JP2005039217A - Intermediate substrate - Google Patents

Intermediate substrate Download PDF

Info

Publication number
JP2005039217A
JP2005039217A JP2004160224A JP2004160224A JP2005039217A JP 2005039217 A JP2005039217 A JP 2005039217A JP 2004160224 A JP2004160224 A JP 2004160224A JP 2004160224 A JP2004160224 A JP 2004160224A JP 2005039217 A JP2005039217 A JP 2005039217A
Authority
JP
Japan
Prior art keywords
core
terminal
sub
type
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004160224A
Other languages
Japanese (ja)
Inventor
Rokuro Kanbe
六郎 神戸
Tetsuya Kashiwagi
哲哉 柏木
Yukihiro Kimura
幸広 木村
Yasuhiro Sugimoto
康宏 杉本
Kazuhiro Suzuki
一広 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2004160224A priority Critical patent/JP2005039217A/en
Priority to TW093139945A priority patent/TWI267880B/en
Priority to CNB200410061538XA priority patent/CN100367491C/en
Publication of JP2005039217A publication Critical patent/JP2005039217A/en
Priority to US11/127,192 priority patent/US6979890B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intermediate substrate in which difference of the linear expansion coefficient from the semiconductor integrated circuit element side can be reduced sufficiently for all terminals on the intermediate substrate and circuit discontinuity due to thermal stresses is prevented. <P>SOLUTION: The intermediate substrate 200 comprises a substrate core 100 consisting of a core body section 100m formed in a plate of a polymer material and having a sub-core containing part 100h opened in the first major surface to reduce its own thickness, and a ceramic sub-core section 1 formed in a plate of ceramic and contained in the sub-core containing part 100h while aligning the thickness direction with the core body section 100m. A first terminal array 5 consisting of first side first class terminal 5a and a first side second class terminal 5b one of which functions as a power supply terminal and the other functions as a ground terminal, and a first side signal terminal 5s is formed on the first major surface side of the substrate core 100. The first terminal array 5 is formed in such a positional relation as the entirety is included in the projection area of the ceramic sub-core section 1 in the orthogonal projection to a reference plane parallel with the plane surface of the substrate core 100. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は中間基板に関する。   The present invention relates to an intermediate substrate.

特開2001−035966号公報JP 2001-035966 A

CPUやその他のLSIなどの高速動作する半導体集積回路素子は近年ますます小型化しており、信号端子、電源端子あるいはグランド端子の数が増加し、端子間距離も縮小しつつある。多数の端子が密集した集積回路側の端子アレーは、フリップチップ形態でマザーボード側に接続する技術が一般化しているが、集積回路側の端子アレーとマザーボード側の端子アレーとは端子間隔に大きな差があり、これを変換するための中間基板が必要となる。   In recent years, semiconductor integrated circuit elements that operate at high speed, such as CPUs and other LSIs, are becoming increasingly smaller, and the number of signal terminals, power supply terminals, or ground terminals is increasing, and the distance between terminals is also decreasing. For the integrated circuit side terminal array, where many terminals are densely packed, the technology of connecting to the motherboard side in a flip-chip form has become common, but there is a large difference in terminal spacing between the integrated circuit side terminal array and the motherboard side terminal array. Therefore, an intermediate substrate for converting this is required.

上記のような中間基板のうち、オーガニックパッケージ基板と称されるものは、高分子材料からなる誘電体層と導体層とが交互に積層された配線積層部を有し、該配線積層部の誘電体層にて形成された第一主表面上に、フリップチップ接続用の端子アレーが配置される。配線積層部は、ガラス繊維にて強化されたエポキシ樹脂など、高分子材料を主体とする基板コア上に形成される。IC側の端子間隔と、接続先となる主基板(マザーボード)側の端子間隔との間に相当の開きがある場合、その変換のための配線やビアの配設パターンは、端子数が増加していることも相まって、微細化及び複雑化する傾向にあるが、オーガニックパッケージ基板は、フォトリソグラフィー技術とメッキ技術との組み合わせにより、このように微細で複雑な配線パターンも高精度かつ容易に形成できる利点がある。   Among the above-mentioned intermediate substrates, what is called an organic package substrate has a wiring laminated portion in which dielectric layers and conductor layers made of a polymer material are alternately laminated, and the dielectric of the wiring laminated portion. A terminal array for flip chip connection is arranged on the first main surface formed of the body layer. The wiring laminated portion is formed on a substrate core mainly composed of a polymer material such as an epoxy resin reinforced with glass fiber. When there is a considerable gap between the terminal spacing on the IC side and the terminal spacing on the main board (motherboard) side that is the connection destination, the number of terminals increases in the wiring and via arrangement pattern for the conversion. However, the organic package substrate can form such a fine and complicated wiring pattern with high accuracy and ease by combining the photolithography technology and the plating technology. There are advantages.

しかしながら、オーガニックパッケージ基板は、接続先となる主基板(例えばマザーボード)が高分子材料を主体とするものであることに加え、自身の構成材料自体も高分子材料を主体とするものであるから、半田リフローなどの熱履歴が加わると、シリコンを主体とする半導体集積回路素子(線膨張係数は例えば2〜3ppm/℃)と主基板(線膨張係数は例えば17〜18ppm/℃)との線膨張係数差を吸収しきれず、半田剥がれなどの不具合につながる惧れがある。   However, in the organic package substrate, in addition to the main substrate (for example, the mother board) as the connection destination being mainly composed of a polymer material, the component material itself is mainly composed of a polymer material. When a thermal history such as solder reflow is applied, the linear expansion of a semiconductor integrated circuit element mainly composed of silicon (linear expansion coefficient is, for example, 2-3 ppm / ° C.) and the main substrate (linear expansion coefficient is, for example, 17-18 ppm / ° C.). The coefficient difference cannot be fully absorbed, which may lead to problems such as solder peeling.

他方、特許文献1等には、基板の主材料をセラミックで構成した、セラミックパッケージ基板が開示されている。このようなセラミックパケージ基板を用いると、フリップチップ接続された半導体集積回路素子と主基板との間の大きな線膨張係数の差を埋めることができ、特に半導体集積回路素子との端子間のはんだ接合部が熱応力により断線したりする不具合を効果的に防止することができる。   On the other hand, Patent Document 1 discloses a ceramic package substrate in which the main material of the substrate is made of ceramic. By using such a ceramic package substrate, it is possible to fill a large difference in linear expansion coefficient between the flip-chip connected semiconductor integrated circuit element and the main substrate, and in particular, solder bonding between terminals of the semiconductor integrated circuit element. It is possible to effectively prevent a problem that the portion is disconnected due to thermal stress.

しかしながら、セラミックパッケージ基板は、配線部が金属ペーストの印刷・焼成を利用して形成されるため、フォトリソグラフィー技術が利用できるオーガニックパッケージ基板ほどには配線部を微細化・高集積化することは困難であり、半導体集積回路素子側の端子間隔の縮小にも限界がある。そこで、主基板側にオーガニックパッケージ基板からなる第一の中間基板を接続し、その第一の中間基板にセラミックからなる第二の中継基板を接続し、その第二の中継基板に半導体集積回路素子を接続する多段の基板接続構造を考えることもできるが、中間基板の枚数が増える分だけ、基板接続構造の高さ方向の寸法が増大するので小形化の要求に応じることが困難となり、また、接続工程数も増えるので非能率となる欠点もある。   However, in a ceramic package substrate, the wiring part is formed by printing and baking metal paste, so that it is difficult to make the wiring part finer and highly integrated than an organic package substrate that can use photolithography technology. Therefore, there is a limit to the reduction of the terminal interval on the semiconductor integrated circuit element side. Therefore, a first intermediate substrate made of an organic package substrate is connected to the main substrate side, a second relay substrate made of ceramic is connected to the first intermediate substrate, and a semiconductor integrated circuit element is connected to the second relay substrate. It is also possible to consider a multi-stage board connection structure that connects the two, but as the number of intermediate boards increases, the height of the board connection structure increases, making it difficult to meet the demand for miniaturization. Since the number of connection processes increases, there is also a disadvantage that becomes inefficient.

本発明の課題は、熱応力による断線等が発生しにくく、しかも基板接続構造全体の低背化も容易に図ることができて接続工数も削減できる中間基板を提供することにある。   An object of the present invention is to provide an intermediate substrate that is less likely to cause disconnection due to thermal stress, and that can easily reduce the overall height of the substrate connection structure and reduce the number of connection steps.

発明を解決するための手段及び発明の効果Means for Solving the Invention and Effects of the Invention

上記の課題を解決するために、本発明の中間基板は、
高分子材料(セラミック繊維や粒子などのフィラーと複合化された材料を概念として含む)により板状に構成され、第一主表面に自身の厚さを減ずる形で副コア収容部が開口形成されたコア本体部と、コア本体部よりも線膨張係数が小さい材料により板状に構成され、副コア収容部内にコア本体部と厚さ方向を一致させる形で収容された副コア部とからなる基板コアと、
前記基板コアの第一主表面側に形成され、一方が電源端子、他方がグランド端子として機能する第一側第一種端子及び第一側第二種端子と、第一側信号端子とからなる第一端子アレーと、
前記基板コアの第二主表面側に形成され、前記第一側第一種端子及び第二種端子にそれぞれ導通する第二側第一種端子及び第二側第二種端子と、前記第一側信号端子に導通する第二側信号端子とからなる第二端子アレーとを有し、
前記第一端子アレーが、前記基板コアの板面と平行な基準面への正射投影において、前記副コア部の投影領域と重なる位置関係にて形成されてなることを特徴とする。
In order to solve the above problems, the intermediate substrate of the present invention is
It is made of a polymer material (conceptually including materials combined with fillers such as ceramic fibers and particles), and the sub-core housing part is formed in the first main surface so as to reduce its thickness. And a sub-core portion that is configured in a plate shape with a material having a smaller linear expansion coefficient than the core main-body portion, and is accommodated in the sub-core accommodating portion so that the thickness direction coincides with the core main-body portion. A substrate core;
Formed on the first main surface side of the substrate core, one is a power supply terminal, the other functions as a ground terminal, a first side first type terminal and a first side second type terminal, and a first side signal terminal A first terminal array;
A second side first type terminal and a second side second type terminal formed on the second main surface side of the substrate core and respectively conducting to the first side first type terminal and the second type terminal; A second terminal array composed of a second side signal terminal conducting to the side signal terminal;
The first terminal array is formed in a positional relationship overlapping with a projection region of the sub-core portion in orthographic projection onto a reference plane parallel to the plate surface of the substrate core.

上記構成によると、半導体集積回路素子側とフリップチップ接続される第一端子アレーの領域と重なるように、高分子材料からなるコア本体よりも線膨張係数の小さい材料からなる副コア部を、基板コア内に埋設した構造を有するので、第一端子アレー内の端子に対し、半導体集積回路素子側との線膨張係数差を十分に縮小することができ、ひいては熱応力による断線等を大幅に生じにくくすることができる。また、第一の中間基板に相当するコア本体部に、第二の中間基板に相当する副コア部を埋設するので、中間基板を用いた半導体集積回路素子と主基板との接続構造全体の低背化を図ることができ、接続工数も削減できる。   According to the above configuration, the sub-core portion made of a material having a smaller linear expansion coefficient than the core body made of a polymer material is disposed on the substrate so as to overlap the region of the first terminal array flip-chip connected to the semiconductor integrated circuit element side. Since it has a structure embedded in the core, the difference in coefficient of linear expansion between the terminals in the first terminal array and the semiconductor integrated circuit element side can be sufficiently reduced, resulting in significant disconnection due to thermal stress. Can be difficult. In addition, since the sub core portion corresponding to the second intermediate substrate is embedded in the core body portion corresponding to the first intermediate substrate, the overall connection structure between the semiconductor integrated circuit element using the intermediate substrate and the main substrate is reduced. The height can be reduced and the connection man-hours can be reduced.

本発明の中間基板は、以下のように構成することもできる。すなわち、高分子材料(セラミック繊維や粒子などのフィラーと複合化された材料を概念として含む)により板状に構成され、第一主表面に自身の厚さを減ずる形で副コア収容部が開口形成されたコア本体部と、コア本体部よりも線膨張係数が小さい材料により板状に構成され、副コア収容部内にコア本体部と厚さ方向を一致させる形で収容された副コア部とからなる基板コアと、
基板コアの第一主表面側に形成され、一方が電源端子、他方がグランド端子として機能する第一側第一種端子及び第一側第二種端子と、第一側信号端子とからなる第一端子アレーと、
基板コアの第二主表面側に形成され、第一側第一種端子及び第二種端子にそれぞれ導通する第二側第一種端子及び第二側第二種端子と、第一側信号端子に導通する第二側信号端子とからなる第二端子アレーとを有し、
第一端子アレーが、基板コアの板面と平行な基準面への正射投影において、副コア部の投影領域内に全体が包含される位置関係にて形成されてなる。
The intermediate substrate of the present invention can also be configured as follows. In other words, it is made of a polymer material (conceptually including materials combined with fillers such as ceramic fibers and particles), and the sub-core housing is opened on the first main surface in a form that reduces its own thickness. A formed core body, and a sub-core part that is configured in a plate shape with a material having a smaller linear expansion coefficient than the core body part, and is accommodated in the sub-core accommodating part so that the core body part and the thickness direction coincide with each other. A substrate core comprising:
A first side first type terminal and a first side second type terminal formed on the first main surface side of the substrate core, one functioning as a power supply terminal, the other functioning as a ground terminal, and a first side signal terminal. A one-terminal array;
Second side first type terminal and second side second type terminal formed on the second main surface side of the substrate core and conducting to the first side first type terminal and second type terminal, respectively, and the first side signal terminal A second terminal array comprising a second side signal terminal conducting to
The first terminal array is formed in a positional relationship that is entirely included in the projection region of the sub-core portion in orthographic projection onto a reference plane parallel to the plate surface of the substrate core.

上記構成によると、半導体集積回路素子側とフリップチップ接続される第一端子アレーの全領域を包含するように寸法調整された副コア部を、基板コア内に埋設した構造を有するので、第一端子アレー内の全ての端子に対し、半導体集積回路素子側との線膨張係数差を十分に縮小することができ、ひいては熱応力による断線等をさらに生じにくくすることができる。また、第一の中間基板に相当するコア本体部に、第二の中間基板に相当する副コア部を埋設するので、中間基板を用いた半導体集積回路素子と主基板との接続構造全体の低背化を図ることができ、接続工数も削減できる。   According to the above configuration, since the sub-core portion adjusted in size so as to include the entire region of the first terminal array flip-chip connected to the semiconductor integrated circuit element side is embedded in the substrate core, For all the terminals in the terminal array, the difference in linear expansion coefficient from the semiconductor integrated circuit element side can be sufficiently reduced, so that disconnection due to thermal stress can be further prevented. In addition, since the sub core portion corresponding to the second intermediate substrate is embedded in the core body portion corresponding to the first intermediate substrate, the overall connection structure between the semiconductor integrated circuit element using the intermediate substrate and the main substrate is reduced. The height can be reduced and the connection man-hours can be reduced.

以上の本発明の効果は、副コア部が第一端子アレーの形成領域と同等もしくは大面積にて形成されている場合に特に著しい。   The effects of the present invention described above are particularly remarkable when the sub-core portion is formed in the same area as the first terminal array formation area or in a large area.

副コア部は、コア本体部よりも線膨張係数の小さければ材質は特に限定されない。しかしながら、高分子材料の線膨張係数が比較的高いことなどを考慮すれば、副コア部はセラミックからなるセラミック副コア部とすることが、半導体集積回路素子との間の線膨張係数差を縮小効果をより顕著に達成する観点において好都合である。   The material of the sub-core part is not particularly limited as long as the linear expansion coefficient is smaller than that of the core body part. However, considering that the linear expansion coefficient of the polymer material is relatively high, it is possible to reduce the difference in linear expansion coefficient with the semiconductor integrated circuit element by making the sub core part a ceramic sub core part made of ceramic. This is advantageous in terms of achieving the effect more remarkably.

この場合、セラミック副コア部をなすセラミックは、アルミナ(7〜8ppm/℃)や、ガラスセラミック(ホウケイ酸系ガラスあるいはホウケイ酸鉛系ガラスにアルミナ等の無機セラミックフィラーを40〜60重量部添加した一種の複合材料である)などを使用できる。前者は線膨張係数が種々のセラミックの中でも特に小さく、接続するべき半導体集積回路素子との間の線膨張係数差の縮小効果に優れる。他方、後者は、低温焼成が容易であり、また、必要に応じて金属配線部やビアなどを形成する際にも、CuやAgを主体とする比較的低融点の高導電率金属材料との同時焼成が可能であるなどの利点がある。   In this case, 40-60 parts by weight of an inorganic ceramic filler such as alumina is added to alumina (7-8 ppm / ° C.) or glass ceramic (borosilicate glass or lead borosilicate glass) as the ceramic forming the ceramic sub-core part. It is a kind of composite material). The former has a particularly small linear expansion coefficient among various ceramics, and is excellent in the effect of reducing the difference in linear expansion coefficient with the semiconductor integrated circuit element to be connected. On the other hand, the latter is easy to be fired at a low temperature, and when forming a metal wiring part, a via, or the like, if necessary, a relatively low melting point high conductivity metal material mainly composed of Cu or Ag. There are advantages such as simultaneous firing.

また、セラミック副コア部をなすセラミックは、Si成分の含有率がSiO換算にて68質量%以上99質量%以下であり、Si以外のカチオン成分が、室温から200℃までの温度範囲においてSiOよりも線膨張係数の大きい酸化物を形成する酸化物形成カチオンにて構成されることにより、1ppm/℃室温から200℃までの平均の線膨張係数が1ppm/℃以上7ppm/℃以下に調整されてなる酸化物系ガラス材料で構成することもできる。 In addition, the ceramic constituting the ceramic sub-core part has a Si component content of 68% by mass or more and 99% by mass or less in terms of SiO 2 , and a cation component other than Si is SiO in a temperature range from room temperature to 200 ° C. The average linear expansion coefficient from 1 ppm / ° C. room temperature to 200 ° C. is adjusted to 1 ppm / ° C. or more and 7 ppm / ° C. or less by being composed of oxide-forming cations that form oxides having a linear expansion coefficient larger than 2. It can also be comprised with the oxide type glass material formed.

室温から200℃までの温度範囲におけるSiOの線膨張係数は1ppm/℃前後と非常に小さく、それよりも線膨張係数の大きい酸化物を形成する酸化物形成カチオンを含有した上記のようなガラス材料で副コア部を構成することにより、その酸化物形成カチオンの種類と含有量に応じてガラス材料の線膨張係数を1ppm/℃以上の任意の値に自由に調整できる。その結果、該ガラス材料を用いた副コア部は、実装される半導体集積回路素子との線膨張係数の差を可及的に縮小することができ、フリップチップ接続等による半導体集積回路素子との端子接続状態の信頼性を大幅に向上させることができる。 The linear expansion coefficient of the SiO 2 in the temperature range up to 200 ° C. from room temperature 1 ppm / ° C. before and after the very small, the glass such as containing an oxide forming cation forming a large oxide coefficient of linear expansion than By constituting the sub-core portion with the material, the linear expansion coefficient of the glass material can be freely adjusted to an arbitrary value of 1 ppm / ° C. or more according to the type and content of the oxide-forming cation. As a result, the sub-core portion using the glass material can reduce the difference in linear expansion coefficient with the semiconductor integrated circuit element to be mounted as much as possible. The reliability of the terminal connection state can be greatly improved.

接続対象となる半導体集積回路素子がSi半導体部品である場合は、Siの線膨張係数が3ppm/℃前後であることから、酸化物系ガラス材料の線膨張係数は1ppm以上6ppm以下、特に、2ppm/℃以上5ppm/℃以下に調整することが望ましい。他方、接続対象となる半導体集積回路素子がGaAsと格子整合するIII−V族化合物からなる化合物半導体部品である場合、該半導体の線膨張係数が5〜6ppm/℃程度なので、酸化物系ガラス材料の線膨張係数が4ppm/℃以上7ppm/℃以下に調整されていることが望ましい。いずれの場合も、副コア部上に実装された半導体集積回路素子との端子接続構造に、部品/基板間の線膨張係数差に基づく熱的な剪断応力が作用しにくくなり、接続破断などの不具合発生確率を大幅に減ずることができる。   When the semiconductor integrated circuit element to be connected is a Si semiconductor component, since the linear expansion coefficient of Si is around 3 ppm / ° C., the linear expansion coefficient of the oxide-based glass material is 1 ppm or more and 6 ppm or less, particularly 2 ppm. It is desirable to adjust to / ppm or more and 5 ppm / ° C or less. On the other hand, when the semiconductor integrated circuit element to be connected is a compound semiconductor component made of a III-V group compound lattice-matched with GaAs, the linear expansion coefficient of the semiconductor is about 5-6 ppm / ° C. It is desirable that the linear expansion coefficient is adjusted to 4 ppm / ° C. or more and 7 ppm / ° C. or less. In either case, thermal shear stress based on the difference in coefficient of linear expansion between the component and the substrate is less likely to act on the terminal connection structure with the semiconductor integrated circuit element mounted on the sub-core part, and connection breakage, etc. The probability of failure occurrence can be greatly reduced.

この場合、副コア部を構成する酸化物系ガラス材料のSiOの含有率が68質量%未満では、ガラス材料の線膨張係数を7ppm/℃以下に留めることが困難となり、半導体部品との間の線膨張係数差を十分に縮小できなくなる。99質量%を超えると、ガラス融点が上昇し、気泡残留等の小さい良質のガラスをガラスの製造コストが増大する。また、ガラス材料の線膨張係数1ppm/℃以上に確保することが難しくなる場合もある。 In this case, if the SiO 2 content of the oxide glass material constituting the sub-core portion is less than 68% by mass, it is difficult to keep the linear expansion coefficient of the glass material at 7 ppm / ° C. The difference in linear expansion coefficient cannot be sufficiently reduced. When it exceeds 99% by mass, the glass melting point increases, and the production cost of glass of high quality glass with small residual bubbles and the like increases. Moreover, it may be difficult to ensure the linear expansion coefficient of the glass material to 1 ppm / ° C. or higher.

以下、本発明の実施の形態を、図面を用いて説明する。
図1は、本発明の一実施形態をなす中間基板1を、半導体集積回路素子2と主基板3との間に配置される中間基板として構成した例である。また、本実施形態において板状部材の第一主表面は、図中にて上側に表れている面とし、第二主表面は下側に表れている面とする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example in which an intermediate substrate 1 constituting an embodiment of the present invention is configured as an intermediate substrate disposed between a semiconductor integrated circuit element 2 and a main substrate 3. In the present embodiment, the first main surface of the plate-like member is a surface appearing on the upper side in the drawing, and the second main surface is a surface appearing on the lower side.

半導体集積回路素子2は第二主表面に各々複数の信号端子、電源端子及びグランド端子からなる素子側端子アレー4を有し、中間基板1の第一主表面に形成された第一端子アレー5に対し、半田接続部6を介してフリップチップ接続されている。他方、主基板3はマザーボード、あるいは2段目の中間基板をなすオーガニック積層パッケージ基板であり、いずれもセラミック粒子あるいは繊維をフィラーとして強化された高分子材料を主体に構成されており、半田ボールあるいは金属ピンからなる主基板側端子アレー8において、中間基板1の第二主表面に形成された第二端子アレー7に対し、半田接続部6を介して接続されている。   The semiconductor integrated circuit element 2 has an element side terminal array 4 including a plurality of signal terminals, a power supply terminal, and a ground terminal on the second main surface, and a first terminal array 5 formed on the first main surface of the intermediate substrate 1. On the other hand, it is flip-chip connected via the solder connection portion 6. On the other hand, the main substrate 3 is a mother board or an organic laminated package substrate forming a second-stage intermediate substrate, each of which is mainly composed of a polymer material reinforced with ceramic particles or fibers as fillers. The main board side terminal array 8 made of metal pins is connected to the second terminal array 7 formed on the second main surface of the intermediate board 1 via the solder connection portion 6.

図3に示すように、中間基板200は、高分子材料により板状に構成され、第一主表面に自身の厚さを減ずる形で副コア収容部100hが開口形成されたコア本体部100mと、セラミックにより板状に構成され、副コア収容部100h内にコア本体部100mと厚さ方向を一致させる形で収容されたセラミック副コア部1とからなる基板コア100を有する。該基板コア100の第一主表面側には、一方が電源端子、他方がグランド端子として機能する第一側第一種端子5a及び第一側第二種端子5bと、第一側信号端子5sとからなる第一端子アレー5が形成されている。   As shown in FIG. 3, the intermediate substrate 200 is configured in a plate shape with a polymer material, and a core main body portion 100m having an opening formed in the first main surface with a sub-core housing portion 100h formed in a form that reduces its thickness. The substrate core 100 is composed of a ceramic sub-core portion 1 that is configured in a plate shape with ceramic and is housed in the sub-core housing portion 100h so that the core main body portion 100m and the thickness direction coincide with each other. On the first main surface side of the substrate core 100, a first side first type terminal 5a and a first side second type terminal 5b, one of which functions as a power supply terminal and the other functions as a ground terminal, and a first side signal terminal 5s. A first terminal array 5 is formed.

そして、第一端子アレー5は、基板コア100の板面と平行な基準面への正射投影において、セラミック副コア部1の投影領域内に全体が包含される位置関係にて形成されて形成されている。つまり、第一側第一種端子5a、第一側第二種端子5b及び第一側信号端子5sの全てが、セラミック副コア部1上にて半導体集積回路素子2(の素子側端子アレー4)とフリップチップ接合される。これにより、第一端子アレー5内の全ての端子に対し、半導体集積回路素子2側との線膨張係数差を十分に縮小することができ、ひいては熱応力による断線等を大幅に生じにくくすることができる。図3の中間基板200においては、セラミック副コア部1が第一端子アレー5の形成領域よりも大面積とされ、熱応力低減効果がより高められている。   The first terminal array 5 is formed and formed in a positional relationship that is entirely included in the projection region of the ceramic sub-core portion 1 in the orthogonal projection onto the reference plane parallel to the plate surface of the substrate core 100. Has been. That is, all of the first-side first-type terminal 5a, the first-side second-type terminal 5b, and the first-side signal terminal 5s are connected to the semiconductor integrated circuit element 2 (the element-side terminal array 4) on the ceramic sub-core portion 1. ) And flip chip bonding. As a result, for all the terminals in the first terminal array 5, the difference in linear expansion coefficient from the semiconductor integrated circuit element 2 side can be sufficiently reduced, so that disconnection due to thermal stress is hardly caused. Can do. In the intermediate substrate 200 of FIG. 3, the ceramic sub-core portion 1 has a larger area than the region where the first terminal array 5 is formed, and the thermal stress reduction effect is further enhanced.

コア本体部100mは、例えば、耐熱性樹脂板(例えばビスマレイミド−トリアジン樹脂板)や、繊維強化樹脂板(例えばガラス繊維強化エポキシ樹脂)等で板状に構成される。   The core main body 100m is configured in a plate shape with, for example, a heat-resistant resin plate (for example, bismaleimide-triazine resin plate), a fiber reinforced resin plate (for example, glass fiber reinforced epoxy resin), or the like.

また、セラミック副コア部1の構成セラミック材料としては、アルミナ(7〜8ppm/℃)や、ホウケイ酸系ガラスあるいはホウケイ酸鉛系ガラスにアルミナ等の無機セラミックフィラーを40〜60重量部添加したガラスセラミックなどを使用できる。また、その他のセラミック材料としては、窒化アルミニウム、窒化珪素、ムライト、二酸化珪素、酸化マグネシウムなども使用可能である。さらに、セラミック副コア部1は、コア本体部100mよりも線膨張係数が小さい、という条件を充足できるのであれば、例えば高分子材料とセラミックとの複合材料(例えば、コア本体部よりもセラミックの重量含有比率の高い、高分子材料とセラミックとの複合材料)にて構成することもできる。他方、参考技術として、セラミック副コア部1を、半導体素子との線膨張係数が類似している観点から、シリコン副コア部で置き換えることも可能である   Moreover, as a constituent ceramic material of the ceramic sub-core part 1, glass in which 40 to 60 parts by weight of an inorganic ceramic filler such as alumina is added to alumina (7 to 8 ppm / ° C.), borosilicate glass or lead borosilicate glass. Ceramic etc. can be used. As other ceramic materials, aluminum nitride, silicon nitride, mullite, silicon dioxide, magnesium oxide, and the like can also be used. Further, if the ceramic sub-core portion 1 can satisfy the condition that the linear expansion coefficient is smaller than that of the core main body portion 100m, for example, a composite material of a polymer material and ceramic (for example, a ceramic material more than the core main body portion). It can also be composed of a composite material of a polymer material and a ceramic having a high weight content ratio. On the other hand, as a reference technique, it is possible to replace the ceramic sub-core portion 1 with a silicon sub-core portion from the viewpoint that the linear expansion coefficient with the semiconductor element is similar.

他方、セラミック副コア部をなすセラミックは、ガラス材料、例えば骨格成分が二酸化珪(シリカ)であるシリカ系ガラスで構成することもできる。この場合、セラミック誘電体としての用途に適した物性調整を行なうため、SiO以外の種々のガラス添加成分を配合することができる。上記ガラス材料は、溶融ガラスの流動性を高め、気泡残留等を抑制する観点においては、煤溶材成分として、NaO、KOあるいはLIOなどのアルカリ金属酸化物や、B(硼酸)の配合が有効である。他方、BaOやSrOなどのアルカリ土類金属酸化物を添加すると、ガラス材料の誘電率特性を向上させることができる。しかし、過剰の添加は、ガラスの線膨張係数の増大、ひいては部品側との線膨張係数差の拡大を招きやすくなり、熱応力による接続不良などにつながる場合がある。また、ガラス軟化点の上昇により流動性低下が著しくなり、気泡残留等の不具合を招く場合がある。 On the other hand, the ceramic forming the ceramic sub-core portion can also be made of a glass material, for example, silica-based glass whose skeleton component is silica dioxide (silica). In this case, various glass additive components other than SiO 2 can be blended in order to adjust physical properties suitable for use as a ceramic dielectric. From the viewpoint of enhancing the fluidity of the molten glass and suppressing bubble residuals and the like, the glass material may contain alkali metal oxides such as Na 2 O, K 2 O, or LI 2 O, or B 2 O as a melting material component. 3 (boric acid) is effective. On the other hand, when an alkaline earth metal oxide such as BaO or SrO is added, the dielectric constant characteristics of the glass material can be improved. However, excessive addition tends to cause an increase in the linear expansion coefficient of the glass, and consequently an increase in the difference in linear expansion coefficient from the component side, which may lead to a connection failure due to thermal stress. Further, the increase in the glass softening point causes a significant decrease in fluidity, which may lead to problems such as residual bubbles.

そして、ガラスの線膨張係数の増大抑制には、SiO成分の含有率を高めること、あるいはZnOをガラス添加成分として配合することがそれぞれ有効である。一方、Ti、ZrないしHfの酸化物は、ガラスの誘電率特性向上の他、ガラスの耐水性改善にも効果がある。しかし、過剰の添加は、ガラス軟化点の上昇により流動性低下が著しくなり、気泡残留等の不具合を招く場合がある。 In order to suppress the increase in the linear expansion coefficient of glass, it is effective to increase the content of the SiO 2 component or to blend ZnO as a glass additive component. On the other hand, oxides of Ti, Zr, and Hf are effective in improving the water resistance of glass as well as improving the dielectric constant characteristics of glass. However, excessive addition causes a significant decrease in fluidity due to an increase in the glass softening point, which may cause problems such as residual bubbles.

シリカ系ガラス材料(酸化物系ガラス材料)は、Si成分の含有率がSiO換算にて68質量%以上99質量%以下であり、Si以外のカチオン成分が、室温から200℃までの温度範囲においてSiOよりも線膨張係数の大きい酸化物(以下、線膨張係数調整用酸化物という)を形成する酸化物形成カチオンにて構成されることにより、1ppm/℃室温から200℃までの平均の線膨張係数が1ppm/℃以上7ppm/℃以下に調整されたものを採用することにより、(線膨張係数がSiOより大きい)酸化物成分の種類と含有量とに応じて、ガラス材料の線膨張係数を1ppm/℃以上の任意の値に自由に調整できる。その結果、セラミック副コア部1は、実装される半導体部品1との線膨張係数の差を可及的に縮小することができる。半導体集積回路素子2がSi半導体部品(室温から200℃までの平均の線膨張係数:3ppm/℃)の場合、シリカ系ガラス材料の線膨張係数は1ppm以上6ppm以下、特に、2ppm/℃以上5ppm/℃以下に調整することが望ましい。他方、半導体集積回路素子2はGaAsと格子整合するIII−V族化合物からなる化合物半導体部品(例えばGaAs系の次世代型高速CPUやMMIC(Monolithic Microwave Integrated Circuit))で構成することもできるがこの場合は、該半導体の線膨張係数が5〜6ppm/℃程度なので、シリカ系ガラス材料の線膨張係数が4ppm/℃以上7ppm/℃以下に調整されていることが望ましい。 The silica-based glass material (oxide-based glass material) has a Si component content of 68% by mass or more and 99% by mass or less in terms of SiO 2 , and a cationic component other than Si has a temperature range from room temperature to 200 ° C. In which an oxide having a larger linear expansion coefficient than SiO 2 (hereinafter referred to as an oxide for adjusting the linear expansion coefficient) is formed of an oxide-forming cation, so that an average of 1 ppm / ° C. from room temperature to 200 ° C. By adopting a material whose linear expansion coefficient is adjusted to 1 ppm / ° C. or more and 7 ppm / ° C. or less, depending on the type and content of the oxide component (the linear expansion coefficient is larger than SiO 2 ), the wire of the glass material The expansion coefficient can be freely adjusted to an arbitrary value of 1 ppm / ° C. or higher. As a result, the ceramic sub-core portion 1 can reduce the difference in linear expansion coefficient with the semiconductor component 1 to be mounted as much as possible. When the semiconductor integrated circuit element 2 is a Si semiconductor component (average linear expansion coefficient from room temperature to 200 ° C .: 3 ppm / ° C.), the linear expansion coefficient of the silica-based glass material is 1 ppm to 6 ppm, particularly 2 ppm / ° C. to 5 ppm. It is desirable to adjust to below / ° C. On the other hand, the semiconductor integrated circuit element 2 can be composed of a compound semiconductor component (for example, a GaAs-based next-generation high-speed CPU or MMIC (Monolithic Microwave Integrated Circuit)) made of a group III-V compound lattice-matched with GaAs. In this case, since the linear expansion coefficient of the semiconductor is about 5 to 6 ppm / ° C., it is desirable that the linear expansion coefficient of the silica-based glass material is adjusted to 4 ppm / ° C. or more and 7 ppm / ° C. or less.

SiOよりも線膨張係数の大きい酸化物は、アルカリ金属酸化物(NaO、KO、LiO:20〜50ppm/℃)、アルカリ土類金属酸化物(BeO、MgO、CaO、SrO、BaO:8〜15ppm/℃)、ZnO(6ppm/℃)、Al(7ppm/℃)など、種々例示でき、誘電特性や融点、さらにはガラス流動性などを考慮して適宜選定すればよい。なお、SiOの含有率は、線膨張係数を上記範囲内のものとするために、68質量%以上99質量%以下(好ましくは80質量%以上85質量%以下)に調整し、残部を上記の線膨張係数調整用酸化物にて構成することができる。 Oxides having a larger linear expansion coefficient than SiO 2 include alkali metal oxides (Na 2 O, K 2 O, Li 2 O: 20 to 50 ppm / ° C.), alkaline earth metal oxides (BeO, MgO, CaO, Various examples such as SrO, BaO: 8 to 15 ppm / ° C., ZnO (6 ppm / ° C.), Al 2 O 3 (7 ppm / ° C.) can be exemplified, and they are appropriately selected in consideration of dielectric properties, melting point, and glass fluidity. do it. The content of SiO 2 is adjusted to 68% by mass or more and 99% by mass or less (preferably 80% by mass or more and 85% by mass or less) so that the linear expansion coefficient is within the above range, and the balance is the above. The linear expansion coefficient adjusting oxide can be used.

以下は、本発明に採用可能なガラス組成の具体例である:
SiO:80.9質量%、B:12.7質量%、Al:2.3質量%、NaO:4.0質量%、KO:0.04質量%、Fe:0.03質量%
軟化点:821℃、線膨張係数(20℃から200℃までの平均値):3.25ppm/℃
The following are specific examples of glass compositions that can be employed in the present invention:
SiO 2: 80.9 wt%, B 2 O 3: 12.7 wt%, Al 2 O 3: 2.3 wt%, Na 2 O: 4.0 wt%, K 2 O: 0.04 wt% , Fe 2 O 3 : 0.03 mass%
Softening point: 821 ° C., linear expansion coefficient (average value from 20 ° C. to 200 ° C.): 3.25 ppm / ° C.

次に、基板コア100の第二主表面側には、第一側第一種端子5a及び第一側第二種端子5bにそれぞれ導通する第二側第一種端子7a及び第二側第二種端子7bと、第一側信号端子5sに導通する第二側信号端子7sとからなる第二端子アレー7が形成されている。そして、第一端子アレー5が、基板コア100の板面と平行な基準面(例えば、基板コア100の第一主表面MP1自身に設定できる)への正射投影において、セラミック副コア部1の投影領域内に全体が包含される位置関係にて形成されてなる。なお、副コア収容部100h内にてセラミック副コア部1とコア本体部100mとの隙間をなす空間には、高分子材料からなる充填結合層55が形成されている。この充填結合層55は、セラミック副コア部1をコア本体部100mに対して固定するとともに、セラミック副コア部1とコア本体部100mとの面内方向及び厚さ方向の線膨張係数差を自身の弾性変形により吸収する役割を果たす。   Next, on the second main surface side of the substrate core 100, a second-side first-type terminal 7a and a second-side second that are respectively connected to the first-side first-type terminal 5a and the first-side second-type terminal 5b. A second terminal array 7 including a seed terminal 7b and a second side signal terminal 7s that is electrically connected to the first side signal terminal 5s is formed. The first terminal array 5 is orthographically projected onto a reference plane parallel to the plate surface of the substrate core 100 (for example, can be set on the first main surface MP1 itself of the substrate core 100). It is formed in a positional relationship in which the entire projection area is included. Note that a filling and bonding layer 55 made of a polymer material is formed in a space forming a gap between the ceramic sub-core portion 1 and the core main body portion 100m in the sub-core housing portion 100h. The filling bonding layer 55 fixes the ceramic sub-core portion 1 to the core main body portion 100m, and the difference in linear expansion coefficient between the ceramic sub-core portion 1 and the core main body portion 100m in the in-plane direction and the thickness direction itself. It plays a role of absorbing by elastic deformation of

図2に示すように、第一端子アレー5において、第一側第一種端子5aと第一側第二種端子5bとは互い違いの格子状(あるいは千鳥状でもよい)に配列されている。同様に第二端子アレー7においても、第二側第一種端子7aと第二側第二種端子7bとが、第一端子アレー5の端子配列に対応した互い違いの格子状(あるいは千鳥状でもよい)に配列されている。なお、いずれのアレー5,7も、電源端子とグランド端子との格子状配列を取り囲む形態で複数の第一側信号端子5s及び第二側信号端子7sを有している。   As shown in FIG. 2, in the first terminal array 5, the first-side first-type terminals 5 a and the first-side second-type terminals 5 b are arranged in an alternating grid pattern (or may be a staggered pattern). Similarly, also in the second terminal array 7, the second-side first-type terminals 7 a and the second-side second-type terminals 7 b are arranged in an alternating lattice shape (or staggered shape corresponding to the terminal arrangement of the first terminal array 5. Good). Each of the arrays 5 and 7 has a plurality of first-side signal terminals 5s and second-side signal terminals 7s in a form surrounding a grid-like arrangement of power supply terminals and ground terminals.

図3において基板コア100は、コア本体部100mの第一主表面とともにセラミック副コア部1の第一主表面が、高分子材料からなる誘電体層102と、配線又はグランド用もしくは電源用の面導体を含む導体層とが交互に積層された第一配線積層部61(いわゆるビルドアップ配線層)にて覆われてなり、第一端子アレー5が該第一配線積層部61の第一主表面(MP1)に露出形成されてなる。この構成によると、コア本体部100mとともにセラミック副コア部1を第一配線積層部61にて一括して覆うため、第一配線積層部61及び第一端子アレー5を、一般のビルドアップ型オーガニックパッケージ基板とほとんど同一の工程にて形成でき、製造工程の簡略化に寄与する。   In FIG. 3, a substrate core 100 has a first main surface of the core body 100m and a first main surface of the ceramic sub-core portion 1 having a dielectric layer 102 made of a polymer material and a surface for wiring or ground or power supply. The first terminal array 5 is covered with a first wiring laminated portion 61 (so-called build-up wiring layer) in which conductor layers including conductors are alternately laminated, and the first main surface of the first wiring laminated portion 61 is covered. (MP1) is exposed and formed. According to this configuration, since the ceramic sub-core part 1 is collectively covered with the first wiring laminated part 61 together with the core main body part 100m, the first wiring laminated part 61 and the first terminal array 5 are generally built-up type organic. It can be formed in almost the same process as the package substrate, contributing to simplification of the manufacturing process.

また、基板コア100の第二主表面(MP2)は、高分子材料からなる誘電体層102と、配線又はグランド用もしくは電源用の面導体を含む導体層とが交互に積層された第二配線積層部62にて覆われてなり、第二端子アレー7が該第二配線積層部62の第一主表面に露出形成されてなる。   The second main surface (MP2) of the substrate core 100 is a second wiring in which a dielectric layer 102 made of a polymer material and a conductor layer including a surface conductor for wiring or ground or power supply are alternately laminated. The second terminal array 7 is exposed and formed on the first main surface of the second wiring laminated portion 62.

いずれの配線積層部61,62においても誘電体層102は、エポキシ樹脂などの樹脂組成物からなるビルドアップ層として、厚さが例えば20μm以上50μm以下に形成される。本実施形態において誘電体層102はエポキシ樹脂にて構成され、SiOからなる誘電体フィラーを10質量%以上30質量%以下の比率にて配合したものであり、比誘電率εが2〜4(例えば3程度)に調整されている。また、導体層は、配線及び面導体のいずれも、誘電体層102上へのパターンメッキ層(例えば電解Cuメッキ層である)として、厚さが例えば10μm以上20μm以下に形成される。 In any of the wiring laminated portions 61 and 62, the dielectric layer 102 is formed to a thickness of, for example, 20 μm or more and 50 μm or less as a buildup layer made of a resin composition such as an epoxy resin. In the present embodiment, the dielectric layer 102 is composed of an epoxy resin, and a dielectric filler made of SiO 2 is blended at a ratio of 10% by mass to 30% by mass, and the relative dielectric constant ε is 2 to 4. (For example, about 3). In addition, the conductor layer is formed to have a thickness of, for example, 10 μm or more and 20 μm or less as a pattern plating layer (for example, an electrolytic Cu plating layer) on the dielectric layer 102 for both the wiring and the surface conductor.

図3においては、第一端子アレー5の第一側第一種端子5a及び第一側第二種端子5bに対応し、かつ第二端子アレー7の第二側第一種端子7a及び第二側第二種端子7bにそれぞれ導通する第一種副コア導体及び第二種副コア導体51bが、セラミック副コア部1の厚さ方向に形成されている。また、それら第一種副コア導体51a及び第二種副コア導体51bが、第一配線積層部61の各誘電体層102を貫く形で形成されたビア導体107を介して第一側第一種端子5a及び第一側第二種端子5bにそれぞれ導通してなる。セラミック副コア部1内に、グランド用及び電源用の導体51a,51bを並列形成することで、グランド用及び電源用の経路の低インダクタンス化ひいては低インピーダンス化を図ることができる。なお、第一種副コア導体51a及び第二種副コア導体51bは、いずれもビア導体107を介して、第二配線積層部62内の第二側第一種面導体211a及び第二側第二種面導体211bに結合されている。さらに、これら第二側第一種面導体211a及び第二側第二種面導体211bに、前述の第二端子アレー7の第二側第一種端子7a及び第二側第二種端子7bがそれぞれ接続されている。   In FIG. 3, the second side first type terminal 7 a and the second side first type terminal 5 a of the second terminal array 7 correspond to the first side first type terminal 5 a and the first side second type terminal 5 b of the first terminal array 5. A first-type sub-core conductor and a second-type sub-core conductor 51 b that are respectively connected to the side second-type terminal 7 b are formed in the thickness direction of the ceramic sub-core portion 1. The first-type sub-core conductor 51a and the second-type sub-core conductor 51b are connected to the first side first via via conductors 107 formed so as to penetrate the dielectric layers 102 of the first wiring laminated portion 61. Each is connected to the seed terminal 5a and the first-side second-type terminal 5b. By forming the ground and power supply conductors 51a and 51b in parallel in the ceramic sub-core portion 1, it is possible to reduce the inductance of the path for the ground and the power supply, and thus to reduce the impedance. The first-type sub-core conductor 51a and the second-type sub-core conductor 51b are both connected via the via conductor 107 to the second-side first-type surface conductor 211a and the second-side first conductor in the second wiring laminated portion 62. It is coupled to the second type conductor 211b. Furthermore, the second-side first-type terminal 7a and the second-side second-type terminal 7b of the second-terminal array 7 are connected to the second-side first-type surface conductor 211a and the second-side second-type surface conductor 211b. Each is connected.

上記のようなセラミック副コア部1は、構成セラミックの原料粉末を含有した周知のセラミックグリーンシートと、パンチングあるいはレーザー穿孔等により形成したビアホールに、金属粉末ペーストを充填したものを積層して焼成することにより、前述の副コア導体51a,51b(さらには後述の51s)を積層ビアとして形成したものである。   The ceramic sub-core portion 1 is fired by laminating a well-known ceramic green sheet containing a raw material powder of a constituent ceramic and a via hole formed by punching or laser drilling and filling a metal powder paste. Thus, the sub-core conductors 51a and 51b (and 51s described later) are formed as laminated vias.

また、配線積層部61,62のビア導体107は、誘電体層102にフォトビアプロセス(誘電体層102は感光性樹脂組成物、例えば紫外線硬化型エポキシ樹脂にて構成される)、あるいはレーザー穿孔ビアプロセス(誘電体層102は非感光性樹脂組成物にて構成される)などの周知の手法によりビアホールを穿設し、その内側をメッキ等によるビア導体で充填もしくは覆った構造を有する。なお、いずれの配線積層部61,62も、端子アレー5,7を露出させる形で、感光性樹脂組成物よりなるソルダーレジスト層101にて覆われている。   The via conductors 107 of the wiring laminated portions 61 and 62 are formed in the dielectric layer 102 by a photo via process (the dielectric layer 102 is made of a photosensitive resin composition, for example, an ultraviolet curable epoxy resin), or laser drilling. A via hole is formed by a known method such as a via process (dielectric layer 102 is made of a non-photosensitive resin composition), and the inside thereof is filled or covered with a via conductor such as plating. Each of the wiring laminated portions 61 and 62 is covered with a solder resist layer 101 made of a photosensitive resin composition so that the terminal arrays 5 and 7 are exposed.

図2に示すように、第一端子アレー5(及び第二端子アレー7)においては、第一側第一種端子5a及び第一側第二種端子5bがアレー内側領域に、第一側信号端子5sがアレー外側領域にそれぞれ配置されている。図3に示すように、第一配線積層部61内には、第一側信号端子5sに導通する形で、セラミック副コア部1の配置領域の外側に信号伝達経路を引き出す第一側信号用配線108が設けられている。該第一側信号用配線108の末端は、セラミック副コア部1を迂回する形でコア本体部100mの厚さ方向に形成された信号用貫通孔導体109sに導通してなる。   As shown in FIG. 2, in the first terminal array 5 (and the second terminal array 7), the first side first type terminal 5a and the first side second type terminal 5b are arranged in the array inner region, and the first side signal. Terminals 5s are arranged in the array outer region. As shown in FIG. 3, in the first wiring laminated portion 61, for the first side signal, a signal transmission path is drawn outside the arrangement region of the ceramic sub core portion 1 in a form that is electrically connected to the first side signal terminal 5 s. A wiring 108 is provided. The end of the first signal wiring 108 is electrically connected to a signal through-hole conductor 109s formed in the thickness direction of the core body 100m so as to bypass the ceramic sub-core 1.

半導体集積回路素子2の素子側端子アレー4は、信号端子4sが電源用及びグランド用の端子4a,4bと同様に狭間隔で配置されており、アレーの外周部に位置する信号端子4sは、中間基板200の裏面側に形成された第二端子アレー内の、対応する第二側信号端子7sまでの面内方向距離も大きくなり、多くの場合、セラミック副コア部1の外にはみ出さざるを得ない。しかし、上記の構成によれば、半田接続される素子側信号端子4sと第一側信号端子5sとは、線膨張係数差縮小効果が顕著なセラミック副コア部1の直上に位置させることができ、かつ、十分遠方の第二側信号端子7sに対しても問題なく導通状態を形成できる。   The element-side terminal array 4 of the semiconductor integrated circuit element 2 has signal terminals 4s arranged at narrow intervals like the power supply and ground terminals 4a and 4b, and the signal terminals 4s located on the outer periphery of the array are: The distance in the in-plane direction to the corresponding second-side signal terminal 7s in the second terminal array formed on the back surface side of the intermediate substrate 200 also increases, and in many cases, it does not protrude outside the ceramic sub-core portion 1. I do not get. However, according to the above-described configuration, the element-side signal terminal 4s and the first-side signal terminal 5s that are solder-connected can be positioned directly above the ceramic sub-core portion 1 that has a remarkable linear expansion coefficient difference reduction effect. In addition, it is possible to form a conductive state without problems even for the second-side signal terminal 7s that is sufficiently far away.

なお、コア本体部100mに形成される貫通孔導体は、配線積層部61,62に形成されるビア導体107よりも軸断面径が大である。このような貫通孔導体は、例えばコア本体部100mを板厚方向に貫く形でドリル等により貫通孔を穿設し、その内面をCuメッキ等による金属層にて覆うことにより形成できる。貫通孔導体の内側はエポキシ樹脂等の樹脂製穴埋め材109fにより充填される。さらに、貫通孔導体の両端面は、導体パッド110により封止される。また、ビア導体107や導体パッド110と、電源層やグランド層などの面導体との直流的な分離を図りたい場合は、該面導体に形成した孔部107iを形成し、その内側に円環状の隙間を隔てた形でビア導体107あるいは導体パッド110を配置すればよい。   The through-hole conductor formed in the core main body 100m has a larger axial cross-sectional diameter than the via conductor 107 formed in the wiring laminated portions 61 and 62. Such a through-hole conductor can be formed, for example, by drilling a through-hole with a drill or the like so as to penetrate the core body 100m in the thickness direction and covering the inner surface with a metal layer such as Cu plating. The inside of the through hole conductor is filled with a resin hole filling material 109f such as an epoxy resin. Furthermore, both end surfaces of the through-hole conductor are sealed with a conductor pad 110. Further, when it is desired to achieve direct current separation between the via conductor 107 and the conductor pad 110 and the surface conductor such as the power supply layer and the ground layer, a hole 107i formed in the surface conductor is formed, and an annular shape is formed inside the hole 107i. The via conductors 107 or the conductor pads 110 may be arranged with a gap therebetween.

なお、図3の中間基板200においては、副コア収容部100hはコア本体部100mを貫通する形態にて構成され、第二配線積層部62が副コア収容部100hに収容されたセラミック副コア部1の第二主表面と接して形成されている。この構成では、セラミック副コア部1の位置から、線膨張係数の大きい高分子材料が主体となるコア本体部100mが排除されるので、半導体集積回路素子2と中間基板200との間の線膨張係数差の縮小効果をより顕著に達成できる。   In the intermediate substrate 200 of FIG. 3, the secondary core housing part 100h is configured to penetrate the core body 100m, and the ceramic secondary core part 62 is housed in the secondary core housing part 100h. 1 in contact with the second main surface. In this configuration, since the core body 100m mainly composed of a polymer material having a large linear expansion coefficient is excluded from the position of the ceramic sub-core portion 1, the linear expansion between the semiconductor integrated circuit element 2 and the intermediate substrate 200 is eliminated. The effect of reducing the coefficient difference can be achieved more remarkably.

以下、本発明の中間基板の種々の変形例について説明する。なお、以下の構成において、図3の中間基板200と同様に構成されて部分は、共通の符号を付与して詳細な説明は省略する。まず、図4の中間基板300は、その副コア収容部100hが、コア本体部100mの第一主表面に開口する有底の凹状部として構成されている。第二配線積層部62は、該凹状部の裏面側にてコア本体部100mの第二主表面と接して形成されている。この構造は、コア本体部100mの第二主表面側にセラミック副コア部1が露出しないので、平坦な第二配線積層部62をより簡便に形成できる利点がある。具体的には、コア本体部100mの、副コア収容部100hの底部をなす部分を貫通する形で第二端子アレー7をなす各端子と導通する底部貫通孔導体部209が形成され、セラミック副コア部1に形成された各副コア導体51a、51bがそれら底部貫通孔導体部209に導通している。より詳しくは、底部貫通孔導体部209側のパッド80と、副コア導体側のパッド70とが半田接続部6を介してフリップチップ接続された形態となっている。   Hereinafter, various modifications of the intermediate substrate of the present invention will be described. In the following configuration, parts that are configured in the same manner as the intermediate substrate 200 in FIG. First, the intermediate substrate 300 of FIG. 4 is configured such that the sub-core housing portion 100h is a bottomed concave portion that opens on the first main surface of the core main body portion 100m. The second wiring laminated portion 62 is formed in contact with the second main surface of the core body portion 100m on the back side of the concave portion. This structure has an advantage that the flat second wiring laminated portion 62 can be more easily formed because the ceramic sub-core portion 1 is not exposed on the second main surface side of the core main body portion 100m. Specifically, a bottom through-hole conductor portion 209 that is electrically connected to each terminal of the second terminal array 7 is formed so as to pass through a portion of the core body portion 100m that forms the bottom portion of the sub-core housing portion 100h. The sub-core conductors 51 a and 51 b formed in the core part 1 are electrically connected to the bottom through-hole conductor part 209. More specifically, the pad 80 on the bottom through-hole conductor portion 209 side and the pad 70 on the sub-core conductor side are flip-chip connected via the solder connection portion 6.

次に、図5の中間基板400は、第一端子アレー5の第一側第一種端子5a及び第一側第二種端子5bに各々導通する第一側第一種面導体111a及び第一側第二種面導体111bが、第一配線積層部61内において、それぞれセラミック副コア部1とともにコア本体部100mの第一主表面を覆う形で形成されている。また、それら第一側第一種面導体111a及び第一側第二種面導体111bは、セラミック副コア部1を迂回する形でコア本体部100mの厚さ方向に形成された第一種貫通孔導体109a及び第二種貫通孔導体109bにそれぞれ導通している。この構成によると、セラミック副コア部1内に、第一側第一種端子5a及び第一側第二種端子5bに導通する副コア導体が形成されない。Cu等の導体用金属は線膨張係数が比較的大きいが、上記構成によると、金属製の副コア導体の形成体積率を減少させることができるので、セラミック副コア部1全体の平均的な線膨張係数を小さくでき、ひいては、半導体集積回路素子2と中間基板200との間の線膨張係数差の縮小効果をより顕著に達成できる。なお、第一種貫通孔導体109a及び第二種貫通孔導体109bは、いずれもビア導体107を介して、第二配線積層部62内の第二側第一種面導体211a及び第二側第二種面導体211bに結合されている。   Next, the intermediate substrate 400 in FIG. 5 includes the first-side first-type surface conductor 111a and the first-side first-type surface conductor 111a that are electrically connected to the first-side first-type terminal 5a and the first-side second-type terminal 5b of the first terminal array 5, respectively. The side second seed surface conductor 111b is formed in the first wiring laminated portion 61 so as to cover the first main surface of the core body portion 100m together with the ceramic sub-core portion 1. The first-side first-type surface conductor 111a and the first-side second-type surface conductor 111b bypass the ceramic sub-core portion 1 and are formed in the thickness direction of the core main body portion 100m. The hole conductor 109a and the second-type through-hole conductor 109b are electrically connected to each other. According to this configuration, the sub-core conductor that conducts to the first-side first-type terminal 5 a and the first-side second-type terminal 5 b is not formed in the ceramic sub-core portion 1. The conductor metal such as Cu has a relatively large linear expansion coefficient. However, according to the above configuration, the formation volume ratio of the metal sub-core conductor can be reduced, so the average line of the entire ceramic sub-core portion 1 can be reduced. The expansion coefficient can be reduced, and as a result, the effect of reducing the difference in linear expansion coefficient between the semiconductor integrated circuit element 2 and the intermediate substrate 200 can be achieved more significantly. The first-type through-hole conductor 109a and the second-type through-hole conductor 109b are both connected to the second-side first-type surface conductor 211a and the second-side through-hole conductors in the second wiring laminated portion 62 via the via conductor 107. It is coupled to the second type conductor 211b.

この場合、第一端子アレー5において、図2のごとく、第一側第一種端子5a及び第一側第二種端子5bがアレー内側領域に、第一側信号端子5sがアレー外側領域にそれぞれ配置される場合は、図3と同様に、第一側信号端子5sに導通する形で第一配線積層部61内に、セラミック副コア部1の配置領域の外側に信号伝達経路を引き出す第一側信号用配線108を設けることができる。該第一側信号用配線108の末端は、セラミック副コア部1を迂回する形でコア本体部100mの厚さ方向に形成された信号用貫通孔導体109sに導通させることができる。この構成により、セラミック副コア部1からは副コア導体を完全に排除でき、セラミックのムク板にて構成することができるから、半導体集積回路素子2と中間基板200との間の線膨張係数差の縮小効果向上だけでなく、セラミック副コア部1の製造工程も大幅に簡略化できる。   In this case, in the first terminal array 5, as shown in FIG. 2, the first side first type terminal 5a and the first side second type terminal 5b are in the array inner region, and the first side signal terminal 5s is in the array outer region. In the case of being arranged, as in FIG. 3, a first signal transmission path is drawn outside the arrangement region of the ceramic sub-core portion 1 in the first wiring laminated portion 61 so as to be electrically connected to the first side signal terminal 5 s. A side signal wiring 108 can be provided. The terminal of the first signal wiring 108 can be electrically connected to a signal through-hole conductor 109 s formed in the thickness direction of the core body 100 m so as to bypass the ceramic sub-core 1. With this configuration, the sub-core conductor can be completely eliminated from the ceramic sub-core portion 1 and the ceramic sub-core conductor can be formed of a ceramic blank plate. Therefore, the difference in linear expansion coefficient between the semiconductor integrated circuit element 2 and the intermediate substrate 200 can be reduced. In addition to improving the reduction effect, the manufacturing process of the ceramic sub-core portion 1 can be greatly simplified.

図6の中間基板500は、図5の中間基板400を図4の中間基板300と同様に、副コア収容部100hを、コア本体部100mの第一主表面に開口する有底の凹状部として構成した例である。ここでは、セラミック副コア部1に副コア導体が形成されておらず、従って、副コア収容部100hの底部をなす部分には図4の底部貫通孔導体部209は形成されていない。   The intermediate substrate 500 in FIG. 6 is similar to the intermediate substrate 300 in FIG. 4 in that the intermediate substrate 400 in FIG. 5 has a sub-core accommodating portion 100h as a bottomed concave portion opening on the first main surface of the core main body portion 100m. This is a configured example. Here, the sub-core conductor is not formed in the ceramic sub-core portion 1, and therefore the bottom through-hole conductor portion 209 of FIG. 4 is not formed in the portion forming the bottom of the sub-core housing portion 100h.

次に、図7の中間基板600は、第一端子アレー5を構成する第一側第一種端子5a及び第一側第二種端子5bがセラミック副コア部1の第一主表面上に露出形成されている。また、第一端子アレー5の第一側第一種端子5a及び第一側第二種端子5bに対応し、かつ第二端子アレー7の第二側第一種端子7a及び第二側第二種端子7bにそれぞれ導通する第一種副コア導体51a及び第二種副コア導体51bが、該セラミック副コア部1の厚さ方向に形成されている。この構成によると、セラミック副コア部1の第一主表面から、高分子材料を主体とした第一配線積層部61が排除され、半導体集積回路素子2とセラミック副コア部1とが半田接続部6により直結される。これにより、半導体集積回路素子2と中間基板200との間の線膨張係数差の縮小効果がより向上する。また、セラミック副コア部1の直上では、端子に導通する配線の引き回しがなされないので、該端子に導通する伝送経路の低インダクタンス化ひいては低インピーダンス化を図ることができる。なお、この実施形態の中間基板600においては、第一側配線積層部が形成されていない。   Next, in the intermediate substrate 600 of FIG. 7, the first-side first-type terminals 5 a and the first-side second-type terminals 5 b constituting the first terminal array 5 are exposed on the first main surface of the ceramic sub-core portion 1. Is formed. Further, the second side first type terminal 7a and the second side second corresponding to the first side first type terminal 5a and the first side second type terminal 5b of the first terminal array 5 and the second terminal array 7. A first-type sub-core conductor 51a and a second-type sub-core conductor 51b that respectively conduct to the seed terminal 7b are formed in the thickness direction of the ceramic sub-core portion 1. According to this configuration, the first wiring laminated portion 61 mainly composed of a polymer material is excluded from the first main surface of the ceramic sub-core portion 1, and the semiconductor integrated circuit element 2 and the ceramic sub-core portion 1 are connected to the solder connection portion. 6 is directly connected. Thereby, the reduction effect of the difference in linear expansion coefficient between the semiconductor integrated circuit element 2 and the intermediate substrate 200 is further improved. Further, since the wiring that conducts to the terminal is not routed immediately above the ceramic sub-core portion 1, it is possible to reduce the inductance of the transmission path that conducts to the terminal, and thus to reduce the impedance. In the intermediate substrate 600 of this embodiment, the first side wiring laminated portion is not formed.

図7の中間基板600においては、第一端子アレー5を構成する第一側信号端子5sがセラミック副コア部1の第一主表面上に露出形成され、該第一側信号端子5sに対応し、かつ第二端子アレー7の第二側信号端子7sに導通する信号用副コア導体51sが、該セラミック副コア部1の厚さ方向に形成されている。この構成は、第一端子アレー5の端子間距離がそれほど小さくない場合に採用でき、信号端子に対しても副コア導体51sが形成されるので、グランド用及び電源用の伝送経路だけでなく、信号用の伝送経路の低インダクタンス化ひいては低インピーダンス化も図ることができる。   In the intermediate substrate 600 of FIG. 7, the first side signal terminal 5s constituting the first terminal array 5 is exposed on the first main surface of the ceramic sub-core portion 1, and corresponds to the first side signal terminal 5s. In addition, a signal sub-core conductor 51 s that is electrically connected to the second-side signal terminal 7 s of the second terminal array 7 is formed in the thickness direction of the ceramic sub-core portion 1. This configuration can be adopted when the distance between the terminals of the first terminal array 5 is not so small, and the sub-core conductor 51s is formed also for the signal terminal, so that not only the transmission path for ground and power supply, It is also possible to reduce the inductance of the signal transmission path and thus reduce the impedance.

他方、図11の中間基板1000においては、セラミック副コア部1の第一主表面の外周縁部が、コア本体部100mの第一主表面とともに、高分子材料からなる誘電体層102と、配線又はグランド用もしくは電源用の面導体を含む導体層とが交互に積層された第一配線積層部61にて覆われている。第一側信号端子5sは、第一配線積層部61の表面に露出する形で形成されている。そして、第一側信号端子5sに導通する形で第一配線積層部61内には、セラミック副コア部1の配置領域の外側に信号伝達経路を引き出す第一側信号用配線108が設けられている。第一側信号用配線108の末端は、セラミック副コア部1を迂回する形でコア本体部100mの厚さ方向に形成された信号用貫通孔導体109sに導通している。この構成は、アレー外周部の信号用端子に導通する配線を面内外方に大きく引き出すことができるので、第一端子アレー5の端子間距離が小さい場合に有利であるといえる。   On the other hand, in the intermediate substrate 1000 of FIG. 11, the outer peripheral edge portion of the first main surface of the ceramic sub-core portion 1 together with the first main surface of the core main body portion 100m, the dielectric layer 102 made of a polymer material, and the wiring Or it is covered with the 1st wiring lamination | stacking part 61 by which the conductor layer containing the surface conductor for grounds or a power supply was laminated | stacked alternately. The first side signal terminal 5 s is formed so as to be exposed on the surface of the first wiring laminated portion 61. A first signal wiring 108 is provided in the first wiring laminated portion 61 so as to be electrically connected to the first side signal terminal 5s. The first signal wiring 108 leads the signal transmission path outside the arrangement region of the ceramic sub-core portion 1. Yes. The end of the first signal wiring 108 is electrically connected to a signal through-hole conductor 109s formed in the thickness direction of the core body 100m so as to bypass the ceramic sub-core 1. This configuration can be said to be advantageous when the distance between the terminals of the first terminal array 5 is small because the wiring that conducts to the signal terminals on the outer periphery of the array can be drawn largely in and out of the plane.

図8の中間基板700は、図3の配線基板200のセラミック副コア部1を面内方向にさらに拡張するとともに、第一端子アレー5の第一側信号端子5sに対応し、かつ第二端子アレー7の第二側信号端子7sに導通する信号用副コア導体51sを、副コア部1の厚さ方向に形成した例である。   The intermediate substrate 700 of FIG. 8 further expands the ceramic sub-core portion 1 of the wiring substrate 200 of FIG. 3 in the in-plane direction, corresponds to the first side signal terminal 5s of the first terminal array 5, and the second terminal. This is an example in which a signal sub-core conductor 51 s that is electrically connected to the second-side signal terminal 7 s of the array 7 is formed in the thickness direction of the sub-core portion 1.

また、以上の実施形態においては、いずれも副コア部1が半導体集積回路素子1よりも大面積に形成されていたが、副コア部1を半導体集積回路素子1の投影領域とほぼ同面積に形成することもできる。さらに、図9の中間基板800のごとく、第一端子アレー5の全てを副コア部1の領域内に収めつつ、副コア部1を半導体集積回路素子1よりも小面積に構成することも可能である。また、半導体集積回路素子1よりも外周に位置する端子における半田接続部6の接続状態への影響がそれ程懸念されない場合には、図10の中間基板900のごとく、第一端子アレー5の領域よりも副コア部1を小面積に構成することも不可能ではない。   In each of the above embodiments, the sub-core portion 1 is formed to have a larger area than the semiconductor integrated circuit element 1. However, the sub-core portion 1 has substantially the same area as the projection region of the semiconductor integrated circuit element 1. It can also be formed. Further, as in the intermediate substrate 800 of FIG. 9, it is possible to configure the sub-core portion 1 to have a smaller area than the semiconductor integrated circuit element 1 while accommodating the entire first terminal array 5 within the region of the sub-core portion 1. It is. Further, when the influence on the connection state of the solder connection portion 6 at the terminal located on the outer periphery of the semiconductor integrated circuit element 1 is not so much concerned, from the region of the first terminal array 5 as in the intermediate substrate 900 of FIG. However, it is not impossible to configure the sub-core portion 1 in a small area.

本発明の中間基板の使用形態の一例を示す側面模式図。The side surface schematic diagram which shows an example of the usage condition of the intermediate substrate of this invention. 図1の中間基板の第一端子アレーの配置形態の一例を示す平面図。The top view which shows an example of the arrangement | positioning form of the 1st terminal array of the intermediate | middle board | substrate of FIG. 本発明の中間基板の第一実施形態を示す断面模式図。The cross-sectional schematic diagram which shows 1st embodiment of the intermediate substrate of this invention. 同じく第二実施形態を示す断面模式図。The cross-sectional schematic diagram which similarly shows 2nd embodiment. 同じく第三実施形態を示す断面模式図。The cross-sectional schematic diagram which similarly shows 3rd embodiment. 同じく第四実施形態を示す断面模式図。The cross-sectional schematic diagram which similarly shows 4th embodiment. 同じく第五実施形態を示す断面模式図。The cross-sectional schematic diagram which similarly shows 5th embodiment. 同じく第六実施形態を示す断面模式図。The cross-sectional schematic diagram which similarly shows 6th embodiment. 本発明の中間基板の第七実施形態を示す断面模式図。The cross-sectional schematic diagram which shows 7th embodiment of the intermediate substrate of this invention. 本発明の中間基板の第八実施形態を示す断面模式図。The cross-sectional schematic diagram which shows 8th embodiment of the intermediate substrate of this invention. 本発明の中間基板の第九実施形態を示す断面模式図。The cross-sectional schematic diagram which shows 9th embodiment of the intermediate | middle board | substrate of this invention.

符号の説明Explanation of symbols

1 セラミック副コア部
5 第一端子アレー
5a 第一側第一種端子
5b 第一側第二種端子
7 第二端子アレー
7a 第二側第一種端子
7b 第二側第二種端子
51a 第一種副コア導体
51b 第二種副コア導体
51s 信号用副コア導体
61 第一配線積層部
100 基板コア
100h 副コア収容部
100m コア本体部
102 誘電体層
107 ビア導体
108 第一側信号用配線
109a 第一種貫通孔導体
109b 第二種種貫通孔導体
109s 信号用貫通孔導体
111a 第一側第一種面導体
111b 第一側第二種面導体
200,300,400,500,600,700,800,900,1000 中間基板
DESCRIPTION OF SYMBOLS 1 Ceramic sub core part 5 1st terminal array 5a 1st side 1st type terminal 5b 1st side 2nd type terminal 7 2nd terminal array 7a 2nd side 1st type terminal 7b 2nd side 2nd type terminal 51a 1st Type sub-core conductor 51b Type II sub-core conductor 51s Signal sub-core conductor 61 First wiring laminated part 100 Substrate core 100h Sub-core housing part 100m Core body part 102 Dielectric layer 107 Via conductor 108 First-side signal wiring 109a First-type through-hole conductor 109b Second-type through-hole conductor 109s Signal through-hole conductor 111a First-side first-type surface conductor 111b First-side second-type surface conductor 200, 300, 400, 500, 600, 700, 800 900,1000 Intermediate substrate

Claims (12)

高分子材料により板状に構成され、第一主表面に自身の厚さを減ずる形で副コア収容部が開口形成されたコア本体部と、前記コア本体部よりも線膨張係数が小さい材料により板状に構成され、前記副コア収容部内に前記コア本体部と厚さ方向を一致させる形で収容された副コア部とからなる基板コアと、
前記基板コアの第一主表面側に形成され、一方が電源端子、他方がグランド端子として機能する第一側第一種端子及び第一側第二種端子と、第一側信号端子とからなる第一端子アレーと、
前記基板コアの第二主表面側に形成され、前記第一側第一種端子及び第二種端子にそれぞれ導通する第二側第一種端子及び第二側第二種端子と、前記第一側信号端子に導通する第二側信号端子とからなる第二端子アレーとを有し、
前記第一端子アレーが、前記基板コアの板面と平行な基準面への正射投影において、前記副コア部の投影領域と重なる位置関係にて形成されてなることを特徴とする中間基板。
It is composed of a polymer material in a plate shape, and a core main body portion in which a sub core housing portion is formed in the form of reducing its thickness on the first main surface, and a material having a smaller linear expansion coefficient than the core main body portion. A board core composed of a sub-core portion configured in a plate shape and housed in the sub-core housing portion in a form in which the core body portion and the thickness direction coincide with each other;
Formed on the first main surface side of the substrate core, one is a power supply terminal, the other functions as a ground terminal, a first side first type terminal and a first side second type terminal, and a first side signal terminal A first terminal array;
A second side first type terminal and a second side second type terminal formed on the second main surface side of the substrate core and respectively conducting to the first side first type terminal and the second type terminal; A second terminal array composed of a second side signal terminal conducting to the side signal terminal;
The intermediate substrate, wherein the first terminal array is formed in a positional relationship overlapping with a projection region of the sub-core portion in orthogonal projection onto a reference plane parallel to a plate surface of the substrate core.
高分子材料により板状に構成され、第一主表面に自身の厚さを減ずる形で副コア収容部が開口形成されたコア本体部と、前記コア本体部よりも線膨張係数が小さい材料により板状に構成され、前記副コア収容部内に前記コア本体部と厚さ方向を一致させる形で収容された副コア部とからなる基板コアと、
前記基板コアの第一主表面側に形成され、一方が電源端子、他方がグランド端子として機能する第一側第一種端子及び第一側第二種端子と、第一側信号端子とからなる第一端子アレーと、
前記基板コアの第二主表面側に形成され、前記第一側第一種端子及び第二種端子にそれぞれ導通する第二側第一種端子及び第二側第二種端子と、前記第一側信号端子に導通する第二側信号端子とからなる第二端子アレーとを有し、
前記第一端子アレーが、前記基板コアの板面と平行な基準面への正射投影において、前記副コア部の投影領域内に全体が包含される位置関係にて形成されてなることを特徴とする中間基板。
It is composed of a polymer material in a plate shape, and a core main body portion in which a sub core housing portion is formed in the form of reducing its thickness on the first main surface, and a material having a smaller linear expansion coefficient than the core main body portion. A board core composed of a sub-core portion configured in a plate shape and housed in the sub-core housing portion in a form in which the core body portion and the thickness direction coincide with each other;
Formed on the first main surface side of the substrate core, one is a power supply terminal, the other functions as a ground terminal, a first side first type terminal and a first side second type terminal, and a first side signal terminal A first terminal array;
A second side first type terminal and a second side second type terminal formed on the second main surface side of the substrate core and respectively conducting to the first side first type terminal and the second type terminal; A second terminal array composed of a second side signal terminal conducting to the side signal terminal;
The first terminal array is formed in a positional relationship in which the whole is included in a projection region of the sub-core portion in orthographic projection onto a reference plane parallel to the plate surface of the substrate core. An intermediate substrate.
前記基板コアは、前記コア本体部の第一主表面とともに前記副コア部の第一主表面が、高分子材料からなる誘電体層と、配線又はグランド用もしくは電源用の面導体を含む導体層とが交互に積層された第一配線積層部にて覆われてなり、前記第一端子アレーが該第一配線積層部の第一主表面に露出形成されてなる請求項1又は請求項2に記載の中間基板。 The substrate core includes a first main surface of the core main body portion and a first main surface of the sub-core portion including a dielectric layer made of a polymer material, and a conductor layer including a wiring or ground or power supply surface conductor. The first terminal array is exposed and formed on the first main surface of the first wiring laminated portion. The first wiring laminated portion is covered with a first wiring laminated portion alternately laminated with the first wiring laminated portion. The intermediate substrate as described. 前記第一端子アレーの前記第一側第一種端子及び第一側第二種端子に対応し、かつ前記第二端子アレーの前記第二側第一種端子及び第二側第二種端子にそれぞれ導通する第一種副コア導体及び第二種副コア導体が、前記副コア部の厚さ方向に形成され、それら第一種副コア導体及び第二種副コア導体が、前記第一配線積層部の前記各誘電体層を貫く形で形成されたビア導体を介して前記第一側第一種端子及び第一側第二種端子にそれぞれ導通してなる請求項3記載の中間基板。 Corresponding to the first side first type terminal and the first side second type terminal of the first terminal array, and to the second side first type terminal and the second side second type terminal of the second terminal array The first-type sub-core conductor and the second-type sub-core conductor that are respectively conductive are formed in the thickness direction of the sub-core portion, and the first-type sub-core conductor and the second-type sub-core conductor are connected to the first wiring. The intermediate substrate according to claim 3, wherein the intermediate substrate is electrically connected to the first-side first-type terminal and the first-side second-type terminal through via conductors formed so as to penetrate the dielectric layers of the laminated portion. 前記第一端子アレーの前記第一側第一種端子及び第一側第二種端子に各々導通する第一側第一種面導体及び第一側第二種面導体が、前記第一配線積層部内において、それぞれ前記副コア部とともに前記コア本体部の第一主表面を覆う形で形成され、
それら第一側第一種面導体及び第一側第二種面導体が、前記副コア部を迂回する形で前記コア本体部の厚さ方向に形成された第一種貫通孔導体及び第二種貫通孔導体にそれぞれ導通してなる請求項3記載の中間基板。
The first side first type surface conductor and the first side second type surface conductor respectively conducting to the first side first type terminal and the first side second type terminal of the first terminal array are the first wiring layer stack. In the part, each is formed in a form covering the first main surface of the core body part together with the sub-core part,
The first-type through-hole conductor and the second-type first-surface conductor and the first-side second-type surface conductor formed in the thickness direction of the core body portion so as to bypass the sub-core portion. The intermediate substrate according to claim 3, wherein the intermediate substrate is electrically connected to the seed through-hole conductor.
前記第一端子アレーにおいて、前記第一側第一種端子及び第一側第二種端子がアレー内側領域に、前記第一側信号端子がアレー外側領域にそれぞれ配置され、
前記第一側信号端子に導通する形で前記第一配線積層部内に、前記副コア部の配置領域の外側に信号伝達経路を引き出す第一側信号用配線が設けられ、該第一側信号用配線の末端が、前記副コア部を迂回する形で前記コア本体部の厚さ方向に形成された信号用貫通孔導体に導通してなる請求項3ないし請求項5のいずれか1項に記載の中間基板。
In the first terminal array, the first-side first-type terminals and the first-side second-type terminals are arranged in the array inner area, and the first-side signal terminals are arranged in the array outer area, respectively.
A first signal wiring is provided in the first wiring laminated portion so as to be electrically connected to the first signal terminal, and a first signal wiring is provided outside the arrangement region of the sub core portion to draw a signal transmission path. The terminal of wiring is electrically connected to the signal through-hole conductor formed in the thickness direction of the core main body portion so as to bypass the sub-core portion. Intermediate board.
前記第一端子アレーを構成する前記第一側第一種端子及び前記第一側第二種端子が前記副コア部の第一主表面上に露出形成され、前記第一端子アレーの前記第一側第一種端子及び第一側第二種端子に対応し、かつ前記第二端子アレーの前記第二側第一種端子及び第二側第二種端子にそれぞれ導通する第一種副コア導体及び第二種副コア導体が、該副コア部の厚さ方向に形成されてなる請求項1又は請求項2に記載の中間基板。 The first side first type terminal and the first side second type terminal constituting the first terminal array are exposed and formed on the first main surface of the sub-core portion, and the first terminal array includes the first terminal array. A first-type sub-core conductor corresponding to the first-type first terminal and the first-type second-type terminal and conducting to the second-type first-type terminal and the second-side second-type terminal of the second terminal array, respectively. The intermediate substrate according to claim 1, wherein the second-type sub-core conductor is formed in a thickness direction of the sub-core portion. 前記第一端子アレーを構成する前記第一側信号端子が前記副コア部の第一主表面上に露出形成され、該第一側信号端子に対応し、かつ前記第二端子アレーの前記第二側信号端子に導通する信号用副コア導体が、該副コア部の厚さ方向に形成されてなる請求項7記載の中間基板。 The first side signal terminal constituting the first terminal array is exposed and formed on the first main surface of the sub-core portion, corresponds to the first side signal terminal, and the second terminal array has the second terminal array. The intermediate substrate according to claim 7, wherein the signal sub-core conductor conducting to the side signal terminal is formed in a thickness direction of the sub-core portion. 前記副コア部の第一主表面の外周縁部が、前記コア本体部の第一主表面とともに、高分子材料からなる誘電体層と、配線又はグランド用もしくは電源用の面導体を含む導体層とが交互に積層された第一配線積層部にて覆われてなり、前記第一側信号端子が前記第一配線積層部の表面に露出する形で形成され、
前記第一側信号端子に導通する形で前記第一配線積層部内に、前記副コア部の配置領域の外側に信号伝達経路を引き出す第一側信号用配線が設けられ、該第一側信号用配線の末端が、前記副コア部を迂回する形で前記コア本体部の厚さ方向に形成された信号用貫通孔導体に導通してなる請求項8記載の中間基板。
The outer peripheral edge portion of the first main surface of the sub-core portion together with the first main surface of the core main body portion, a dielectric layer made of a polymer material, and a conductor layer including a wiring or ground or power surface conductor And is covered with the first wiring laminated portion alternately laminated, and the first side signal terminal is formed to be exposed on the surface of the first wiring laminated portion,
A first signal wiring is provided in the first wiring laminated portion so as to be electrically connected to the first signal terminal, and a first signal wiring is provided outside the arrangement region of the sub core portion to draw a signal transmission path. The intermediate substrate according to claim 8, wherein an end of the wiring is electrically connected to a signal through-hole conductor formed in a thickness direction of the core main body so as to bypass the sub-core.
前記副コア部が前記第一端子アレーの形成領域と同等もしくは大面積にて形成されている請求項1ないし請求項9のいずれか1項に記載の中間基板。 The intermediate substrate according to any one of claims 1 to 9, wherein the sub-core portion is formed to have an area equal to or larger than a formation area of the first terminal array. 前記副コア部はセラミックからなるセラミック副コア部とされている請求項1ないし請求項9のいずれか1項に記載の中間基板。 The intermediate substrate according to any one of claims 1 to 9, wherein the sub-core portion is a ceramic sub-core portion made of ceramic. 前記セラミック副コア部をなすセラミックがアルミナ又はガラスセラミックからなる請求項11記載の中間基板。
The intermediate substrate according to claim 11, wherein the ceramic forming the ceramic sub-core portion is made of alumina or glass ceramic.
JP2004160224A 2003-06-24 2004-05-28 Intermediate substrate Pending JP2005039217A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004160224A JP2005039217A (en) 2003-06-24 2004-05-28 Intermediate substrate
TW093139945A TWI267880B (en) 2003-06-24 2004-12-22 Middle substrate
CNB200410061538XA CN100367491C (en) 2004-05-28 2004-12-24 Intermediate substrate
US11/127,192 US6979890B2 (en) 2004-05-28 2005-05-12 Intermediate substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003180348 2003-06-24
JP2004160224A JP2005039217A (en) 2003-06-24 2004-05-28 Intermediate substrate

Publications (1)

Publication Number Publication Date
JP2005039217A true JP2005039217A (en) 2005-02-10

Family

ID=34220218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004160224A Pending JP2005039217A (en) 2003-06-24 2004-05-28 Intermediate substrate

Country Status (2)

Country Link
JP (1) JP2005039217A (en)
TW (1) TWI267880B (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351778A (en) * 2005-06-15 2006-12-28 Ngk Spark Plug Co Ltd Manufacturing method of wiring board
JP2006351782A (en) * 2005-06-15 2006-12-28 Ngk Spark Plug Co Ltd Wiring board and its manufacturing method
US7525814B2 (en) 2005-06-15 2009-04-28 Ngk Spark Plug Co., Ltd. Wiring board and method for manufacturing the same
US7549721B2 (en) 2005-08-31 2009-06-23 Seiko Epson Corporation Printing method, printing system and method for determining correction value
US7573697B2 (en) 2005-08-31 2009-08-11 Ngk Spark Plug Co., Ltd. Method of manufacturing capacitor for incorporation in wiring board, capacitor for incorporation in wiring board, and wiring board
WO2009119875A1 (en) 2008-03-24 2009-10-01 日本特殊陶業株式会社 Component-incorporating wiring board
US7696442B2 (en) 2005-06-03 2010-04-13 Ngk Spark Plug Co., Ltd. Wiring board and manufacturing method of wiring board
US7742314B2 (en) 2005-09-01 2010-06-22 Ngk Spark Plug Co., Ltd. Wiring board and capacitor
JP2010219503A (en) * 2009-03-12 2010-09-30 Ibiden Co Ltd Substrate for mounting semiconductor element and method of manufacturing the substrate for mounting the semiconductor element
US7863662B2 (en) 2005-12-22 2011-01-04 Ngk Spark Plug Co., Ltd. Capacitor to be incorporated in wiring substrate, method for manufacturing the capacitor, and wiring substrate
US7889509B2 (en) 2005-09-01 2011-02-15 Ngk Spark Plug Co., Ltd. Ceramic capacitor
US7932471B2 (en) 2005-08-05 2011-04-26 Ngk Spark Plug Co., Ltd. Capacitor for incorporation in wiring board, wiring board, method of manufacturing wiring board, and ceramic chip for embedment
US7956454B2 (en) 2005-09-01 2011-06-07 Ngk Spark Plug Co., Ltd. Wiring board and ceramic chip to be embedded
JP2013122963A (en) * 2011-12-09 2013-06-20 Ngk Spark Plug Co Ltd Wiring board
JP2013214568A (en) * 2012-03-30 2013-10-17 Fujitsu Ltd Wiring board and wiring board manufacturing method
US9107306B2 (en) 2010-10-14 2015-08-11 Panasonic Intellectual Property Management Co., Ltd. Hybrid substrate, method for manufacturing the same, and semiconductor integrated circuit package
JP2016201529A (en) * 2015-04-07 2016-12-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. Printed circuit board, manufacturing method of the same, and electronic component module
JP2017200168A (en) * 2016-02-08 2017-11-02 ザ・ボーイング・カンパニーThe Boeing Company Scalable planar mounting architecture for active scanning phased array antenna system
WO2020194832A1 (en) * 2019-03-28 2020-10-01 アイシン・エィ・ダブリュ株式会社 Electronic substrate
WO2023157892A1 (en) * 2022-02-15 2023-08-24 大日本印刷株式会社 Semiconductor package, semiconductor package intermediate body, rewiring layer chip, rewiring layer chip intermediate body, semiconductor package manufacturing method, and semiconductor package intermediate body manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349225A (en) * 1999-03-30 2000-12-15 Ngk Spark Plug Co Ltd Capacitor-attached wiring board, the wiring board, and capacitor
JP2001024082A (en) * 1999-07-08 2001-01-26 Ibiden Co Ltd Package substrate
JP2001185642A (en) * 1999-12-22 2001-07-06 Sumitomo Metal Mining Co Ltd Package substrate for mounting semiconductor
JP2004281830A (en) * 2003-03-17 2004-10-07 Shinko Electric Ind Co Ltd Substrate for semiconductor device, method of manufacturing substrate, and semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349225A (en) * 1999-03-30 2000-12-15 Ngk Spark Plug Co Ltd Capacitor-attached wiring board, the wiring board, and capacitor
JP2001024082A (en) * 1999-07-08 2001-01-26 Ibiden Co Ltd Package substrate
JP2001185642A (en) * 1999-12-22 2001-07-06 Sumitomo Metal Mining Co Ltd Package substrate for mounting semiconductor
JP2004281830A (en) * 2003-03-17 2004-10-07 Shinko Electric Ind Co Ltd Substrate for semiconductor device, method of manufacturing substrate, and semiconductor device

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8863378B2 (en) 2005-06-03 2014-10-21 Ngk Spark Plug Co., Ltd. Method for manufacturing a wiring board
US7696442B2 (en) 2005-06-03 2010-04-13 Ngk Spark Plug Co., Ltd. Wiring board and manufacturing method of wiring board
JP4585923B2 (en) * 2005-06-15 2010-11-24 日本特殊陶業株式会社 Wiring board and manufacturing method thereof
JP2006351782A (en) * 2005-06-15 2006-12-28 Ngk Spark Plug Co Ltd Wiring board and its manufacturing method
US7525814B2 (en) 2005-06-15 2009-04-28 Ngk Spark Plug Co., Ltd. Wiring board and method for manufacturing the same
JP4714510B2 (en) * 2005-06-15 2011-06-29 日本特殊陶業株式会社 Wiring board manufacturing method
JP2006351778A (en) * 2005-06-15 2006-12-28 Ngk Spark Plug Co Ltd Manufacturing method of wiring board
US8546700B2 (en) 2005-08-05 2013-10-01 Ngk Spark Plug Co., Ltd. Capacitor for incorporation in wiring board, wiring board, method of manufacturing wiring board, and ceramic chip for embedment
US7932471B2 (en) 2005-08-05 2011-04-26 Ngk Spark Plug Co., Ltd. Capacitor for incorporation in wiring board, wiring board, method of manufacturing wiring board, and ceramic chip for embedment
US7778010B2 (en) 2005-08-31 2010-08-17 Ngk Spark Plug Co., Ltd. Method of manufacturing capacitor for incorporation in wiring board, capacitor for incorporation in wiring board, and wiring board
US7980655B2 (en) 2005-08-31 2011-07-19 Seiko Epson Corporation Printing method, printing system and method for determining correction value
US7789478B2 (en) 2005-08-31 2010-09-07 Seiko Epson Corporation Printing method, printing system and method for determining correction value
US7549721B2 (en) 2005-08-31 2009-06-23 Seiko Epson Corporation Printing method, printing system and method for determining correction value
US7573697B2 (en) 2005-08-31 2009-08-11 Ngk Spark Plug Co., Ltd. Method of manufacturing capacitor for incorporation in wiring board, capacitor for incorporation in wiring board, and wiring board
US7956454B2 (en) 2005-09-01 2011-06-07 Ngk Spark Plug Co., Ltd. Wiring board and ceramic chip to be embedded
US7889509B2 (en) 2005-09-01 2011-02-15 Ngk Spark Plug Co., Ltd. Ceramic capacitor
US7742314B2 (en) 2005-09-01 2010-06-22 Ngk Spark Plug Co., Ltd. Wiring board and capacitor
US7863662B2 (en) 2005-12-22 2011-01-04 Ngk Spark Plug Co., Ltd. Capacitor to be incorporated in wiring substrate, method for manufacturing the capacitor, and wiring substrate
US8304321B2 (en) 2005-12-22 2012-11-06 Ngk Spark Plug Co., Ltd. Capacitor to be incorporated in wiring substrate, method for manufacturing the capacitor, and wiring substrate
US8350306B2 (en) 2005-12-22 2013-01-08 Ngk Spark Plug Co., Ltd. Capacitor to be incorporated in wiring substrate, method for manufacturing the capacitor, and wiring substrate
US8697534B2 (en) 2005-12-22 2014-04-15 Ngk Spark Plug Co., Ltd. Capacitor to be incorporated in wiring substrate, method for manufacturing the capacitor, and wiring substrate
US8698278B2 (en) 2008-03-24 2014-04-15 Ngk Spark Plug Co., Ltd. Component-incorporating wiring board
WO2009119875A1 (en) 2008-03-24 2009-10-01 日本特殊陶業株式会社 Component-incorporating wiring board
JP2010219503A (en) * 2009-03-12 2010-09-30 Ibiden Co Ltd Substrate for mounting semiconductor element and method of manufacturing the substrate for mounting the semiconductor element
US9107306B2 (en) 2010-10-14 2015-08-11 Panasonic Intellectual Property Management Co., Ltd. Hybrid substrate, method for manufacturing the same, and semiconductor integrated circuit package
JP2013122963A (en) * 2011-12-09 2013-06-20 Ngk Spark Plug Co Ltd Wiring board
JP2013214568A (en) * 2012-03-30 2013-10-17 Fujitsu Ltd Wiring board and wiring board manufacturing method
JP2016201529A (en) * 2015-04-07 2016-12-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. Printed circuit board, manufacturing method of the same, and electronic component module
JP2017200168A (en) * 2016-02-08 2017-11-02 ザ・ボーイング・カンパニーThe Boeing Company Scalable planar mounting architecture for active scanning phased array antenna system
WO2020194832A1 (en) * 2019-03-28 2020-10-01 アイシン・エィ・ダブリュ株式会社 Electronic substrate
JP2020161756A (en) * 2019-03-28 2020-10-01 アイシン・エィ・ダブリュ株式会社 Electronic substrate
JP7279464B2 (en) 2019-03-28 2023-05-23 株式会社アイシン Electronic substrate
WO2023157892A1 (en) * 2022-02-15 2023-08-24 大日本印刷株式会社 Semiconductor package, semiconductor package intermediate body, rewiring layer chip, rewiring layer chip intermediate body, semiconductor package manufacturing method, and semiconductor package intermediate body manufacturing method

Also Published As

Publication number Publication date
TW200539202A (en) 2005-12-01
TWI267880B (en) 2006-12-01

Similar Documents

Publication Publication Date Title
US6979890B2 (en) Intermediate substrate
JP2005039243A (en) Intermediate substrate
JP2005039217A (en) Intermediate substrate
KR101160363B1 (en) Wiring board and capacitor to be built into wiring board
JP4654133B2 (en) Wiring board
US9917045B2 (en) Methods and apparatus for providing an interposer for interconnecting semiconductor chips
CN101047159B (en) Multilayer interconnection substrate, semiconductor device, and solder resist
JP2006253669A (en) Wiring board
JP2548602B2 (en) Semiconductor mounting module
CN101211888A (en) Wiring substrate, manufacturing method thereof, and semiconductor device
CN102106198A (en) Semiconductor device and method for manufacturing same
US8487439B2 (en) Laminated and sintered ceramic circuit board, and semiconductor package including the circuit board
JP2008109094A (en) Element-mounting board and semiconductor module
US6338893B1 (en) Conductive paste and ceramic printed circuit substrate using the same
JP4686907B2 (en) Manufacturing method of ceramic substrate
JP4549029B2 (en) Glass ceramic composition, glass ceramic sintered body, method for producing glass ceramic sintered body, and wiring board
CN100521168C (en) Intermediate substrate
JPH11163524A (en) Multilayer wiring board and semiconductor device employing the same
JP5897944B2 (en) Laminated sintered ceramic interposer and semiconductor package including the laminated sintered ceramic interposer
JP2005243842A (en) Method of manufacturing capacitor
JP2001143527A (en) Conductive paste and ceramic wiring substrate using the same
JP3188911B2 (en) Multilayer ceramic substrate, method of manufacturing the same, and semiconductor package
JP2006066737A (en) Intermediate substrate
JP2005191307A (en) Wiring board
JP2006032442A (en) Multi-layer substrate and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615