JP2005039907A - Dc/dcコンバータ - Google Patents

Dc/dcコンバータ Download PDF

Info

Publication number
JP2005039907A
JP2005039907A JP2003198538A JP2003198538A JP2005039907A JP 2005039907 A JP2005039907 A JP 2005039907A JP 2003198538 A JP2003198538 A JP 2003198538A JP 2003198538 A JP2003198538 A JP 2003198538A JP 2005039907 A JP2005039907 A JP 2005039907A
Authority
JP
Japan
Prior art keywords
voltage
load
circuit
limit value
reference voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003198538A
Other languages
English (en)
Other versions
JP4196758B2 (ja
Inventor
Akira Nakamori
昭 中森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2003198538A priority Critical patent/JP4196758B2/ja
Publication of JP2005039907A publication Critical patent/JP2005039907A/ja
Application granted granted Critical
Publication of JP4196758B2 publication Critical patent/JP4196758B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

【課題】軽負荷時でのスイッチング素子のスイッチング回数を低減することによりスイッチングロスを減らして、エネルギー変換効率を高めたDC/DCコンバータを提供する。
【解決手段】スイッチング電源制御用のIC回路100は、検出電圧信号Voに対する基準電圧値Vrefを生成する基準電圧回路10と、この基準電圧値Vrefより低い基準電圧値Vref_lmtを生成する基準電圧回路21と、検出電圧信号Voと基準電圧値Vrefとの誤差電圧を出力する演算増幅器11と、一定周波数の三角波電圧信号を生成する発振器12と、誤差電圧を三角波電圧信号と比較する比較器13と、検出電圧信号Voを基準電圧値Vref_lmtと比較するコンパレータ22と、インダクタLに流れる負荷電流ILの上限値および下限値を電圧上限値Vc_Hおよび電圧下限値Vc_Lとするヒステリシス電圧が設定されるコンパレータ31とを含む。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
この発明は、入力電源に対して直列接続した一対のスイッチング素子をオンオフ制御するDC/DCコンバータに関し、特に、エネルギー変換効率を向上させた同期整流方式のDC/DCコンバータに関する。
【0002】
【従来の技術】
図10は、従来の同期整流方式のDC/DCコンバータの回路構成を示す図である。
【0003】
この同期整流方式のDC/DCコンバータは、一対のスイッチング素子、例えばハイサイドパワーMOSFETQpとローサイドパワーMOSFETQnによるプッシュプルスイッチ1と、出力回路2と、負荷が接続される出力端子3の負荷電圧を検出して一対のスイッチング素子をPWM制御するスイッチング電源制御用のIC回路100によって構成されている。
【0004】
プッシュプルスイッチ1では、ハイサイドパワーMOSFETQpとローサイドパワーMOSFETQnのゲートを、それぞれIC回路100のOUTH出力端子101、OUTL出力端子102に接続している。また、直流電源E1のマイナス端子を接地するとともに、そのプラス端子をハイサイドパワーMOSFETQpのソースに接続し、ハイサイドパワーMOSFETQpのドレインをローサイドパワーMOSFETQnのドレインに接続し、ローサイドパワーMOSFETQnのソースを接地している。
【0005】
出力回路2では、プッシュプルスイッチ1のMOSFETQp,Qnの接続点にダイオードDのカソードとインダクタLの一端をそれぞれ接続し、ダイオードDのアノードを接地し、インダクタLのもう一方の端子をコンデンサC1、出力端子3、及び検出抵抗R2の一端に接続し、コンデンサC1のもう一方の端子および検出抵抗R3の一端をそれぞれ接地している。
【0006】
DC/DCコンバータの出力端子3における負荷電圧は、検出抵抗R2,R3の接続点からIC回路100に帰還される。この帰還電圧は、IN1電圧検出端子103からIC回路100に取り込まれ、IC回路100内の基準電圧回路10で生成される基準電圧値Vrefと演算増幅器11で比較増幅される。この比較増幅された信号は、発振器12で発生する三角波(のこぎり波)電圧と比較器13で比較され、矩形波電圧に変換される。変換された矩形波電圧はハイサイドドライバ14、ローサイドドライバ15で電流増幅され、ハイサイドドライバ14側からは、OUTH出力端子101を介してハイサイドパワーMOSFETQpのゲートに、ローサイドドライバ15側からは、OUTL出力端子102を介してローサイドパワーMOSFETQnのゲートに印加される。
【0007】
このように、DC/DCコンバータでは負荷電圧を常時検出して、負荷電圧とIC回路100内部の基準電圧値Vrefとの誤差信号を三角波電圧と比較し、ハイサイドパワーMOSFETQpとローサイドパワーMOSFETQnをオンオフするゲート信号を出力することにより、接続される負荷の大きさとは関係なしに、負荷電圧を常に一定となるようにPWM制御を行うものである。
