JP2005036121A - Hygroscopic foam and its manufacturing method - Google Patents

Hygroscopic foam and its manufacturing method Download PDF

Info

Publication number
JP2005036121A
JP2005036121A JP2003275336A JP2003275336A JP2005036121A JP 2005036121 A JP2005036121 A JP 2005036121A JP 2003275336 A JP2003275336 A JP 2003275336A JP 2003275336 A JP2003275336 A JP 2003275336A JP 2005036121 A JP2005036121 A JP 2005036121A
Authority
JP
Japan
Prior art keywords
hygroscopic
foam
hygroscopic material
particulate
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003275336A
Other languages
Japanese (ja)
Inventor
Hideki Suzuki
秀樹 鈴木
Takashi Gonda
貴司 権田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2003275336A priority Critical patent/JP2005036121A/en
Publication of JP2005036121A publication Critical patent/JP2005036121A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fast-acting hygroscopic foam which shows a high moisture-absorption rate, achieves a hygroscopic performance in proportion to the amount of a hygroscopic material added and can stably exert the hygroscopic performance over a long period of time without deteriorating hygroscopic efficiency of the hygroscopic material, and its manufacturing method. <P>SOLUTION: The hygroscopic foam comprises a mixture containing 50-300 pts.wt. granular hygroscopic material against 100 pts.wt. thermoplastic resin. The foam has a structure wherein the granular hygroscopic material 3 is held in a resin foam layer 2 and voids 5 are formed in at least part of an area surrounding the granular hygroscopic material 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、吸湿性発泡体とその製造方法に関する。詳しくは、食品、医薬品、液晶・有機EL(エレクトロルミネセント)・プラズマパネル等の電子デバイス、日用雑貨等の広い用途で用いられる、熱可塑性樹脂と粒子状吸湿性材料の混合物からなる吸湿性発泡体とその製造方法に関する。   The present invention relates to a hygroscopic foam and a method for producing the same. Specifically, hygroscopicity consisting of a mixture of thermoplastic resin and particulate hygroscopic material used in a wide range of applications such as food, pharmaceuticals, electronic devices such as liquid crystal, organic EL (electroluminescent) and plasma panels, and household goods. The present invention relates to a foam and a manufacturing method thereof.

従来、食品や医薬品等を乾燥させるために用いられる吸湿材には、様々なタイプのものがあり、例えば、透湿性を有する紙や樹脂等の袋や容器に、シリカゲル、アロフェン、ベントナイト、ゼオライト、アルミナシリカゲル、塩化カルシウム、塩化マグネシウム、硫酸マグネシウム、硫酸カルシウム、酸化カルシウム、酸化マグネシウム、酸化バリウム等の吸湿性材料を入れて封絨したもの、樹脂と吸湿性材料を混合してシート状に成形したもの、多孔質繊維等に吸湿性材料を担持させたものが広く知られている。
これらの中で、透湿性を有する紙や樹脂等の袋や容器に吸湿性材料を入れて封絨したものは、形状や厚みが不均一となるため、狭い空間に入れにくくなり、包装作業上、手間がかかり、包装の効率性に欠けるという問題がある。また、樹脂と吸湿性材料を混合してシート状に成形したものは、樹脂内部の吸湿性材料の吸湿効果が出にくく、しかも、吸湿性材料が水分を吸湿して膨張し、それによって、シートの変形・反り等が発生するという問題がある。さらに、多孔質繊維等に吸湿性材料を担持させたものは、端面から吸湿性材料が漏出し、短期間で吸湿性材料の吸湿能力がなくなってしまい、長期的に一定の吸湿性能を発揮することができないという問題がある。
Conventionally, there are various types of hygroscopic materials used for drying foods, pharmaceuticals, etc., for example, bags or containers such as moisture-permeable paper or resin, silica gel, allophane, bentonite, zeolite, Sealed with hygroscopic material such as alumina silica gel, calcium chloride, magnesium chloride, magnesium sulfate, calcium sulfate, calcium oxide, magnesium oxide, barium oxide, etc., mixed with resin and hygroscopic material and formed into a sheet The thing which carried the hygroscopic material on the thing and the porous fiber etc. is known widely.
Among these, moisture-permeable paper and resin bags and containers that are sealed with hygroscopic materials are non-uniform in shape and thickness, making it difficult to place in narrow spaces, which is difficult for packaging work. There is a problem that it takes time and is inefficient in packaging. In addition, a resin and hygroscopic material mixed into a sheet shape is less likely to absorb the hygroscopic effect of the hygroscopic material inside the resin, and the hygroscopic material absorbs moisture and expands. There is a problem that deformation, warpage, and the like occur. Furthermore, in the case where a hygroscopic material is supported on a porous fiber or the like, the hygroscopic material leaks from the end face, and the hygroscopic material loses its hygroscopic capacity in a short period of time, and exhibits a constant hygroscopic performance in the long term. There is a problem that can not be.

