JP2005038876A - Method of adjusting deflection track of charged particle beam of exposure device - Google Patents

Method of adjusting deflection track of charged particle beam of exposure device Download PDF

Info

Publication number
JP2005038876A
JP2005038876A JP2003196997A JP2003196997A JP2005038876A JP 2005038876 A JP2005038876 A JP 2005038876A JP 2003196997 A JP2003196997 A JP 2003196997A JP 2003196997 A JP2003196997 A JP 2003196997A JP 2005038876 A JP2005038876 A JP 2005038876A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
wafer
reticle
deflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003196997A
Other languages
Japanese (ja)
Inventor
Atsushi Yamada
篤志 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003196997A priority Critical patent/JP2005038876A/en
Publication of JP2005038876A publication Critical patent/JP2005038876A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adjusting method which is capable of setting the point and angle of incidence of a deflection beam on a wafer at designed values and making the deflection beam pass through the center of a contrast aperture. <P>SOLUTION: The exciting current ratio t of a deflector R1 to a deflector R2 is obtained which enables an electron beam 3 starting from the optical axis 2 of a reticle 1 to pass through the center of the contrast aperture 4. When the exciting currents of the reflectors R1 and R2 are changed while the above relation is kept unchanged, the sensitivity of the point of incidence of the electron beam 3 on the wafer 5 is obtained. If the point of incidence of the electron beam 3 on the wafer 5 deviates from a target position while the exciting currents of the deflectors R1 and R2 are determined so as to enable the electron beam 3 located out of the optical axis to pass through the center of the contrast aperture 4, the above deviation is corrected by the use of the above sensitivity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、レチクルに形成されたパターンを複数のサブフィールドに分割し、前記サブフィールド毎にウエハ上に露光転写し、露光された前記サブフィールドの像をつなぎ合わせて前記パターン全体の露光転写を行う分割転写方式の荷電粒子線露光装置において、偏向軌道を調整する方法に関するものである。
【0002】
【従来の技術】
近年、露光の高解像と高スループットの両方を兼ね備えた電子線露光装置の開発が進められている。この目的で従来開発されてきた方式は一括転写方式である。これは1ダイ(1チップ)または複数ダイを一度に露光する方式である。しかしこの方式においては、転写のための原版となるレチクルの製作が困難であるのと、1ダイ以上というような大きな光学フィールド内で収差を必要程度以下にするのが難しい等の問題があるために、最近ではこの方式の装置の開発は下火になっている。
【0003】
そこで最近よく検討されている方式は1ダイまたは複数ダイを一度に露光するのではなく、大きな光学フィールドを持つ露光装置を使用しながらも、小さな領域に分割して転写露光するという方式である。この方式を、分割転写方式と呼ぶこととする。分割転写方式においては、このサブフィールド毎に、被露光面上に結像されるサブフィールドの像の焦点やサブフィールド内での歪み等の収差等を補正しながら露光する。これにより、一括転写に比べて光学的に広い領域にわたって解像度、光学系の歪み補正精度の良い露光を行うことができる。
【0004】
図6に分割転写方式荷電粒子線露光装置の概要を示す。図6において、100はレチクル、100aはレチクル100上のサブフィールド、100bはサブフィールド100a間の境界領域、110はレジストを塗布したウエハ等の感応基板、110aは感応基板110の1ダイ(1チップ)分の領域、110bはサブフィールド100aそれぞれに対応した感応基板110の被転写領域、AXは荷電粒子線光学系の光軸、EBは荷電粒子線、COは荷電粒子光学系のクロスオーバポイントである。
【0005】
レチクル100上には、感応基板110に転写すべきパターンをメンブレン上にそれぞれ備えた多数のサブフィールド100aが、パターンが存在しない境界領域100bにより区分されて存在している。そして、境界領域100bに対応する部分には、格子状の支柱が設けられ、メンブレンを熱的及び強度的に保護している。
【0006】
各サブフィールド100aは、感応基板110の1ダイ分の領域110aに転写すべきパターンを分割した部分パターンをそれぞれ備えており、分割した部分パターン毎に感応基板110に転写される。
【0007】
感応基板110の外観形状は図6(b)に示したとおりであり、図6(a)においては、感応基板110の一部(図6(b)のVa部)を拡大して示してある。
【0008】
図6において、荷電粒子線光学系の光軸AXと平行にz軸をとり、サブフィールド100aの並び方向と平行にx軸、y軸をとる。そして、矢印Fm、Fwで示すように、レチクル100及び感応基板110をx軸方向へ互いに逆向きに連続移動させながら、荷電粒子線をy軸方向にステップ的に走査して一列のサブフィールド100aのパターンを順次転写し、その列のパターン転写が終了した後に、x軸方向に隣接する次のサブフィールド100aの列を荷電粒子線で走査し、以降同様にしてサブフィールド100a毎に転写(分割転写)を繰り返して1ダイ(1チップ)分のパターンを転写する。
【0009】
このときのサブフィールド100aの走査順序及び感応基板110への転写順序は、それぞれ矢印Am、Awで示すとおりである。なお、レチクル100と感応基板110の連続移動方向が逆なのは、一対の投影レンズによりレチクル100と感応基板110とでx軸、y軸がそれぞれ反転するためである。
【0010】
このような手順で転写(分割転写)を行う場合、y軸方向の一列のサブフィールド100aのパターンを一対の投影レンズで感応基板110にそのまま投影するだけでは、サブフィールド100aそれぞれに対応した感応基板110の被転写領域110bそれぞれの間に、境界領域100bに対応する隙間が生じる。これに対する対策として、各サブフィールド100aを通過した荷電粒子線EBを境界領域100bの幅Lyに相当する分だけy軸方向に偏向してパターン転写位置を補正している。