【0008】
上述した同期整流型のDC/DCコンバータでは、発振器12の発振周波数が一定であることから、出力端子3に接続されている負荷の大きさが変動しても、常に発振器12の発振周波数で決まる一定の周期で交互にハイサイドパワーMOSFETQpとローサイドパワーMOSFETQnをオンオフ制御している。そのために、携帯用の電子機器などでは、ハイサイドパワーMOSFETQpとローサイドパワーMOSFETQnのようなプッシュプルスイッチ1の一対のスイッチング素子において、電池などの直流電源E1から供給される充電電流が大きな損失を生じる。
【0009】
また、出力端子3に接続された負荷回路は電子機器の使用状況に応じて変動することがあって、とくに軽負荷時にはIC回路100でのエネルギー変換効率が低下するという問題があった。
【0010】
そこで、後述する特許文献1では、スイッチングレギュレータ回路において高効率を広い電流範囲にわたって維持するための制御回路および方法が提案されている。
【0011】
ここで提案されている回路によると、出力電圧が、出力コンデンサの電荷によって、実質的に制御された電圧(例えば、低出力電流)に維持され得る動作条件下で、1つまたはそれ以上のスイッチングトランジスタをターンオフするための制御信号が発生される。したがって、このような制御信号を発生している期間には、負荷は入力電源からの電力を消費しないので、レギュレータ効率を増加することができる。
【0012】
【特許文献1】
特開平6−303766号公報(第13頁〜第16頁、図1、および図2)
【0013】
【発明が解決しようとする課題】
しかし、従来の同期整流方式では、ヒステリシス比較器により軽負荷と判断されるまでの期間は、軽負荷であっても同期整流運転を続けるので、ローサイドパワーMOSFETQnのスイッチングが行われている。また、ハイサイドパワーMOSFETQpとローサイドパワーMOSFETQnをオンオフするワンショット回路のデューティーサイクルが電流増幅器によって制御されるので、軽負荷であると判断されるまでは、帰還電圧Vfbが高いほど、より小さい負荷電流で作動して、そのスイッチング周波数が高くなる。したがって、スイッチングロスを十分に小さくすることができないという問題があった。
【0014】
この発明の目的は、軽負荷時でのスイッチング素子のスイッチング回数を低減することによりスイッチングロスを減らして、エネルギー変換効率を高めたDC/DCコンバータを提供することにある。
【0015】
【課題を解決するための手段】
上記目的を達成するために、入力電源からインダクタおよびコンデンサを介して供給される負荷電圧を検出することにより、前記入力電源に対して直列接続した一対のスイッチング素子をオンオフ制御して負荷に一定電圧を供給するDC/DCコンバータが提供される。このDC/DCコンバータは、前記負荷電圧に対する第1の基準電圧値を生成する第1の基準電圧回路と、前記第1の基準電圧値より低い第2の基準電圧値を生成する第2の基準電圧回路と、前記負荷電圧を検出した検出電圧信号の前記第1の基準電圧値からの誤差電圧を出力する第1の演算増幅回路と、一定周波数の三角波電圧信号を生成する発振回路と、前記第1の演算増幅回路からの誤差電圧を前記三角波電圧信号と比較する第1の比較回路と、前記検出電圧信号を前記第2の基準電圧値と比較する第2の比較回路と、前記インダクタに流れる負荷電流の上限値および下限値に相当する電圧をそれぞれ電圧上限値および電圧下限値とするヒステリシス特性を有する電流しきい値が設定される第3の比較回路とから構成される。
【0016】
このDC/DCコンバータでは、前記負荷電流の大きさを検出することにより重負荷、軽負荷との切替えを行って、前記負荷電流が前記電流しきい値に等しいか大きいときには前記一対のスイッチング素子をオンオフ制御し、前記負荷電流が前記電流しきい値より小さいときには、前記スイッチング素子のうち一方をオフするとともに他方のスイッチング素子をオンオフ制御してそのスイッチング回数を低減し、前記検出電圧信号が前記第2の基準電圧値より低い電圧値になるときは前記負荷電流と前記電流しきい値との大小関係にかかわらず前記一対のスイッチング素子をオンオフ制御するので、負荷電流が小さくなる軽負荷時にはリプル電圧や周波数など出力電圧の品質を管理・制御しながら、一対のスイッチング素子におけるスイッチング回数を低減することによって、制御回路における損失を減らしてエネルギー変換効率を向上させることができる。
【0017】
【発明の実施の形態】
以下、この発明の実施の形態について、図面を参照して説明する。
(第1の実施形態)
図1は、第1の実施形態に係るDC/DCコンバータの回路構成を示す図である。ここでは、図10に示す従来装置と対応する部分に同一の符号を付けてあるが、この発明は、同期整流方式のDC/DCコンバータに関するすべての分野に適用可能なものである。
【0018】
図1の出力回路2において、インダクタLとコンデンサC1の間には電流検出用の抵抗R1を挿入する。電流検出用の抵抗R1は、その両端をそれぞれIC回路100のV+電流検出端子105、V−電流検出端子106と接続して、負荷電流ILの大きさに対応する電圧信号を抵抗R1から検出するようにしている。
【0019】
また、DC/DCコンバータの出力端子3には、検出抵抗R2,R3からなる第1の電圧検出回路と同様の、検出抵抗R4,R5からなる第2の電圧検出回路を設けている。この検出抵抗R4,R5の接続点からは、IC回路100のIN2電圧検出端子104に対して負荷電圧を帰還している。
【0020】
IC回路100のIN2電圧検出端子104は、ヒステリシスコンパレータ(第4の比較回路)16の入力端子に接続されている。ヒステリシスコンパレータ16には、ヒステリシス電圧として第3の基準電圧値である電圧下限値Vref_Lおよび第4の基準電圧値である電圧上限値Vref_Hが設定され、その出力端子はANDゲート17の入力端子と接続されている。このANDゲート17は、ORゲート18、およびORゲート19とともにハイサイドドライバ14に対するゲート回路を構成している。
【0021】
第1の基準電圧値Vrefを生成する基準電圧回路10は演算増幅器(第1の演算増幅回路)11と接続され、この演算増幅器11からは負荷電圧と第1の基準電圧値Vrefとの誤差電圧が帰還電圧信号Vfbとして出力される。ここで比較増幅された帰還電圧信号Vfbは、発振器12で発生する三角波(のこぎり波)電圧と比較器(第1の比較回路)13で比較される。また、比較器13の出力端子は、ANDゲート20の入力端子と接続されていて、ANDゲート20から矩形波電圧をORゲート18とORゲート19を介してハイサイドドライバ14に供給するとともに、ローサイドドライバ15にはANDゲート20から直接供給している。
【0022】
IC回路100の基準電圧回路21はコンパレータ(第2の比較回路)22の非反転入力端子と接続され、コンパレータ22の反転入力端子には、IN2電圧検出端子104から負荷電圧が供給される。この基準電圧回路21は、第2の基準電圧値Vref_lmtを生成するものであって、この第2の基準電圧値Vref_lmtは、基準電圧回路10で生成される第1の基準電圧値Vrefより30mV程度低くなるように設計されている。また、コンパレータ22では、負荷電圧を第2の基準電圧値Vref_lmtと比較して、その比較結果をORゲート23を介してANDゲート20への制御信号として出力するとともに、インバータ24に対しても出力している。
【0023】
抵抗R1から負荷電流ILに応じた電圧信号が供給されるV+電流検出端子105とV−電流検出端子106は、それぞれヒステリシスコンパレータ(第3の比較回路)31の入力端子に接続している。また、V+電流検出端子105はコンパレータ(第5の比較回路)29の非反転入力端子に接続し、V−電流検出端子106はオフセット電源E2を介してコンパレータ29の反転入力端子に接続している。
【0024】
RSフリップフロップ27は、そのセット入力端子Sが一定周波数の三角波電圧信号を生成する発振器12と接続され、そのリセット入力端子Rがコンパレータ29の出力端子と接続されている。RSフリップフロップ27の出力端子は、ANDゲート28とORゲート19を介してハイサイドドライバ14と接続され、このハイサイドドライバ14に対して所定のスイッチング信号を供給している。
【0025】
ここで、V+電流検出端子105とV−電流検出端子106の電圧降下がヒステリシスコンパレータ31の電圧下限値Vc_L以下であれば、ヒステリシスコンパレータ31の出力電圧はLow(以下、“L”レベルという。)となり、電圧上限値Vc_H以上であればヒステリシスコンパレータ31の出力電圧はHigh(以下、“H”レベルという。)となる。また、ヒステリシスコンパレータ31はコンパレータ22の出力端子と接続する第3番目の入力端子であるセット信号端子32を備え、コンパレータ22から“H”レベルの出力電圧信号が入力された時だけ、電圧上限値Vc_Hを電圧下限値Vc_Lと同一にする機能をもつ。ヒステリシスコンパレータ31の出力端子は、インバータ25を介してANDゲート26の一方の入力端子と接続されるとともに、ORゲート23を介してANDゲート20の一方の入力端子と接続されている。
【0026】
このIC回路100では、ヒステリシスコンパレータ31の出力電圧が“H”レベルとなった場合には、出力端子3に接続された負荷回路が重負荷であると認識し、それが“L”レベルとなった場合には軽負荷であると認識して、以下に説明するように、DC/DCコンバータの制御方式を切替えている。
【0027】
(1)重負荷時の制御方式
最初に、ヒステリシスコンパレータ31の出力電圧が“H”レベルとなった場合について説明する。
【0028】
このヒステリシスコンパレータ31の“H”レベルの出力電圧は、ORゲート23を介してANDゲート20に入力される。さらに、インバータ25およびANDゲート26を介してANDゲート17に伝達され、ANDゲート17の出力電圧を“L”レベルに、また、インバータ25およびANDゲート26を介してANDゲート28に伝達され、ANDゲート28の出力電位を“L”レベルにする。これにより、比較器13の出力電圧はANDゲート20、ORゲート18およびORゲート19を介してハイサイドドライバ14に伝達され、OUTH出力端子101からハイサイドパワーMOSFETQpをスイッチング制御し、ANDゲート20を介してローサイドドライバ15にも伝達され、OUTL出力端子102からローサイドパワーMOSFETQnをスイッチング制御して、従来と同様のPWM制御を行う。
【0029】
(2)軽負荷時の制御方式
次に、ヒステリシスコンパレータ31の出力電圧が“L”レベルとなった場合について説明する。
【0030】
負荷電圧を検出する第2の検出抵抗R4,R5は、検出抵抗R2,R3と同一の構成を有しており、それらの抵抗値は、コンデンサC1の出力電圧が定格出力時に、IN1電圧検出端子103とIN2電圧検出端子104にそれぞれ伝達される電圧が基準電圧回路10で生成される第1の基準電圧値Vrefの値と同一となるように設定している。
【0031】
したがって、定格出力時には、IN2電圧検出端子104への帰還電圧は、ほぼ第1の基準電圧値Vrefに等しく、コンパレータ22の出力電圧は“L”レベルである。そこで、ORゲート23への入力電圧は両方とも“L”レベルとなり、比較器13の出力電圧にかかわらず、ANDゲート20の出力電圧は“L”レベルとなる。これにより、ローサイドドライバ15を介してOUTL出力端子102には“L”レベルのゲート信号が出力され、ローサイドパワーMOSFETQnではオフ制御が継続される。
【0032】