こうした問題点を解消するため、ポリマー発泡体中に吸湿性材料主成分として酸化カルシウムを含有させたもの(特許文献1参照)、多孔質部材の空隙に吸湿性材料を含有させたもの(特許文献2参照)、連続気孔を有する樹脂多孔質体に吸湿性材料を含有させたもの(特許文献3参照)が報告されている。
しかし、これらの吸湿材は、ポリマー発泡体中の吸湿性材料が、ポリマーに覆われていて、ポリマー内に埋没した状態にあるため、吸湿速度が遅くて即効性に乏しく、また、吸湿性材料の添加量に比例した吸湿性能を得ることが困難であるという問題がある。
In order to solve such problems, a polymer foam containing calcium oxide as a main component of a hygroscopic material (see Patent Document 1), and a porous member containing a hygroscopic material (Patent Document) 2), a resin porous body having continuous pores containing a hygroscopic material (see Patent Document 3) has been reported.
However, since these hygroscopic materials are in a state where the hygroscopic material in the polymer foam is covered with the polymer and buried in the polymer, the hygroscopic material has a low hygroscopic rate and poor immediate effect. There is a problem that it is difficult to obtain moisture absorption performance in proportion to the amount of addition.

特開平6-277507号公報JP-A-6-277507 特開平7−37686号公報JP-A-7-37686 特開平10−323531号公報Japanese Patent Laid-Open No. 10-323531

本発明は、上記問題点を解決することを目的とするものであり、具体的には、吸湿速度が速くて即効性があり、吸湿性材料の添加量に比例した吸湿性能が得られ、また、吸湿性材料の吸湿効率を低下させずに、長期的に安定した吸湿性能を発揮することができる吸湿性発泡体とその製造方法を提供することを課題とする。   An object of the present invention is to solve the above-described problems. Specifically, the moisture absorption rate is fast and immediate, and moisture absorption performance proportional to the amount of hygroscopic material added is obtained. It is an object of the present invention to provide a hygroscopic foam that can exhibit a long-term stable hygroscopic performance without reducing the hygroscopic efficiency of the hygroscopic material and a method for producing the same.

本発明の吸湿性発泡体は、熱可塑性樹脂100重量部に対し、粒子状吸湿性材料50〜300重量部を含む混合物からなる吸湿性発泡体であって、該粒子状吸湿性材料が発泡樹脂層に保持されており、該粒子状吸湿性材料の周囲の少なくとも一部に空隙が形成された構造を有することを特徴とする。   The hygroscopic foam of the present invention is a hygroscopic foam made of a mixture containing 50 to 300 parts by weight of a particulate hygroscopic material with respect to 100 parts by weight of a thermoplastic resin, and the particulate hygroscopic material is a foamed resin. The layer is held in a layer, and has a structure in which voids are formed in at least a part of the periphery of the particulate hygroscopic material.

本発明の吸湿性発泡体は、発泡セルが発泡樹脂層に存在し、粒子状吸湿性材料の周囲の少なくとも一部に空隙が形成された構造を有するため、粒子状吸湿性材料が水分を吸収して膨張することにより、その容積が大きくなっても、膨張・湾曲・反り等が発生しない。
また、同一容積の無発泡状態のものと比較して、本発明の吸湿性発泡体は、樹脂層を形成する熱可塑性樹脂の量が少ないため、粒子状吸湿性材料への水分の浸透速度が速くなり、透湿性が飛躍的に向上し、その結果、吸湿性材料の添加量に比例した吸湿性能が得られる。
さらに、発泡セル、粒子状吸湿性材料を発泡樹脂層に均一に存在させることにより、長期にわたり吸湿量が経時的に一定であるという安定した吸湿性能を得ることができる。
The hygroscopic foam of the present invention has a structure in which foamed cells are present in the foamed resin layer and voids are formed around at least part of the periphery of the particulate hygroscopic material, so that the particulate hygroscopic material absorbs moisture. Thus, expansion, bending, warping, or the like does not occur even when the volume increases.
In addition, the hygroscopic foam of the present invention has a lower moisture permeation rate into the particulate hygroscopic material because the hygroscopic foam of the present invention has a smaller amount of the thermoplastic resin forming the resin layer compared to the non-foamed state of the same volume. As a result, the moisture permeability is dramatically improved. As a result, a moisture absorption performance proportional to the amount of the hygroscopic material added can be obtained.
Furthermore, by making the foamed cell and the particulate hygroscopic material uniformly exist in the foamed resin layer, it is possible to obtain a stable hygroscopic performance in which the moisture absorption amount is constant over time over a long period of time.

以下、図面を用いて本発明を詳細に説明する。図1は、本発明の吸湿性発泡体の1例を示した断面図である。図1中、1は吸湿性発泡体、2は発泡樹脂層、3は粒子状吸湿性材料、4は発泡セル、5は空隙である。
本発明の吸湿性発泡体1は、材料的には、熱可塑性樹脂と粒子状吸湿性材料を含む混合物からなり、構造的には、多数の発泡セル(気泡)4を有する発泡樹脂層2に、粒子状吸湿性材料3が保持されており、該粒子状吸湿性材料3の少なくとも一部が発泡セル4内に挿入され、該粒子状吸湿性材料3の周囲の少なくとも一部に空隙5が形成されている構造を有するものである。
図1に示すように、粒子状吸湿性材料3の全体あるいは一部が発泡セル4内に挿入され、粒子状吸湿性材料3の周囲全部あるいは一部に空隙5が存在する点に、本発明の特徴がある。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing an example of a hygroscopic foam of the present invention. In FIG. 1, 1 is a hygroscopic foam, 2 is a foamed resin layer, 3 is a particulate hygroscopic material, 4 is a foam cell, and 5 is a void.
The hygroscopic foam 1 of the present invention is composed of a mixture containing a thermoplastic resin and a particulate hygroscopic material in terms of material, and structurally formed into a foamed resin layer 2 having a large number of foam cells (bubbles) 4. The particulate hygroscopic material 3 is held, at least a part of the particulate hygroscopic material 3 is inserted into the foamed cell 4, and the void 5 is formed at least at a part of the periphery of the particulate hygroscopic material 3. It has a formed structure.
As shown in FIG. 1, the present invention is such that the whole or a part of the particulate hygroscopic material 3 is inserted into the foamed cell 4 and the void 5 exists in the whole or part of the periphery of the particulate hygroscopic material 3. There are features.

発泡樹脂層2は、本発明の吸湿性発泡体1のうち、粒子状吸湿性材料3を除いた部分であり、多数の発泡セル4、並びに空隙5を有する。該熱可塑性樹脂は、それ自体の透湿性が、本発明の吸湿性発泡体の吸湿性能に影響を与えるため、その透湿度は、3g/m2/24hr/0.1mm厚(JIS Z0208カップ法)以上であることが好ましい。 The foamed resin layer 2 is a portion of the hygroscopic foam 1 of the present invention excluding the particulate hygroscopic material 3 and has a large number of foam cells 4 and voids 5. Thermoplastic resins, it moisture permeability of itself, to affect hygroscopic capacity of hygroscopic foam of the present invention, the moisture permeability, 3g / m 2 /24hr/0.1mm thickness (JIS Z0208 cup method ) Or more.

該熱可塑性樹脂の具体的な例としては、低密度ポリエチレン、超低密度ポリエチレン、エチレン−プロピレン共重合体等のオレフィン系樹脂、エチレン−酢酸ビニル共重合樹脂、ポリスチレン系樹脂、ポリカーボネート樹脂、ボリエチレンテレフタレート、ポリブチレンテレフタレート、ポリブチレンサクシネート、ポリブチレンアジペート、ポリ乳酸、ポリカプロラクトン等のポリエステル系樹脂、ポリアミド6、ポリアミド66等のポリアミド系樹脂、フッ素系樹脂、ポリ(メタ)アクリル酸系樹脂、ポリ塩化ビニル系樹脂等が挙げられる。
これらの中では、低密度ポリエチレン、超低密度ポリエチレン、エチレン−酢酸ビニル共重合樹脂が、透湿度、成形加工性、およびコストの面から好適に利用される。耐熱性が要求される場合は、エチレン−プロピレン共重合樹脂、ポリカーボネート樹脂等の高融点樹脂が好適である。エチレン−プロピレン共重合樹脂は、エチレン含有量が3〜7%、好ましくは5〜7%のものが好適であり、結晶性を低下させるため、成形時に急冷することが好ましい。
さらに、生分解性を要求される場合は、ポリブチレンサクシネート、ポリブチレンアジペート、ポリ乳酸、ポリカプロラクトンが好適である。
Specific examples of the thermoplastic resin include low density polyethylene, ultra low density polyethylene, olefin resins such as ethylene-propylene copolymer, ethylene-vinyl acetate copolymer resin, polystyrene resin, polycarbonate resin, and polyethylene. Polyester resins such as terephthalate, polybutylene terephthalate, polybutylene succinate, polybutylene adipate, polylactic acid, polycaprolactone, polyamide resins such as polyamide 6 and polyamide 66, fluorine resins, poly (meth) acrylic acid resins, Examples thereof include polyvinyl chloride resin.
Among these, low-density polyethylene, ultra-low-density polyethylene, and ethylene-vinyl acetate copolymer resin are preferably used from the viewpoints of moisture permeability, moldability, and cost. When heat resistance is required, high melting point resins such as ethylene-propylene copolymer resin and polycarbonate resin are suitable. The ethylene-propylene copolymer resin preferably has an ethylene content of 3 to 7%, preferably 5 to 7%, and is preferably quenched at the time of molding in order to reduce crystallinity.
Furthermore, when biodegradability is required, polybutylene succinate, polybutylene adipate, polylactic acid, and polycaprolactone are preferable.

粒子状吸湿性材料3としては、シリカゲル、アロフェン、ベントナイト、ゼオライト、アルミナシリカゲル、塩化カルシウム、塩化マグネシウム、硫酸マグネシウム、硫酸カルシウム、酸化カルシウム、酸化マグネシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウムと塩化マグネシウムの混合物、酸化マグネシウム・塩化マグネシウム・水酸化マグネシウムと他の保水性物質とからなる混合物等が利用できる。粒子状吸湿性材料3の粒径は、通常、0.5〜150μmである。
これらの中では、特に粒径が1〜100μmの酸化カルシウムが、吸湿性能、熱可塑性樹脂への分散性が良好であることから好適に利用できる。
The particulate hygroscopic material 3 includes silica gel, allophane, bentonite, zeolite, alumina silica gel, calcium chloride, magnesium chloride, magnesium sulfate, calcium sulfate, calcium oxide, magnesium oxide, strontium oxide, barium oxide, magnesium oxide and magnesium chloride. A mixture, a mixture comprising magnesium oxide / magnesium chloride / magnesium hydroxide and other water-retaining substances can be used. The particle diameter of the particulate hygroscopic material 3 is usually 0.5 to 150 μm.
Among these, calcium oxide having a particle size of 1 to 100 μm can be preferably used because of its good hygroscopic performance and dispersibility in thermoplastic resins.

発泡セル4の大きさ(径)は、100〜300μmとすることが好ましい。発泡セルの径が100μm未満では、発泡形成による透湿性向上の効果が低下し、一方、300μmを超えると、薄物のシートが成形できなくなるとともに、粒子状吸湿性材料の脱落が発生しやすくなる。   The size (diameter) of the foam cell 4 is preferably 100 to 300 μm. When the diameter of the foamed cell is less than 100 μm, the effect of improving the moisture permeability due to foam formation is lowered. On the other hand, when the diameter exceeds 300 μm, a thin sheet cannot be formed and the particulate hygroscopic material is liable to fall off.

空隙5は、粒子状吸湿性材料3の全体あるいは一部が発泡セル4内に挿入されることによって、粒子状吸湿性材料3の周囲全部あるいは一部にできた、発泡セル4の空間部分である。空隙5の大きさ(径)は、20〜150μmとすることが好ましく、また、発泡セルよりも小さいことが好ましい。   The void 5 is a space portion of the foamed cell 4 that is formed entirely or partly around the particulate hygroscopic material 3 by inserting the whole or part of the particulate hygroscopic material 3 into the foamed cell 4. is there. The size (diameter) of the gap 5 is preferably 20 to 150 μm, and is preferably smaller than the foam cell.

本発明の吸湿性発泡体は、上記した熱可塑性樹脂と粒子状吸湿性材料の混合物(通常ペレット状)を用い、この混合物を押出機に投入して、バレル内で溶融、混練を行い、溶融状態時に発泡剤である超臨界流体を注入し、先端のダイより押出発泡させることにより製造される。
熱可塑性樹脂と粒子状吸湿性材料の混合物は、二軸混練機や加圧ニーダー等の一般的な混合装置を用いて、それぞれの材料を均一に混合分散することによって作製される。この混合物には、成形性を考慮して、ポリエチレン系ワックス、高級脂肪酸等の滑材等の加工助剤のほか、抗菌剤、防かび剤、熱安定剤、香料等を適宜添加することもできる。
The hygroscopic foam of the present invention uses the above-mentioned mixture of thermoplastic resin and particulate hygroscopic material (usually in the form of pellets), puts this mixture into an extruder, melts and kneads in the barrel, melts It is manufactured by injecting a supercritical fluid, which is a foaming agent, in a state and extruding and foaming from a die at the tip.
The mixture of the thermoplastic resin and the particulate hygroscopic material is produced by uniformly mixing and dispersing each material using a general mixing device such as a biaxial kneader or a pressure kneader. In consideration of moldability, this mixture can be appropriately added with antibacterial agents, fungicides, heat stabilizers, fragrances and the like in addition to processing aids such as polyethylene waxes and lubricants such as higher fatty acids. .

熱可塑性樹脂と粒子状吸湿性材料の混合比は、熱可塑性樹脂100重量部に対し、粒子状吸湿性材料50〜300重量部であり、好ましくは100〜250重量部、さらに好ましくは100〜200重量部である。この粒子状吸湿性材料の混合比が50重量部未満では、吸湿性能が不足して、吸湿材としての作用が認められない。一方、300重量部を超えると熱可塑性樹脂との混合が難しく、溶融張力の低下などにより、発泡体に押出成形する際の成形性が著しく低下し、成形できないという不具合が生じる。なお、粒子状吸湿性材料の混合比は、吸湿性材料の性能や発泡樹脂層の厚さ等を考慮して、上記範囲内にて任意に選択することができる。   The mixing ratio of the thermoplastic resin and the particulate hygroscopic material is 50 to 300 parts by weight, preferably 100 to 250 parts by weight, more preferably 100 to 200 parts by weight with respect to 100 parts by weight of the thermoplastic resin. Parts by weight. When the mixing ratio of the particulate hygroscopic material is less than 50 parts by weight, the hygroscopic performance is insufficient and the action as a hygroscopic material is not recognized. On the other hand, when it exceeds 300 parts by weight, mixing with the thermoplastic resin is difficult, and due to a decrease in melt tension, the moldability at the time of extrusion molding into a foam is remarkably lowered, resulting in a problem that molding cannot be performed. The mixing ratio of the particulate hygroscopic material can be arbitrarily selected within the above range in consideration of the performance of the hygroscopic material, the thickness of the foamed resin layer, and the like.

本発明の吸湿性発泡体の製造においては、発泡剤として、超臨界流体である超臨界窒素または超臨界二酸化炭素を使用する。これらを特に使用する理由は、熱可塑性樹脂と粒子状吸湿性材料の混合物に、上記超臨界流体を添加すると、粒子状吸湿性材料を核として発泡構造が形成されるため、該粒子状吸湿性材料の周囲に空隙を設けることが可能となるからである。また、それと同時に、発泡樹脂層に発泡セルが形成される。超臨界流体が加工助剤の役割を果たすため、粒子状吸湿性材料を高充填した成形体の成形が可能となる。
粒子状吸湿性材料との反応性、発泡セル径の大きさを考慮すると、超臨界窒素が好適である。また、これら超臨界流体の注入量は、求める発泡倍率と溶融樹脂の吐出量から算出して決定する。
In the production of the hygroscopic foam of the present invention, supercritical nitrogen or supercritical carbon dioxide, which is a supercritical fluid, is used as a foaming agent. The reason for using these in particular is that when the supercritical fluid is added to a mixture of a thermoplastic resin and a particulate hygroscopic material, a foamed structure is formed with the particulate hygroscopic material as a core. This is because it is possible to provide a void around the material. At the same time, foam cells are formed in the foamed resin layer. Since the supercritical fluid plays the role of a processing aid, it is possible to mold a compact that is highly filled with a particulate hygroscopic material.
Considering the reactivity with the particulate hygroscopic material and the size of the foamed cell diameter, supercritical nitrogen is suitable. The injection amount of these supercritical fluids is determined by calculating from the required expansion ratio and the discharge amount of the molten resin.

本発明の吸湿性発泡体の発泡倍率(無発泡体の比重/発泡体の比重)は、1.1〜4.0とするのが好ましい。発泡倍率が1.1未満の場合は、発泡による吸湿速度の十分な改良効果が認められない。一方、発泡倍率が4.0より大きい場合は、
機械的強度が低下するおそれがある。
また、粒子状吸湿性材料、発泡セルは、発泡樹脂層に均一に存在させることが好ましい。そうすることにより、長期にわたり吸湿量が経時的に一定となり、安定した吸湿性能を得ることができる。
The expansion ratio of the hygroscopic foam of the present invention (non-foam specific gravity / foam specific gravity) is preferably 1.1 to 4.0. When the expansion ratio is less than 1.1, a sufficient improvement effect of the moisture absorption rate due to foaming is not recognized. On the other hand, if the expansion ratio is greater than 4.0,
Mechanical strength may be reduced.
Moreover, it is preferable that the particulate hygroscopic material and the foamed cell are uniformly present in the foamed resin layer. By doing so, the amount of moisture absorption becomes constant over time over a long period of time, and stable moisture absorption performance can be obtained.

本発明の吸湿性発泡体は、上記したように、押出成形により成形されるが、シート状、フィルム状、チューブ状の成形体のほか、任意の断面形状をもつ異形成形体等に成形することができる。得られた吸湿性発泡体は、所望する目的に使用される。   As described above, the hygroscopic foam of the present invention is formed by extrusion molding, but in addition to a sheet-shaped, film-shaped, tube-shaped molded body, it may be molded into a deformed shaped body having an arbitrary cross-sectional shape. Can do. The resulting hygroscopic foam is used for the desired purpose.

(実施例1〜6、比較例1〜4)
1)熱可塑性樹脂として、ランダムポリプロピレン(PP)(PC540A:サンアロマ一社製)、粒子状吸湿性材料として、酸化カルシウム(アオクラボルミック:有恒鉱業社製、平均粒径70μm)を使用し、表1に示す組成比(重量部)からなる両者の混合物を、二軸混練機を用いて混合、押出することにより、マスターペレットを作製した。
2)上記マスターペレットを原料とし、また、超臨界窒素を発泡剤として用いて、押出機(φ65mm、L/D=34、スリットダイ:面長300mm)にそれらを投入し、0.5mm、1.5mm厚、発泡倍率1.5、2.0のシート状発泡体(成形シート)を成形した(実施例1〜6、比較例1、3、4。なお、比較例2は成形不能であった。)。
上記発泡倍率は、式:発泡倍率=(無発泡体の比重)/(発泡体の比重)により求めた。
3)吸湿能力の測定
成形した各発泡体について、5cm×5cmのサンプルを作製し、温度20℃、相対湿度65%雰囲気での重量変化(吸湿量、mg)を48時間にわたり経時的に調べた。結果を表2、図2に示した。なお、表2中、一番左の縦の列は、放置時間(hr)を示す。
4)シート状発泡体の吸湿後の変形・反りの発生の確認
温度20℃、相対湿度65%雰囲気下、48時間放置後のサンプルの変形・反りの状態を目視により観察した。結果を表1に示した。
(Examples 1-6, Comparative Examples 1-4)
1) Random polypropylene (PP) (PC540A: manufactured by San Aroma Co., Ltd.) is used as the thermoplastic resin, and calcium oxide (Aocracoromic: manufactured by Arisu Mining Co., Ltd., average particle size 70 μm) is used as the particulate hygroscopic material. A master pellet was prepared by mixing and extruding a mixture of both of the composition ratios (parts by weight) shown in Table 1 using a biaxial kneader.
2) Using the above master pellets as raw materials and using supercritical nitrogen as a blowing agent, they were put into an extruder (φ65 mm, L / D = 34, slit die: surface length 300 mm), 0.5 mm, 1 A sheet-like foam (molded sheet) having a thickness of 1.5 mm and an expansion ratio of 1.5 and 2.0 was molded (Examples 1 to 6, Comparative Examples 1, 3, and 4. Note that Comparative Example 2 was not moldable. .)
The expansion ratio was determined by the formula: expansion ratio = (specific gravity of non-foamed material) / (specific gravity of foamed material).
3) Measurement of hygroscopic capacity For each molded foam, a sample of 5 cm x 5 cm was prepared, and the change in weight (hygroscopic amount, mg) at a temperature of 20 ° C and a relative humidity of 65% was examined over time for 48 hours. . The results are shown in Table 2 and FIG. In Table 2, the leftmost vertical column indicates the standing time (hr).
4) Confirmation of generation of deformation / warpage after moisture absorption of sheet-like foam The state of deformation / warpage of the sample after standing for 48 hours in an atmosphere of 20 ° C. and 65% relative humidity was visually observed. The results are shown in Table 1.

Figure 2005036121
Figure 2005036121

Figure 2005036121
Figure 2005036121

本発明に係るシート状発泡体の吸湿速度は、無発泡体と比較して、著しく速いばかりでなく、吸湿量も多く、吸湿性能に優れ、しかも、吸湿後の成形体の変形・反りを防止することが可能であった。   The moisture absorption rate of the sheet-like foam according to the present invention is not only significantly higher than that of the non-foamed material, but also has a large amount of moisture absorption, excellent moisture absorption performance, and prevents deformation and warpage of the molded product after moisture absorption. It was possible to do.

本発明の吸湿性発泡体の1例を示した断面図である。It is sectional drawing which showed one example of the hygroscopic foam of this invention. 放置時間(hr)に対して、吸湿量(mg)の変化を示す図である(実施例)。It is a figure which shows the change of moisture absorption (mg) with respect to leaving time (hr) (Example).

符号の説明Explanation of symbols

1…吸湿性発泡体
2…発泡樹脂層
3…粒子状吸湿性材料
4…発泡セル
5…空隙
DESCRIPTION OF SYMBOLS 1 ... Hygroscopic foam 2 ... Foamed resin layer 3 ... Particulate hygroscopic material 4 ... Foam cell 5 ... Air gap

Claims (2)

熱可塑性樹脂100重量部に対し、粒子状吸湿性材料50〜300重量部を含む混合物からなる吸湿性発泡体であって、該粒子状吸湿性材料が発泡樹脂層に保持されており、該粒子状吸湿性材料の周囲の少なくとも一部に空隙が形成された構造を有することを特徴とする吸湿性発泡体。   A hygroscopic foam comprising a mixture containing 50 to 300 parts by weight of a particulate hygroscopic material with respect to 100 parts by weight of the thermoplastic resin, the particulate hygroscopic material being held in the foamed resin layer, and the particles A hygroscopic foam having a structure in which voids are formed in at least a part of the periphery of the hygroscopic material. 熱可塑性樹脂100重量部に対し、粒子状吸湿性材料50〜300重量部を含む混合物を、超臨界窒素または超臨界二酸化炭素を用いて発泡させることを特徴とする請求項1記載の吸湿性発泡体の製造方法。
2. The hygroscopic foam according to claim 1, wherein a mixture containing 50 to 300 parts by weight of the particulate hygroscopic material is foamed using supercritical nitrogen or supercritical carbon dioxide with respect to 100 parts by weight of the thermoplastic resin. Body manufacturing method.
JP2003275336A 2003-07-16 2003-07-16 Hygroscopic foam and its manufacturing method Pending JP2005036121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003275336A JP2005036121A (en) 2003-07-16 2003-07-16 Hygroscopic foam and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003275336A JP2005036121A (en) 2003-07-16 2003-07-16 Hygroscopic foam and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005036121A true JP2005036121A (en) 2005-02-10

Family

ID=34212020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003275336A Pending JP2005036121A (en) 2003-07-16 2003-07-16 Hygroscopic foam and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005036121A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131703A (en) * 2004-11-04 2006-05-25 Shin Etsu Polymer Co Ltd Foam and method for producing the same
JP2008045013A (en) * 2006-08-14 2008-02-28 National Institute Of Advanced Industrial & Technology Light-transmitting flexible heat insulating material and method for producing the same
JP2011162746A (en) * 2010-02-15 2011-08-25 Nagoya Electrical Educational Foundation Molded article of chemical heat storage material and method for producing the same
JP2020105271A (en) * 2018-12-26 2020-07-09 倉敷紡績株式会社 Composition for carbon fiber-including resin extrusion-foamed molding, foamed molding using the composition and production method therefor
WO2022139274A1 (en) * 2020-12-24 2022-06-30 ㈜티케이이엔에스 Moisture absorbent composition for multi-layered glass and absorbent comprising same for multi-layered glass
KR20220122157A (en) * 2021-02-26 2022-09-02 주식회사 데시칸 Hygroscopic foam granules for multi-layer glass and multi-layer glass equipped with the same
WO2024085705A1 (en) * 2022-10-20 2024-04-25 주식회사 데시칸 Gel-type desiccant composition and desiccant pack comprising same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131703A (en) * 2004-11-04 2006-05-25 Shin Etsu Polymer Co Ltd Foam and method for producing the same
JP2008045013A (en) * 2006-08-14 2008-02-28 National Institute Of Advanced Industrial & Technology Light-transmitting flexible heat insulating material and method for producing the same
JP2011162746A (en) * 2010-02-15 2011-08-25 Nagoya Electrical Educational Foundation Molded article of chemical heat storage material and method for producing the same
JP2020105271A (en) * 2018-12-26 2020-07-09 倉敷紡績株式会社 Composition for carbon fiber-including resin extrusion-foamed molding, foamed molding using the composition and production method therefor
WO2022139274A1 (en) * 2020-12-24 2022-06-30 ㈜티케이이엔에스 Moisture absorbent composition for multi-layered glass and absorbent comprising same for multi-layered glass
KR20220122157A (en) * 2021-02-26 2022-09-02 주식회사 데시칸 Hygroscopic foam granules for multi-layer glass and multi-layer glass equipped with the same
KR102542011B1 (en) 2021-02-26 2023-06-12 주식회사 데시칸 Hygroscopic foam granules for multi-layer glass and multi-layer glass equipped with the same
WO2024085705A1 (en) * 2022-10-20 2024-04-25 주식회사 데시칸 Gel-type desiccant composition and desiccant pack comprising same

Similar Documents

Publication Publication Date Title
EP2058372B1 (en) Moisture absorbent composition and moisture absorbent molding
JPH04500833A (en) Foamed article made of biodegradable plastic material and method for manufacturing the same
CN101326225B (en) Method of manufacturing polystyrene foam with polymer processing additives
EP1870431B1 (en) Method of producing polyhydroxyalkanoate resin foamed particles
JP2002524636A5 (en)
EP2940070A1 (en) Molded article of polylactic acid-based resin expanded beads
JP2005036121A (en) Hygroscopic foam and its manufacturing method
KR20000068911A (en) Biodegradable cellulose acetate foams and process for producing the same
KR102160456B1 (en) Excellent moldability foam sheet, preparation method thereof, and food container using the same
JP4583780B2 (en) Hygroscopic packing material
KR101778629B1 (en) Eco-friendly heat resisting material having excellent dimension stability, manufacturing method of the same and packaging container comprising the same
JP4582871B2 (en) Non-crosslinked resin foamable particles
TWI733387B (en) Polylactic acid resin expanded sheet, resin molded article, and mehtod for producing polylactic acid resin expanded sheet
JPS59109532A (en) Extrusion-expanded polystyrene sheet of improved post-formability and its production
WO2007069622A1 (en) Molded object or molded foam containing water-absorbing/swelling substance, process for producing these, and method of use of these
JP2006131703A (en) Foam and method for producing the same
JP3718570B2 (en) Method for producing extruded foam
JP4295971B2 (en) Thermoplastic resin foamed particles, molded product thereof, and method for producing foamed particles
JP5670816B2 (en) Method for producing polyolefin resin expanded particles
JP6230244B2 (en) Method for producing thermoplastic resin molded article
JPH06345889A (en) Production of thermoplastic resin foam
KR101778625B1 (en) Heat resisting material having excellent dimension stability, manufacturing method of the same and packaging container comprising the same
KR102319818B1 (en) Containers comprising Polyethylene terephthalate Foam sheet with improvement Thermal Insulation, and Preparation Method Thereof
JP2011213906A (en) Polylactic acid-based resin foaming particle, method for producing the same, and foamed molding
KR102465633B1 (en) Polyester resin foam sheet having embossed surface and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080407