【0011】
x軸方向に関しても、パターン縮小率比に応じた一定速度で散乱透過レチクル100と感応基板110を移動させるだけでなく、一列のサブフィールド100aの転写が終わって次の列のサブフィールド100aの転写に移る際に、境界領域100bの幅Lxだけ荷電粒子線EBをx軸方向に偏向して、被転写領域110b同士の間にx軸方向の隙間が生じないように、パターン転写位置を補正している。
【0012】
以上説明したように、分割転写方式においては、ウエハ110上の1ダイ(1チップ)に対応するパターンが多数のサブフィールド100aに分割され、各サブフィールド100a間に形成された境界領域100bに格子状の支柱が設けられているので、荷電粒子線照射によるレチクル基板のたわみや熱歪みを抑制することができ、精度のよい露光転写を行うことができる。
【0013】
分割転写方式の荷電粒子線露光装置に使用される露光光学系の一例を図7に示す。図7において、21は荷電粒子源(クロスオーバ点)、22は照明レンズ、23,24は転写レンズ、25はレチクル、26は散乱アパーチャ(コントラストアパーチャ)、27はウエハ、28は荷電粒子源よりの荷電粒子線、29はレチクル25のパターン部を通過した荷電粒子線、30はクロスオーバ点を示す。
【0014】
荷電粒子源1より放射された荷電粒子線28は、照明レンズ22により平行ビームとされ、レチクル25を照射する。レチクル25のパターン部を通過した荷電粒子線29は、転写レンズ23、24により、ウエハ27上にパターンの像を結像する。その際、散乱線をカットするために、クロスオーバ点30の位置に散乱アパーチャ(コントラストアパーチャ)26が設けられている。図7では省略しているが、実際の分割転写方式においては、レチクル25より上にはサブフィールド選択用の偏向器(照明光学系の偏向器)が、レチクル25とウエハ27との間には転写されるサブフィールドをつなげるための偏向器が設置され、更にレチクル25はステージ上に設置されている。
【0015】
【発明が解決しようとする問題点】
このような、分割転写方式の荷電粒子線露光装置における偏向ビームの軌道調整法は、これまで具体的に明確化されていなかった。最も簡単な調整法は、設計値によって導出された偏向器の励磁電流をそのまま入力することである。
【0016】
しかしながら、設計値によって導出された偏向器の励磁電流をそのまま入力するだけでは、偏向ビームがコントラストアパーチャの中心をとおらず、またウエハ面上の入射位置、入射角も設計値とは異なった値を示す場合が多い。よって、所望の光学特性を得るのが困難である。
【0017】
本発明はこのような事情に鑑みてなされたもので、分割転写方式の荷電粒子線露光装置において、偏向ビームがコントラストアパーチャの中心を通るようにできると共に、ウエハ面上の入射位置、入射角も設計値に合わせることができる荷電粒子線露光装置における偏向軌道の調整方法を提供することを課題とする。
【0018】
【問題を解決するための手段】
前記課題を解決するための第1の手段は、レチクルに形成されたパターンを複数のサブフィールドに分割し、前記サブフィールド毎にウエハ上に露光転写し、露光された前記サブフィールドの像をつなぎ合わせて前記パターン全体の露光転写を行う分割転写方式の荷電粒子線露光装置であって、前記レチクル面と前記ウエハ面の間に、散乱線をカットするコントラストアパーチャを有し、前記コントラストアパーチャと前記レチクル間に2つ、前記コントラストアパーチャと前記ウエハ間に2つの偏向器を有する荷電粒子線露光装置において、偏向軌道を調整する方法であって、以下の手順を有することを特徴とする荷電粒子線露光装置における偏向軌道の調整方法(請求項1)である。
(1) 照明光学系の偏向器を動作させず、前記レチクル面と光軸の交点を通る荷電粒子線が、前記コントラストアパーチャ中心を通る場合の、前記レチクル側の2つの偏向器の励磁電流比又は印加電圧比を求める。
(2) 前記ウエハ側の偏向器を作動させず、(1)で求めた前記レチクル面側の2つの偏向器の励磁比又は印加電圧比を保ったまま、励磁電流又は印加電圧の大きさを変化させたときの、前記ウエハ面での荷電粒子線の位置感度と入射角感度を求める。
(3) 照明光学系の偏向器を作動させ、前記レチクル面上で光軸外に偏向された荷電粒子線が、前記コントラストアパーチャの中心を通るように、前記レチクル側偏向器の励磁電流又は印加電圧を設定する。
(4) (3)で設定した励磁電流又は印加電圧における、前記ウエハ上での荷電粒子線の到達位置および入射角を計測する。
(5) (4)で計測された荷電粒子線の到達位置と設計値による到達位置の差、(2)で求めた位置感度及び(3)で求めた励磁電流値又は印加電圧値とから前記レチクル側の2つの偏向器の電流値又は電圧値を決める。
(6) 照明光学系の偏向器、及び前記レチクル側の偏向器を動作させない状態で、前記ウエハ側の2つの偏向器について、前記ウエハ面上での荷電粒子線の位置感度と入射角感度をそれぞれ求める。
(7) (6)で求められた荷電粒子線の位置感度と入射角感度及び(2)で求められた入射角感度を用いて、前記レチクル側の2つの偏向器の電流値を前記(5)で求められた値に設定した状態で、荷電粒子線が前記ウエハ面の所定の位置に、垂直入射するように、前記ウエハ側の2つの偏向器の励磁電流又は印加電圧を決定する。
【0019】
前記課題を解決するための第2の手段は、前記第1の手段における、前記(6)において、前記ウエハ側偏向器を作動させない場合の荷電粒子線の前記ウエハ面での到達位置を設計値の周りに変化させて、光学特性が最良となる到達位置を求め、その到達位置を、前記設計値の代わりに用いることを特徴とする荷電粒子線露光装置における偏向軌道の調整方法(請求項2)である。
【0020】
前記課題を解決するための第3の手段は、前記第2の手段における、前記(7)において、荷電粒子線の入射角を0(垂直入射)の周りに変化させて、光学特性が最良となる入射角を求め、この入射角を入射角0(垂直入射)の代わりに用いることを特徴とする荷電粒子線露光装置における偏向軌道の調整方法(請求項3)である。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態の例を、図を用いて説明する。図1は、分割転写方式の電子線露光装置の投影光学系の概要を示す図である。図においては、投影光学系におけるレンズ等の図示を省略し、本発明に関係のある偏向器のみを図示している。
【0022】
図1において、図示しない照明光学系の偏向器によって電子線が偏向され、レチクル1の、光軸2から離れた位置を照射している。レチクル1上のパターンを照射した電子線3は、コントラストアパーチャ4よりレチクル1側に設けられた2つの偏向器R1、R2により軌道が偏向され、コントラストアパーチャ4の中心を通るように調整される。その後、電子線3は、コントラストアパーチャ4よりウエハ5側に設けられた2つの偏向器W1、W2により軌道が偏向され、ウエハ5の所定の位置(レチクル1のパターン位置に対応した位置)に垂直入射するように調整される。
【0023】
以下に説明する調整方法は、偏向器R1、R2を調整することにより、電子線3の軌道がコントラストアパーチャ4の中心を通り、その後、ウエハ5上の所定の位置に、垂直入射するように偏向器W1、W2を調整する方法に関するものである。なお、以下の説明においては、偏向器は全て磁気を利用したものとして説明するが、静電型の偏向器を利用した場合でも全く同じであり、単にコイルの励磁電流を電極に印加する電圧に置き換えればよい。
【0024】
まず、図2に示すように、図示しない照明光学系の偏向器の励磁電流を0として、レチクル1の光軸2の位置に電子線3を入射させる。そして、電子線3の軌道が、コントラストアパーチャ4の中心を通るように、偏向器R1とR2の励磁電流比を決定する。
【0025】
ただし偏向器は、z軸を光軸方向としたx−y−z直交座標系で、x軸方向、y軸方向の偏向を行うようになっているので、励磁コイルとして、x軸方向用とy軸方向用の2種類のコイルを有している。よって、簡単のために偏向器のコイルに流す励磁電流を複素数表示することにする。
【0026】
そして、偏向器R1に流す励磁電流をIR1(=IR1X+iIR1y)、偏向器R2に流す励磁電流をIR2(=IR2x+iIR2y)、偏向器W1に流す励磁電流をIW1(=IW1x+iIW1y)、偏向器W2に流す励磁電流をIW2(=IW2x+iIW2y)とする。
【0027】
電子線3の軌道がコントラストアパーチャ4の中心を通る条件を保ちながら、励磁電流R1とR2を変化させたとき、IR1とIR2は比例関係を有する。この励磁比IR2/IR1がtであったとする。なお、tは複素数である。このとき、偏向器W1、W2を励磁しないでおけば、励磁電流IR1、IR2の変化に応じて、電子線3がウエハ5に入射する位置と入射角度が変化する。
【0028】
IR1とIR2の比例関係を保ちながら励磁電流IR1が(1)[mA]変化したときの、電子線3のウエハ5への入射位置の変化量[mm]を偏向位置感度と称し、SRP[mm/mA]で表す。同様、励磁電流IR1が(1)[mA]変化したときの、電子線3のウエハ5への入射角度の変化量[rad]を入射角感度と称し、SRL[rad/mA]で表す。SRP、SRLも複素数で表される。
【0029】
次に照明系の偏向器、偏向器R1、R2を励磁し、図3に示すように、光軸2外の電子線3がコントラストアパーチャ4の中心を通るように偏向器R1、R2の励磁電流を設定する。偏向器R1の励磁電流をIRD1に固定したとき、偏向器R2の励磁電流は、IRD2となったとし、このとき偏向器W1、W2は励磁せず、ウエハ5面への電子線3の入射位置はRP、入射角はRL(共に複素数)であったとする。入射角の複素数表示は、x−z平面における入射角を実数成分、y−z平面における入射角を虚数成分とする。
【0030】
今、これに対応する設計条件、すなわち、光軸2外の電子線3がコントラストアパーチャ4の中心を通り、かつ、偏向器W1、W2は励磁しないという条件の下で、電子線3がウエハ5に入射する位置の設計値がA(複素数)であったとすると、電子線3のウエハ5への入射位置が、設計値より(A−RP)だけずれていることになる。よってこの分を、偏向器R1、R2の励磁電流を調整することによって、電子線3がウエハ5に入射する位置がAとなるようにする。それには、偏向器R1とR2の励磁電流IR1、IR2を
【0031】
【数1】

Figure 2005038876
【0032】
とすればよい。この調整により、電子線3のウエハ5への入射角は、
【0033】
【数2】
Figure 2005038876
【0034】
だけ変化し、
【0035】
【数3】
Figure 2005038876
【0036】
となる。
【0037】
次に図4に示すように照明光学系の偏向器の励磁、及び偏向器R1、R2の励磁を0にし、偏向器W1のみ励磁し、その感度を測定する。偏向器W1の励磁電流が(1)[mA]変化したときの電子線3がウエハ5上に入射する位置[mm]の変化を位置感度と称し、SW1P[mm/mA]で示す。又、偏向器W1の励磁電流が(1)[mA]変化したときの電子線3がウエハ5上に入射する角度[rad]の変化を入射角感度と称し、SW1L[rad/mA]で表す。
【0038】
次に、図5に示すように、偏向器W2のみを励磁して同様の測定を行い、位置感度と入射角感度を求める。位置感度をSW2P[mm/mA]、入射角感度をSW2L[rad/mA]で表す。SW1P、SW1L、SW2P、SW2Lは複素数である。
【0039】
このようにして、偏向器W1、W2について、位置感度、入射角感度を求めた後、前述のように、偏向器W1、W2が無励磁の状態で、偏向器R1、R2を調整して、電子線3がウエハ5上の設計位置Aに入射するようにした状態から、偏向器W1、W2を励磁して、電子線がウエハ5上の設計位置WPに、設計入射角WL(通常はWL=0)で入射するようにする。すなわち、偏向器W1、W2を励磁することにより、電子線3のランディング位置をAからWPに移動させると共に、入射角を(3)式で表される値からWPに変更する。そのためには、偏向器W1、W2の励磁電流IW1、IW2を、それぞれ
【0040】
【数4】
Figure 2005038876
【0041】
となるように定めればよい。
【0042】
以上により、各偏向器の励磁電流値が設定され、調整が完了するが、このときの光学特性が優れているとは限らないため、前述のAを設計値からΔAだけ2次元的に変化させ、ΔAをパラメータにとり、そのときの光学特性を調べることにより、光学特性が最適となるΔAを探し出す。ΔAがΔAansで最適となったとすると、前述のAを(A+ΔAans)に変える。そして、この条件の下で、前記WLを微少量ΔWLだけ2次元的に変化させて、最適な光学特性を与えるΔWLの値を求める。その値をΔWLansとすると、前述のWLを(WL+ΔWLans)に変える。そして、変えた値に(1)、(2)、(4)式を適用することにより、各偏向器の励磁電流値を求める。これにより、最適な調整が完了する。
【0043】
【発明の効果】
以上説明したように、本発明によれば、分割転写方式の荷電粒子線露光装置において、偏光ビームがコントラストアパーチャの中心を通るようにできると共に、ウエハ面上の入射位置、入射角も設計値に合わせることができる荷電粒子線露光装置における偏向軌道の調整方法を提供することができる。
【図面の簡単な説明】
【図1】分割転写方式の電子線露光装置の投影光学系の概要を示す図である。
【図2】レチクル側の偏向器の調整手順を示すための図である。
【図3】レチクル側の偏向器の調整手順を示すための図である。
【図4】ウエハ側の第1偏向器の感度を求める手順を説明するための図である。
【図5】ウエハ側の第1偏向器の感度を求める手順を説明するための図である。
【図6】分割転写方式荷電粒子線露光装置の概要を示す図である。
【図7】分割転写方式の荷電粒子線露光装置に使用される露光光学系の一例を示す図である。
【符号の説明】
1…レチクル
2…光軸
3…電子線
4…コントラストアパーチャ
5…ウエハ[0001]
BACKGROUND OF THE INVENTION
The present invention divides a pattern formed on a reticle into a plurality of subfields, exposes and transfers the wafer onto each subfield, and connects the exposed images of the subfields to perform exposure transfer of the entire pattern. The present invention relates to a method for adjusting a deflection trajectory in a divided transfer type charged particle beam exposure apparatus.
[0002]
[Prior art]
In recent years, an electron beam exposure apparatus having both high resolution of exposure and high throughput has been developed. A method conventionally developed for this purpose is a batch transfer method. This is a method of exposing one die (one chip) or a plurality of dies at a time. However, this method has problems that it is difficult to manufacture a reticle as an original for transfer, and that it is difficult to reduce the aberration to a necessary level or less in a large optical field such as one die or more. Recently, the development of this type of equipment has been under fire.
[0003]
Therefore, a method that has been well studied recently is not a method in which one die or a plurality of dies are exposed at a time, but a method in which transfer exposure is performed by dividing into small regions while using an exposure apparatus having a large optical field. This method is called a divided transfer method. In the divided transfer method, exposure is performed for each subfield while correcting aberrations such as the focus of the subfield image formed on the exposure surface and distortion in the subfield. Thereby, exposure with high resolution and distortion correction accuracy of the optical system can be performed over an optically wide area as compared with batch transfer.
[0004]
FIG. 6 shows an outline of the divided transfer type charged particle beam exposure apparatus. In FIG. 6, reference numeral 100 denotes a reticle, 100a denotes a subfield on the reticle 100, 100b denotes a boundary region between the subfields 100a, 110 denotes a sensitive substrate such as a resist-coated wafer, and 110a denotes one die (one chip) of the sensitive substrate 110. ) Is an area to be transferred of the sensitive substrate 110 corresponding to each of the subfields 100a, AX is an optical axis of the charged particle beam optical system, EB is a charged particle beam, and CO is a crossover point of the charged particle optical system. is there.
[0005]
On the reticle 100, there are a large number of subfields 100a each having a pattern to be transferred to the sensitive substrate 110 on the membrane, separated by a boundary region 100b where no pattern exists. A grid-like column is provided at a portion corresponding to the boundary region 100b to protect the membrane in terms of heat and strength.
[0006]
Each subfield 100a includes a partial pattern obtained by dividing a pattern to be transferred to a region 110a for one die of the sensitive substrate 110, and each divided partial pattern is transferred to the sensitive substrate 110.
[0007]
The appearance shape of the sensitive substrate 110 is as shown in FIG. 6B, and in FIG. 6A, a part of the sensitive substrate 110 (Va portion in FIG. 6B) is shown enlarged. .
[0008]
In FIG. 6, the z axis is taken in parallel with the optical axis AX of the charged particle beam optical system, and the x axis and the y axis are taken in parallel with the arrangement direction of the subfields 100a. Then, as indicated by arrows Fm and Fw, the charged particle beam is scanned stepwise in the y-axis direction while continuously moving the reticle 100 and the sensitive substrate 110 in the opposite directions in the x-axis direction to form a row of subfields 100a. After the pattern transfer of the row is completed, the next subfield 100a row adjacent in the x-axis direction is scanned with a charged particle beam, and thereafter the transfer is performed for each subfield 100a (divided). The pattern for one die (one chip) is transferred by repeating (transfer).
[0009]
The scanning order of the subfield 100a and the transfer order to the sensitive substrate 110 at this time are as indicated by arrows Am and Aw, respectively. Note that the continuous movement direction of the reticle 100 and the sensitive substrate 110 is opposite because the x axis and the y axis are reversed between the reticle 100 and the sensitive substrate 110 by the pair of projection lenses.
[0010]
When performing transfer (divided transfer) in such a procedure, simply projecting the pattern of the subfield 100a in a row in the y-axis direction onto the sensitive substrate 110 with a pair of projection lenses as it is is a sensitive substrate corresponding to each subfield 100a. A gap corresponding to the boundary region 100b is generated between each of the 110 transferred regions 110b. As a countermeasure against this, the pattern transfer position is corrected by deflecting the charged particle beam EB that has passed through each subfield 100a in the y-axis direction by an amount corresponding to the width Ly of the boundary region 100b.
[0011]
Also in the x-axis direction, not only the scattering transmission reticle 100 and the sensitive substrate 110 are moved at a constant speed according to the pattern reduction ratio, but also the transfer of the subfield 100a of the next row after the transfer of the subfield 100a of the next row is completed. , The pattern transfer position is corrected so that the charged particle beam EB is deflected in the x-axis direction by the width Lx of the boundary region 100b and no gap in the x-axis direction is generated between the transferred regions 110b. ing.
[0012]
As described above, in the divided transfer method, a pattern corresponding to one die (one chip) on the wafer 110 is divided into a large number of subfields 100a and lattices are formed in the boundary regions 100b formed between the subfields 100a. Since the columnar support is provided, it is possible to suppress the deflection and thermal distortion of the reticle substrate due to the charged particle beam irradiation, and to perform accurate exposure transfer.
[0013]
An example of an exposure optical system used in the divided transfer type charged particle beam exposure apparatus is shown in FIG. In FIG. 7, 21 is a charged particle source (crossover point), 22 is an illumination lens, 23 and 24 are transfer lenses, 25 is a reticle, 26 is a scattering aperture (contrast aperture), 27 is a wafer, and 28 is a charged particle source. , 29 is a charged particle beam that has passed through the pattern portion of the reticle 25, and 30 is a crossover point.
[0014]
The charged particle beam 28 emitted from the charged particle source 1 is converted into a parallel beam by the illumination lens 22 and irradiates the reticle 25. The charged particle beam 29 that has passed through the pattern portion of the reticle 25 forms an image of the pattern on the wafer 27 by the transfer lenses 23 and 24. At this time, a scattering aperture (contrast aperture) 26 is provided at the position of the crossover point 30 in order to cut the scattered radiation. Although omitted in FIG. 7, in the actual divided transfer method, a deflector for subfield selection (deflector of illumination optical system) is provided above the reticle 25, and between the reticle 25 and the wafer 27. A deflector for connecting the subfields to be transferred is installed, and the reticle 25 is installed on the stage.
[0015]
[Problems to be solved by the invention]
A method for adjusting the trajectory of the deflected beam in such a divided transfer type charged particle beam exposure apparatus has not been specifically clarified so far. The simplest adjustment method is to input the excitation current of the deflector derived from the design value as it is.
[0016]
However, if the excitation current of the deflector derived from the design value is input as it is, the deflected beam does not take the center of the contrast aperture, and the incident position and incident angle on the wafer surface are different from the design value. Is often indicated. Therefore, it is difficult to obtain desired optical characteristics.
[0017]
The present invention has been made in view of such circumstances. In the divided transfer type charged particle beam exposure apparatus, the deflected beam can pass through the center of the contrast aperture, and the incident position and incident angle on the wafer surface can also be adjusted. It is an object of the present invention to provide a method for adjusting a deflection trajectory in a charged particle beam exposure apparatus that can be adjusted to a design value.
[0018]
[Means for solving problems]
A first means for solving the above-described problem is to divide a pattern formed on a reticle into a plurality of subfields, and to perform exposure transfer on the wafer for each subfield, and to connect the images of the exposed subfields. In addition, a divided transfer type charged particle beam exposure apparatus that performs exposure transfer of the entire pattern, and has a contrast aperture that cuts scattered rays between the reticle surface and the wafer surface, and the contrast aperture and the In a charged particle beam exposure apparatus having two deflectors between reticles and two deflectors between the contrast aperture and the wafer, the charged particle beam is a method for adjusting a deflection trajectory, and has the following procedure: A method for adjusting a deflection trajectory in an exposure apparatus (claim 1).
(1) Excitation current ratio of the two deflectors on the reticle side when the deflector of the illumination optical system is not operated and a charged particle beam passing through the intersection of the reticle surface and the optical axis passes through the center of the contrast aperture Alternatively, the applied voltage ratio is obtained.
(2) The magnitude of the excitation current or applied voltage is maintained while maintaining the excitation ratio or applied voltage ratio of the two deflectors on the reticle surface obtained in (1) without operating the deflector on the wafer side. The position sensitivity and incident angle sensitivity of the charged particle beam on the wafer surface when changed are obtained.
(3) Activating the deflector of the illumination optical system so that the charged particle beam deflected out of the optical axis on the reticle surface passes through the center of the contrast aperture. Set the voltage.
(4) The arrival position and incident angle of the charged particle beam on the wafer at the excitation current or applied voltage set in (3) are measured.
(5) From the difference between the arrival position of the charged particle beam measured in (4) and the arrival position based on the design value, the position sensitivity obtained in (2) and the excitation current value or applied voltage value obtained in (3) The current value or voltage value of the two deflectors on the reticle side is determined.
(6) The position sensitivity and the incident angle sensitivity of the charged particle beam on the wafer surface of the two deflectors on the wafer side in a state where the deflector on the illumination optical system and the deflector on the reticle side are not operated. Ask for each.
(7) Using the position sensitivity and incident angle sensitivity of the charged particle beam obtained in (6) and the incident angle sensitivity obtained in (2), the current values of the two deflectors on the reticle side are set to (5 The excitation currents or applied voltages of the two deflectors on the wafer side are determined so that the charged particle beam is perpendicularly incident on a predetermined position on the wafer surface in the state set to the value obtained in (1).
[0019]
According to a second means for solving the above-mentioned problem, the position where the charged particle beam reaches the wafer surface when the wafer-side deflector is not operated in (6) in the first means is a design value. A method for adjusting a deflection trajectory in a charged particle beam exposure apparatus characterized in that an arrival position with the best optical characteristics is obtained by changing the position around the position and the arrival position is used in place of the design value. ).
[0020]
According to a third means for solving the above problem, in the second means, in (7), the incident angle of the charged particle beam is changed around 0 (perpendicular incidence) so that the optical characteristics are the best. The incident angle is obtained, and this incident angle is used in place of the incident angle 0 (vertical incidence). This is a method for adjusting a deflection trajectory in a charged particle beam exposure apparatus (claim 3).
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an outline of a projection optical system of a split transfer type electron beam exposure apparatus. In the drawing, illustration of a lens and the like in the projection optical system is omitted, and only a deflector related to the present invention is illustrated.
[0022]
In FIG. 1, an electron beam is deflected by a deflector of an illumination optical system (not shown) to irradiate a position of the reticle 1 away from the optical axis 2. The electron beam 3 irradiating the pattern on the reticle 1 is adjusted so that the trajectory is deflected by two deflectors R 1 and R 2 provided on the reticle 1 side from the contrast aperture 4 and passes through the center of the contrast aperture 4. Thereafter, the trajectory of the electron beam 3 is deflected by two deflectors W1 and W2 provided on the wafer 5 side with respect to the contrast aperture 4, and is perpendicular to a predetermined position of the wafer 5 (a position corresponding to the pattern position of the reticle 1). It adjusts so that it may inject.
[0023]
In the adjustment method described below, by adjusting the deflectors R 1 and R 2, the trajectory of the electron beam 3 passes through the center of the contrast aperture 4 and is then deflected so as to be perpendicularly incident on a predetermined position on the wafer 5. It relates to a method of adjusting the containers W1, W2. In the following description, it is assumed that all the deflectors use magnetism. However, even when an electrostatic deflector is used, the same is true, and the excitation current of the coil is simply set to the voltage applied to the electrodes. Replace it.
[0024]
First, as shown in FIG. 2, the excitation current of the deflector of the illumination optical system (not shown) is set to 0, and the electron beam 3 is incident on the position of the optical axis 2 of the reticle 1. Then, the excitation current ratio of the deflectors R1 and R2 is determined so that the trajectory of the electron beam 3 passes through the center of the contrast aperture 4.
[0025]
However, the deflector performs deflection in the x-axis direction and the y-axis direction in an xyz orthogonal coordinate system with the z-axis as the optical axis direction. Two types of coils for the y-axis direction are provided. Therefore, for the sake of simplicity, the excitation current flowing through the coil of the deflector is displayed in a complex number.
[0026]
The excitation current flowing through the deflector R1 is IR1 (= IR 1X + iIR 1y ), the excitation current flowing through the deflector R2 is IR2 (= IR 2x + iIR 2y ), and the excitation current flowing through the deflector W1 is IW1 (= IW 1x + iIW). 1y ), and the exciting current passed through the deflector W2 is IW2 (= IW 2x + iIW 2y ).
[0027]
When the excitation currents R1 and R2 are changed while maintaining the condition that the trajectory of the electron beam 3 passes through the center of the contrast aperture 4, IR1 and IR2 have a proportional relationship. It is assumed that this excitation ratio IR2 / IR1 is t. Note that t is a complex number. At this time, if the deflectors W1 and W2 are not excited, the position where the electron beam 3 is incident on the wafer 5 and the incident angle are changed in accordance with changes in the excitation currents IR1 and IR2.
[0028]
The amount of change [mm] in the incident position of the electron beam 3 on the wafer 5 when the exciting current IR1 changes by (1) [mA] while maintaining the proportional relationship between IR1 and IR2 is referred to as deflection position sensitivity, and SRP [mm / MA]. Similarly, the amount of change [rad] in the incident angle of the electron beam 3 on the wafer 5 when the exciting current IR1 changes (1) [mA] is referred to as incident angle sensitivity and is represented by SRL [rad / mA]. SRP and SRL are also represented by complex numbers.
[0029]
Next, the illumination deflectors, deflectors R1 and R2, are excited, and the excitation currents of the deflectors R1 and R2 so that the electron beam 3 outside the optical axis 2 passes through the center of the contrast aperture 4 as shown in FIG. Set. When the excitation current of the deflector R1 is fixed to IRD1, the excitation current of the deflector R2 becomes IRD2. At this time, the deflectors W1 and W2 are not excited and the incident position of the electron beam 3 on the surface of the wafer 5 Is RP, and the incident angle is RL (both complex numbers). In the complex number display of the incident angle, the incident angle on the xz plane is a real component, and the incident angle on the yz plane is an imaginary component.
[0030]
Now, under the design conditions corresponding to this, that is, the electron beam 3 outside the optical axis 2 passes through the center of the contrast aperture 4 and the deflectors W1 and W2 are not excited, the electron beam 3 is exposed to the wafer 5. Assuming that the design value of the position incident on A is A (complex number), the incident position of the electron beam 3 on the wafer 5 is shifted by (A-RP) from the design value. Therefore, by adjusting the exciting currents of the deflectors R1 and R2, the position where the electron beam 3 is incident on the wafer 5 is set to A. For this purpose, excitation currents IR1 and IR2 of deflectors R1 and R2 are used.
[Expression 1]
Figure 2005038876
[0032]
And it is sufficient. By this adjustment, the incident angle of the electron beam 3 to the wafer 5 is
[0033]
[Expression 2]
Figure 2005038876
[0034]
Only changes,
[0035]
[Equation 3]
Figure 2005038876
[0036]
It becomes.
[0037]
Next, as shown in FIG. 4, the excitation of the deflector of the illumination optical system and the excitation of the deflectors R1 and R2 are set to 0, only the deflector W1 is excited, and its sensitivity is measured. The change in the position [mm] where the electron beam 3 is incident on the wafer 5 when the exciting current of the deflector W1 changes by (1) [mA] is referred to as position sensitivity, and is indicated by SW1P [mm / mA]. Further, the change in the angle [rad] at which the electron beam 3 is incident on the wafer 5 when the exciting current of the deflector W1 changes (1) [mA] is referred to as incident angle sensitivity, and is represented by SW1L [rad / mA]. .
[0038]
Next, as shown in FIG. 5, only the deflector W2 is excited and the same measurement is performed to determine the position sensitivity and the incident angle sensitivity. The position sensitivity is represented by SW2P [mm / mA], and the incident angle sensitivity is represented by SW2L [rad / mA]. SW1P, SW1L, SW2P, and SW2L are complex numbers.
[0039]
Thus, after obtaining the position sensitivity and the incident angle sensitivity for the deflectors W1 and W2, as described above, the deflectors R1 and R2 are adjusted with the deflectors W1 and W2 being unexcited, From the state in which the electron beam 3 is incident on the design position A on the wafer 5, the deflectors W1 and W2 are excited so that the electron beam reaches the design position WP on the wafer 5 at the design incident angle WL (usually WL = 0). That is, by exciting the deflectors W1 and W2, the landing position of the electron beam 3 is moved from A to WP, and the incident angle is changed from the value represented by the expression (3) to WP. For this purpose, the excitation currents IW1 and IW2 of the deflectors W1 and W2 are respectively set as follows:
[Expression 4]
Figure 2005038876
[0041]
It may be determined so that
[0042]
As described above, the excitation current value of each deflector is set and the adjustment is completed. However, since the optical characteristics at this time are not necessarily excellent, the above-mentioned A is changed two-dimensionally from the design value by ΔA. .DELTA.A is taken as a parameter, and the optical characteristic at that time is examined to find the optimum optical characteristic .DELTA.A. Assuming that ΔA is optimal at ΔA ans , the aforementioned A is changed to (A + ΔA ans ). Under this condition, the WL is two-dimensionally changed by a minute amount ΔWL to obtain a value of ΔWL that gives optimum optical characteristics. If the value is ΔWL ans , the above WL is changed to (WL + ΔWL ans ). And the exciting current value of each deflector is calculated | required by applying (1), (2), (4) Formula to the changed value. Thereby, the optimum adjustment is completed.
[0043]
【The invention's effect】
As described above, according to the present invention, in the divided transfer type charged particle beam exposure apparatus, the polarized beam can pass through the center of the contrast aperture, and the incident position and incident angle on the wafer surface can be set to the design values. It is possible to provide a method for adjusting a deflection trajectory in a charged particle beam exposure apparatus that can be adjusted.
[Brief description of the drawings]
FIG. 1 is a view showing an outline of a projection optical system of a split transfer type electron beam exposure apparatus;
FIG. 2 is a diagram for illustrating a procedure for adjusting a deflector on the reticle side;
FIG. 3 is a diagram for illustrating a procedure for adjusting a deflector on the reticle side;
FIG. 4 is a diagram for explaining a procedure for obtaining the sensitivity of the first deflector on the wafer side;
FIG. 5 is a diagram for explaining a procedure for obtaining the sensitivity of the first deflector on the wafer side;
FIG. 6 is a view showing an outline of a divided transfer type charged particle beam exposure apparatus.
FIG. 7 is a view showing an example of an exposure optical system used in a divided transfer type charged particle beam exposure apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Reticle 2 ... Optical axis 3 ... Electron beam 4 ... Contrast aperture 5 ... Wafer

Claims (3)

レチクルに形成されたパターンを複数のサブフィールドに分割し、前記サブフィールド毎にウエハ上に露光転写し、露光された前記サブフィールドの像をつなぎ合わせて前記パターン全体の露光転写を行う分割転写方式の荷電粒子線露光装置であって、前記レチクル面と前記ウエハ面の間に、散乱ビームをカットするコントラストアパーチャを有し、前記コントラストアパーチャと前記レチクル間に2つ、前記コントラストアパーチャと前記ウエハ間に2つの偏向器を有する荷電粒子線露光装置において、偏向軌道を調整する方法であって、以下の手順を有することを特徴とする荷電粒子線露光装置における偏向軌道の調整方法。
(1) 照明光学系の偏向器を動作させず、前記レチクル面と光軸の交点を通る荷電粒子線が、前記コントラストアパーチャ中心を通る場合の、前記レチクル側の2つの偏向器の励磁電流比又は印加電圧比を求める。
(2) 前記ウエハ側の偏向器を作動させず、(1)で求めた前記レチクル面側の2つの偏向器の励磁比又は印加電圧比を保ったまま、励磁電流又は印加電圧の大きさを変化させたときの、前記ウエハ面での荷電粒子線の位置感度と入射角感度を求める。
(3) 照明光学系の偏向器を作動させ、前記レチクル面上で光軸外に偏向された荷電粒子線が、前記コントラストアパーチャの中心を通るように、前記レチクル側偏向器の励磁電流又は印加電圧を設定する。
(4) (3)で設定した励磁電流又は印加電圧における、前記ウエハ上での荷電粒子線の到達位置および入射角を計測する。
(5) (4)で計測された荷電粒子線の到達位置と設計値による到達位置の差、(2)で求めた位置感度及び(3)で求めた励磁電流値又は印加電圧値とから前記レチクル側の2つの偏向器の電流値又は電圧値を決める。(6) 照明光学系の偏向器、及び前記レチクル側の偏向器を動作させない状態で、前記ウエハ側の2つの偏向器について、前記ウエハ面上での荷電粒子線の位置感度と入射角感度をそれぞれ求める。
(7) (6)で求められた荷電粒子線の位置感度と入射角感度及び(2)で求めた入射角感度を用いて、前記レチクル側の2つの偏向器の電流値を前記(5)で求められた値に設定した状態で、荷電粒子線が前記ウエハ面の所定の位置に、垂直入射するように、前記ウエハ側の2つの偏向器の励磁電流又は印加電圧を決定する。
Divided transfer system that divides a pattern formed on a reticle into a plurality of subfields, exposes and transfers the wafer onto each subfield, and connects the exposed images of the subfields to perform exposure transfer of the entire pattern. A charged particle beam exposure apparatus having a contrast aperture for cutting a scattered beam between the reticle surface and the wafer surface, two between the contrast aperture and the reticle, and between the contrast aperture and the wafer A method for adjusting a deflection trajectory in a charged particle beam exposure apparatus having two deflectors in the method, comprising the following procedure.
(1) Excitation current ratio of the two deflectors on the reticle side when the deflector of the illumination optical system is not operated and a charged particle beam passing through the intersection of the reticle surface and the optical axis passes through the center of the contrast aperture Alternatively, the applied voltage ratio is obtained.
(2) The magnitude of the excitation current or applied voltage is maintained while maintaining the excitation ratio or applied voltage ratio of the two deflectors on the reticle surface obtained in (1) without operating the deflector on the wafer side. The position sensitivity and incident angle sensitivity of the charged particle beam on the wafer surface when changed are obtained.
(3) Activating the deflector of the illumination optical system so that the charged particle beam deflected out of the optical axis on the reticle surface passes through the center of the contrast aperture. Set the voltage.
(4) The arrival position and incident angle of the charged particle beam on the wafer at the excitation current or applied voltage set in (3) are measured.
(5) From the difference between the arrival position of the charged particle beam measured in (4) and the arrival position based on the design value, the position sensitivity obtained in (2) and the excitation current value or applied voltage value obtained in (3) The current value or voltage value of the two deflectors on the reticle side is determined. (6) The position sensitivity and the incident angle sensitivity of the charged particle beam on the wafer surface of the two deflectors on the wafer side in a state where the deflector on the illumination optical system and the deflector on the reticle side are not operated. Ask for each.
(7) Using the position sensitivity and incident angle sensitivity of the charged particle beam obtained in (6) and the incident angle sensitivity obtained in (2), the current values of the two deflectors on the reticle side are obtained as described in (5). The excitation currents or applied voltages of the two deflectors on the wafer side are determined so that the charged particle beam is perpendicularly incident on a predetermined position on the wafer surface in the state set to the value obtained in (1).
請求項1に記載の荷電粒子線露光装置における偏向軌道の調整方法における、前記(6)において、前記ウエハ側偏向器を作動させない場合の荷電粒子線の前記ウエハ面での到達位置を設計値の周りに変化させて、光学特性が最良となる到達位置を求め、その到達位置を、前記設計値の代わりに用いることを特徴とする荷電粒子線露光装置における偏向軌道の調整方法。2. In the method of adjusting a deflection trajectory in the charged particle beam exposure apparatus according to claim 1, in (6), the arrival position of the charged particle beam on the wafer surface when the wafer side deflector is not operated is set to a design value. A method for adjusting a deflection trajectory in a charged particle beam exposure apparatus, characterized in that an arrival position with the best optical characteristics is obtained by changing the position around and used in place of the design value. 請求項2に記載の荷電粒子線露光装置における偏向軌道の調整方法における、前記(7)において、荷電粒子線の入射角を0(垂直入射)の周りに変化させて、光学特性が最良となる入射角を求め、この入射角を入射角0(垂直入射)の代わりに用いることを特徴とする荷電粒子線露光装置における偏向軌道の調整方法。3. In the method for adjusting a deflection trajectory in the charged particle beam exposure apparatus according to claim 2, in (7), the incident angle of the charged particle beam is changed around 0 (perpendicular incidence), so that the optical characteristics become the best. A method for adjusting a deflection trajectory in a charged particle beam exposure apparatus, wherein an incident angle is obtained and the incident angle is used in place of an incident angle of 0 (perpendicular incidence).
JP2003196997A 2003-07-15 2003-07-15 Method of adjusting deflection track of charged particle beam of exposure device Pending JP2005038876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003196997A JP2005038876A (en) 2003-07-15 2003-07-15 Method of adjusting deflection track of charged particle beam of exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003196997A JP2005038876A (en) 2003-07-15 2003-07-15 Method of adjusting deflection track of charged particle beam of exposure device

Publications (1)

Publication Number Publication Date
JP2005038876A true JP2005038876A (en) 2005-02-10

Family

ID=34207279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003196997A Pending JP2005038876A (en) 2003-07-15 2003-07-15 Method of adjusting deflection track of charged particle beam of exposure device

Country Status (1)

Country Link
JP (1) JP2005038876A (en)

Similar Documents

Publication Publication Date Title
JP5116996B2 (en) Charged particle beam drawing method, exposure apparatus, and device manufacturing method
JP4652830B2 (en) Aberration adjustment method, device manufacturing method, and charged particle beam exposure apparatus
JP4167050B2 (en) Charged particle beam exposure apparatus, control method therefor, and device manufacturing method
JP2003142373A (en) Method of exposure and aligner
JP4657740B2 (en) Aberration measuring apparatus for charged particle beam optical system, charged particle beam exposure apparatus including the aberration measuring apparatus, and device manufacturing method using the apparatus
JP5506560B2 (en) Drawing apparatus and device manufacturing method
JP4207232B2 (en) Charged beam exposure system
JP5663591B2 (en) Scanning electron microscope
JPH09320931A (en) Method for measuring imaging characteristic and transfer device by the method
JPH11354421A (en) Charged particle beam exposure system
JP2004200565A (en) Electron beam exposure equipment and electronic beam exposure method
US7394068B2 (en) Mask inspection apparatus, mask inspection method, and electron beam exposure system
JPH10106471A (en) Charged corpuscular beam device and method for using the same
JP2008004596A (en) Charged particle beam drawing method, aligner, and process for fabricating device
JP2005032837A (en) Method for charged particle beam lithography and method of manufacturing device using the same
JPH11176720A (en) Electron ream exposure device
JP2005038876A (en) Method of adjusting deflection track of charged particle beam of exposure device
JP2000003847A (en) Charged particle beam contraction transfer apparatus and manufacture of the apparatus
JP2006203067A (en) Exposure adjustment method in charged particle beam exposure apparatus
JPH09199072A (en) Ion beam projecting method and apparatus
JP4356064B2 (en) Charged particle beam exposure apparatus and device manufacturing method using the apparatus
JP3550476B2 (en) Charged particle beam processing method and processing apparatus
JP7027538B2 (en) Electron beam device
JPH10208996A (en) Electron beam exposure device and manufacture of device using it
TW201830449A (en) Evaluation method, correction method, recording medium and electron beam lithography system