ハイサイドドライバ14については、インバータ24とインバータ25の出力電圧が“H”レベルとなり、ANDゲート26の出力電圧は“H”レベルとなる。そのため、第2の検出抵抗R4,R5からIN2電圧検出端子104を介してヒステリシスコンパレータ16に帰還する検出電圧信号Voにより、ANDゲート17、ORゲート18、およびORゲート19を介してハイサイドドライバ14が駆動され、ここからOUTH出力端子101を介してハイサイドパワーMOSFETQpをスイッチング制御することになる。
【0033】
以下、この軽負荷の期間におけるハイサイドパワーMOSFETQpのスイッチング制御について、さらに詳細に説明する。
コンデンサC1の出力電圧は、第2の検出抵抗R4,R5からIN2電圧検出端子104を介してヒステリシスコンパレータ16に入力される。この入力信号を検出電圧信号Voとすると、この検出電圧信号Voがヒステリシスコンパレータ16に設定された電圧上限値(第4の基準電圧値)Vref_Hを超えるまでは、ヒステリシスコンパレータ16の出力電圧は“L”レベルであり、その後に一旦電圧上限値Vref_Hを超えると“H”レベルに切り替わる。ヒステリシスコンパレータ16の出力電圧が“H”レベルになると、今度は、検出電圧信号Voが電圧下限値(第3の基準電圧値)Vref_Lより低くなるまでは“H”レベルを維持し、その後に電圧下限値Vref_Lを超えると、ヒステリシスコンパレータ16の出力電圧は“L”レベルになる。
【0034】
こうして、検出電圧信号Voは2つの基準電圧値である電圧下限値Vref_Lと電圧上限値Vref_Hの間で制御されることになる。すなわち、ヒステリシスコンパレータ16の出力電圧が“L”レベルになると、ハイサイドパワーMOSFETQpはオンオフ動作をする。そして、ハイサイドパワーMOSFETQpがオンオフ動作をする期間中には、RSフリップフロップ27が電流リミッタとして動作して、ANDゲート28を介してパルスバイパルス(Pulse−by−pulse)制御される。すなわち、RSフリップフロップ27にオフセット電源E2を備えたコンパレータ29からリセット信号が供給され、発振器12から三角波電圧信号の各周期毎にセット信号が供給されることにより、RSフリップフロップ27からANDゲート28を介してハイサイドパワーMOSFETQpを一定周期でオンオフすることができる。このとき、電流リミッタ値Ilimitの大きさは、オフセット電源E2により設定される。
【0035】
(3)重負荷への過渡時の制御方式
次に、ヒステリシスコンパレータ31の出力電圧が“L”レベルになって、再び軽負荷運転から重負荷へ移行する過渡時の制御について説明する。
【0036】
軽負荷運転中に徐々に負荷の大きさが増加するとき、軽負荷時の電流リミッタ値Ilimitによって負荷への電流供給が困難になる。したがって、徐々に負荷電圧が低下することになり、負荷の検出電圧信号Voが基準電圧回路21の第2の基準電圧値Vref_lmt以下になると、コンパレータ22の出力電圧が“L”レベルから“H”レベルに切り替わる。
【0037】
この“H”レベルの出力電圧がORゲート23を介してANDゲート20に供給されるとともに、インバータ24およびANDゲート26を介してANDゲート17にも供給される。これにより軽負荷時の信号経路であるヒステリシスコンパレータ16−ANDゲート17−ORゲート18から、重負荷時の信号経路である演算増幅器11−比較器13−ANDゲート20に切り替わり、ANDゲート28によって軽負荷時のリミッタが解除される。また、ヒステリシスコンパレータ31のセット信号端子32にも“H”レベルの出力電圧が与えられて、重負荷運転モードに移行することになる。
【0038】
図2は、図1のDC/DCコンバータで出力電流(出力端子3より図示しない外部負荷に供給する電流)が100mA〜1A程度の軽負荷時における動作を示すタイミング図である。
【0039】
上述した制御回路において、例えば出力電流が100mA〜1A程度の軽負荷時動作について説明する。同図(a)に示すように検出電圧信号Voは、2つの基準電圧値(Vref_LとVref_H)の間で制御される。検出電圧信号Voが電圧上限値ref_Hを超えるまでは、ハイサイドパワーMOSFETQpがオンオフを繰り返して、徐々に検出電圧信号Voが増加する。また、同図(c)に示す負荷電流ILも電流リミッタ値Ilimit以下で増減を繰り返す。
【0040】
以上、第1の実施形態では、負荷電圧に対する第1の基準電圧値Vrefを生成する基準電圧回路10と、第1の基準電圧値Vrefより低い第2の基準電圧値Vref_lmtを生成する基準電圧回路21と、負荷電圧を検出した検出電圧信号Voの第1の基準電圧値Vrefからの誤差電圧を出力する演算増幅器11と、一定周波数の三角波電圧信号を生成する発振器12と、演算増幅器11からの誤差電圧を三角波電圧信号と比較する比較器13と、検出電圧信号Voを第2の基準電圧値Vref_lmtと比較するコンパレータ22と、インダクタLに流れる負荷電流ILの上限値および下限値に相当する電圧をそれぞれ電圧上限値Vc_Hおよび電圧下限値Vc_Lとするヒステリシス特性を有する電流しきい値が設定されたコンパレータ31と、を含む制御回路を備え、負荷電流ILの大きさを検出することにより重負荷、軽負荷との切替えを行って、重負荷と判断されるときにはハイサイドパワーMOSFETQpとローサイドパワーMOSFETQnをオンオフ制御し、軽負荷と判断されるときには、スイッチング素子のうちローサイドパワーMOSFETQnをオフにしてハイサイドパワーMOSFETQpをオンオフ制御するとともにスイッチング回数を低減し、軽負荷から重負荷へ移行する場合、検出電圧信号Voが第2の基準電圧値Vref_lmtより低い電圧値となる重負荷時には、再び一対のスイッチング素子(ハイサイドパワーMOSFETQpとローサイドパワーMOSFETQn)をオンオフ制御している。したがって、軽負荷時でのスイッチング素子のスイッチング回数を低減することにより制御回路における損失を減らすことができる。
【0041】
また、このスイッチング電源制御用のIC回路100は、第3、第4の基準電圧値を電圧下限値Vref_Lおよび電圧上限値Vref_Hとしてヒステリシス電圧が設定され、検出電圧信号Voを電圧上限値Vref_Hおよび電圧下限値Vref_Lとそれぞれ比較するヒステリシスコンパレータ16を備え、検出電圧信号Voが電圧上限値Vref_Hより小さいときには、ハイサイドパワーMOSFETQpをオンオフ制御し、その後に検出電圧信号Voが電圧上限値Vref_Hを超えて大きくなったとき、ハイサイドパワーMOSFETQpをオフ制御するとともに、検出電圧信号Voが電圧下限値Vref_Lと等しいか大きいときには、ハイサイドパワーMOSFETQpをオフ制御し、その後に検出電圧信号Voが電圧下限値Vref_Lを超えて小さくなったとき、ハイサイドパワーMOSFETQpをオンオフ制御することによって、検出電圧信号Voを電圧上限値Vref_Hと電圧下限値Vref_Lとの間に維持するようにしている。
【0042】
さらに、このスイッチング電源制御用のIC回路100は、コンパレータ29により設定される電流リミッタ値Ilimitによって、ハイサイドパワーMOSFETQpをオンオフ制御する期間には負荷電流ILを検出して、負荷電流ILが電流リミッタ値Ilimitを超えたとき、発振器12の発振周波数により規定された所定期間だけハイサイドパワーMOSFETQpをオフ制御している。
【0043】
しかし、ヒステリシスコンパレータ16では検出電圧信号Voが電圧上限値ref_Hを超えると、ハイサイドパワーMOSFETQpはオフ状態を継続するようになる。したがって、検出電圧信号Voは負荷の大きさに応じてその後徐々に低下していき、基準電圧値Vref_Lに達すると、図2(b)に示すように、再びハイサイドパワーMOSFETQpはオンとオフを繰り返す。なお、軽負荷時においては、ローサイドパワーMOSFETQnは全区間でオフ状態が維持される。
【0044】
図3は、図1のDC/DCコンバータで出力電流が1mA〜100mA程度の軽負荷時における動作を示すタイミング図である。この図3の場合、図2の動作と同様の制御が行われるが、負荷電流ILが小さくなるにつれて周期Tが徐々に大きくなって、数Hz程度にまで周波数は低下する。
【0045】
(第2の実施形態)
図4は、ヒステリシスコンパレータ16の詳細な回路構成を示す図である。
40は、IN2電圧検出端子104と接続され、抵抗R4,R5で検出された検出電圧信号Voが入力する負荷電圧入力端子、41,42はそれぞれ電圧上限値ref_H、基準電圧値Vref_Lが入力する入力端子である。インバータ43は、比較器46の出力信号を反転してアナログスイッチ45をオンオフ制御している。
【0046】
ここで、アナログスイッチ44は、比較器46の出力電圧が“H”レベルでオン、“L”レベルでオフとなる。また、アナログスイッチ45は、その逆のオンオフ動作を行うものである。
【0047】
ヒステリシスコンパレータ16における2つの基準電圧値Vref_L、Vref_Hは、いずれも図1に示す基準電圧回路10で生成される第1の基準電圧値Vrefより数10mV大きい電圧として、それぞれ入力端子41,42に供給されている。検出電圧信号Voが電圧上限値ref_Hと電圧下限値Vref_Lより小さい場合、比較器46の出力電圧は“H”レベルとなり、アナログスイッチ44がオンとなって、電圧上限値ref_Hが比較器46のプラス入力に対して供給される。
【0048】
検出電圧信号Voが電圧上限値ref_Hを超えるまでは、この状態が継続される。検出電圧信号Voが電圧上限値ref_Hを超えると比較器46の出力は“L”レベルとなり、アナログスイッチ44がオフとなり、アナログスイッチ45がオンとなる。したがって、電圧下限値Vref_Lが比較器46のプラス入力に対して供給され、検出電圧信号Voが電圧下限値Vref_L以下になるまでは、比較器46の出力電圧は“L”レベルを継続する。電圧下限値Vref_L以下になると、比較器46の出力電圧は“H”レベルとなる。
【0049】
この一連の動作によって、図1の検出電圧信号Voは常に2つの基準電圧値(Vref_LとVref_H)の間で、図2と図3で示すような動作を行う。出力電流が1mA〜100mAのように小さくなると、図3で示すように一周期Tが長くなり、その周波数が数Hzまで低下してしまうことになる。
【0050】
図5は、図4のヒステリシスコンパレータ16に周波数リミッタを設けた第2の実施の形態に係る回路構成を示す図である。
第2の実施形態では、図4のヒステリシスコンパレータ16にORゲート53、カウンタ50を組み込んで周波数リミッタを設けて、新たなヒステリシスコンパレータを構成している。カウンタ50では、比較器46から出力されるVsig信号は、インバータ47を介して出力端子48から出力される。
【0051】
ここで、Vsig信号が“H”レベルから“L”レベルへ立下がるタイミングを、カウンタ50のセット信号端子52により検出するとともに、矩形波信号fINの入力端子49において、その時刻から一定の周波数の矩形波信号fINをカウントして、n回カウント後に、出力端子48に“L”レベルから“H”レベルへ変化するワンパルス出力信号を発生するようにしている。このワンパルス出力信号は、ORゲート53において比較器46からのVsig信号電圧との論理和演算を行って、インバータ43とアナログスイッチ44とに入力している。これにより、負荷電流が小さくなっても周波数の低下を回避できる。
【0052】
つぎに、この図5に示すようなヒステリシスコンパレータに変更した場合の、図1におけるIC回路100の動作を説明する。図6は、図5のヒステリシスコンパレータによる電源ICの動作を示すタイミング図である。
【0053】
図6に示すように、時間Toは固定であり、その値は任意の大きさに決められる。さらに、検出電圧信号Voの電圧変動値ΔVは、図4のように周波数リミッタがないヒステリシスコンパレータ16を使用した場合に比べて小さくなり、出力電圧の品質も向上する。
【0054】
(第3の実施の形態)
図7は、図1の演算増幅器11にさらに別の演算増幅器67を付加した回路構成を示す図であり、図8は、通常の演算増幅器の回路構成を示す図である。
【0055】
図8に示す通常の演算増幅器11では、電源62とPMOSトランジスタ63のソースを接続し、PMOSトランジスタ63のドレインと出力端子65とNMOSトランジスタ64のドレインを接続し、NMOSトランジスタ64のソースを接地した回路構成である。
【0056】
ここでは、−入力端子61が+入力端子60より高い電圧を維持した場合、その出力端子65は接地電位まで下がってしまう。これを回避するために、図7に示すように、演算増幅器11にさらにもう一つの演算増幅器(第2の演算増幅回路)67を付加して、演算増幅回路を構成して、演算増幅器11の出力信号に対する下限リミッタを設けている。
【0057】
すなわち、演算増幅器67のプラス入力端子66に一定電圧値Vlimitを供給して、演算増幅器67のマイナス入力を演算増幅器67の出力端子、およびNMOSトランジスタ64のソースに接続して構成している。このように構成された演算増幅器では、一定電圧値Vlimitによって帰還電圧信号Vfbの下限リミッタ電圧が規定される。
【0058】
図9は、通常のエラーアンプ用の演算増幅器(図8)の動作信号と下限リミッタを設けたエラーアンプ用の演算増幅器(図7)の動作信号を比較して示すタイミング図である。
【0059】
従来のエラーアンプ用の演算増幅器である図8と出力の下限リミッタを設けた図7のエラーアンプ用の演算増幅器を図1に適用した時の軽負荷から重負荷に移行する過渡期の検出電圧信号Voは、図9(a)に示す場合に比較して、下限リミッタを備えた演算増幅器によるPWM制御では、第1の基準電圧値Vrefに復帰するまでの期間Taが短くなり、正常な制御への戻りが速くなる利点がある。
【0060】
なお、上述した実施の形態におけるIC回路100では、負荷電圧が電圧上限値Vref_Hより小さいときには、一対のスイッチング素子のうちハイサイドトランジスタであるハイサイドパワーMOSFETQpをオンオフ制御し、その後に負荷電圧が電圧上限値Vref_Hを超えて大きくなったとき、ハイサイドパワーMOSFETQpをオフ制御するとともに、負荷電圧が電圧下限値Vref_Lと等しいか大きいときには、ハイサイドパワーMOSFETQpをオフ制御し、その後に負荷電圧が電圧下限値Vref_Lを超えて小さくなったときに、ハイサイドパワーMOSFETQpをオンオフ制御することによって、負荷電圧を電圧上限値Vref_Hと電圧下限値Vref_Lとの間に維持するように論理回路を構成したが、ハイサイドパワーMOSFETQpとローサイドパワーMOSFETQnとをそれぞれ逆転して制御するような論理回路構成であってもよい。
【0061】
【発明の効果】
以上に説明したように、この発明のDC/DCコンバータによれば、軽負荷時にエネルギー変換効率が向上するとともに、負荷電圧におけるリプル電圧制御を確実に行うことができ、軽負荷から重負荷への過渡的な電圧変動に短時間に応答できるなどの利点がある。
【図面の簡単な説明】
【図1】第1の実施の形態に係るDC/DCコンバータの回路構成を示す図である。
【図2】図1のDC/DCコンバータで負荷が100mA〜1A程度の軽負荷時における動作を示すタイミング図である。
【図3】図1のDC/DCコンバータで負荷が1mA〜100mA程度の軽負荷時における動作を示すタイミング図である。
【図4】ヒステリシスコンパレータの詳細な回路構成を示す図である。
【図5】図4のヒステリシスコンパレータに周波数リミッタを設けた第2の実施の形態に係る回路構成を示す図である。
【図6】図5のヒステリシスコンパレータによる電源ICの動作を示すタイミング図である。
【図7】図1の演算増幅器にさらにもう一つの演算増幅器を付加した回路構成を示す図である。
【図8】通常の演算増幅器の回路構成を示す図である。
【図9】従来のエラーアンプ用の演算増幅器(図8)の動作信号と下限リミッタを設けたエラーアンプ用の演算増幅器(図7)の動作信号とを比較して示すタイミング図である。
【図10】従来の同期整流方式のDC/DCコンバータの回路構成を示す図である。
【符号の説明】
1 プッシュプルスイッチ(一対のスイッチング素子)
E1 直流電源(入力電源)
2 出力回路
Qp ハイサイドパワーMOSFET(ハイサイドトランジスタ)
Qn ローサイドパワーMOSFET(ローサイドトランジスタ)
D ダイオード
L インダクタ
C1 コンデンサ
R1〜R5 抵抗
3 出力端子
10 基準電圧回路(第1の基準電圧回路)
11 演算増幅器(第1の演算増幅回路)
12 発振器(発振回路)
13 比較器(第1の比較回路)
14 ハイサイドドライバ
15 ローサイドドライバ
16 ヒステリシスコンパレータ(第4の比較回路)
17 ANDゲート
18 ORゲート
19 ORゲート
20 ANDゲート
21 基準電圧回路(第2の基準電圧回路)
22 コンパレータ(第2の比較回路)
23 ORゲート
24 インバータ
25 インバータ
26 ANDゲート
27 RSフリップフロップ
28 ANDゲート
29 コンパレータ(第5の比較回路)
E2 オフセット電源
31 ヒステリシスコンパレータ(第3の比較回路)
32 セット信号端子
50 カウンタ(計数回路)
67 演算増幅器(第2の演算増幅回路)
100 IC回路
101 OUTH出力端子
102 OUTL出力端子
103 IN1電圧検出端子
104 IN2電圧検出端子
105 V+電流検出端子
106 V−電流検出端子
Vc_H 電圧上限値
Vc_L 電圧下限値
Vref 第1の基準電圧値
Vref_lmt 第2の基準電圧値
Vref_L 電圧下限値(第3の基準電圧値)
Vref_H 電圧上限値(第4の基準電圧値)
Ilimit 電流リミッタ値
Vlimit 一定電圧値
Vo 検出電圧信号
Vfb 帰還電圧信号

Claims (7)

  1. 入力電源からインダクタおよびコンデンサを介して供給される負荷電圧を検出することにより、前記入力電源に対して直列接続した一対のスイッチング素子をオンオフ制御して負荷に一定電圧を供給するDC/DCコンバータにおいて、
    前記負荷電圧に対する第1の基準電圧値を生成する第1の基準電圧回路と、
    前記第1の基準電圧値より低い第2の基準電圧値を生成する第2の基準電圧回路と、
    前記負荷電圧を検出した検出電圧信号の前記第1の基準電圧値からの誤差電圧を出力する第1の演算増幅回路と、
    一定周波数の三角波電圧信号を生成する発振回路と、
    前記第1の演算増幅回路からの誤差電圧を前記三角波電圧信号と比較する第1の比較回路と、
    前記検出電圧信号を前記第2の基準電圧値と比較する第2の比較回路と、
    前記インダクタに流れる負荷電流の上限値および下限値に相当する電圧をそれぞれ電圧上限値および電圧下限値とするヒステリシス特性を有する電流しきい値が設定される第3の比較回路と、
    を含む制御回路を備え、
    前記負荷電流の大きさを検出することにより重負荷、軽負荷との切替えを行って、前記負荷電流が前記電流しきい値に等しいか大きいときには前記一対のスイッチング素子をオンオフ制御し、前記負荷電流が前記電流しきい値より小さいときには、前記スイッチング素子のうち一方をオフするとともに他方のスイッチング素子をオンオフ制御してそのスイッチング回数を低減し、前記検出電圧信号が前記第2の基準電圧値より低い電圧値になるときは前記負荷電流と前記電流しきい値との大小関係にかかわらず前記一対のスイッチング素子をオンオフ制御することを特徴とするDC/DCコンバータ。
  2. 前記一対のスイッチング素子は、ハイサイドトランジスタとローサイドトランジスタとを含むことを特徴とする請求項1記載のDC/DCコンバータ。
  3. 前記制御回路は、第3、第4の基準電圧値を電圧下限値および電圧上限値としてヒステリシス電圧を設定して、前記負荷電圧を前記電圧上限値および前記電圧下限値とそれぞれ比較する第4の比較回路を備え、
    前記負荷電流が前記電流しきい値より小さい場合において、
    前記負荷電圧が前記電圧上限値より小さいときには、前記一対のスイッチング素子のうちハイサイドトランジスタをオンオフ制御し、その後に前記負荷電圧が前記電圧上限値を超えて大きくなったとき、前記ハイサイドトランジスタをオフ制御するとともに、前記負荷電圧が前記電圧下限値と等しいか大きいときには、前記ハイサイドトランジスタをオフ制御し、その後に前記負荷電圧が前記電圧下限値を超えて小さくなったとき、前記ハイサイドトランジスタをオンオフ制御することによって、前記負荷電圧を前記電圧上限値と前記電圧下限値との間に維持するようにしたことを特徴とする請求項2記載のDC/DCコンバータ。
  4. 前記制御回路は、第2の電流しきい値を設定する第5の比較回路を備え、
    前記ハイサイドトランジスタをオンオフ制御する期間には、前記負荷電流を検出して、前記負荷電流が前記第2の電流しきい値を超えたとき、前記発振回路の発振周波数により規定された所定期間だけ前記ハイサイドトランジスタをオフ制御したことを特徴とする請求項3記載のDC/DCコンバータ。
  5. 前記第4の比較回路には、前記負荷電圧が前記電圧上限値を超えたときから所定周期を有するパルスのパルス数をカウントする計数回路を含み、
    前記計数回路で定められたパルス数をカウントしたとき、前記負荷電圧が前記電圧下限値を超えて小さくなる前であっても、前記ハイサイドトランジスタをオンオフ制御するようにしたことを特徴とする請求項3または請求項4のいずれかに記載のDC/DCコンバータ。
  6. 前記第1の演算増幅回路には、その出力段と接地間に介挿されたボルテージフォロワ構成の第2の演算増幅回路を含み、
    前記第2の演算増幅回路では一方の入力端子を出力端子と接続するとともに、他方の入力端子に一定電圧を印加することにより、前記第1の演算増幅回路の出力に下限リミット値を設定したことを特徴とする請求項1乃至請求項5のいずれかに記載のDC/DCコンバータ。
  7. 前記負荷電圧を検出する第1の電圧検出回路と、
    前記第1の電圧検出回路とは別に検出した前記負荷電圧を前記第2および第4の比較回路に供給する第2の電圧検出回路と、
    を備えたことを特徴とする請求項1乃至請求項6のいずれかに記載のDC/DCコンバータ。
JP2003198538A 2003-07-17 2003-07-17 Dc/dcコンバータ Expired - Fee Related JP4196758B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003198538A JP4196758B2 (ja) 2003-07-17 2003-07-17 Dc/dcコンバータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003198538A JP4196758B2 (ja) 2003-07-17 2003-07-17 Dc/dcコンバータ

Publications (2)

Publication Number Publication Date
JP2005039907A true JP2005039907A (ja) 2005-02-10
JP4196758B2 JP4196758B2 (ja) 2008-12-17

Family

ID=34208299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003198538A Expired - Fee Related JP4196758B2 (ja) 2003-07-17 2003-07-17 Dc/dcコンバータ

Country Status (1)

Country Link
JP (1) JP4196758B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007752A1 (ja) * 2005-07-11 2007-01-18 Rohm Co., Ltd. 降圧型スイッチングレギュレータおよびその制御回路ならびにそれを用いた電子機器
JP2008220147A (ja) * 2007-03-07 2008-09-18 Orise Technology Co Ltd パルス周波数変調回路、同回路を用いた電源供給装置及び電源安定化方法
JP2010154706A (ja) * 2008-12-26 2010-07-08 Rohm Co Ltd スイッチングレギュレータの制御回路、方法、およびそれらを用いたスイッチングレギュレータ
US8872494B2 (en) 2012-02-10 2014-10-28 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device, DC-DC converter, and voltage conversion method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103312163B (zh) * 2012-03-13 2016-11-23 上海华虹集成电路有限责任公司 开关电源的pfm切换电路

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007752A1 (ja) * 2005-07-11 2007-01-18 Rohm Co., Ltd. 降圧型スイッチングレギュレータおよびその制御回路ならびにそれを用いた電子機器
JP2007020352A (ja) * 2005-07-11 2007-01-25 Rohm Co Ltd 降圧型スイッチングレギュレータおよびその制御回路ならびにそれを用いた電子機器
US7714560B2 (en) 2005-07-11 2010-05-11 Rohm Co., Ltd. Step-down switching regulator
JP4685531B2 (ja) * 2005-07-11 2011-05-18 ローム株式会社 降圧型スイッチングレギュレータおよびその制御回路ならびにそれを用いた電子機器
JP2008220147A (ja) * 2007-03-07 2008-09-18 Orise Technology Co Ltd パルス周波数変調回路、同回路を用いた電源供給装置及び電源安定化方法
JP4662964B2 (ja) * 2007-03-07 2011-03-30 旭曜科技股▲ふん▼有限公司 パルス周波数変調回路、同回路を用いた電源供給装置及び電源安定化方法
JP2010154706A (ja) * 2008-12-26 2010-07-08 Rohm Co Ltd スイッチングレギュレータの制御回路、方法、およびそれらを用いたスイッチングレギュレータ
US8872494B2 (en) 2012-02-10 2014-10-28 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device, DC-DC converter, and voltage conversion method

Also Published As

Publication number Publication date
JP4196758B2 (ja) 2008-12-17

Similar Documents

Publication Publication Date Title
KR100945437B1 (ko) 스위칭 레귤레이터
KR100913571B1 (ko) 스위칭 레귤레이터, 스위칭 레귤레이터의 제어 회로, 및스위칭 레귤레이터의 제어 동작 방법
KR100912865B1 (ko) 스위칭 레귤레이터 및 그 스위칭 레귤레이터를 구비하는반도체 장치
US8624566B2 (en) Current-mode control switching regulator and operations control method thereof
US8289000B2 (en) Charge control circuit
US7876073B2 (en) Switching regulator with slope compensation and control method therefor
JP4440869B2 (ja) Dc−dcコンバータ、dc−dcコンバータの制御回路及びdc−dcコンバータの制御方法
KR101471133B1 (ko) 공진형 컨버터
US8710816B2 (en) Buck converter having reduced ripple under a light load
US8729873B2 (en) DC-to-DC converter with high-side switch and low-side switch
US6294903B1 (en) Switching power supply
US8552702B2 (en) Digital control switching regulator having an input voltage detection circuit
US20070018617A1 (en) Current resonance type DC/DC converter capable of decreasing losses on on-load and a light load
JP2010068671A (ja) Dc−dcコンバータ
JP2888729B2 (ja) 出力短絡保護回路
CN107086778B (zh) 降压调节器的低功率待机模式
CN111384851A (zh) 一种dc-dc转换器的控制方法及装置
JP4196758B2 (ja) Dc/dcコンバータ
CN117155074A (zh) Turbo模式开关变换器及其控制电路
CN112117899A (zh) 一种电流模式控制的boost转换器
CN117155072A (zh) 开关变换器及其控制电路
JP5515390B2 (ja) スイッチング電源装置
JP2005168229A (ja) 電源供給装置
JP2014112996A (ja) 軽負荷検出回路、スイッチングレギュレータとその制御方法
JP2005210820A (ja) 同期整流式dc/dcコンバータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4196758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees