JP2005039885A - Controller of hybrid vehicle - Google Patents

Controller of hybrid vehicle Download PDF

Info

Publication number
JP2005039885A
JP2005039885A JP2003197282A JP2003197282A JP2005039885A JP 2005039885 A JP2005039885 A JP 2005039885A JP 2003197282 A JP2003197282 A JP 2003197282A JP 2003197282 A JP2003197282 A JP 2003197282A JP 2005039885 A JP2005039885 A JP 2005039885A
Authority
JP
Japan
Prior art keywords
power
voltage battery
high voltage
engine
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003197282A
Other languages
Japanese (ja)
Inventor
Kazuhiro Hara
一広 原
Minoru Suzuki
実 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003197282A priority Critical patent/JP2005039885A/en
Publication of JP2005039885A publication Critical patent/JP2005039885A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/20Inrush current reduction, i.e. avoiding high currents when connecting the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a controller of a hybrid vehicle which prevents an energy storage device from being overcharged. <P>SOLUTION: The controller of the hybrid vehicle includes a high voltage battery 5 for charging and discharging a power in association with drive or regeneration of a traveling motor 1, an engine drive compressor 19 which can be operated by a power of the engine 2, and an air conditioner 14 for the vehicle having a motor operated compressor 16 which can be operated by the power of the motor. An ECU 11 judges whether or not the high voltage battery 5 is an overcharging state or not according to whether input and output voltage Vbatt of the high voltage battery 5 is raised to a specified value or more. If the high voltage battery 5 is judged to be the overcharging state, the ECU 11 performs a temperature regulation in the vehicle by operating the motor operated compressor 16 when there is the operation request of the air conditioner 14 and the motor operated compressor 16 can hold required air conditioning performance, and continues the discharging process of the high voltage battery 5 by the motor operated compressor 16 until the overcharging state is eliminated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンまたは走行用モータの少なくとも一方の動力により走行可能なハイブリット車両の制御装置に関する。
【0002】
【従来の技術】
従来、エンジンまたは走行用モータの少なくとも一方の動力により走行が可能なハイブリット車両では、車両の走行状態により例えばエンジンの動力が必要ない場合、エンジンを停止し、走行用モータのみで走行する場合がある。そのため、ハイブリット車両に備えられた車両用空調装置では、車両用空調装置に備えられたコンプレッサ(圧縮機)を動かすことが可能な電動モータを備え、該コンプレッサを動かすために、車両のエンジンのみからでなくこの電動モータからも動力を得られるように構成している(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開平11−159338号公報(段落番号「0002」、「0003」)
【0004】
【発明が解決しようとする課題】
ところで、上述のようなハイブリット車両では、蓄電装置に蓄電された電力を放電することにより走行用モータを駆動して車両の走行を補助する一方、走行用モータの回生電力により蓄電装置を充電しながら走行する。そのため、外部から電力を供給されなくても、蓄電装置の充放電を繰り返しながら車両の走行を補助することができるものの、蓄電装置の寿命を延ばすために、蓄電装置の過充電を防止し、いつでも蓄電装置の電力を最適な蓄電量に保持することが望ましい。具体的には、蓄電装置に流れる電流値を電流センサにより検出し、上述の走行用モータによる蓄電装置の充電が過充電にならないように、電流値の平均値が零、すなわち蓄電装置から流れ出る電流量と蓄電装置へ流れ込む電流量とが平衡するように制御する。
【0005】
しかし、蓄電装置に流れる電流を検出する電流センサに誤差がある場合、蓄電装置の充放電制御が正確に実行されても、蓄電装置が必要以上に充電されてしまう可能性があるという問題があった。また、走行を補助する効果が少ないような走行状態であっても、蓄電装置が必要以上に充電されることを防止するために、走行用モータを駆動して余分な電力を消費させる方法もあるが、効率の良い走行駆動を妨げる場合があるという問題があった。また、蓄電装置の蓄電量を減少させるために、車両に搭載された補機類に蓄電装置に蓄電された余分な電力を消費させる方法もあるが、補機類の消費電力が小さい場合、補機類だけでは蓄電装置に蓄電された余分な電力を消費しきれないという問題があった。
【0006】
本発明は、上記課題に鑑みてなされたもので、蓄電装置の過充電を防止するハイブリット車両の制御装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、請求項1の発明に係るハイブリット車両の制御装置は、エンジン(例えば実施の形態のエンジン2)または走行用モータ(例えば実施の形態の走行用モータ1)の少なくとも一方の動力により走行可能なハイブリット車両の制御装置であって、前記走行用モータの駆動または回生に伴い電力を充放電する蓄電装置(例えば実施の形態の高電圧バッテリ5)と、前記エンジン及び電動モータの両方を動力源として動作可能な圧縮装置(例えば実施の形態の電動コンプレッサ16とエンジン駆動コンプレッサ19とを組み合わせた圧縮装置、またはハイブリットコンプレッサ)を有する車両用空調装置(例えば実施の形態の車両用空調装置14)と、前記蓄電装置の充放電を制御する制御部(例えば実施の形態のECU11)とを備え、前記制御部が、前記蓄電装置の蓄電量が所定値以上で、かつ前記車両用空調装置の動作要求がある場合、前記電動モータの動力による前記圧縮装置の駆動を開始することを特徴とする。
【0008】
以上の構成を備えたハイブリット車両の制御装置は、蓄電装置の蓄電量が所定値以上で、蓄電装置が過充電の状態にあると判断できる場合、車両用空調装置に備えられた圧縮装置の電動モータの動力による駆動を開始することで、過充電となった蓄電装置の余分な電力を電動モータに消費させ、蓄電装置の蓄電量を減少させることができる。
【0009】
請求項2の発明に係るハイブリット車両の制御装置は、請求項1に記載のハイブリット車両の制御装置において、前記制御部が、前記エンジンの動力による前記圧縮装置の駆動を中止することを特徴とする。
【0010】
以上の構成を備えたハイブリット車両の制御装置は、蓄電装置の蓄電量が所定値以上で、蓄電装置が過充電の状態にあると判断できる場合、車両用空調装置に備えられた圧縮装置の電動モータの動力による駆動を開始し、エンジンの動力による圧縮装置の駆動を中止することで、圧縮装置の駆動を全て電動モータの動力により賄い、過充電となった蓄電装置の余分な電力をより多く電動モータに消費させ、蓄電装置の蓄電量を短時間で減少させることができる。
【0011】
請求項3の発明に係るハイブリット車両の制御装置は、請求項2に記載のハイブリット車両の制御装置において、前記制御部が、前記蓄電装置の蓄電量が前記所定値より減少した場合、前記エンジンの動力による前記圧縮装置の駆動を開始可能とすることを特徴とする請求項2に記載のハイブリット車両の制御装置。
【0012】
以上の構成を備えたハイブリット車両の制御装置は、蓄電装置の蓄電量が所定値より減少し、蓄電装置の過充電の状態が解消されたと判断できる場合、エンジンの動力による圧縮装置の駆動を開始可能とすることで、電動モータによる蓄電装置の電力の消費を減少させ、電力を無駄に消費することなく、蓄電装置の蓄電量を最適な状態に保持することができる。
【0013】
請求項4の発明に係るハイブリット車両の制御装置は、請求項1から請求項3のいずれかに記載のハイブリット車両の制御装置において、前記圧縮装置が、前記エンジンを動力源として駆動するエンジン駆動コンプレッサ(例えば実施の形態のエンジン駆動コンプレッサ19)と、前記電動モータを動力源として駆動する電動コンプレッサ(例えば実施の形態の電動コンプレッサ16)とを備えることを特徴とする。
【0014】
以上の構成を備えたハイブリット車両の制御装置は、エンジン駆動コンプレッサと電動コンプレッサとを個別に制御することにより、圧縮装置の動作を容易に制御することができる。
【0015】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。
(全体構成)
図1は、本発明の一実施の形態のハイブリット車両の制御装置の構成を示すブロック図である。図1において、走行用モータ1は、車両に搭載され、車両を走行駆動するエンジン2を補助するか、または車両を走行駆動するように、その回転子が車両のエンジン2に連結された三相電動機であって、走行用モータ1単独によるモータ駆動走行や、エンジン2による走行駆動時に走行用モータ1で駆動力を補助するアシスト走行を可能にしている。
【0016】
また、走行用モータ1には、主にインバータ回路から構成されたモータ制御部としてのパワードライブユニット(Power Drive Unit:以下、PDUと略す)3が接続されている。PDU3は、電源電圧を安定させる平滑コンデンサ3aを備えており、該平滑コンデンサ3aがメインコンタクタ手段4を介して車両に搭載された高電圧バッテリ(蓄電装置)5に接続されている。ここで、高電圧バッテリ5としては、例えば144[V]系のバッテリを用いることができる。
【0017】
また、PDU3は、メインコンタクタ手段4を導通させた状態において、高電圧バッテリ5から直流電力を得るとともに、該直流電力を三相の交流電力に変換して走行用モータ1を駆動し、一方、走行用モータ1の回生電力を直流電力に変換して高電圧バッテリ5を充電する。また、高電圧バッテリ5には、電流センサ6及び電圧センサ7が接続され、電流センサ6で検出される高電圧バッテリ5の入出力電流Abatt、及び電圧センサ7で検出される高電圧バッテリ5の入出力電圧Vbattから、高電圧バッテリ5のI−V(電流−電圧)特性や電流積算値に基づいて高電圧バッテリ5の残容量SOCを推定することができる。
【0018】
一方、メインコンタクタ手段4は、回路を自動的に開閉できるような機構を備えることにより端子間を断続可能な継電器、接触器、開閉器等の開閉手段であるメインコンタクタ4aと、該メインコンタクタ4aに並列に設けられた同様な開閉手段であるプリチャージコンタクタ4b、及びプリチャージ抵抗器4cとを備えて構成されている。これにより、メインコンタクタ手段4を介してPDU3と高電圧バッテリ5とを接続する際には、まず、プリチャージコンタクタ4bを作動(導通)させてPDU3の平滑コンデンサ3aにプリチャージを行った後、メインコンタクタ4aを作動(導通)させることで、平滑コンデンサ3aに対する突入電流によるコンタクタの破損を防止することができる。また、平滑コンデンサ3aには、電圧センサ8が接続されており、電圧センサ8で検出される電圧値に応じてメインコンタクタ4aの作動タイミングを調整することができる。
【0019】
また、高電圧バッテリ5には、メインコンタクタ手段4を介してDC/DCコンバータ9が接続されており、DC/DCコンバータ9は、高電圧バッテリ5から得た高電圧直流電力を低電圧直流電力に降圧して低電圧バッテリ10を充電する。また、この低電圧バッテリ10からは、本実施の形態のハイブリット車両の制御装置における制御部である後述する電子制御ユニット(Electronic Control Unit :以下、ECUと略す)11や低電圧駆動の補機類12等の低電圧系回路(例えば12[V]系回路)へ低電圧(例えば14.5[V])の直流電力が供給される。
【0020】
更に、高電圧バッテリ5には、エアコンコンタクタ手段13を介して、車両に搭載された車両用空調装置14を動作させるハイブリッドエアコンユニット(以下、HBACUと略す)15が接続されている。ここで、エアコンコンタクタ手段13は、メインコンタクタ手段4と同様に、開閉手段であるメインコンタクタ13a、開閉手段であるプリチャージコンタクタ13b、プリチャージ抵抗器13cとを備えて構成されている。また、HBACU15は、インバータ回路を有するドライバ15aと、該ドライバ15aを制御するコントローラ15bと、エアコンコンタクタ手段13に接続される平滑コンデンサ15cとを備えて構成されている。
【0021】
これにより、メインコンタクタ手段4の場合と同様に、エアコンコンタクタ手段13を介してHBACU15と高電圧バッテリ5とを接続する際には、まず、プリチャージコンタクタ13bを作動(導通)させてHBACU15の平滑コンデンサ15cにプリチャージを行った後、メインコンタクタ13aを作動(導通)させることで、平滑コンデンサ15cに対する突入電流によるコンタクタの破損を防止することができる。
【0022】
また、HBACU15のドライバ15aは、車両用空調装置14に備えられると共に、三相電動機(電動モータ)を動力源として動作可能な圧縮装置である電動コンプレッサ16に接続されており、HBACU15は、エアコンコンタクタ手段13を導通させた状態において、高電圧バッテリ5から供給される直流電力をドライバ15aによって三相の交流電力に変換し、電動コンプレッサ16を駆動する。
【0023】
また、平滑コンデンサ15cには、電圧センサ17が接続されており、電圧センサ17で検出される電圧値に応じてメインコンタクタ13aの作動タイミングを調整することができる。また、高電圧バッテリ5とエアコンコンタクタ手段13との間にはヒューズ18が接続され、高電圧バッテリ5とエアコンコンタクタ手段13との間の電流路を過電流時に遮断できるようにしている。
【0024】
更に、本実施の形態のハイブリット車両の制御装置は、エンジン2を動力源として動作可能な圧縮装置であるエンジン駆動コンプレッサ19を備えている。具体的には、エンジン2の出力軸に連結されたプーリ20a及びエンジン駆動コンプレッサ19の回転軸に連結されたプーリ20bを介して、駆動ベルト21によりエンジン2からエンジン駆動コンプレッサ19へ動力が伝達される。従って、車両用空調装置14は、圧縮装置として、電動コンプレッサ16及びエンジン駆動コンプレッサ19の両方、またはいずれか一方が駆動されることにより車両内の温度を調節する。
【0025】
また、ECU11には、電流センサ6、電圧センサ7、電圧センサ8、及び電圧センサ17の各出力信号が入力される。また、ECU11には、車両のイグニッションスイッチのON/OFF信号IG_SW、車両用空調装置14の操作スイッチのON/OFF信号AC_SW、及び走行用モータ1の回転数に応じた電気信号が入力される。一方、ECU11は、メインコンタクタ手段4、PDU3、DC/DCコンバータ9、及びHBACU15に含まれるコントローラ15bへ、それぞれ制御信号を出力する。
【0026】
同様に、ECU11は、HBACU15のコントローラ15bを介してエアコンコンタクタ手段13へ制御信号を出力する。
なお、走行用モータ1をエンジン2の出力軸に直結する場合、モータ回転数は、エンジン2の回転数に一致するので、モータ回転数に代えてエンジン2の回転数を代用することができる。
【0027】
(バッテリ過充電保護動作)
次に、図面を参照して上述のECU11によるバッテリ過充電保護動作ついて説明する。図2は、本実施の形態のハイブリット車両の制御装置のECU11によるバッテリ過充電保護動作を示すフローチャートである。
図2において、まずECU11は、電流センサ6により検出した高電圧バッテリ5の入出力電流Abattの平均値が零、すなわち高電圧バッテリ5から流れ出る電流量と高電圧バッテリ5へ流れ込む電流量とが平衡するように制御する、バッテリ端におけるゼロ電力制御を実行中に、電圧センサ7により検出した高電圧バッテリ5の入出力電圧Vbattが規定値に到達したか否かにより、蓄電量が所定値以上となる高電圧バッテリ5の過充電の状態が発生したか否かを判定する(ステップS1)。
【0028】
ステップS1において、高電圧バッテリ5が過充電の状態にはなっていないと判定された場合(ステップS1のNO)、ECU11は、PDU3やHBACU15、及びDC/DCコンバータ9に対して、高電圧バッテリ5の入出力電流Abattの平均値が零となるように通常制御(=ゼロ電力制御)を実行し(ステップS2)、バッテリ過充電保護動作を終了する。
【0029】
一方、ステップS1において、高電圧バッテリ5が過充電の状態になったと判定された場合(ステップS1のYES)、ECU11は、まずDC/DCコンバータ9を介して補機類12へ供給する電力を、PDU3を介した走行用モータ1の回生電力ではなく、高電圧バッテリ5に蓄電された電力により供給するように、PDU3に対する制御を、発電停止を指示するゼロトルク指示とする(ステップS3)。
【0030】
そして、電圧センサ7により検出した高電圧バッテリ5の入出力電圧Vbattが更に上昇したか、または規定時間内に入出力電圧Vbattが規定電圧下降したか、あるいは入出力電流値Abatt及び入出力電圧Vbattから、規定時間内に高電圧バッテリ5が規定電力(SOC)分放電したかを算出し、高電圧バッテリ5がまだ過充電の状態にあるか、あるいは過充電の状態が解消されたかを判定する(ステップS4)。
【0031】
ステップS4において、高電圧バッテリ5がまだ過充電の状態にあると判定された場合(ステップS4のYES)、車両用空調装置14に対する動作要求があり、かつ電動コンプレッサ16を動作させて要求された空調性能を保つことができるか否かを判定する(ステップS5)。
【0032】
ステップS5において、車両用空調装置14に対する動作要求がないか、あるいは電動コンプレッサ16を動作させて要求された空調性能を保つことができない場合(ステップS5のNO)、ECU11は、車両の走行において走行用モータ1がエンジン2を補助する必要がない場合でも、PDU3へ走行用モータ1の駆動制御指示を行い、走行用モータ1の駆動により高電圧バッテリ5の電力を放電させる(ステップS6)。
【0033】
一方、ステップS5において、車両用空調装置14に対する動作要求があり、かつ電動コンプレッサ16を動作させて要求された空調性能を保つことができる場合(ステップS5のYES)、ECU11は、電動コンプレッサ16を動作させて、車両用空調装置14による車両内の温度調節を実行し、高電圧バッテリ5の電力を放電させる(ステップS7)。
【0034】
そして、ECU11は、ステップS6またはステップS7における放電処理が始まったら、ステップS4と同様に、再度高電圧バッテリ5の入出力電圧Vbattが更に上昇したか、または高電圧バッテリ5の入出力電圧Vbattが規定電圧下降したか、あるいは高電圧バッテリ5が規定電力(SOC)分放電したかを算出し、高電圧バッテリ5がまだ過充電の状態にあるか(高電圧バッテリ5の過充電の状態が継続しているか)、あるいは過充電の状態が解消されたかを判定する(ステップS8)。
ステップS8において、まだ高電圧バッテリ5がまだ過充電の状態にあると判定された場合(ステップS8のYES)、ステップS5へ戻り、上述の処理を繰り返す。
【0035】
一方、ステップS4、またはステップS8において、高電圧バッテリ5の過充電の状態が解消されたと判定された場合(ステップS4のNO、またはステップS8のNO)、ECU11は、ステップS2へ進み、PDU3やHBACU15、及びDC/DCコンバータ9に対する制御を、高電圧バッテリ5の入出力電流Abattの平均値が零となるように通常制御(=ゼロ電力制御)に戻し(ステップS2)、バッテリ過充電保護動作を終了する。
【0036】
なお、上述の実施の形態における車両用空調装置14で用いられる圧縮装置は、空気の流路をそれぞれ備えた別体のコンプレッサ、すなわち電動コンプレッサ16とエンジン駆動コンプレッサ19とを組み合わせた圧縮装置に限らず、車両用空調装置14では、電動モータの動力とエンジンの動力とをクラッチにより切り換え可能であると共に、空気の流路を共通化した一体型のハイブリットコンプレッサを圧縮装置として用いても良い。
【0037】
更に、上述の実施の形態のバッテリ過充電保護動作では、ステップS7において電動コンプレッサ16を動作させて、車両用空調装置14による車両内の温度調節を実行する際、車両用空調装置14による車両内の温度調節を、電動コンプレッサ16とエンジン駆動コンプレッサ19の両方の動作により実行しても良いし、エンジン駆動コンプレッサ19を停止して、電動コンプレッサ16の動作のみで実行しても良い。同様に、ハイブリットコンプレッサにおいても、車両用空調装置14による車両内の温度調節を、電動モータの動力とエンジンの動力とをクラッチにより切り換えながら、両方の動力を利用して実行しても良いし、電動モータの動力のみで実行しても良い。
【0038】
また、走行用モータ1を駆動するための電力を蓄電する装置は、高電圧バッテリ5に限らず、直流電力を蓄電可能な、キャパシタ等を含む蓄電装置(エネルギーストレージデバイス)であれば何を用いても良い。同様に、低電圧駆動の補機類12等に低電圧の直流電力を供給する装置は、低電圧バッテリ10に限らず、直流電力を蓄電可能な、キャパシタ等を含む蓄電装置(エネルギーストレージデバイス)であれば何を用いても良い。
【0039】
以上説明したように、本実施の形態のハイブリット車両の制御装置によれば、走行用モータ1の駆動または回生に伴い電力を充放電する高電圧バッテリ5と、エンジンを動力源として動作可能なエンジン駆動コンプレッサ19、及び電動モータを動力源として動作可能な電動コンプレッサ16を有する車両用空調装置14とを備え、ECU11は、バッテリ端におけるゼロ電力制御を実行中に、高電圧バッテリ5の入出力電圧Vbattを電圧センサ7により検出し、入出電圧が規定値より上昇したか否かにより、高電圧バッテリ5が過充電の状態にあるか否かを判定する。
【0040】
もし、高電圧バッテリ5が過充電の状態にあると判定された場合、ECU11は、DC/DCコンバータ9に供給する電力をPDU3を介した走行用モータ1の回生電力から供給しないように、ゼロトルク指示によりPDU3の発電制御を停止する。また、それでも高電圧バッテリ5の過充電の状態が継続すると判定された場合、車両用空調装置14に対する動作要求があり、かつ電動コンプレッサ16を動作させて要求された空調性能を保つことができれば、ECU11は、電動コンプレッサ16を動作させて、車両用空調装置14による車両内の温度調節を実行し、高電圧バッテリ5の過充電の状態が解消されるまで、電動コンプレッサ16による高電圧バッテリ5の放電処理を継続する。
【0041】
従って、電流センサ6による測定値に基づいて、高電圧バッテリ5の入出力電流Abattの平均値が零となるように制御するゼロ電力制御を実行する際、高電圧バッテリ5に流れる電流を検出する電流センサ6に誤差があり、高電圧バッテリ5の過充電の状態が発生しても、電動コンプレッサ16により、高電圧バッテリ5の余分な電力を消費させることで、高電圧バッテリ5の蓄電量を減少させ、高電圧バッテリ5の過充電の状態を速やかに解消することができるという効果が得られる。
【0042】
また、補機類12の消費電力が小さく、補機類12だけで高電圧バッテリ5に蓄電された余分な電力を消費しきれない場合でも、電動コンプレッサ16により、高電圧バッテリ5の余分な電力を速やかに消費させることで、高電圧バッテリ5の過充電の状態が発生しても、短時間で高電圧バッテリ5を正常な蓄電量に復帰させることができるため、高電圧バッテリ5の寿命を更に延ばすことができるという効果が得られる。更に、走行を補助する効果が少ないような走行状態で、過充電を防止するために走行用モータ1を駆動する必要がなくなるので、効率の良い走行駆動を実行することができるという効果が得られる。
【0043】
具体的に、本実施の形態のバッテリ過充電保護動作による高電圧バッテリ5の状態変化を図面を参照して説明する。図3は、本実施の形態のバッテリ過充電保護動作による高電圧バッテリ5の状態変化を横軸を時刻、縦軸を高電圧バッテリ5の状態として示した図である。
図3に示すように、時刻t1から時刻t2において高電圧バッテリ5の入出力電流Abattに充電電流が流れると、高電圧バッテリ5の残容量SOCは徐々に増加し高電圧バッテリ5の上限SOCとして設定した規定の残容量へ到達するので、ECU11は、電流センサ6で検出される高電圧バッテリ5の入出力電流Abattの平均値が零となるように制御するゼロ電力制御を実行する。
【0044】
これにより、時刻t2から時刻t4に示すように、高電圧バッテリ5の入出力電流Abatt(実際に電流センサ6で検出される電流値)は平均値が零として検出されるものの、例えば時刻t3に示すように、もし、電圧センサ7により検出した高電圧バッテリ5の入出力電圧Vbattが規定値に到達した場合、実際に高電圧バッテリ5へ流入した電流により、残容量SOCが上限SOC以上となり、高電圧バッテリ5の過充電の状態が発生したと判断する。そこで、ECU11は、DC/DCコンバータ9を介して補機類12へ供給する電力を、PDU3を介した走行用モータ1の回生電力ではなく、高電圧バッテリ5に蓄電された電力により供給するように、ゼロトルク指示によってPDU3へ発電停止を指示する。
【0045】
この時、もし過充電となった高電圧バッテリ5の余分な電力が少ない場合、図3において時刻t3から点線で示すように、補機類12の消費電力により高電圧バッテリ5の過充電の状態は解消される。しかし、過充電となった高電圧バッテリ5の余分な電力を、補機類12の消費電力により消費しきれない場合、高電圧バッテリ5の入出力電圧Vbattが更に上昇するので、例えば時刻t4に示すように、もし、入出力電圧Vbattが規定値より更に上昇した場合、残容量SOCが上限SOC以上で、高電圧バッテリ5の過充電が継続していると判断する。
【0046】
そこで、車両用空調装置14に対する動作要求があり、かつ電動コンプレッサ16を動作させて要求された空調性能を保つことができれば、ECU11は、例えば時刻t4から時刻t5に示すように、更に電動コンプレッサ16を動作させて、車両用空調装置14による車両内の温度調節を実行し、例えば高電圧バッテリ5の過充電の状態が解消される時刻t5まで、電動コンプレッサ16による高電圧バッテリ5の放電処理を継続し、高電圧バッテリ5の過充電の状態を解消する。
【0047】
【発明の効果】
以上の如く、本発明のハイブリット車両の制御装置によれば、蓄電装置の蓄電量が所定値以上で、蓄電装置が過充電の状態にあると判断できる場合、車両用空調装置に備えられた圧縮装置の電動モータの動力による駆動を開始することで、過充電となった蓄電装置の余分な電力を電動モータに消費させ、蓄電装置の蓄電量を減少させることができる。また、この時エンジンの動力による圧縮装置の駆動を中止することで、圧縮装置の駆動を全て電動モータの動力により賄い、過充電となった蓄電装置の余分な電力をより多く電動モータに消費させ、蓄電装置の蓄電量を短時間で減少させることができる。
【0048】
更に、蓄電装置の蓄電量が所定値より減少し、蓄電装置の過充電の状態が解消されたと判断できる場合、エンジンの動力による圧縮装置の駆動を開始可能とすることで、電動モータによる蓄電装置の電力の消費を減少させ、電力を無駄に消費することなく、蓄電装置の蓄電量を最適な状態に保持することができる。
【0049】
従って、蓄電装置に流れる電流を検出する電流センサに誤差があり、もし蓄電装置が過充電の状態となっても、速やかに蓄電装置の過充電の状態を解消することができ、バッテリの過充電を防止するハイブリット車両の制御装置を実現することができるという効果が得られる。また、走行を補助する効果が少ないような走行状態で、過充電を防止するために走行用モータを駆動する必要がなくなるので、効率の良い走行駆動を実行することができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の一実施の形態におけるハイブリット車両の制御装置の構成を示すブロック図である。
【図2】同実施の形態のハイブリット車両の制御装置によるバッテリ過充電保護動作を示すフローチャートである。
【図3】同実施の形態のハイブリット車両の制御装置におけるバッテリ過充電保護動作による高電圧バッテリの状態変化を示す図である。
【符号の説明】
1 走行用モータ
2 エンジン
5 高電圧バッテリ(蓄電装置)
11 ECU(制御部)
14 車両用空調装置
16 電動コンプレッサ(圧縮装置)
19 エンジン駆動コンプレッサ(圧縮装置)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for a hybrid vehicle capable of traveling with the power of at least one of an engine and a traveling motor.
[0002]
[Prior art]
Conventionally, in a hybrid vehicle capable of traveling with the power of at least one of an engine and a traveling motor, the engine may be stopped and the traveling may be performed only with the traveling motor when, for example, the engine power is not required depending on the traveling state of the vehicle. . Therefore, the vehicle air conditioner provided in the hybrid vehicle includes an electric motor that can move the compressor (compressor) provided in the vehicle air conditioner, and only the engine of the vehicle is used to move the compressor. Not only this electric motor but also power can be obtained (see, for example, Patent Document 1).
[0003]
[Patent Document 1]
JP 11-159338 A (paragraph numbers “0002” and “0003”)
[0004]
[Problems to be solved by the invention]
By the way, in the hybrid vehicle as described above, the electric power stored in the power storage device is discharged to drive the traveling motor to assist the traveling of the vehicle, while the power storage device is charged with the regenerative power of the traveling motor. Run. Therefore, even if power is not supplied from the outside, the vehicle can be assisted while repeating charging and discharging of the power storage device, but in order to extend the life of the power storage device, overcharging of the power storage device is prevented and anytime It is desirable to keep the power of the power storage device at an optimal amount of stored power. Specifically, the current value flowing through the power storage device is detected by a current sensor, and the average value of the current value is zero, that is, the current flowing out of the power storage device so that charging of the power storage device by the traveling motor described above is not overcharged. The amount is controlled so as to balance the amount of current flowing into the power storage device.
[0005]
However, if there is an error in the current sensor that detects the current flowing through the power storage device, there is a problem that the power storage device may be charged more than necessary even if the charge / discharge control of the power storage device is accurately performed. It was. There is also a method of consuming extra power by driving a driving motor to prevent the power storage device from being charged more than necessary even in a driving state where the effect of assisting driving is small. However, there is a problem in that efficient driving may be hindered. In order to reduce the amount of electricity stored in the power storage device, there is a method of consuming excess power stored in the power storage device to auxiliary equipment mounted on the vehicle. There was a problem that the excess power stored in the power storage device could not be consumed by the machine alone.
[0006]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a control device for a hybrid vehicle that prevents overcharging of the power storage device.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, a hybrid vehicle control device according to a first aspect of the present invention includes at least one of an engine (for example, the engine 2 of the embodiment) or a travel motor (for example, the travel motor 1 of the embodiment). A control device for a hybrid vehicle capable of traveling with the power of the power storage device, a power storage device (for example, the high-voltage battery 5 of the embodiment) that charges and discharges power when the travel motor is driven or regenerated, the engine, and the electric motor A vehicle air conditioner (for example, for a vehicle according to the embodiment) having a compression device (for example, a compression device in which the electric compressor 16 according to the embodiment and the engine drive compressor 19 are combined, or a hybrid compressor) capable of operating both of them as a power source An air conditioner 14) and a controller that controls charging / discharging of the power storage device (for example, EC of the embodiment) 11), and the control unit starts driving the compression device with the power of the electric motor when the amount of power stored in the power storage device is equal to or greater than a predetermined value and there is an operation request for the vehicle air conditioner. It is characterized by that.
[0008]
In the hybrid vehicle control device having the above configuration, when the power storage amount of the power storage device is equal to or greater than a predetermined value and it can be determined that the power storage device is in an overcharged state, the electric power of the compression device provided in the vehicle air conditioner By starting driving with the power of the motor, excess electric power of the power storage device that is overcharged can be consumed by the electric motor, and the amount of power stored in the power storage device can be reduced.
[0009]
A hybrid vehicle control device according to a second aspect of the invention is characterized in that, in the hybrid vehicle control device according to the first aspect, the control unit stops driving the compression device by power of the engine. .
[0010]
In the hybrid vehicle control device having the above configuration, when the power storage amount of the power storage device is equal to or greater than a predetermined value and it can be determined that the power storage device is in an overcharged state, the electric power of the compression device provided in the vehicle air conditioner By starting the drive with the power of the motor and stopping the drive of the compression device with the power of the engine, all the drive of the compression device is covered with the power of the electric motor, and the excess power of the overcharged power storage device is increased It can be consumed by the electric motor and the amount of electricity stored in the electricity storage device can be reduced in a short time.
[0011]
A hybrid vehicle control device according to a third aspect of the present invention is the hybrid vehicle control device according to the second aspect, wherein, when the storage amount of the power storage device decreases below the predetermined value, the control unit The hybrid vehicle control device according to claim 2, wherein driving of the compression device by power can be started.
[0012]
The control device for a hybrid vehicle having the above configuration starts driving the compression device with engine power when it can be determined that the power storage amount of the power storage device has decreased from a predetermined value and the overcharge state of the power storage device has been resolved. By making it possible, the power consumption of the power storage device by the electric motor can be reduced, and the power storage amount of the power storage device can be held in an optimal state without wasting power.
[0013]
A hybrid vehicle control device according to a fourth aspect of the present invention is the hybrid vehicle control device according to any one of the first to third aspects, wherein the compression device drives the engine as a power source. (For example, the engine drive compressor 19 of the embodiment) and an electric compressor (for example, the electric compressor 16 of the embodiment) that drives the electric motor as a power source.
[0014]
The hybrid vehicle control device having the above-described configuration can easily control the operation of the compression device by individually controlling the engine-driven compressor and the electric compressor.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
(overall structure)
FIG. 1 is a block diagram showing a configuration of a control device for a hybrid vehicle according to an embodiment of the present invention. In FIG. 1, a traveling motor 1 is mounted on a vehicle and is a three-phase motor whose rotor is connected to the engine 2 of the vehicle so as to assist the engine 2 that drives the vehicle or to drive the vehicle. The electric motor enables motor-driven traveling by the traveling motor 1 alone and assist traveling in which the traveling motor 1 assists the driving force when traveling by the engine 2.
[0016]
Further, a power drive unit (Power Drive Unit: hereinafter abbreviated as PDU) 3 as a motor control unit mainly composed of an inverter circuit is connected to the traveling motor 1. The PDU 3 includes a smoothing capacitor 3 a that stabilizes the power supply voltage, and the smoothing capacitor 3 a is connected via a main contactor means 4 to a high voltage battery (power storage device) 5 mounted on the vehicle. Here, as the high voltage battery 5, for example, a 144 [V] battery can be used.
[0017]
The PDU 3 obtains DC power from the high-voltage battery 5 in a state where the main contactor means 4 is conducted, converts the DC power into three-phase AC power, and drives the traveling motor 1. The regenerative power of the traveling motor 1 is converted into DC power to charge the high voltage battery 5. In addition, the current sensor 6 and the voltage sensor 7 are connected to the high voltage battery 5, the input / output current Abatt of the high voltage battery 5 detected by the current sensor 6, and the high voltage battery 5 detected by the voltage sensor 7. From the input / output voltage Vbatt, the remaining capacity SOC of the high voltage battery 5 can be estimated based on the IV (current-voltage) characteristics of the high voltage battery 5 and the current integrated value.
[0018]
On the other hand, the main contactor means 4 includes a main contactor 4a which is an opening / closing means such as a relay, contactor, switch, etc. that can be connected between terminals by providing a mechanism that can automatically open and close the circuit, and the main contactor 4a. Are provided with a precharge contactor 4b and a precharge resistor 4c, which are similar opening / closing means provided in parallel. Thereby, when the PDU 3 and the high voltage battery 5 are connected via the main contactor means 4, first, the precharge contactor 4b is operated (conducted) to precharge the smoothing capacitor 3a of the PDU 3, By operating (conducting) the main contactor 4a, it is possible to prevent damage to the contactor due to the inrush current to the smoothing capacitor 3a. Moreover, the voltage sensor 8 is connected to the smoothing capacitor 3a, and the operation timing of the main contactor 4a can be adjusted according to the voltage value detected by the voltage sensor 8.
[0019]
A DC / DC converter 9 is connected to the high voltage battery 5 via the main contactor 4, and the DC / DC converter 9 converts the high voltage DC power obtained from the high voltage battery 5 to the low voltage DC power. The low-voltage battery 10 is charged by stepping down to Further, from this low voltage battery 10, an electronic control unit (hereinafter referred to as ECU) 11 which is a control unit in the control device of the hybrid vehicle of the present embodiment and an auxiliary device driven by low voltage are described below. DC power of low voltage (for example, 14.5 [V]) is supplied to a low voltage system circuit (for example, 12 [V] system circuit) such as 12.
[0020]
Furthermore, a hybrid air conditioner unit (hereinafter abbreviated as HBACU) 15 for operating a vehicle air conditioner 14 mounted on the vehicle is connected to the high voltage battery 5 via an air conditioner contactor 13. Here, like the main contactor means 4, the air conditioner contactor means 13 includes a main contactor 13a as an opening / closing means, a precharge contactor 13b as an opening / closing means, and a precharge resistor 13c. The HBACU 15 includes a driver 15a having an inverter circuit, a controller 15b for controlling the driver 15a, and a smoothing capacitor 15c connected to the air conditioner contactor means 13.
[0021]
Thus, as in the case of the main contactor means 4, when the HBACU 15 and the high voltage battery 5 are connected via the air conditioner contactor 13, the precharge contactor 13 b is first activated (conducted) to smooth the HBACU 15. After the capacitor 15c is precharged, the main contactor 13a is actuated (conducted), whereby the contactor can be prevented from being damaged by the inrush current to the smoothing capacitor 15c.
[0022]
The driver 15a of the HBACU 15 is provided in the vehicle air conditioner 14 and is connected to an electric compressor 16 that is a compression device that can operate using a three-phase motor (electric motor) as a power source. The HBACU 15 is an air conditioner contactor. In a state where the means 13 is conducted, the DC power supplied from the high voltage battery 5 is converted into three-phase AC power by the driver 15a, and the electric compressor 16 is driven.
[0023]
Moreover, the voltage sensor 17 is connected to the smoothing capacitor 15c, and the operation timing of the main contactor 13a can be adjusted according to the voltage value detected by the voltage sensor 17. Further, a fuse 18 is connected between the high voltage battery 5 and the air conditioner contactor means 13 so that the current path between the high voltage battery 5 and the air conditioner contactor means 13 can be interrupted when overcurrent occurs.
[0024]
Furthermore, the hybrid vehicle control device of the present embodiment includes an engine-driven compressor 19 that is a compression device operable with the engine 2 as a power source. Specifically, power is transmitted from the engine 2 to the engine drive compressor 19 by the drive belt 21 via a pulley 20 a connected to the output shaft of the engine 2 and a pulley 20 b connected to the rotation shaft of the engine drive compressor 19. The Therefore, the vehicle air conditioner 14 adjusts the temperature in the vehicle by driving either or both of the electric compressor 16 and the engine drive compressor 19 as a compression device.
[0025]
Further, the output signals of the current sensor 6, the voltage sensor 7, the voltage sensor 8, and the voltage sensor 17 are input to the ECU 11. The ECU 11 also receives an ON / OFF signal IG_SW for an ignition switch of the vehicle, an ON / OFF signal AC_SW for an operation switch of the air conditioner 14 for the vehicle, and an electrical signal corresponding to the rotational speed of the traveling motor 1. On the other hand, the ECU 11 outputs control signals to the main contactor unit 4, the PDU 3, the DC / DC converter 9, and the controller 15 b included in the HBACU 15.
[0026]
Similarly, the ECU 11 outputs a control signal to the air conditioner contactor means 13 via the controller 15b of the HBACU 15.
When the traveling motor 1 is directly connected to the output shaft of the engine 2, the motor rotation speed matches the rotation speed of the engine 2, so that the rotation speed of the engine 2 can be substituted for the motor rotation speed.
[0027]
(Battery overcharge protection operation)
Next, the battery overcharge protection operation by the ECU 11 will be described with reference to the drawings. FIG. 2 is a flowchart showing a battery overcharge protection operation by the ECU 11 of the control device for the hybrid vehicle of the present embodiment.
In FIG. 2, the ECU 11 first has an average value of the input / output current Abatt of the high voltage battery 5 detected by the current sensor 6 being zero, that is, the amount of current flowing out of the high voltage battery 5 and the amount of current flowing into the high voltage battery 5 are balanced. During the execution of the zero power control at the battery end, the storage amount is set to a predetermined value or more depending on whether or not the input / output voltage Vbatt of the high voltage battery 5 detected by the voltage sensor 7 has reached a specified value. It is determined whether or not an overcharged state of the high voltage battery 5 is generated (step S1).
[0028]
When it is determined in step S1 that the high voltage battery 5 is not overcharged (NO in step S1), the ECU 11 sends a high voltage battery to the PDU 3, the HBACU 15, and the DC / DC converter 9. The normal control (= zero power control) is executed so that the average value of the input / output current Abatt 5 becomes zero (step S2), and the battery overcharge protection operation is terminated.
[0029]
On the other hand, if it is determined in step S1 that the high voltage battery 5 is in an overcharged state (YES in step S1), the ECU 11 first supplies power supplied to the auxiliary machinery 12 via the DC / DC converter 9. The control for the PDU 3 is set to zero torque instruction for instructing to stop power generation so that the power is stored not in the regenerative power of the traveling motor 1 via the PDU 3 but by the power stored in the high voltage battery 5 (step S3).
[0030]
Then, whether the input / output voltage Vbatt of the high voltage battery 5 detected by the voltage sensor 7 has further increased, the input / output voltage Vbatt has decreased by a specified voltage within a specified time, or the input / output current value Abatt and the input / output voltage Vbatt. From this, it is calculated whether the high voltage battery 5 is discharged by the specified power (SOC) within the specified time, and it is determined whether the high voltage battery 5 is still in the overcharged state or the overcharged state has been eliminated. (Step S4).
[0031]
If it is determined in step S4 that the high voltage battery 5 is still overcharged (YES in step S4), there is an operation request for the vehicle air conditioner 14, and the operation is requested by operating the electric compressor 16. It is determined whether or not the air conditioning performance can be maintained (step S5).
[0032]
In step S5, when there is no operation request for the vehicle air conditioner 14, or when the requested air conditioning performance cannot be maintained by operating the electric compressor 16 (NO in step S5), the ECU 11 travels while the vehicle is traveling. Even when the motor 1 does not need to assist the engine 2, the PDU 3 is instructed to drive the drive motor 1, and the high voltage battery 5 is discharged by driving the drive motor 1 (step S6).
[0033]
On the other hand, when there is an operation request for the vehicle air conditioner 14 in step S5 and the electric compressor 16 can be operated to maintain the required air conditioning performance (YES in step S5), the ECU 11 causes the electric compressor 16 to operate. The operation is performed to adjust the temperature in the vehicle by the vehicle air conditioner 14, and the power of the high voltage battery 5 is discharged (step S7).
[0034]
Then, when the discharge process in step S6 or step S7 starts, the ECU 11 again increases the input / output voltage Vbatt of the high voltage battery 5 or the input / output voltage Vbatt of the high voltage battery 5 again as in step S4. It is calculated whether the specified voltage has dropped or the high voltage battery 5 has been discharged by the specified power (SOC), and whether the high voltage battery 5 is still overcharged (the overcharge state of the high voltage battery 5 continues) It is determined whether or not the overcharge state has been resolved (step S8).
If it is determined in step S8 that the high voltage battery 5 is still overcharged (YES in step S8), the process returns to step S5 and the above-described processing is repeated.
[0035]
On the other hand, when it is determined in step S4 or step S8 that the overcharge state of the high-voltage battery 5 has been resolved (NO in step S4 or NO in step S8), the ECU 11 proceeds to step S2, and the PDU 3 or The control over the HBACU 15 and the DC / DC converter 9 is returned to the normal control (= zero power control) so that the average value of the input / output current Abatt of the high voltage battery 5 becomes zero (step S2), and the battery overcharge protection operation is performed. Exit.
[0036]
Note that the compression device used in the vehicle air conditioner 14 in the above-described embodiment is not limited to a separate compressor having air flow paths, that is, a compression device that combines the electric compressor 16 and the engine drive compressor 19. Instead, in the vehicle air conditioner 14, an electric hybrid motor compressor and an engine power can be switched by a clutch, and an integrated hybrid compressor having a common air flow path may be used as the compression device.
[0037]
Furthermore, in the battery overcharge protection operation of the above-described embodiment, when the electric compressor 16 is operated in step S7 and the vehicle air conditioner 14 performs the temperature adjustment in the vehicle, the vehicle air conditioner 14 performs the inside of the vehicle. This temperature adjustment may be executed by the operation of both the electric compressor 16 and the engine drive compressor 19 or may be executed only by the operation of the electric compressor 16 with the engine drive compressor 19 stopped. Similarly, in the hybrid compressor, the temperature adjustment in the vehicle by the vehicle air conditioner 14 may be executed using both powers while switching the power of the electric motor and the power of the engine by the clutch, You may perform only with the motive power of an electric motor.
[0038]
Further, the device for storing electric power for driving the traveling motor 1 is not limited to the high voltage battery 5, and any device can be used as long as it is a power storage device (energy storage device) including a capacitor or the like that can store DC power. May be. Similarly, a device for supplying low-voltage DC power to the low-voltage driven auxiliary machines 12 or the like is not limited to the low-voltage battery 10, and a power storage device (energy storage device) including a capacitor or the like that can store DC power. Anything can be used.
[0039]
As described above, according to the hybrid vehicle control apparatus of the present embodiment, the high-voltage battery 5 that charges and discharges electric power when the traveling motor 1 is driven or regenerated, and the engine that can operate using the engine as a power source. The ECU 11 includes a drive compressor 19 and a vehicle air conditioner 14 having an electric compressor 16 that can operate using an electric motor as a power source. The ECU 11 performs input / output voltage of the high-voltage battery 5 during zero power control at the battery end. Vbatt is detected by the voltage sensor 7, and it is determined whether or not the high voltage battery 5 is in an overcharged state based on whether or not the input / output voltage has risen above a specified value.
[0040]
If it is determined that the high voltage battery 5 is in an overcharged state, the ECU 11 performs zero torque so that the power supplied to the DC / DC converter 9 is not supplied from the regenerative power of the traveling motor 1 via the PDU 3. The power generation control of PDU 3 is stopped by the instruction. If it is determined that the overcharge state of the high voltage battery 5 continues, there is an operation request for the vehicle air conditioner 14 and the electric compressor 16 can be operated to maintain the required air conditioning performance. The ECU 11 operates the electric compressor 16 to adjust the temperature in the vehicle by the vehicle air conditioner 14, and until the overcharge state of the high voltage battery 5 is resolved, the high voltage battery 5 by the electric compressor 16 is adjusted. Continue the discharge process.
[0041]
Therefore, based on the measured value by the current sensor 6, the current flowing through the high voltage battery 5 is detected when the zero power control is performed to control the average value of the input / output current Abatt of the high voltage battery 5 to be zero. Even if there is an error in the current sensor 6 and an overcharged state of the high voltage battery 5 occurs, the electric compressor 16 consumes excess power of the high voltage battery 5 to reduce the amount of charge stored in the high voltage battery 5. The effect that it can reduce and the state of the overcharge of the high voltage battery 5 can be eliminated rapidly is acquired.
[0042]
Further, even when the auxiliary machine 12 has low power consumption and cannot use up the extra power stored in the high voltage battery 5 by the auxiliary machine 12 alone, the electric compressor 16 causes the extra power of the high voltage battery 5 to be consumed. By quickly consuming the battery, the high voltage battery 5 can be restored to a normal charged amount in a short time even if an overcharge state of the high voltage battery 5 occurs. Furthermore, the effect that it can be extended is acquired. Furthermore, since it is not necessary to drive the driving motor 1 in order to prevent overcharging in a driving state where the effect of assisting driving is small, an effect that it is possible to execute efficient driving is obtained. .
[0043]
Specifically, the state change of the high voltage battery 5 due to the battery overcharge protection operation of the present embodiment will be described with reference to the drawings. FIG. 3 is a diagram showing the state change of the high voltage battery 5 by the battery overcharge protection operation of the present embodiment with the horizontal axis representing time and the vertical axis representing the state of the high voltage battery 5.
As shown in FIG. 3, when a charging current flows through the input / output current Abatt of the high voltage battery 5 from the time t1 to the time t2, the remaining capacity SOC of the high voltage battery 5 gradually increases and becomes the upper limit SOC of the high voltage battery 5. The ECU 11 executes zero power control for controlling the average value of the input / output current Abatt of the high voltage battery 5 detected by the current sensor 6 to be zero because the set remaining specified capacity is reached.
[0044]
As a result, as shown from time t2 to time t4, the input / output current Abatt of the high voltage battery 5 (current value actually detected by the current sensor 6) is detected as an average value of zero, but at time t3, for example. As shown, if the input / output voltage Vbatt of the high-voltage battery 5 detected by the voltage sensor 7 reaches a specified value, the remaining capacity SOC exceeds the upper limit SOC due to the current actually flowing into the high-voltage battery 5, It is determined that an overcharge state of the high voltage battery 5 has occurred. Therefore, the ECU 11 supplies power supplied to the auxiliary machinery 12 via the DC / DC converter 9 not by regenerative power of the traveling motor 1 via the PDU 3 but by power stored in the high-voltage battery 5. Then, the PDU 3 is instructed to stop power generation by a zero torque instruction.
[0045]
At this time, if the excess power of the overcharged high voltage battery 5 is small, the overcharge state of the high voltage battery 5 due to the power consumption of the auxiliary machines 12 as shown by the dotted line from time t3 in FIG. Is resolved. However, when the excessive power of the overcharged high voltage battery 5 cannot be consumed due to the power consumption of the auxiliary machinery 12, the input / output voltage Vbatt of the high voltage battery 5 further increases. As shown, if the input / output voltage Vbatt further rises above the specified value, it is determined that the remaining capacity SOC is equal to or higher than the upper limit SOC and overcharging of the high voltage battery 5 continues.
[0046]
Therefore, if there is an operation request for the vehicle air conditioner 14 and the requested air conditioning performance can be maintained by operating the electric compressor 16, the ECU 11 further performs the electric compressor 16 as shown from time t4 to time t5, for example. To control the temperature in the vehicle by the vehicle air conditioner 14, and, for example, until the time t5 when the overcharge state of the high voltage battery 5 is eliminated, the electric compressor 16 performs the discharge process of the high voltage battery 5. Continue to eliminate the overcharge state of the high voltage battery 5.
[0047]
【The invention's effect】
As described above, according to the hybrid vehicle control device of the present invention, when the power storage amount of the power storage device is equal to or greater than a predetermined value and it can be determined that the power storage device is in an overcharged state, the compression provided in the vehicle air conditioner By starting driving by the power of the electric motor of the device, excess electric power of the overcharged power storage device can be consumed by the electric motor, and the amount of power stored in the power storage device can be reduced. At this time, by stopping the drive of the compression device by the power of the engine, all the drive of the compression device is covered by the power of the electric motor, and the electric motor consumes more excess power of the overcharged power storage device. The amount of electricity stored in the electricity storage device can be reduced in a short time.
[0048]
Furthermore, when it is determined that the amount of power stored in the power storage device has decreased from a predetermined value and the overcharged state of the power storage device has been eliminated, the power storage device using the electric motor can be started by allowing the compressor to start driving with the power of the engine. The power storage amount of the power storage device can be maintained in an optimal state without wasting power consumption.
[0049]
Accordingly, there is an error in the current sensor that detects the current flowing through the power storage device, and even if the power storage device is overcharged, the overcharge state of the power storage device can be quickly eliminated, and the battery overcharge The effect that the control apparatus of the hybrid vehicle which prevents can be implement | achieved is acquired. Further, since it is not necessary to drive the driving motor in order to prevent overcharging in a driving state where the effect of assisting driving is small, it is possible to obtain an effect that efficient driving can be executed.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of a control device for a hybrid vehicle according to an embodiment of the present invention.
FIG. 2 is a flowchart showing a battery overcharge protection operation by the hybrid vehicle control device of the embodiment;
FIG. 3 is a diagram showing a state change of a high-voltage battery due to a battery overcharge protection operation in the hybrid vehicle control device of the embodiment;
[Explanation of symbols]
1 Driving motor
2 Engine
5 High voltage battery (power storage device)
11 ECU (control unit)
14 Vehicle air conditioner
16 Electric compressor (compressor)
19 Engine driven compressor (compressor)

Claims (4)

エンジンまたは走行用モータの少なくとも一方の動力により走行可能なハイブリット車両の制御装置であって、
前記走行用モータの駆動または回生に伴い電力を充放電する蓄電装置と、
前記エンジン及び電動モータの両方を動力源として動作可能な圧縮装置を有する車両用空調装置と、
前記蓄電装置の充放電を制御する制御部と
を備え、
前記制御部が、前記蓄電装置の蓄電量が所定値以上で、かつ前記車両用空調装置の動作要求がある場合、前記電動モータの動力による前記圧縮装置の駆動を開始する
ことを特徴とするハイブリット車両の制御装置。
A control device for a hybrid vehicle capable of traveling with the power of at least one of an engine or a traveling motor,
A power storage device that charges and discharges electric power when the driving motor is driven or regenerated, and
A vehicle air conditioner having a compression device operable with both the engine and the electric motor as a power source;
A controller that controls charging and discharging of the power storage device,
The hybrid is characterized in that the controller starts driving the compression device by the power of the electric motor when the amount of power stored in the power storage device is equal to or greater than a predetermined value and there is an operation request for the vehicle air conditioner. Vehicle control device.
前記制御部が、前記エンジンの動力による前記圧縮装置の駆動を中止する
ことを特徴とする請求項1に記載のハイブリット車両の制御装置。
The control device for a hybrid vehicle according to claim 1, wherein the control unit stops driving the compression device by power of the engine.
前記制御部が、前記蓄電装置の蓄電量が前記所定値より減少した場合、前記エンジンの動力による前記圧縮装置の駆動を開始可能とする
ことを特徴とする請求項2に記載のハイブリット車両の制御装置。
3. The control of a hybrid vehicle according to claim 2, wherein when the amount of electricity stored in the power storage device has decreased below the predetermined value, the control unit can start driving the compression device by power of the engine. apparatus.
前記圧縮装置が、前記エンジンを動力源として駆動するエンジン駆動コンプレッサと、前記電動モータを動力源として駆動する電動コンプレッサとを備える
ことを特徴とする請求項1から請求項3のいずれかに記載のハイブリット車両の制御装置。
The said compression apparatus is provided with the engine drive compressor which drives the said engine as a motive power source, and the electric compressor which drives the said electric motor as a motive power source, The Claim 1 characterized by the above-mentioned. Control device for hybrid vehicle.
JP2003197282A 2003-07-15 2003-07-15 Controller of hybrid vehicle Pending JP2005039885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003197282A JP2005039885A (en) 2003-07-15 2003-07-15 Controller of hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003197282A JP2005039885A (en) 2003-07-15 2003-07-15 Controller of hybrid vehicle

Publications (1)

Publication Number Publication Date
JP2005039885A true JP2005039885A (en) 2005-02-10

Family

ID=34207486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003197282A Pending JP2005039885A (en) 2003-07-15 2003-07-15 Controller of hybrid vehicle

Country Status (1)

Country Link
JP (1) JP2005039885A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223663A (en) * 2010-04-06 2011-11-04 Mitsubishi Electric Corp Electric energy controller for vehicle
JP2011259592A (en) * 2010-06-08 2011-12-22 Toyota Motor Corp Power supply apparatus and vehicle
JP2013241068A (en) * 2012-05-18 2013-12-05 Honda Motor Co Ltd Control device of hybrid vehicle
JP2015162933A (en) * 2014-02-26 2015-09-07 株式会社デンソー Regenerative braking control device of electric vehicle
US9206793B2 (en) 2012-09-19 2015-12-08 Hyundai Motor Company Apparatus and method for generating air pressure in eco-friendly vehicle
WO2018066625A1 (en) * 2016-10-06 2018-04-12 株式会社デンソー Rotary electric machine control device
JP2018061370A (en) * 2016-10-06 2018-04-12 株式会社デンソー Power supply system control device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223663A (en) * 2010-04-06 2011-11-04 Mitsubishi Electric Corp Electric energy controller for vehicle
JP2011259592A (en) * 2010-06-08 2011-12-22 Toyota Motor Corp Power supply apparatus and vehicle
JP2013241068A (en) * 2012-05-18 2013-12-05 Honda Motor Co Ltd Control device of hybrid vehicle
US9206793B2 (en) 2012-09-19 2015-12-08 Hyundai Motor Company Apparatus and method for generating air pressure in eco-friendly vehicle
JP2015162933A (en) * 2014-02-26 2015-09-07 株式会社デンソー Regenerative braking control device of electric vehicle
US9321463B2 (en) 2014-02-26 2016-04-26 Denso Corporation Regenerative braking apparatus for electric vehicle
WO2018066625A1 (en) * 2016-10-06 2018-04-12 株式会社デンソー Rotary electric machine control device
JP2018061370A (en) * 2016-10-06 2018-04-12 株式会社デンソー Power supply system control device
WO2018066624A1 (en) * 2016-10-06 2018-04-12 株式会社デンソー Power supply system control device

Similar Documents

Publication Publication Date Title
JP3566252B2 (en) Hybrid vehicle and control method thereof
JP3615445B2 (en) Hybrid car power supply
US7196492B2 (en) Power supply apparatus including fuel cell and capacitor, and operation method thereof
JP3857146B2 (en) Control device for hybrid vehicle
JP3625789B2 (en) Vehicle power supply
JP3749143B2 (en) Vehicle power supply
JP2005045883A (en) Hybrid vehicle
JP7020293B2 (en) Battery discharge controller
JP2005036700A (en) Control device of hybrid vehicle
JP7178892B2 (en) vehicle battery charging controller
JP2001119808A (en) Control device for hybrid electric vehicle
CN110707768B (en) Charging control device and charging control system
KR101803153B1 (en) Fuel cell vehicle and control method therefor
JP2006180658A (en) Hybrid vehicle equipped with variable voltage battery
JP2004023803A (en) Voltage controller for battery pack
KR101487560B1 (en) Electric power supply for industrial vehicle and control method thereof
JP7230635B2 (en) Electric power system and its control method
JP2001292506A (en) Control apparatus for hybrid vehicle
JP3094701B2 (en) Control device for engine drive generator for electric vehicle
JP2008001301A (en) Controller of hybrid vehicle
JP2005039885A (en) Controller of hybrid vehicle
JP2020100259A (en) Power supply device for vehicle
JP4127078B2 (en) Vehicle power supply control device
JP2006158161A (en) Charge/discharge control device for motor battery
JP3730246B2 (en) Control device and control method for hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070320