数を調整するインバータであることを特徴とする請求項2記載のオゾン水処理装置。   The pressure adjusting means is an opening adjustment valve provided in a pipe disposed in front of the ejector or in parallel with the ejector, or an inverter for adjusting an output frequency of the pressurizing pump. Ozone water treatment equipment. 前記オゾンガスの混合・攪拌手段は、前記被処理水とオゾンの混合流体を一旦2方向以上に分岐し、その後対向させて衝突・合流させる構造、または配管内にインペラを設け強制回転させる構造であることを特徴とする請求項2または3記載のオゾン水処理装置。   The ozone gas mixing / stirring means is a structure in which the mixed fluid of the water to be treated and ozone is once branched into two or more directions and then opposed to collide and merge, or an impeller is provided in the pipe to forcibly rotate. The ozone water treatment apparatus according to claim 2 or 3, wherein オゾン発生装置と逆止弁を配設したオゾンガス供給ラインとからなるオゾン供給部と、被処理水供給ポンプ後段の被処理水通水ラインに配設したエゼクタとその直後に接続した混合部とからなるオゾン溶解部と、前記オゾンが溶解した被処理水を反応させるオゾン反応塔と、前記被処理水に未溶解の余剰オゾンを分解して無害化する排オゾン分解部とからなるオゾン水処理装置において、
前記オゾン反応塔は円筒形状のオゾン反応塔の内部に円筒形の内管を設置し、前記内管の外周で旋回流を生じさせるように、前記被処理水通水ラインを前記オゾン反応塔の下部に接線方向から接続し、前記内管内側のオゾン反応塔の底部にオゾン処理水送水ラインを接続したことを特徴とするオゾン水処理装置。
From an ozone supply unit composed of an ozone generator and an ozone gas supply line provided with a check valve, an ejector disposed in the treated water flow line downstream of the treated water supply pump, and a mixing unit connected immediately thereafter An ozone water treatment apparatus comprising: an ozone dissolving part, an ozone reaction tower for reacting the treated water in which the ozone is dissolved, and an exhaust ozone decomposing part for decomposing and detoxifying surplus ozone not dissolved in the treated water In
The ozone reaction tower is provided with a cylindrical inner pipe inside a cylindrical ozone reaction tower, and the water flow line to be treated is connected to the ozone reaction tower so as to generate a swirling flow around the outer circumference of the inner pipe. An ozone water treatment apparatus connected to the lower part from a tangential direction, and an ozone treated water feed line connected to the bottom of the ozone reaction tower inside the inner tube.
オゾン発生装置と逆止弁を配設したオゾンガス供給ラインとからなるオゾン供給部と、被処理水供給ポンプ後段の被処理水通水ラインに配設したエゼクタとその直後に接続した混合部とからなるオゾン溶解部と、前記オゾンが溶解した被処理水を反応させるオゾン反応塔と、前記被処理水に未溶解の余剰オゾンを分解して無害化する排オゾン分解部とからなるオゾン水処理装置において、
前記オゾン反応塔は直方体形状のオゾン反応塔内に仕切り板を設置し、上下あるいは左右迂回流流路を形成するときの水流速が0.01〜0.03m/secになるように仕切り板の設置間隔を設定することを特徴とするオゾン水処理装置。
From an ozone supply unit composed of an ozone generator and an ozone gas supply line provided with a check valve, an ejector disposed in the treated water flow line downstream of the treated water supply pump, and a mixing unit connected immediately thereafter An ozone water treatment apparatus comprising: an ozone dissolving part, an ozone reaction tower for reacting the treated water in which the ozone is dissolved, and an exhaust ozone decomposing part for decomposing and detoxifying surplus ozone not dissolved in the treated water In
The ozone reaction tower is provided with a partition plate in a rectangular parallelepiped ozone reaction tower so that the water flow rate when the vertical or left and right bypass flow paths are formed is 0.01 to 0.03 m / sec. An ozone water treatment apparatus, wherein an installation interval is set.
JP2003386711A 2003-07-15 2003-11-17 Ozone water treatment equipment Expired - Fee Related JP4003231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003386711A JP4003231B2 (en) 2003-07-15 2003-11-17 Ozone water treatment equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003274855 2003-07-15
JP2003386711A JP4003231B2 (en) 2003-07-15 2003-11-17 Ozone water treatment equipment

Publications (2)

Publication Number Publication Date
JP2005046831A true JP2005046831A (en) 2005-02-24
JP4003231B2 JP4003231B2 (en) 2007-11-07

Family

ID=34277535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003386711A Expired - Fee Related JP4003231B2 (en) 2003-07-15 2003-11-17 Ozone water treatment equipment

Country Status (1)

Country Link
JP (1) JP4003231B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100750039B1 (en) * 2006-03-23 2007-08-16 허차순 Synthetic pipe
JP2007222816A (en) * 2006-02-24 2007-09-06 Sanyo Electric Co Ltd Water quality improvement arrangement
JP2008018309A (en) * 2006-07-11 2008-01-31 Yaskawa Electric Corp Apparatus for treating sludge
WO2009028020A1 (en) * 2007-08-24 2009-03-05 Tokura Industries Co., Ltd. Gas dissolution apparatus
JP2013094710A (en) * 2011-10-31 2013-05-20 Sharp Corp Ozone liquid generation apparatus and ozone liquid generation method
JP2013094696A (en) * 2011-10-28 2013-05-20 Sharp Corp Solution producing apparatus and ozone water producing apparatus, and sanitary equipment cleaning apparatus equipped with the same
JP2013123694A (en) * 2011-12-16 2013-06-24 Sharp Corp Apparatus and method for generating ozone liquid
JP2013123693A (en) * 2011-12-16 2013-06-24 Sharp Corp Ozone liquid generator
WO2014205486A1 (en) 2013-06-28 2014-12-31 Waterco Limited Water treatment system
WO2015166784A1 (en) * 2014-04-29 2015-11-05 三菱電機株式会社 Sludge treatment device and sludge treatment method
CN110228844A (en) * 2019-06-30 2019-09-13 程中和 Square pipe solid is connected the advanced sewage treatment system of box ozone reactor
JP2020015031A (en) * 2018-07-13 2020-01-30 阪本薬品工業株式会社 Wastewater treatment apparatus
JP2020065966A (en) * 2018-10-23 2020-04-30 三菱電機株式会社 Purifier and ozone supply device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042397U (en) * 1983-08-30 1985-03-25 古家後 隆補 Ozone water production equipment
JPH05123554A (en) * 1991-11-05 1993-05-21 Idec Izumi Corp Gas-liquid contact device and ozonated water making device
JPH06206708A (en) * 1993-01-08 1994-07-26 Yoshihiko Terasawa Method for generating ultrasonic wave in water flow, its device and device for producing ozone water
JPH06335690A (en) * 1993-05-31 1994-12-06 Kubota Corp Ozone catalytic reaction tank
JPH07980A (en) * 1993-06-16 1995-01-06 Fuji Electric Co Ltd Ozonization of sea water and its device
JPH07246385A (en) * 1994-03-09 1995-09-26 Nakamura Denki Seisakusho:Kk Water purifying system
JPH08192176A (en) * 1995-01-20 1996-07-30 Fuji Electric Co Ltd Separate injection type ozone contact method
JPH11319859A (en) * 1998-05-08 1999-11-24 Mitsubishi Heavy Ind Ltd Water purifier
JP2000157987A (en) * 1998-11-25 2000-06-13 Chlorine Eng Corp Ltd Method for supplying ozone-containing gas
JP2000308894A (en) * 1999-02-26 2000-11-07 Mitsubishi Electric Corp Ozone treatment device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042397U (en) * 1983-08-30 1985-03-25 古家後 隆補 Ozone water production equipment
JPH05123554A (en) * 1991-11-05 1993-05-21 Idec Izumi Corp Gas-liquid contact device and ozonated water making device
JPH06206708A (en) * 1993-01-08 1994-07-26 Yoshihiko Terasawa Method for generating ultrasonic wave in water flow, its device and device for producing ozone water
JPH06335690A (en) * 1993-05-31 1994-12-06 Kubota Corp Ozone catalytic reaction tank
JPH07980A (en) * 1993-06-16 1995-01-06 Fuji Electric Co Ltd Ozonization of sea water and its device
JPH07246385A (en) * 1994-03-09 1995-09-26 Nakamura Denki Seisakusho:Kk Water purifying system
JPH08192176A (en) * 1995-01-20 1996-07-30 Fuji Electric Co Ltd Separate injection type ozone contact method
JPH11319859A (en) * 1998-05-08 1999-11-24 Mitsubishi Heavy Ind Ltd Water purifier
JP2000157987A (en) * 1998-11-25 2000-06-13 Chlorine Eng Corp Ltd Method for supplying ozone-containing gas
JP2000308894A (en) * 1999-02-26 2000-11-07 Mitsubishi Electric Corp Ozone treatment device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222816A (en) * 2006-02-24 2007-09-06 Sanyo Electric Co Ltd Water quality improvement arrangement
KR100750039B1 (en) * 2006-03-23 2007-08-16 허차순 Synthetic pipe
JP2008018309A (en) * 2006-07-11 2008-01-31 Yaskawa Electric Corp Apparatus for treating sludge
JP4666228B2 (en) * 2006-07-11 2011-04-06 株式会社安川電機 Sludge treatment equipment
WO2009028020A1 (en) * 2007-08-24 2009-03-05 Tokura Industries Co., Ltd. Gas dissolution apparatus
JP2013094696A (en) * 2011-10-28 2013-05-20 Sharp Corp Solution producing apparatus and ozone water producing apparatus, and sanitary equipment cleaning apparatus equipped with the same
JP2013094710A (en) * 2011-10-31 2013-05-20 Sharp Corp Ozone liquid generation apparatus and ozone liquid generation method
JP2013123693A (en) * 2011-12-16 2013-06-24 Sharp Corp Ozone liquid generator
JP2013123694A (en) * 2011-12-16 2013-06-24 Sharp Corp Apparatus and method for generating ozone liquid
WO2014205486A1 (en) 2013-06-28 2014-12-31 Waterco Limited Water treatment system
EP3013756A4 (en) * 2013-06-28 2016-12-21 Waterco Ltd Water treatment system
US9809473B2 (en) 2013-06-28 2017-11-07 Waterco Limited Water treatment system
AU2014302015B2 (en) * 2013-06-28 2018-03-22 Waterco Limited Water treatment system
WO2015166784A1 (en) * 2014-04-29 2015-11-05 三菱電機株式会社 Sludge treatment device and sludge treatment method
JP5916971B2 (en) * 2014-04-29 2016-05-11 三菱電機株式会社 Sludge treatment apparatus and sludge treatment method
US10259731B2 (en) 2014-04-29 2019-04-16 Mitsubishi Electric Corporation Sludge treatment system and sludge treatment method
JP2020015031A (en) * 2018-07-13 2020-01-30 阪本薬品工業株式会社 Wastewater treatment apparatus
JP2020065966A (en) * 2018-10-23 2020-04-30 三菱電機株式会社 Purifier and ozone supply device
CN110228844A (en) * 2019-06-30 2019-09-13 程中和 Square pipe solid is connected the advanced sewage treatment system of box ozone reactor

Also Published As

Publication number Publication date
JP4003231B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
US20070287917A1 (en) Method for Collapsing Microbubbles
JP2005046831A (en) Ozone water treatment system
US10259731B2 (en) Sludge treatment system and sludge treatment method
CA2344174A1 (en) Method and apparatus for continuous or intermittent supply of ozonated water
JP2009056364A (en) Piping type water treatment apparatus
KR20100003553A (en) Water treatment apparatus using advanced oxidation process
JP4840563B2 (en) Sewage treatment equipment
US6503403B2 (en) Gas-liquid contact apparatus
KR102293552B1 (en) Water treatment apparatus including vessel for advanced oxidation of plug-flow type
KR101308686B1 (en) Method and apparatus for treating water containing surfactant
JP2002346351A (en) Gas dissolving device
JP2004174325A (en) Water treatment apparatus and water treatment method
JP4666228B2 (en) Sludge treatment equipment
JP4040788B2 (en) Waste water treatment method and apparatus
JPH11285691A (en) Waste water treating device
JPH10337579A (en) Method and apparatus for treatment of wastewater
KR100788849B1 (en) Water treatment apparatus by ozone
JP5004313B2 (en) Treatment method and apparatus for wastewater containing persistent substances
JP2005052689A (en) Membrane washing method and membrane filtration device
JP2008272761A (en) Accelerated oxidation treatment apparatus
KR102081880B1 (en) Reactor for circulating advanced oxidation treatment
JP2004249277A (en) Water treating method and apparatus therefor
JP2002254088A (en) Water cleaning plant and method therefor
JP4133182B2 (en) Intake device and wastewater treatment method using the same
JPH11347576A (en) Method and apparatus for treating water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140831

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees