JP2005038613A - Plate-shaped battery - Google Patents

Plate-shaped battery Download PDF

Info

Publication number
JP2005038613A
JP2005038613A JP2003196942A JP2003196942A JP2005038613A JP 2005038613 A JP2005038613 A JP 2005038613A JP 2003196942 A JP2003196942 A JP 2003196942A JP 2003196942 A JP2003196942 A JP 2003196942A JP 2005038613 A JP2005038613 A JP 2005038613A
Authority
JP
Japan
Prior art keywords
battery
power generation
fusion allowance
plate
generation element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003196942A
Other languages
Japanese (ja)
Inventor
Shigeru Sano
茂 佐野
Shigetaka Kasuya
成孝 糟谷
Takeo Mizui
健雄 水井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003196942A priority Critical patent/JP2005038613A/en
Publication of JP2005038613A publication Critical patent/JP2005038613A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plate-shaped battery in which the volume of the part substantially not contributing to power generation is minimized, and has a battery case with sufficient strength. <P>SOLUTION: A lithium ion secondary battery 1 is formed by airtightly sealing a plate-shaped cell in a battery case 4 made of a laminated enveloping material. A marginal part for adhesion 11 keeping the internal airtightness is formed on the battery case 4. The marginal part 11 of two sides adjacent to each other is folded toward case body side. The end face of the corner part of the cell 2 is formed so as to retreat inside a virtual angle VC formed by virtually extending a pair of side face on which the marginal part 11 to be folded extends. The marginal part 11 is extended up to the inside of the virtual angle VC, and notched parts 40 to 43 are formed at every corners of the case 2. The marginal part for adhesion 11 having a width corresponding to the depth of the notched parts 40 to 43 is folded. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、板状の発電要素が軟質容器内に気密封止された構造の板型電池に関する。
【0002】
【従来の技術】
昨今、電解液を電極内で膨潤保持可能なリチウムイオン二次電池(リチウムポリマー二次電池の概念を含む)においては、液漏れの恐れが小さいため、発電要素(セル)を、可撓性を有するラミネート外装材からなる電池容器に収容することが行なわれている。この手法によれば、金属製の容器を使用しないで済むため、電池の薄型化が容易である。また、後述する積層型リチウムイオン二次電池に至っては、形状の自由度が極めて高いという特徴を持っている。
【0003】
ラミネート外装材は、アルミニウム箔の両面に樹脂をラミネートしたものが一般的である。容器内に露出する側には、ポリプロピレン等の熱融着性樹脂がラミネートされる。この構成によれば、熱融着性樹脂を溶融および固化させるだけで、容器を封口することが可能である。熱融着性樹脂が溶融および固化された箇所には、融着代が形成される。この融着代は、電池内部への水分の透過を防止するために、少なくとも数ミリ幅は設けるのが通常である。小型の電池においては、この融着代が比較的大きな面積を占めるようになるので、電池の側面にぴったりと折り畳んで、電池を実質的に小型化する試みがなされている(下記特許文献1〜3参照)。
【0004】
【特許文献1】
特開2000−58013号公報
【特許文献2】
特開2001−202931号公報
【特許文献3】
特開2001−357824号公報
【0005】
【発明が解決しようとする課題】
折り線を融着代の内周縁に概ね一致させる形で、該融着代の折り曲げ成形を行なうようにすれば、電池そのものの大きさを最も小さくできる。上記特許文献1〜3に示す板型の電池は、発電要素が方形状である。融着代は、方形状の発電要素の外周に沿って形成されており、平行な1組の辺について折り曲げ成形が行なわれている。1組の平行な融着代をその内周縁に沿って折り曲げることに大きな困難性は無い。
【0006】
ところが、隣り合う2辺の融着代を折り曲げる場合は、カドに折り皺が形成されることは不可避である。この折り皺の形成によって、融着代の強度、ひいては電池容器の強度が損なわれたり、外観が悪くなったりする。上記特許文献3には、融着代を切り欠いた切欠き部を設けることにより、融着代の折り曲げ容易性を高める技術が開示されているものの、該技術を採用する場合においては、空気の侵入防止、耐水分透過性の維持という観点から、融着代の内周縁に差し掛からないように切欠き部を形成することが必須となる。この場合、融着代をその内周縁に沿って折り曲げることは難しく、内周縁よりもやや外側に折り線を設定する必要性が生じる。
【0007】
本発明の課題は、発電に寄与しない部分が実質的に占有する容積を極力小さくするとともに、電池容器の強度が十分に保たれた板型電池を提供することにある。
【0008】
【課題を解決するための手段及び作用・効果】
上記課題を解決するために本発明は、金属箔に熱融着性樹脂がラミネートされてなる外装材で構成された電池容器に、板状の発電要素を気密封止した板型電池であって、多角形の形態を有し、電池容器は、容器本体と蓋部とを含んで構成され、内側に位置する熱融着性樹脂の溶融および固化により容器本体と蓋部とが貼り合わさり、電池容器内の気密を保持する融着代が発電要素の外周に沿って形成され、互いに隣り合う2辺を構成する融着代が容器本体側に折り曲げられており、発電要素は、折り曲げに供された融着代が沿う1組の側面を仮想的に延長することによって形成される仮想角の内側に、当該発電要素の角部における端面が後退して位置するように構成され、融着代が仮想角の内側に進出する位置まで形成され、発電要素の角部に対応して、融着代を内側方向に切り欠いた切欠き部が設けられ、該切欠き部の切り込み深さに応じた幅の融着代が折り曲げに供されていることを特徴とする。
【0009】
上記本発明においては、融着代の折り曲げの際に、折り皺が発生することを防ぐための切欠き部を設けるようにしている。ただし、切り込み深さを大きく取って、融着代の折り曲げ幅を大きくするための工夫がなされている。簡単にいえば、切欠き部を形成する位置において融着代の幅を予め余分に設けておき、切り込み深さの大きい切欠き部を形成したあとでも、空気や水分の透過を十分に防げるようにしている。具体的には、発電要素をその角部の端面がやや内側に後退して位置するように構成し、その分だけ融着代を余分に形成する。そして、その部分において切り込み深さの大きい切欠き部を形成している。このようにすれば、深さが大の切り欠きであっても、その先端から電池容器内までの距離を十分に確保できるので、空気や水分の透過を防ぐことができる。また、切り込み深さが大の切欠き部を設けることにより、融着代の折り曲げ幅を大きく取ることができる。したがって、電池のコンパクト化も最大限に図ることができる。また、切欠き部を設けることにより折り皺が生じることも無くなり、電池容器の強度を十分に保てる。
【0010】
好適な態様において、隣り合う1組の切欠き部にかかる切欠きの先端と先端とを結ぶ線分が融着代の内周縁に重なるように、それら切欠き部の切り込み深さ調整がなされており、融着代はその内周縁に沿って折り曲げられている。融着代の内周縁を折り線に設定すれば、電池のコンパクト化という課題に対しては、最良の態様であるといえる。そしてその態様の実現のために、本発明においては、切欠き部の切り込み深さ調整により、折り線を内周縁に略一致させることができる。
【0011】
また、角部における端面が凹面をなすように発電要素を構成できる。そしてこの場合、角部の端面の両端に位置する側面を電池板面方向に延長することにより、当該発電要素の仮想角が構成されることとなる。発電要素の角部の端面を凹状とすると、その端面に迫る融着代の形成幅を十分に確保できるようになる。
【0012】
一方、容器本体には発電要素を収容する凹部が形成される。容器本体の凹部の隅は、凹状の端面を有する発電要素の角部がちょうど嵌まり込む形に成形されているとよい。このようにすれば、容器内のデッドスペースを極力減ずることになる。
【0013】
ところで、本発明にかかる板型電池は、発電要素に非水電解液が含浸された非水電解質リチウムイオン二次電池に好適である。発電要素は、活物質および集電体を含んで構成された電極と、正負の電極間に配置されたセパレータとを有する発電単位の複数が積層されたものとして発電要素を構成することができる。つまり、リチウムイオン二次電池のなかでも、極板およびセパレータを複数積層させた構造の発電要素を持ち、辺の数が5以上の多角形状のものに特に好適である。積層型のリチウムイオン二次電池においては、発電要素の形状の自由度が高いため、方形以外の形の電池を提供するのに適している。たとえば図8に示すような六角形の電池も容易に作製できる。ところが、六角形の電池では、折り曲げる必要のある融着代の辺数が多くなる。このような電池に対し、本発明にかかる技術を採用すれば、電池のコンパクト化、折り皺の発生防止等、極めて高い効果を享受することができる。
【0014】
【発明の実施の形態】
以下、添付の図面を参照しつつ本発明の実施形態を説明する。
図1は、本発明にかかるリチウムイオン二次電池1(以下、単に電池1ともいう)の断面模式図である。図3は、電池1の斜視図である。電池1は、発電要素であるセル2が、電池容器4の中に密封された構造を有する。セル2は、個別に作製された複数の発電単位20が外周縁を上下方向で一致させる形で積層されたものである。図2に発電単位20の断面模式図を示す。
【0015】
図2に示すように、発電単位20は、セパレータ3,3を正極7,7と負極10とにより挟んだバイセル構造をなすものである。正極7は、正極集電体5に正極活物質層6を積層させた構造をなす。他方、負極10は、負極集電体8に負極活物質層9,9を積層させた構造をなす。本実施形態では、負極10が2つのセパレータ3,3に挟まれる形にてこれらに共用され、各セパレータ3,3の負極10に面していない側が、個別に正極7,7に覆われている。正極7および負極10の配置は、相互に入れ替わってもよい。
【0016】
正極集電体5は、AlまたはAl合金からなる箔または金属メッシュで構成することができる。負極集電体8は、CuまたはCu合金からなる箔または金属メッシュで構成することができる。金属メッシュとしては、エキスパンドメタル、エッチングメタルおよびパンチングメタルのいずれも使用できる。
【0017】
正極活物質層6は、正極活物質、導電助剤および高分子基質(ポリマー)を含んで構成される。同様に、負極活物質層9は、負極活物質、導電助剤および高分子基質を含んで構成される。セパレータ3、正極活物質層6および負極活物質層9は多孔質形態を有し、LiPFなどのリチウム塩を、エチレンカーボネート、プロピレンカーボネートのような有機溶媒に溶解させた非水電解液が含浸されている。
【0018】
正極活物質層6および負極活物質層9を構成する高分子基質としては、ポリフッ化ビニリデン(PVDF)、ヘキサフルオロプロピレン(HFP)、ポリテトラフルオロエチレン(PTEF)などのフッ素樹脂や、あるいはこれらのフッ素樹脂の共重合体を使用することができる。
【0019】
正極活物質層6を構成する正極活物質としては、LiMnO、LiCoO、LiNiOなど、遷移金属あるいは典型金属を含むリチウム複合酸化物を使用できる。負極活物質層9を構成する負極活物質としては、メソフューズカーボン材などの黒鉛系炭素材料が好適である。また、導電助剤(導電性物質)としてはアセチレンブラックなどの導電性カーボンを使用できる。
【0020】
セパレータ3は、正極活物質層6および負極活物質層9に含まれる高分子基質と同様の材料、たとえばPVDFやHFP、あるいはそれらの共重合体により構成される(SiOなどのフィラーを混入させてもよい)。あるいは、ポリエチレンやポリプロピレンなどの微多孔膜、ポリエチレンをポリプロピレンで挟んだ複数層構造を持つ微多孔膜、ポリエチレンやポリプロピレンなどの樹脂層と、PVDFやHFP、あるいはそれらの共重合体からなる樹脂層とを有する微多孔膜などを使用してもよい。
【0021】
図1に示すように、セル2には、帯状のリード端子12,13の一端が接続されている。リード端子12,13の他端は、電池容器4の融着代11(封口部)を経て外側に延び出ている。具体的には、正極集電体5の電力取出部50に正極用のリード端子12の一端が接続されており、負極集電体8の電力取出部80に負極用のリード端子13の一端が接続されている。正極集電体5の電力取出部50は、発電単位20の各々に設けられており、これら複数の電力取出部50は1つに束ねられている。正極用のリード端子12は、たとえばアルミニウムまたはアルミニウム合金にて構成するとよい。負極用のリード端子13は、銅、銅合金、ニッケル、ニッケル合金、ニッケルメッキを施した銅またはニッケルメッキを施した銅合金にて構成するとよい。
【0022】
セル2を収容する電池容器4は、図9に示すように、アルミニウム箔などの金属箔32の両面に樹脂層31,33を設けた可撓性を有するシート状の外装材34で構成されている。電池容器4の外側に露出する樹脂層31としては、たとえばポリエチレンテレフタラートや2軸延伸ナイロンなどが使用され、内側にくる樹脂層33には、ポリエチレンやポリプロピレンなど、熱融着性、電解液に対する耐性および低水蒸気透過性を備えた材料が使用されている。電池容器4の内側となるべき樹脂層33の溶融および固化により、上下の外装材34同士が貼り合わさり、融着代11が形成される。
【0023】
図10に示すように、電池容器4は、セル2を収容するための凹部4pを有する容器本体4bと、蓋部4aとで構成することができる。容器本体4bの凹部4pにセル2を収容させた後に、蓋部4aを被せる。容器本体4bの凹部4pの開口周縁部にちょうど重なるように蓋部4aを配置し、シールバー90,91(熱融着治具)を、容器本体4bおよび蓋部4aに当接させる。内側の樹脂層33,33が溶融および固化することにより、電池容器4内の気密を保持する融着代11が形成される。なお、1枚の外装材34を成形して蓋部4aと容器本体4bとを一体に作製する場合と、蓋部4aと容器本体4bとを別々に作製する場合とがある。
【0024】
本発明の電池1は、図2に示したように、複数の発電単位20を個別に作製して、それらを積層および圧着させて得られる積層型のリチウムイオン二次電池である。このような積層型の電池についていえば、セル2の形状の自由度が極めて大きいので、たとえば六角形など方形以外の多角形状の電池を容易に提供できるという利点がある(例:図8)。電池容器4は、セル2の形状にあわせてプレス加工等により成形される。融着代11は、セル2の外周に沿って設けられる。
【0025】
図3および図4に示すように、本発明の電池1においては、この融着代11を厚さ方向にほぼ90度折り曲げて当該電池1のコンパクト化を図っている。さらに、融着代11には、当該融着代11を電池容器4の内側方向に切欠いた切欠き部40〜43を設けている。これにより、折り曲げ加工を容易に行なえるようにするとともに、電池容器4に折り皺が形成されることを防止している。
【0026】
図5に示すのは、セル2および融着代11の位置関係を説明する平面模式図であり、融着代11の折り曲げ前の状態を示している。図3および図5に示すように、融着代11には、その一部を切り欠くことにより切欠き部40〜43が形成されている。切欠き部40〜43は、その各々がセル2の角部22に対応して設けられ、電池容器4ひいては当該電池1の角を構成している。本発明の電池1においては、切欠き部40〜43を形成した位置においても、十分な幅の融着代11を確保できるように、以下に示す構成を採用している。
【0027】
図6に示すのは、セル2の角部22の拡大平面模式図である。セル2は、その角部22における端面22fが、当該セル2の主要な側面2f,2fの延長によって形成される仮想角VCの内側に後退して位置するように構成されている。端面22fは凹曲面をなしており、側面2f,2fはその端面22fの両端に位置する形となっている。これにともない、電池容器4の融着代11は、セル2の角部22に面する内周縁11fが半径Rの円弧を描くように形成されている。図5に示す本実施形態では、切欠き部42を形成した後において、融着代11の最小残存幅dが上記R(セル2の角部22に面する内周縁11fが描く円弧の半径)と略等しくなるように調整している。このような構成により、切欠き部40〜43を深く形成しても、電池容器4内での空気のリークはもとより、水分が透過することを十分に防止できるようになる。
【0028】
また、セル2は、その角部22における端面22fが仮想角VCを軸とする半径Rの円筒面の一部をなすように構成されている。容器本体4bの凹部4pは、凹曲面状の端面22fを有するセル2の角部22が、ちょうど嵌まり込む形に成形されている。したがって、図5に示すように、セル2の仮想角VCの内側に進出する位置まで融着代11を形成しても、セル2には機械的ダメージ等が及ばない構成となっている。
【0029】
融着代11の幅D(図5参照)は、電池容器4を構成する外装材34の構成材料、厚さなどにもよるが、電池容器4内への空気や水分の透過を防ぐために必要な幅と、デッドスペースとのバランスを考慮して、たとえば1mm以上5mm以下に調整するとよい。また、切欠き部40〜43の深さについては、たとえば次のように調整することができる。すなわち、隣り合う1組の切欠き部41,42にかかる切り欠きの先端と先端とを結ぶ線分が融着代11の内周縁11fに概ね重なるようにする。このようにすれば、互いに隣り合う2辺を構成する融着代11について、セル2の側面2f,2fに沿って厚さ方向に立ち上がるように折り曲げたときにも、折り皺が形成されることを防止できる(図4参照)。なお、折り曲げられた融着代11は、接着剤や粘着テープ等の固定手段(図示省略)により、折り曲げられた状態が保持される。
【0030】
また、図7に示すように、切欠き部42の底、つまり切欠きの先端42kには、電池容器4の内部側に凹の適度なアールが付与されていることが望ましい(他の切欠き部についても同様)。切欠き部42の形成は、切断刃を用いて行なうことができるが、切欠きの先端42kが鋭くなっていると、融着代11の折り曲げ作業中等において、切欠きの先端42kから破断が進行したりして、電池容器4内に空気や水分が侵入する恐れがある。他方、図7に示すように、切欠きの先端42kにアールが付与されている場合には、破断が生じ難い。アールの半径Rは、たとえば0.5mm以上2mm以下に調整するとよい。
【0031】
また、本実施形態において切欠き部42は、ほぼ直角の切り込み角度にて形成するようにしているが、これをもっと狭め、切り込み角度を鋭角に設定する形態も好適である。つまり、先端はアールにしつつ鋭角に切り欠いて切欠き部42を形成すれば、耐水分透過性の保持効果と破断防止効果とを、よりバランスよく保つことができる。切り欠きの先端にアールを付与しつつ、アールの両端から延びる1組の切欠き線が平行に延びるように切欠き部42を設けるようにしてもよい。
【0032】
なお、以上に説明した各構成は辺の数が5以上、たとえば図8に示すような六角形のリチウムイオン二次電池100に好適に採用できる。このような電池100に本発明の構成を適用することにより、電池のコンパクト化、折り皺の発生防止等の効果がより高くなる。
【図面の簡単な説明】
【図1】本発明にかかるリチウムイオン二次電池の断面模式図。
【図2】図1の電池を構成する発電単位の断面模式図。
【図3】図1の電池の斜視図。
【図4】図3の部分拡大図。
【図5】セルと融着代との位置関係を説明する部分平面模式図。
【図6】セルの角部の拡大平面模式図。
【図7】切欠き部の拡大平面図。
【図8】本発明の構成をより好適に採用できる電池の例。
【図9】電池容器の材料である外装材の構成を示す断面模式図。
【図10】電池容器の封止手順を示す断面模式図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plate battery having a structure in which a plate-shaped power generation element is hermetically sealed in a soft container.
[0002]
[Prior art]
Recently, in lithium ion secondary batteries (including the concept of a lithium polymer secondary battery) that can swell and hold an electrolyte in an electrode, there is little risk of liquid leakage. It has been carried out in a battery container made of a laminate exterior material. According to this method, since it is not necessary to use a metal container, it is easy to thin the battery. In addition, a laminated lithium ion secondary battery described later has a feature that the degree of freedom in shape is extremely high.
[0003]
The laminate exterior material is generally a laminate of resin on both sides of an aluminum foil. A heat-fusible resin such as polypropylene is laminated on the side exposed in the container. According to this configuration, the container can be sealed only by melting and solidifying the heat-fusible resin. A fusion allowance is formed at a location where the heat-fusible resin is melted and solidified. This fusion allowance is usually at least several millimeters wide in order to prevent moisture permeation into the battery. In a small battery, since the fusion allowance occupies a relatively large area, an attempt has been made to substantially fold the battery by folding it tightly on the side of the battery (Patent Documents 1 to 1 below). 3).
[0004]
[Patent Document 1]
JP 2000-58013 A [Patent Document 2]
JP 2001-202931 A [Patent Document 3]
Japanese Patent Laid-Open No. 2001-357824
[Problems to be solved by the invention]
If the folding line is formed so that the fold line substantially coincides with the inner peripheral edge of the fusion allowance, the size of the battery itself can be minimized. In the plate-type batteries shown in Patent Documents 1 to 3, the power generation element has a square shape. The fusion allowance is formed along the outer periphery of the square power generation element, and bending is performed on a pair of parallel sides. There is no great difficulty in bending a set of parallel fusion allowances along its inner periphery.
[0006]
However, it is inevitable that a crease will be formed in the quadrature when bending the fusion allowance between two adjacent sides. Due to the formation of the crease, the strength of the fusion allowance, and consequently the strength of the battery container, is impaired or the appearance is deteriorated. Although the above Patent Document 3 discloses a technique for improving the easiness of bending of the fusion allowance by providing a notch portion in which the fusion allowance is cut out, From the viewpoint of preventing intrusion and maintaining moisture permeation resistance, it is essential to form a notch so as not to reach the inner periphery of the fusion allowance. In this case, it is difficult to bend the fusion allowance along the inner peripheral edge, and it becomes necessary to set a fold line slightly outside the inner peripheral edge.
[0007]
An object of the present invention is to provide a plate type battery in which the volume substantially occupied by a portion that does not contribute to power generation is minimized, and the strength of the battery container is sufficiently maintained.
[0008]
[Means for solving the problems and actions / effects]
In order to solve the above problems, the present invention is a plate type battery in which a plate-shaped power generation element is hermetically sealed in a battery container composed of an outer packaging material in which a heat-fusible resin is laminated on a metal foil. The battery container includes a container body and a lid, and the container body and the lid are bonded together by melting and solidifying the heat-fusible resin located inside. A fusion allowance that maintains hermeticity in the container is formed along the outer periphery of the power generation element, and a fusion allowance that forms two adjacent sides is folded toward the container body, and the power generation element is subjected to bending. The end face at the corner of the power generation element is positioned so as to recede inside the virtual angle formed by virtually extending a pair of side surfaces along which the fusion allowance is provided. It is formed up to the position where it advances inside the virtual corner, and the corner of the power generation element Correspondingly, the fusion margin notch formed by cutting inward direction is provided, wherein the fusion Chakudai of width corresponding to the depth of cut of the cutout portion is subjected to bending.
[0009]
In the present invention, a notch portion is provided for preventing the occurrence of creases when the fusion allowance is folded. However, a contrivance has been made to increase the cutting width and increase the bending width of the fusion allowance. To put it simply, it is possible to sufficiently prevent the permeation of air and moisture even after forming a notch with a large depth of cut by providing an extra width for the fusion allowance in advance at the position where the notch is formed. I have to. Specifically, the power generation element is configured such that the end face of the corner portion is slightly retracted inward, and an extra fusion margin is formed accordingly. And the notch part with a large cutting depth is formed in the part. In this way, even if the notch has a large depth, a sufficient distance from the tip of the notch to the inside of the battery container can be ensured, so that permeation of air and moisture can be prevented. Further, by providing a notch portion with a large cut depth, the bending width of the fusion allowance can be increased. Therefore, the battery can be made compact as much as possible. In addition, the provision of the notched portion eliminates the occurrence of creases and can sufficiently maintain the strength of the battery container.
[0010]
In a preferred embodiment, the notch depths of the notch portions are adjusted so that the line segment connecting the notch portions of the adjacent notch portions overlaps the inner peripheral edge of the fusion allowance. The fusion allowance is bent along the inner periphery. If the inner periphery of the fusion allowance is set to a fold line, it can be said that this is the best mode for the problem of battery compactness. And in order to implement | achieve the aspect, in this invention, a fold line can be made to correspond substantially to an inner periphery by the cutting depth adjustment of a notch part.
[0011]
In addition, the power generation element can be configured such that the end surfaces at the corners are concave. In this case, the imaginary angle of the power generation element is configured by extending side surfaces located at both ends of the end surface of the corner portion in the battery plate surface direction. If the end surface of the corner portion of the power generation element is concave, it is possible to secure a sufficient width for forming the fusion allowance approaching the end surface.
[0012]
On the other hand, the container body is formed with a recess for accommodating the power generation element. The corners of the recesses of the container main body may be formed so that the corners of the power generation element having the concave end face are just fitted. In this way, the dead space in the container is reduced as much as possible.
[0013]
By the way, the plate type battery according to the present invention is suitable for a non-aqueous electrolyte lithium ion secondary battery in which a power generation element is impregnated with a non-aqueous electrolyte. The power generation element can be configured as a stack of a plurality of power generation units each having an electrode including an active material and a current collector and a separator disposed between positive and negative electrodes. In other words, the lithium ion secondary battery is particularly suitable for a polygonal battery having a power generation element having a structure in which a plurality of electrode plates and separators are stacked and having 5 or more sides. The stacked lithium ion secondary battery is suitable for providing a battery having a shape other than a square shape because the power generation element has a high degree of freedom. For example, a hexagonal battery as shown in FIG. 8 can be easily manufactured. However, in a hexagonal battery, the number of sides of the fusion allowance that needs to be bent increases. If the technology according to the present invention is adopted for such a battery, extremely high effects such as a reduction in the size of the battery and prevention of creases can be obtained.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic cross-sectional view of a lithium ion secondary battery 1 (hereinafter also simply referred to as battery 1) according to the present invention. FIG. 3 is a perspective view of the battery 1. The battery 1 has a structure in which a cell 2 as a power generation element is sealed in a battery container 4. The cell 2 is formed by laminating a plurality of individually generated power generation units 20 so that their outer peripheral edges coincide with each other in the vertical direction. FIG. 2 shows a schematic cross-sectional view of the power generation unit 20.
[0015]
As shown in FIG. 2, the power generation unit 20 has a bi-cell structure in which separators 3 and 3 are sandwiched between positive electrodes 7 and 7 and a negative electrode 10. The positive electrode 7 has a structure in which a positive electrode active material layer 6 is laminated on a positive electrode current collector 5. On the other hand, the negative electrode 10 has a structure in which negative electrode active material layers 9 and 9 are laminated on a negative electrode current collector 8. In the present embodiment, the negative electrode 10 is shared by the two separators 3 and 3 so that the sides of the separators 3 and 3 not facing the negative electrode 10 are individually covered with the positive electrodes 7 and 7. Yes. The arrangement of the positive electrode 7 and the negative electrode 10 may be interchanged.
[0016]
The positive electrode current collector 5 can be composed of a foil or a metal mesh made of Al or an Al alloy. The negative electrode current collector 8 can be composed of a foil or a metal mesh made of Cu or a Cu alloy. As the metal mesh, any of expanded metal, etching metal and punching metal can be used.
[0017]
The positive electrode active material layer 6 includes a positive electrode active material, a conductive additive, and a polymer substrate (polymer). Similarly, the negative electrode active material layer 9 includes a negative electrode active material, a conductive additive, and a polymer substrate. The separator 3, the positive electrode active material layer 6 and the negative electrode active material layer 9 have a porous form, and are impregnated with a nonaqueous electrolytic solution in which a lithium salt such as LiPF 6 is dissolved in an organic solvent such as ethylene carbonate or propylene carbonate. Has been.
[0018]
Examples of the polymer substrate constituting the positive electrode active material layer 6 and the negative electrode active material layer 9 include fluororesins such as polyvinylidene fluoride (PVDF), hexafluoropropylene (HFP), polytetrafluoroethylene (PTEF), and the like. A copolymer of fluororesin can be used.
[0019]
As the positive electrode active material constituting the positive electrode active material layer 6, a lithium composite oxide containing a transition metal or a typical metal such as LiMnO 2 , LiCoO 2 , or LiNiO 2 can be used. As the negative electrode active material constituting the negative electrode active material layer 9, a graphite-based carbon material such as a mesofuse carbon material is suitable. In addition, conductive carbon such as acetylene black can be used as the conductive auxiliary agent (conductive substance).
[0020]
The separator 3 is made of the same material as the polymer substrate contained in the positive electrode active material layer 6 and the negative electrode active material layer 9, for example, PVDF, HFP, or a copolymer thereof (mixed with a filler such as SiO 2 or the like). May be) Alternatively, a microporous film such as polyethylene or polypropylene, a microporous film having a multi-layer structure in which polyethylene is sandwiched between polypropylene, a resin layer such as polyethylene or polypropylene, and a resin layer made of PVDF, HFP, or a copolymer thereof You may use the microporous film etc. which have.
[0021]
As shown in FIG. 1, one end of strip-shaped lead terminals 12 and 13 is connected to the cell 2. The other ends of the lead terminals 12 and 13 extend outward through the fusion allowance 11 (sealing portion) of the battery container 4. Specifically, one end of the positive lead terminal 12 is connected to the power outlet 50 of the positive current collector 5, and one end of the negative lead terminal 13 is connected to the power outlet 80 of the negative current collector 8. It is connected. The power extraction unit 50 of the positive electrode current collector 5 is provided in each of the power generation units 20, and the plurality of power extraction units 50 are bundled into one. The positive lead terminal 12 may be made of, for example, aluminum or an aluminum alloy. The lead terminal 13 for the negative electrode is preferably composed of copper, copper alloy, nickel, nickel alloy, nickel-plated copper, or nickel-plated copper alloy.
[0022]
As shown in FIG. 9, the battery container 4 that accommodates the cell 2 is composed of a flexible sheet-like exterior material 34 in which resin layers 31 and 33 are provided on both surfaces of a metal foil 32 such as an aluminum foil. Yes. As the resin layer 31 exposed to the outside of the battery container 4, for example, polyethylene terephthalate or biaxially stretched nylon is used. Materials with resistance and low water vapor permeability are used. By melting and solidifying the resin layer 33 to be inside the battery container 4, the upper and lower exterior materials 34 are bonded together, and the fusion allowance 11 is formed.
[0023]
As shown in FIG. 10, the battery container 4 can be composed of a container body 4 b having a recess 4 p for accommodating the cells 2 and a lid part 4 a. After the cell 2 is accommodated in the recess 4p of the container body 4b, the lid 4a is covered. The lid portion 4a is disposed so as to overlap the opening peripheral edge of the recess 4p of the container body 4b, and the seal bars 90 and 91 (heat fusion jig) are brought into contact with the container body 4b and the lid portion 4a. By melting and solidifying the inner resin layers 33, 33, a fusion allowance 11 that maintains airtightness in the battery container 4 is formed. In addition, there are a case where the cover part 4a and the container body 4b are integrally manufactured by molding one exterior material 34, and a case where the lid part 4a and the container body 4b are separately manufactured.
[0024]
As shown in FIG. 2, the battery 1 of the present invention is a laminated lithium ion secondary battery obtained by individually producing a plurality of power generation units 20 and laminating and pressing them. With respect to such a stacked battery, since the degree of freedom of the shape of the cell 2 is extremely large, there is an advantage that a battery having a polygonal shape other than a rectangular shape such as a hexagon can be easily provided (eg, FIG. 8). The battery container 4 is formed by press working or the like according to the shape of the cell 2. The fusion allowance 11 is provided along the outer periphery of the cell 2.
[0025]
As shown in FIG. 3 and FIG. 4, in the battery 1 of the present invention, the fusion allowance 11 is bent approximately 90 degrees in the thickness direction to make the battery 1 compact. Further, the fusion allowance 11 is provided with notches 40 to 43 in which the fusion allowance 11 is notched in the inner direction of the battery container 4. Thus, the folding process can be easily performed, and the formation of creases in the battery container 4 is prevented.
[0026]
FIG. 5 is a schematic plan view for explaining the positional relationship between the cell 2 and the fusion allowance 11, and shows a state before the fusion allowance 11 is bent. As shown in FIGS. 3 and 5, the fusion allowance 11 is formed with notches 40 to 43 by notching a part thereof. Each of the cutout portions 40 to 43 is provided corresponding to the corner portion 22 of the cell 2, and constitutes the corner of the battery container 4 and thus the battery 1. In the battery 1 of the present invention, the following configuration is adopted so that the fusion allowance 11 having a sufficient width can be secured even at the position where the notches 40 to 43 are formed.
[0027]
FIG. 6 is an enlarged schematic plan view of the corner portion 22 of the cell 2. The cell 2 is configured such that the end surface 22f at the corner portion 22 is positioned so as to recede inside the virtual angle VC formed by the extension of the main side surfaces 2f, 2f of the cell 2. The end surface 22f has a concave curved surface, and the side surfaces 2f and 2f are positioned at both ends of the end surface 22f. Accordingly, fusion Chakudai 11 of the battery container 4, the inner peripheral edge 11f facing the corner portion 22 of the cell 2 are formed so as to draw a circular arc of radius R 1. In the present embodiment shown in FIG. 5, after forming the notch 42, the minimum remaining width d of the fusion allowance 11 is the radius of the arc drawn by R 1 (the inner peripheral edge 11 f facing the corner 22 of the cell 2). ) To be approximately equal to. With such a configuration, even if the notches 40 to 43 are formed deeply, it is possible to sufficiently prevent moisture from permeating as well as air leakage in the battery container 4.
[0028]
The cell 2, the end surface 22f of the corner portion 22 is configured to form a part of the cylindrical surface of radius R 3 to the virtual angle VC the axis. The concave portion 4p of the container body 4b is formed so that the corner portion 22 of the cell 2 having the concave curved end surface 22f is fitted. Therefore, as shown in FIG. 5, even if the fusion allowance 11 is formed up to the position where the cell 2 advances to the inside of the virtual angle VC, the cell 2 is not mechanically damaged.
[0029]
The width D (see FIG. 5) of the fusion allowance 11 is necessary to prevent the permeation of air and moisture into the battery container 4 although it depends on the constituent material and thickness of the exterior material 34 constituting the battery container 4. In consideration of a balance between a large width and a dead space, it may be adjusted to, for example, 1 mm to 5 mm. Moreover, about the depth of the notch parts 40-43, it can adjust as follows, for example. That is, the line segment connecting the notches of the notch portions 41, 42 adjacent to each other substantially overlaps the inner peripheral edge 11 f of the fusion allowance 11. In this way, even when the fusion allowance 11 constituting two adjacent sides is folded so as to rise in the thickness direction along the side surfaces 2f and 2f of the cell 2, a crease is formed. Can be prevented (see FIG. 4). The folded fusion allowance 11 is held in a folded state by a fixing means (not shown) such as an adhesive or an adhesive tape.
[0030]
Moreover, as shown in FIG. 7, it is desirable that the bottom of the notch 42, that is, the tip 42k of the notch, is provided with an appropriate concave radius on the inner side of the battery container 4 (other notches The same applies to the department). The notch 42 can be formed by using a cutting blade. If the notch tip 42k is sharp, the breakage proceeds from the notch tip 42k during the bending work of the fusion margin 11 or the like. Or air or moisture may enter the battery container 4. On the other hand, as shown in FIG. 7, when a radius is given to the notch tip 42k, it is difficult to break. The radius R 2 of R is preferably adjusted to, for example, 0.5 mm or more and 2 mm or less.
[0031]
Further, in this embodiment, the notch portion 42 is formed at a substantially right angle of cut, but a form in which this is further narrowed and the angle of cut is set to an acute angle is also suitable. That is, if the notch 42 is formed by cutting the tip at an acute angle while being rounded, the moisture permeation retaining effect and the fracture preventing effect can be maintained in a more balanced manner. The cutout portion 42 may be provided so that a set of cutout lines extending from both ends of the rounded portion extends in parallel while giving a rounded shape to the tip of the cutout.
[0032]
In addition, each structure demonstrated above can be suitably employ | adopted for the hexagonal lithium ion secondary battery 100 as shown in FIG. By applying the configuration of the present invention to such a battery 100, effects such as battery compactness and prevention of occurrence of creases are further enhanced.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a lithium ion secondary battery according to the present invention.
2 is a schematic cross-sectional view of a power generation unit constituting the battery of FIG.
3 is a perspective view of the battery of FIG. 1. FIG.
4 is a partially enlarged view of FIG. 3;
FIG. 5 is a partial plan view illustrating a positional relationship between a cell and a fusion allowance.
FIG. 6 is an enlarged schematic plan view of a corner portion of a cell.
FIG. 7 is an enlarged plan view of a notch.
FIG. 8 shows an example of a battery that can more suitably employ the configuration of the present invention.
FIG. 9 is a schematic cross-sectional view showing a configuration of an exterior material that is a material of a battery container.
FIG. 10 is a schematic cross-sectional view showing a procedure for sealing a battery container.

Claims (5)

金属箔(32)に熱融着性樹脂(33)がラミネートされてなる外装材(34)で構成された電池容器(4)に、板状の発電要素(2)を気密封止した板型電池(1)であって、
前記電池容器(4)は、容器本体(4b)と蓋部(4a)とを含んで構成され、内側に位置する前記熱融着性樹脂(33)の溶融および固化により前記容器本体(4b)と前記蓋部(4a)とが貼り合わさり、前記電池容器(4)内の気密を保持する融着代(11)が前記発電要素(2)の外周に沿って形成され、互いに隣り合う2辺を構成する前記融着代(11)が前記容器本体(4b)側に折り曲げられており、
前記発電要素(2)は、前記折り曲げに供された前記融着代(11)が沿う1組の側面(2f,2f)を仮想的に延長することによって形成される仮想角(VC)の内側に、当該発電要素(2)の角部(22)における端面(22f)が後退して位置するように構成され、
前記融着代(11)が前記仮想角(VC)の内側に進出する位置まで形成され、
前記発電要素(2)の前記角部(22)に対応して、前記融着代(11)を内側方向に切り欠いた切欠き部(40,41,42,43)が設けられ、
該切欠き部(40,41,42,43)の切り込み深さに応じた幅の前記融着代(11)が前記折り曲げに供されていることを特徴とする板型電池(1)。
A plate type in which a plate-shaped power generation element (2) is hermetically sealed in a battery container (4) composed of an exterior material (34) formed by laminating a heat-fusible resin (33) on a metal foil (32). A battery (1),
The battery container (4) includes a container main body (4b) and a lid (4a), and the container main body (4b) is formed by melting and solidifying the heat-fusible resin (33) located inside. And the lid portion (4a) are bonded together, and a fusion allowance (11) for maintaining airtightness in the battery container (4) is formed along the outer periphery of the power generation element (2), and two adjacent sides The fusion allowance (11) that constitutes is bent to the container body (4b) side,
The power generation element (2) is located inside a virtual angle (VC) formed by virtually extending a pair of side surfaces (2f, 2f) along which the fusion allowance (11) subjected to the bending is along. And the end face (22f) at the corner (22) of the power generation element (2) is configured to recede and be positioned,
The fusion allowance (11) is formed to a position where it advances to the inside of the virtual angle (VC),
Corresponding to the corner portion (22) of the power generation element (2), a notch portion (40, 41, 42, 43) in which the fusion allowance (11) is notched inward is provided,
A plate battery (1), wherein the fusion allowance (11) having a width corresponding to a cut depth of the notches (40, 41, 42, 43) is used for the bending.
隣り合う1組の前記切欠き部(40,41)にかかる切欠きの先端と先端とを結ぶ線分が前記融着代(11)の内周縁(11f)に重なるように、それら切欠き部(40,41)の切り込み深さ調整がなされており、前記融着代(11)はその内周縁(11f)に沿って折り曲げられている請求項1記載の板型電池(1)。The notches are arranged such that a line segment connecting the notches of the notch portions (40, 41) adjacent to each other overlaps the inner peripheral edge (11f) of the fusion allowance (11). The plate type battery (1) according to claim 1, wherein the depth of cut (40, 41) is adjusted, and the fusion allowance (11) is bent along the inner peripheral edge (11f). 前記発電要素(2)は、その角部(22)における端面(22f)が凹曲面をなすように構成され、前記端面(22f)の両端に位置する前記側面(2f,2f)を電池板面方向に延長することにより、前記仮想角(VC)が構成される請求項1または2記載の板型電池(1)。The power generating element (2) is configured such that the end face (22f) at the corner (22) forms a concave curved surface, and the side faces (2f, 2f) positioned at both ends of the end face (22f) are battery plate surfaces. The plate battery (1) according to claim 1 or 2, wherein the virtual angle (VC) is configured by extending in a direction. 前記容器本体(4b)には前記発電要素(2)を収容する凹部(4p)が形成されており、該凹部(4p)の隅は、凹状の端面(22f)を有する前記発電要素(2)の角部(22)がちょうど嵌まり込む形に成形されている請求項1ないし3のいずれか1項に記載の板型電池(1)。The container body (4b) has a recess (4p) for accommodating the power generation element (2), and the corner of the recess (4p) has a concave end surface (22f). The plate-type battery (1) according to any one of claims 1 to 3, wherein the corner portion (22) is formed so as to be fitted. 前記発電要素(2)は、活物質および集電体を含んで構成された電極(7,10)と、正負の電極(7,10)間に配置されたセパレータ(3)とを有する発電単位(20)の複数が積層されたものであり、その発電要素(2)に非水電解液が含浸された非水電解質リチウムイオン二次電池として構成されている請求項1ないし4のいずれか1項に記載の板型電池(1)。The power generating element (2) includes an electrode (7, 10) configured to include an active material and a current collector, and a separator (3) disposed between the positive and negative electrodes (7, 10). A plurality of (20) are laminated, and the power generation element (2) is configured as a non-aqueous electrolyte lithium ion secondary battery impregnated with a non-aqueous electrolyte. The plate battery (1) according to item.
JP2003196942A 2003-07-15 2003-07-15 Plate-shaped battery Pending JP2005038613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003196942A JP2005038613A (en) 2003-07-15 2003-07-15 Plate-shaped battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003196942A JP2005038613A (en) 2003-07-15 2003-07-15 Plate-shaped battery

Publications (1)

Publication Number Publication Date
JP2005038613A true JP2005038613A (en) 2005-02-10

Family

ID=34207238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003196942A Pending JP2005038613A (en) 2003-07-15 2003-07-15 Plate-shaped battery

Country Status (1)

Country Link
JP (1) JP2005038613A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203140A (en) * 2004-01-13 2005-07-28 Japan Storage Battery Co Ltd Battery
JP2008078118A (en) * 2006-09-18 2008-04-03 Lg Chem Ltd Pouch type secondary battery with improved safety
JP2010205420A (en) * 2009-02-27 2010-09-16 Sanyo Electric Co Ltd Laminated battery
JP2011086608A (en) * 2009-10-15 2011-04-28 Samsung Sdi Co Ltd Secondary battery and manufacturing method therefor
US8426057B2 (en) 2010-03-19 2013-04-23 Lg Chem, Ltd. Pouch type case and battery pack including the same
KR101308242B1 (en) 2006-10-27 2013-09-13 삼성에스디아이 주식회사 Pouch type secondary battery
WO2013168948A1 (en) * 2012-05-07 2013-11-14 주식회사 엘지화학 Battery cell having amorphous structure and battery module comprising same
KR20150119664A (en) * 2014-04-16 2015-10-26 삼성에스디아이 주식회사 Curved secondary battery
JP2015228319A (en) * 2014-05-30 2015-12-17 藤森工業株式会社 Battery container, film packaged battery, and manufacturing method thereof
JP2015537338A (en) * 2013-02-05 2015-12-24 エルジー・ケム・リミテッド Battery cell including step structure
JP2016015225A (en) * 2014-07-01 2016-01-28 藤森工業株式会社 Battery container, film packaging battery and manufacturing method for the same
KR20160046160A (en) 2014-10-20 2016-04-28 주식회사 엘지화학 Pouch-type secondary battery and method for manufacturing the same
JP2017059442A (en) * 2015-09-17 2017-03-23 積水化学工業株式会社 Lithium ion secondary battery and method for manufacturing the same
KR20170058021A (en) * 2015-11-18 2017-05-26 주식회사 엘지화학 Battery Case Including Folding Groove Portion
WO2017104956A1 (en) * 2015-12-14 2017-06-22 주식회사 엘지화학 Electrode assembly having indented portion formed on electrode plate and secondary battery including same
CN107925118A (en) * 2015-11-30 2018-04-17 株式会社Lg化学 The battery unit of irregular structure with the unit housings for improving sealing reliability
CN109873092A (en) * 2019-02-26 2019-06-11 宁德新能源科技有限公司 Battery unit and electronic equipment
CN113471637A (en) * 2021-06-30 2021-10-01 东莞新能安科技有限公司 Battery, battery module and electronic device
CN116060894A (en) * 2023-04-06 2023-05-05 常州瑞德丰精密技术有限公司 Forming method of battery shell structure
JP7293471B2 (en) 2013-12-04 2023-06-19 株式会社半導体エネルギー研究所 power storage

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203140A (en) * 2004-01-13 2005-07-28 Japan Storage Battery Co Ltd Battery
JP2008078118A (en) * 2006-09-18 2008-04-03 Lg Chem Ltd Pouch type secondary battery with improved safety
KR100913836B1 (en) * 2006-09-18 2009-08-26 주식회사 엘지화학 Pouch-typed Secondary Battery with Improved Safety
KR101308242B1 (en) 2006-10-27 2013-09-13 삼성에스디아이 주식회사 Pouch type secondary battery
JP2010205420A (en) * 2009-02-27 2010-09-16 Sanyo Electric Co Ltd Laminated battery
JP2011086608A (en) * 2009-10-15 2011-04-28 Samsung Sdi Co Ltd Secondary battery and manufacturing method therefor
US8852796B2 (en) 2009-10-15 2014-10-07 Samsung Sdi Co., Ltd. Secondary battery and method of manufacturing the same
US8426057B2 (en) 2010-03-19 2013-04-23 Lg Chem, Ltd. Pouch type case and battery pack including the same
KR101264527B1 (en) 2010-03-19 2013-05-14 주식회사 엘지화학 Pouch case and battery pack using the same
US11081750B2 (en) 2010-03-19 2021-08-03 Lg Chem, Ltd. Pouch type case and battery pack including the same
US9548475B2 (en) 2012-05-07 2017-01-17 Lg Chem, Ltd. Battery cell of irregular structure and battery module employed with the same
WO2013168948A1 (en) * 2012-05-07 2013-11-14 주식회사 엘지화학 Battery cell having amorphous structure and battery module comprising same
JP2015537338A (en) * 2013-02-05 2015-12-24 エルジー・ケム・リミテッド Battery cell including step structure
US10014556B2 (en) 2013-02-05 2018-07-03 Lg Chem, Ltd. Battery cell including stepped structure
JP7293471B2 (en) 2013-12-04 2023-06-19 株式会社半導体エネルギー研究所 power storage
KR20150119664A (en) * 2014-04-16 2015-10-26 삼성에스디아이 주식회사 Curved secondary battery
KR102211361B1 (en) * 2014-04-16 2021-02-03 삼성에스디아이 주식회사 Curved secondary battery
JP2015228319A (en) * 2014-05-30 2015-12-17 藤森工業株式会社 Battery container, film packaged battery, and manufacturing method thereof
JP2016015225A (en) * 2014-07-01 2016-01-28 藤森工業株式会社 Battery container, film packaging battery and manufacturing method for the same
KR20160046160A (en) 2014-10-20 2016-04-28 주식회사 엘지화학 Pouch-type secondary battery and method for manufacturing the same
US10522795B2 (en) 2014-10-20 2019-12-31 Lg Chem, Ltd. Pouch type secondary battery and manufacturing method thereof
JP2017059442A (en) * 2015-09-17 2017-03-23 積水化学工業株式会社 Lithium ion secondary battery and method for manufacturing the same
KR102129775B1 (en) 2015-11-18 2020-07-03 주식회사 엘지화학 Battery Case Including Folding Groove Portion
KR20170058021A (en) * 2015-11-18 2017-05-26 주식회사 엘지화학 Battery Case Including Folding Groove Portion
JP2018526798A (en) * 2015-11-30 2018-09-13 エルジー・ケム・リミテッド Battery cell with atypical structure with improved sealing reliability of cell case
US10790478B2 (en) 2015-11-30 2020-09-29 Lg Chem, Ltd. Battery cell of irregular structure with improved sealing reliability of cell case
CN107925118A (en) * 2015-11-30 2018-04-17 株式会社Lg化学 The battery unit of irregular structure with the unit housings for improving sealing reliability
WO2017104956A1 (en) * 2015-12-14 2017-06-22 주식회사 엘지화학 Electrode assembly having indented portion formed on electrode plate and secondary battery including same
US10811665B2 (en) 2015-12-14 2020-10-20 Lg Chem, Ltd. Electrode assembly having indented portion formed on electrode plate, and secondary battery including same
WO2020173268A1 (en) * 2019-02-26 2020-09-03 宁德新能源科技有限公司 Battery cell and electronic device
US11444331B2 (en) 2019-02-26 2022-09-13 Ningde Amperex Technology Limited Battery cell and electronic device
CN109873092A (en) * 2019-02-26 2019-06-11 宁德新能源科技有限公司 Battery unit and electronic equipment
CN113471637A (en) * 2021-06-30 2021-10-01 东莞新能安科技有限公司 Battery, battery module and electronic device
CN113471637B (en) * 2021-06-30 2024-01-09 东莞新能安科技有限公司 Battery, battery module and electronic device
CN116060894A (en) * 2023-04-06 2023-05-05 常州瑞德丰精密技术有限公司 Forming method of battery shell structure

Similar Documents

Publication Publication Date Title
JP2005038613A (en) Plate-shaped battery
US20230006311A1 (en) Electrochemical device and electronic device containing same
JP3972205B2 (en) Stacked battery
KR101499471B1 (en) Method for Manufacturing a secondary Battery and the secondary Battery Manufactured Thereby
JP3758629B2 (en) Laminate sheet and laminate battery using the same
KR101306187B1 (en) Device for Eliminating Gas from Battery Cell and Method for Manufacturing Battery Cell
JP5451315B2 (en) Assembled battery
JP2004265761A (en) Film package battery
KR101108447B1 (en) Process for Preparation of Pouch-typed Secondary Battery Having Excellent Sealing Property
KR20130133639A (en) Electrode assembly, battery cell, manufacturing mathod of electrode assembly and manufacturing mathod of battery cell
JP4096664B2 (en) Laminated battery
US20210119285A1 (en) Battery cell
WO2019121332A1 (en) Pouch cell and method of manufacturing same
US10992005B2 (en) Deep pouch cell and method of manufacturing same
JP2005018990A (en) Stacked lithium ion secondary battery
JP2005038612A (en) Lithium ion secondary battery and manufacturing method of the same
JP2005011556A (en) Laminated battery and its manufacturing method
JP2003272595A (en) Manufacturing method for electrochemical device, manufacturing equipment, and electrochemical device
KR100858807B1 (en) Pouched-type case and lithium secondary battery applying the same
JP2006079909A (en) Power storage module and manufacturing method of the same
JP2009259450A (en) Battery and manufacturing method therefor
JP3597027B2 (en) Thin battery
JP4273369B2 (en) Battery with frame
JP2004171954A (en) Laminated secondary battery, battery pack module comprising multiple laminated secondary batteries, battery pack comprising multiple set battery modules, and electric automobile with either battery mounted
JP6970912B2 (en) A power storage element and a power storage device including a power storage element