JP2005035984A - Copper compound, method for producing copper foil by using the same - Google Patents

Copper compound, method for producing copper foil by using the same Download PDF

Info

Publication number
JP2005035984A
JP2005035984A JP2004181403A JP2004181403A JP2005035984A JP 2005035984 A JP2005035984 A JP 2005035984A JP 2004181403 A JP2004181403 A JP 2004181403A JP 2004181403 A JP2004181403 A JP 2004181403A JP 2005035984 A JP2005035984 A JP 2005035984A
Authority
JP
Japan
Prior art keywords
copper
thin film
formula
following formula
copper thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004181403A
Other languages
Japanese (ja)
Other versions
JP4360981B2 (en
JP2005035984A5 (en
Inventor
Minoru Otani
稔 王谷
Jun Hisada
純 久田
Toyoki Motai
豊樹 馬渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEC Co Ltd
Original Assignee
MEC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEC Co Ltd filed Critical MEC Co Ltd
Priority to JP2004181403A priority Critical patent/JP4360981B2/en
Publication of JP2005035984A publication Critical patent/JP2005035984A/en
Publication of JP2005035984A5 publication Critical patent/JP2005035984A5/ja
Application granted granted Critical
Publication of JP4360981B2 publication Critical patent/JP4360981B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper compound capable of safely, inexpensively and easily forming copper foil necessary for the production process of an electronic device, etc. <P>SOLUTION: This copper compound having 100-300°C range decomposition temperature and formed by coupling one or in a plurality of units expressed by formula (1) [wherein, (n) is 1-3; (m) is 1-3; (p) is 0-1; nR<SP>1</SP>s are each a group of formula (2), CH<SB>2</SB>X<SP>2</SP>, CH<SB>2</SB>X<SP>2</SP>(CHX<SP>2</SP>)<SB>q</SB>, NH<SB>2</SB>or H and are the same as or different from each other, and when (n) is 2, the two [R<SP>1</SP>COO] combine together to express a group of formula (3); R<SP>2</SP>to R<SP>4</SP>are each CH<SB>2</SB>X<SP>2</SP>, CH<SB>2</SB>X<SP>2</SP>(CHX<SP>2</SP>)<SB>q</SB>, NH<SB>2</SB>or H; R<SP>5</SP>is (CHX<SP>2</SP>)<SB>r</SB>; X<SP>2</SP>is H, OH or NH<SB>2</SB>: (r) is 0-4; (q) is 1-4; X<SP>1</SP>is NH<SB>4</SB><SP>+</SP>, H<SB>2</SB>O or a solvent molecule]. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、銅化合物及びそれを用いた銅薄膜の製造方法に関する。さらに詳しくは、電子デバイスの配線形成等に好適な銅化合物及びそれを用いた銅薄膜の製造方法に関する。   The present invention relates to a copper compound and a method for producing a copper thin film using the copper compound. More specifically, the present invention relates to a copper compound suitable for wiring formation of an electronic device and a method for producing a copper thin film using the copper compound.

従来、工業的に非導電性基材上に銅薄膜を形成する方法としては、無電解銅めっき法が一般に用いられている。例えばプリント基板の製造工程では、基材上に無電解銅めっき法を用いて導電性の銅薄膜が形成され、その後これを素地として電気銅めっき法により銅配線に必要な厚さの銅薄膜が形成される。   Conventionally, an electroless copper plating method is generally used as a method for industrially forming a copper thin film on a non-conductive substrate. For example, in a printed circuit board manufacturing process, a conductive copper thin film is formed on a base material using an electroless copper plating method, and then a copper thin film having a thickness necessary for copper wiring is formed by using an electrolytic copper plating method. It is formed.

しかし、前記無電解銅めっき法で用いられるめっき浴には、発癌性を有するホルムアルデヒドが使用されており、作業環境、廃液の処理に問題を有している。   However, formaldehyde having carcinogenicity is used in the plating bath used in the electroless copper plating method, which has a problem in working environment and treatment of waste liquid.

また、太陽電池、半導体デバイス、電子ディスプレイデバイス等の製造工程では、スパッタリング法、真空蒸着法、CVD法等の真空プロセスで銅配線が形成されている。   Moreover, in manufacturing processes of solar cells, semiconductor devices, electronic display devices, and the like, copper wiring is formed by a vacuum process such as sputtering, vacuum deposition, or CVD.

これらの方法は大掛かりな真空蒸着装置を必要とし、さらに真空バッチ処理のため生産性が低く、コストが高い。   These methods require a large-scale vacuum vapor deposition apparatus, and are low in productivity and high in cost because of vacuum batch processing.

また、下記特許文献1には、銅の超微粒子の分散液を基材に塗布し、300〜400℃で焼成して銅薄膜を形成することが提案されている。
特開2000−123634号公報
Patent Document 1 below proposes that a dispersion of ultrafine copper particles is applied to a substrate and fired at 300 to 400 ° C. to form a copper thin film.
JP 2000-123634 A

しかし、前記従来の技術は、焼成が高温で行われるので、耐熱温度の低い有機基材には適用できないという問題がある。   However, the conventional technique has a problem that it cannot be applied to an organic substrate having a low heat-resistant temperature because baking is performed at a high temperature.

本発明は上記事情を鑑みなされたものであり、電子デバイス等の製造工程で必要な銅薄膜を安全、安価、かつ容易に形成できる銅化合物を提供することにある。さらにそれを用いた銅薄膜の製造方法を提供することにある。   This invention is made | formed in view of the said situation, and it is providing the copper compound which can form a copper thin film required by manufacturing processes, such as an electronic device, safely, cheaply, and easily. Furthermore, it is providing the manufacturing method of a copper thin film using the same.

すなわち本発明は、分解温度が100〜300℃の範囲であって、下記式(15):   That is, in the present invention, the decomposition temperature is in the range of 100 to 300 ° C., and the following formula (15):

Figure 2005035984
Figure 2005035984

(但し、nは1〜3、mは1〜3、pは0〜1、n個のR1はそれぞれ下記式(16),CH22,CH22(CHX2q、NH2,Hを表わし、同じであっても異なっていても良く、
又はnは2であって、2個の[R1COO]は一緒になって下記式(17)を表わし、
2,R3,R4は、それぞれCH22,CH22(CHX2q、NH2,H、
5は−(CHX2r−、
2は、H,OH,NH2
rは0〜4、
qは1〜4、
1はNH4 +、H2O又は溶媒分子)
で表される単位が1又は複数連結した銅化合物である。
(However, n is 1 to 3, m is 1 to 3, p is 0 to 1, and n R 1 are the following formulas (16), CH 2 X 2 , CH 2 X 2 (CHX 2 ) q , NH 2 and H, which may be the same or different,
Or n is 2 and two [R 1 COO] together represent the following formula (17):
R 2 , R 3 and R 4 are respectively CH 2 X 2 , CH 2 X 2 (CHX 2 ) q , NH 2 , H,
R 5 represents — (CHX 2 ) r —,
X 2 is H, OH, NH 2 ,
r is 0 to 4,
q is 1 to 4,
X 1 is NH 4 + , H 2 O or a solvent molecule)
Is a copper compound in which one or more units represented by

Figure 2005035984
Figure 2005035984

Figure 2005035984
Figure 2005035984

本発明の銅薄膜の製造方法は、前記の銅化合物を銅の非酸化雰囲気下で、100〜300℃に加熱した後、60℃以下まで冷却して銅薄膜を形成することを特徴とする。   The method for producing a copper thin film of the present invention is characterized in that the copper compound is heated to 100 to 300 ° C. in a non-oxidizing atmosphere of copper and then cooled to 60 ° C. or lower to form a copper thin film.

本発明によれば、電子デバイス等の製造工程で必要な銅薄膜を低温で安全、安価、かつ容易に形成できる銅化合物と、それを用いた銅薄膜の製造方法を提供できる。また、従来のスパッタリング法、真空蒸着法、CVD法等の真空プロセス及びめっき法による銅薄膜の製造方法と異なり、特定の化合物を熱処理することにより簡便に銅薄膜を形成する工業的方法が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the copper compound which can form the copper thin film required by manufacturing processes, such as an electronic device, safely, cheaply and easily at low temperature, and the manufacturing method of a copper thin film using the same can be provided. In addition, unlike conventional methods for producing copper thin films by vacuum processes and plating methods such as sputtering, vacuum deposition, and CVD, it is possible to provide an industrial method for simply forming a copper thin film by heat-treating a specific compound. .

本発明の銅化合物は、前記式(1)で表される単位からなる。前記銅化合物は、前記式(15)で示される単位の1つからなっていてもよく、2以上連結した物質であってもよい。なお、2以上連結した物質の場合、無機物のようにその数に上限はない。   The copper compound of this invention consists of a unit represented by the said Formula (1). The copper compound may consist of one of the units represented by the formula (15), or may be a substance in which two or more are connected. In addition, in the case of two or more connected substances, there is no upper limit in the number like an inorganic substance.

前記式(15)で示される単位の例としては、例えば下記式(18):   As an example of the unit represented by the formula (15), for example, the following formula (18):

Figure 2005035984
Figure 2005035984

(但し、nは1〜3、mは1〜3、pは0〜1、X1はNH4 +、H2O又は溶媒分子である)
で表される単位が1又は複数連結した銅化合物がある。
(Where, n is 1 to 3, m is 1 to 3, p is 0 to 1, X 1 is NH 4 +, an H 2 O or solvent molecules)
There are copper compounds in which one or more units represented by

別の例としては、前記式(15)が、下記式(19):   As another example, the formula (15) is represented by the following formula (19):

Figure 2005035984
Figure 2005035984

(但し、pは前記と同じ、X3はH2O又は溶媒分子である)で表される単位が1又は複数連結した銅化合物がある。 There is a copper compound in which one or more units represented by (wherein p is the same as described above, X 3 is H 2 O or a solvent molecule) are connected.

さらに別の例としては、前記式(15)が、下記式(20):   As yet another example, the formula (15) is represented by the following formula (20):

Figure 2005035984
Figure 2005035984

(但し、2個のR1は、それぞれ前記と同じであってもよく、異なっていてもよい)
で表される単位が1又は複数連結した銅化合物がある。
(However, two R 1 s may be the same as or different from each other.)
There are copper compounds in which one or more units represented by

さらに別の銅化合物としては、前記式(15)が、下記式(21):   Furthermore, as another copper compound, said Formula (15) is following formula (21):

Figure 2005035984
Figure 2005035984

(但し、R5は前記と同じ)
で表される単位が1又は複数連結した銅化合物がある。
(However, R 5 is the same as above)
There are copper compounds in which one or more units represented by

前記溶媒分子は、銅化合物を製造する際に用いる溶媒や、銅化合物を塗布するために溶液化するのに用いる溶媒などの分子である。前記溶媒分子としては、例えばメタノール、エタノール、ジメチルスルホキサイド、ジクロロメタン、クロロホルム等の分子があげられる。   The solvent molecule is a molecule such as a solvent used for producing a copper compound or a solvent used for forming a solution in order to apply the copper compound. Examples of the solvent molecule include molecules such as methanol, ethanol, dimethyl sulfoxide, dichloromethane, and chloroform.

前記銅化合物の製造方法に特に限定はないが、例えばギ酸銅などのカルボン酸と銅との化合物にアンモニア水を反応させることにより製造できる。また、酸化銅にギ酸などのカルボン酸を反応させ、その後アンモニア水を反応させることにより製造できる。   Although there is no limitation in the manufacturing method of the said copper compound, For example, it can manufacture by making ammonia water react with the compound of carboxylic acid and copper, such as copper formate. Moreover, it can manufacture by making carboxylic acid, such as formic acid, react with copper oxide, and making ammonia water react after that.

前記銅化合物は、銅薄膜の製造に有用である。すなわち、基材の近傍で前記銅化合物に熱、光等のエネルギーを与えて分解させることにより、基材表面に容易に銅薄膜を形成することができる。   The said copper compound is useful for manufacture of a copper thin film. That is, a copper thin film can be easily formed on the surface of the base material by decomposing the copper compound in the vicinity of the base material by applying energy such as heat and light.

前記基材に特に限定はなく、例えばポリイミド、エポキシ樹脂、ビスマレイミド・トリアジン樹脂、変性ポリフェニレンエーテル等の熱硬化性樹脂、ABS樹脂、ポリアミド、ポリエチレン、ポリ塩化ビニル、フッ素樹脂、液晶ポリマー等の熱可塑性樹脂、セラミックス、シリコン、ガラス、金属、天然繊維や合成繊維からなる紙や布帛、木材等、種々の基材があげられる。ガラス繊維や合成繊維を補強繊維とし樹脂を含浸させたプリプレグ基材であってもよい。前記基材の形状にも特に限定はなく、膜、線、棒、管、板、多孔質材等、いずれの形状であってもよい。   The substrate is not particularly limited, and heat such as thermosetting resin such as polyimide, epoxy resin, bismaleimide / triazine resin, modified polyphenylene ether, ABS resin, polyamide, polyethylene, polyvinyl chloride, fluororesin, liquid crystal polymer, etc. Examples of the base material include plastic resin, ceramics, silicon, glass, metal, paper and fabric made of natural fiber and synthetic fiber, and wood. A prepreg base material made of glass fiber or synthetic fiber as a reinforcing fiber and impregnated with resin may be used. The shape of the base material is not particularly limited, and may be any shape such as a film, a wire, a rod, a tube, a plate, a porous material, and the like.

前記基材は、銅薄膜の接着性向上などの必要に応じ、清浄したり、化学的処理、物理的処理等により表面改質したりしてもよい。   The base material may be cleaned or surface-modified by chemical treatment, physical treatment, or the like as required for improving the adhesion of the copper thin film.

次に本発明の銅薄膜の製造方法を説明する。本発明の製造方法においては、まず前記銅化合物を銅の非酸化雰囲気下で、100〜300℃に加熱した後、60℃以下まで冷却して銅薄膜を形成する。前記非酸化雰囲気は、還元性雰囲気、不活性雰囲気、減圧雰囲気、還元性ガス及び不活性ガスの超臨界状態の雰囲気から選ばれる少なくとも一つの雰囲気であることが好ましい。前記加熱温度は銅化合物の分解温度以上であればよいが、好ましい加熱温度は銅化合物の種類、加熱時の雰囲気等により一概には規定できず、それらに応じて適宜設定される。なお、加熱温度が高すぎると基材の耐熱温度が低い場合には基材に劣化が生じたり、エネルギーの無駄が生じる。好ましい例においては、140℃以上200℃以下の加熱で分解できる。   Next, the manufacturing method of the copper thin film of this invention is demonstrated. In the production method of the present invention, the copper compound is first heated to 100 to 300 ° C. in a copper non-oxidizing atmosphere, and then cooled to 60 ° C. or less to form a copper thin film. The non-oxidizing atmosphere is preferably at least one atmosphere selected from a reducing atmosphere, an inert atmosphere, a reduced pressure atmosphere, a reducing gas and an inert gas supercritical state atmosphere. The heating temperature may be equal to or higher than the decomposition temperature of the copper compound, but the preferable heating temperature cannot be generally defined by the type of the copper compound, the atmosphere at the time of heating, and the like, and is appropriately set according to them. If the heating temperature is too high, the base material is deteriorated or energy is wasted if the heat resistant temperature of the base material is low. In a preferred example, it can be decomposed by heating at 140 ° C. or more and 200 ° C. or less.

前記加熱方法に特に限定はなく、加熱雰囲気にあった方法を選択すればよい。例えばヒーター、レーザ等を用いて加熱することができる。   The heating method is not particularly limited, and a method suitable for the heating atmosphere may be selected. For example, heating can be performed using a heater, a laser, or the like.

還元性雰囲気としては水素、一酸化炭素、アンモニアガス等や、それらと窒素、ヘリウム、アルゴン、二酸化炭素等の不活性ガスとを混合した雰囲気があげられる。   Examples of the reducing atmosphere include hydrogen, carbon monoxide, ammonia gas, and the like, and an atmosphere in which they are mixed with an inert gas such as nitrogen, helium, argon, carbon dioxide.

また、不活性雰囲気としては窒素、ヘリウム、アルゴン、二酸化炭素等があげられる。   Examples of the inert atmosphere include nitrogen, helium, argon, carbon dioxide and the like.

製造方法の例を挙げると、密閉容器内に銅化合物を基材に対向させて間隔を置いて配置し、減圧下で加熱して銅化合物を分解させ、対向した基材上に銅を蒸着させることにより、基材表面に銅薄膜を形成できる(以下、「銅薄膜形成法A」という。)。   As an example of a manufacturing method, a copper compound is placed in an airtight container so as to face the base material at an interval, heated under reduced pressure to decompose the copper compound, and copper is deposited on the facing base material. Thus, a copper thin film can be formed on the surface of the substrate (hereinafter referred to as “copper thin film forming method A”).

前記減圧は、例えば真空ポンプにより10kPa以下、さらには1kPa以下に減圧するのが好ましい。   For example, the pressure is preferably reduced to 10 kPa or less, more preferably 1 kPa or less by a vacuum pump.

前記気圧、加熱時間等の条件は、銅化合物と基材との距離、目的の銅薄膜の厚さ等に応じて任意に設定できる。加熱温度は100〜300℃の範囲内で任意に設定できる。   Conditions such as the atmospheric pressure and the heating time can be arbitrarily set according to the distance between the copper compound and the substrate, the thickness of the target copper thin film, and the like. The heating temperature can be arbitrarily set within a range of 100 to 300 ° C.

所定の加熱が行なわれた後、60℃以下まで冷却し、次いで減圧を解除する。60℃以下に冷却する前に減圧を解除すると、銅薄膜が酸化され、金属銅の薄膜が得られなる。   After predetermined heating is performed, cooling is performed to 60 ° C. or lower, and then the decompression is released. When the decompression is released before cooling to 60 ° C. or lower, the copper thin film is oxidized and a metal copper thin film is obtained.

銅化合物を密閉容器内に配置する際には、銅化合物のみを配置してもよく、銅化合物を溶媒などに溶解又は分散させた溶液状、分散液状、ペースト状などにして配置してもよい。   When placing the copper compound in the sealed container, only the copper compound may be placed, or the solution may be placed in the form of a solution, dispersion liquid, paste, or the like in which the copper compound is dissolved or dispersed in a solvent or the like. .

前記溶媒に特に限定はなく、銅化合物の分解反応を阻害しないものであればよく、銅化合物が分解するまでに揮発してしまうものが好ましい。例えばメタノール、エタノール、プロパノール、ブタノール等のアルコール類、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル等のグリコールエーテル類、アセトン、メチルエチルケトン等のケトン類、ペンタン、ヘキサン、ベンゼン、トルエン等の炭化水素系溶媒、ジエチルエーテル、テトラヒドロフラン、p−ジオキサン等のエーテル系溶媒、塩化メチレン、クロロホルム等のハロゲン系溶媒、リモネン、ゲラニオール、テルピネオール、リナロール等のテルペン系溶媒等が挙げられる。これらの溶媒は単独で用いてもよく、2種以上併用してもよい。   There is no limitation in particular in the said solvent, What is necessary is just a thing which does not inhibit the decomposition reaction of a copper compound, and what volatilizes before a copper compound decomposes | disassembles is preferable. For example, alcohols such as methanol, ethanol, propanol and butanol, glycol ethers such as ethylene glycol monomethyl ether, diethylene glycol monomethyl ether and propylene glycol monomethyl ether, ketones such as acetone and methyl ethyl ketone, carbonization such as pentane, hexane, benzene and toluene Examples thereof include hydrogen solvents, ether solvents such as diethyl ether, tetrahydrofuran and p-dioxane, halogen solvents such as methylene chloride and chloroform, and terpene solvents such as limonene, geraniol, terpineol and linalool. These solvents may be used alone or in combination of two or more.

前記溶液、分散液及びペーストには、溶媒の他、銅薄膜の機能を損なわない範囲で各種添加剤を用いてもよい。例えば溶液の粘度を調整する増粘材、濡れ性を向上させる界面活性剤等を使用することができる。   In the solution, dispersion, and paste, various additives may be used in addition to the solvent as long as the function of the copper thin film is not impaired. For example, a thickener that adjusts the viscosity of the solution, a surfactant that improves wettability, and the like can be used.

また、例えば密閉容器内において、前記銅化合物を基材表面に接触させて配置し、ゆるやかな減圧下で加熱することによっても基材表面に銅薄膜を形成できる(以下、「銅薄膜形成法B」という。)。前記ゆるやかな減圧は、例えばアスピレーターにより90〜1kPa、さらには50〜5kPaに減圧するのが好ましい。   Further, for example, a copper thin film can be formed on the surface of the base material by placing the copper compound in contact with the surface of the base material in a sealed container and heating it under a gentle reduced pressure (hereinafter referred to as “copper thin film forming method B”). "). The gentle pressure reduction is preferably, for example, 90 to 1 kPa, more preferably 50 to 5 kPa, using an aspirator.

前記気圧、加熱時間等の条件は、銅化合物の配置方法、目的の銅薄膜の厚さ等に応じて任意に設定できる。加熱温度は100〜300℃の範囲内で任意に設定できる。   Conditions such as the atmospheric pressure and the heating time can be arbitrarily set according to the arrangement method of the copper compound, the thickness of the target copper thin film, and the like. The heating temperature can be arbitrarily set within a range of 100 to 300 ° C.

所定の加熱が行なわれた後、銅薄膜形成法Aと同様に加熱時の雰囲気を保持したまま60℃以下まで冷却し、次いで減圧を解除する
銅薄膜形成法Bにおいても、銅化合物のみを配置してもよく、銅化合物を溶媒などに溶解又は分散させた溶液状、分散液状、ペースト状などにして配置してもよい。
After predetermined heating is performed, in the same manner as in copper thin film formation method A, while maintaining the atmosphere during heating, it is cooled to 60 ° C. or lower, and then the decompression is released. Alternatively, it may be arranged in the form of a solution, dispersion, paste, or the like in which a copper compound is dissolved or dispersed in a solvent or the like.

銅化合物を基材表面に接触させて配置させる方法に特に限定はないが、例えば粉体の場合は静電写真方式等があげられ、溶液や分散液の場合はスピンコート、ディップコート、カーテンコート、ロールコート、スプレーコート、インクジェット、スクリーン印刷等の方法があげられ、ペーストの場合はスクリーン印刷等の方法があげられる。   The method of placing the copper compound in contact with the substrate surface is not particularly limited. For example, in the case of powder, an electrostatic photographic method is used. In the case of a solution or dispersion, spin coating, dip coating, curtain coating, etc. , Roll coating, spray coating, ink jet, screen printing and the like, and in the case of paste, screen printing and the like.

前記溶媒に特に限定はなく、銅薄膜形成法Aと同様の溶媒が使用される。さらに前記溶液、分散液及びペーストには、溶媒の他、銅薄膜形成法Aと同様に各種添加剤を用いてもよい。前記溶液等の粘度を調整することにより、塗膜の厚さを調整することができ、得られる銅薄膜の厚さを調整することができる。膜の厚さは例えば0.01〜10μmの範囲で調整することができる。   There is no limitation in particular in the said solvent, The solvent similar to the copper thin film formation method A is used. In addition to the solvent, various additives may be used in the solution, dispersion, and paste as in the copper thin film forming method A. By adjusting the viscosity of the solution or the like, the thickness of the coating film can be adjusted, and the thickness of the obtained copper thin film can be adjusted. The thickness of the film can be adjusted in the range of 0.01 to 10 μm, for example.

また、前記銅薄膜形成法Bにおいて、ゆるやかな減圧雰囲気に代えて還元性又は不活性雰囲気下で加熱してもよい。   Moreover, in the said copper thin film formation method B, it may replace with a gentle decompression atmosphere and you may heat in a reducing or inert atmosphere.

還元性雰囲気としては水素、一酸化炭素、アンモニアガス等や、それらと窒素、ヘリウム、アルゴン、二酸化炭素等の不活性ガスとを混合した雰囲気があげられる。   Examples of the reducing atmosphere include hydrogen, carbon monoxide, ammonia gas, and the like, and an atmosphere in which they are mixed with an inert gas such as nitrogen, helium, argon, carbon dioxide.

また、不活性雰囲気としては窒素、ヘリウム、アルゴン、二酸化炭素等があげられる。   Examples of the inert atmosphere include nitrogen, helium, argon, carbon dioxide and the like.

以上のように、本発明の銅薄膜の製造方法は、加熱温度が比較的低温であるので、例えばポリイミド、エポキシ樹脂、ビスマレイミド・トリアジン樹脂、変性ポリフェニレンエーテル等の熱硬化性樹脂、ABS樹脂、ポリアミド、ポリエチレン、ポリ塩化ビニル、フッ素樹脂、液晶ポリマー等の熱可塑性樹脂等の耐熱温度の低い有機基材を用いるプリント基板の銅配線の形成に用いると、基材を劣化させずに銅薄膜が形成可能である。   As described above, the method for producing a copper thin film according to the present invention has a relatively low heating temperature. For example, a thermosetting resin such as polyimide, epoxy resin, bismaleimide / triazine resin, modified polyphenylene ether, ABS resin, When used for the formation of copper wiring on printed circuit boards using organic bases with low heat resistance such as thermoplastic resins such as polyamide, polyethylene, polyvinyl chloride, fluororesin, liquid crystal polymer, etc., a copper thin film can be formed without deteriorating the base material. It can be formed.

前記銅配線は、下記のように形成してもよい。
(1)基材全面に銅薄膜を形成した後、フォトエッチング法で配線部分を残して銅薄膜をエッチングして形成する。
(2)基材全面に銅薄膜を形成した後、これを給電層として全面に銅めっきし、次いでフォトエッチング法で配線部分を残して銅薄膜をエッチングして形成する。
(3)基材全面に銅薄膜を形成した後、これを給電層としてパターンめっきするセミアディティブ法で形成する。
(4)基材を配線のネガパターンのマスクで被覆し、銅を蒸着させて形成する。
(5)銅化合物の溶液やペーストを、配線のネガパターンのスクリーンを通して印刷し、加熱する方法で形成する。
The copper wiring may be formed as follows.
(1) After forming a copper thin film on the entire surface of the substrate, the copper thin film is etched and formed by leaving a wiring portion by a photoetching method.
(2) After forming a copper thin film on the entire surface of the base material, copper plating is performed on the entire surface as a power supply layer, and then the copper thin film is etched by leaving a wiring portion by a photoetching method.
(3) After forming a copper thin film on the entire surface of the substrate, it is formed by a semi-additive method in which this is pattern-plated as a power feeding layer.
(4) A substrate is covered with a negative pattern mask of wiring, and copper is deposited to form.
(5) A copper compound solution or paste is formed by printing through a negative pattern screen of wiring and heating.

本発明を実施例によりさらに詳しく説明する。なお、本発明はこれらの実施例により何ら限定されるものではない。   The present invention will be described in more detail with reference to examples. In addition, this invention is not limited at all by these Examples.

(実施例1)
メタノール中にギ酸銅・四水和物1モルと、アンモニア水2モルを加え、室温(25℃)で1時間撹拌した。不溶物を濾別し、得られたメタノール溶液を濃縮し、放置して青色の析出物を得た。この析出物を濾別し減圧乾燥を行なった。
(Example 1)
In methanol, 1 mol of copper formate tetrahydrate and 2 mol of aqueous ammonia were added and stirred at room temperature (25 ° C.) for 1 hour. Insoluble matter was filtered off, and the resulting methanol solution was concentrated and allowed to stand to obtain a blue precipitate. The precipitate was separated by filtration and dried under reduced pressure.

得られた析出物を赤外(IR)分析した結果を図1に示す。図1において、カルボニル基とアンモニアの吸収と推定されるピークが認められた。   The result of infrared (IR) analysis of the obtained precipitate is shown in FIG. In FIG. 1, peaks presumed to be absorbed by carbonyl groups and ammonia were observed.

また、前記青色の析出物を窒素ガス雰囲気下で10℃/minの昇温スピードで加熱し、熱重量測定(TG)による熱分析を行なった。図2に熱重量測定(TG)による熱分析の結果を示す。図2から、約150℃で分解による大きな重量減少のあることがわかる。   The blue precipitate was heated in a nitrogen gas atmosphere at a heating rate of 10 ° C./min, and thermal analysis was performed by thermogravimetry (TG). FIG. 2 shows the result of thermal analysis by thermogravimetry (TG). FIG. 2 shows that there is a large weight loss due to decomposition at about 150 ° C.

得られた析出物を粉末X線回折法により分析した。その結果を図3に示す。また、原子吸光分析により銅の含有率を調べたところ、33.91重量%であった。   The resulting precipitate was analyzed by powder X-ray diffraction method. The result is shown in FIG. Moreover, when the content rate of copper was investigated by atomic absorption analysis, it was 33.91 weight%.

次に、前記青色の析出物をメタノールに溶解し、このメタノール溶液をジクロロメタンの入ったサンプルチューブに静かに加えた後、封管して5日間放置し、青色針状の単結晶と青白い粉状の析出物を得た。   Next, the blue precipitate is dissolved in methanol, and this methanol solution is gently added to a sample tube containing dichloromethane, then sealed and left for 5 days to form a blue needle-like single crystal and a pale powder. A precipitate was obtained.

青色針状単結晶の元素分析及びX線構造解析を行なった。炭素、水素及び窒素の元素分析の結果を下記の表1に示す。   Elemental analysis and X-ray structural analysis of blue needle-shaped single crystals were performed. The results of elemental analysis of carbon, hydrogen and nitrogen are shown in Table 1 below.

Figure 2005035984
Figure 2005035984

以上の原子吸光分析、元素分析及びX線構造解析の結果から、青色針状単結晶は、Catena-[(μ-formato-o,o')-bis(ammine)(formato-o)Capper(II)](下記化学式(22))であることが確認された。   From the results of atomic absorption analysis, elemental analysis, and X-ray structural analysis described above, blue needle-like single crystals were obtained from Catena-[(μ-formato-o, o ')-bis (ammine) (formato-o) Capper (II )] (The following chemical formula (22)).

Figure 2005035984
Figure 2005035984

(但し、qは正の整数。)
この構造から粉末X線回折の回折図をシュミレートしたところ、図3に示す実測結果とほぼ一致していた。
(However, q is a positive integer.)
When a powder X-ray diffraction pattern was simulated from this structure, it almost coincided with the actual measurement result shown in FIG.

(実施例2)
メタノール中に酸化銅(I)1モル、ギ酸アンモニウム4モルを加え、室温で4時間撹拌した。不溶物を濾別し、得られたメタノール溶液に酢酸エチルを加え放置して青色の析出物を得た。析出物を濾別し、減圧乾燥を行なった。
(Example 2)
1 mol of copper (I) oxide and 4 mol of ammonium formate were added to methanol and stirred at room temperature for 4 hours. Insoluble matter was filtered off, and ethyl acetate was added to the resulting methanol solution and allowed to stand to obtain a blue precipitate. The precipitate was filtered off and dried under reduced pressure.

得られた析出物をIR分析したところ、カルボニル基とアンモニアの吸収が認められた。   When the obtained precipitate was analyzed by IR, absorption of a carbonyl group and ammonia was observed.

また、熱分析の結果、約145℃で分解による大きな重量減少が見られた。   As a result of thermal analysis, a large weight loss due to decomposition was observed at about 145 ° C.

(実施例3)
実施例1で得られた青色の析出物を、ステンレス板上に10g/m2になるように均一に広げた。前記ステンレス板上の析出物とポリイミドフィルムとが15mmの間隔を置いて対向するようにステンレス製の冶具により固定し、これを真空オーブンに入れて100Paに減圧した後、170℃で30分間加熱し、その後50℃まで冷却した後、減圧を解除して真空オーブンから取り出した。取り出したポリイミドフィルム上には、金属光沢のある銅薄膜が形成された。
(Example 3)
The blue precipitate obtained in Example 1 was uniformly spread on a stainless steel plate so as to be 10 g / m 2 . The precipitate on the stainless steel plate and the polyimide film were fixed with a stainless steel jig so as to face each other with an interval of 15 mm, put in a vacuum oven and depressurized to 100 Pa, and then heated at 170 ° C. for 30 minutes. Then, after cooling to 50 ° C., the reduced pressure was released and the product was taken out from the vacuum oven. A copper thin film having a metallic luster was formed on the taken out polyimide film.

この銅薄膜の厚さを電解式膜厚計で測定したところ0.07μmであった。   It was 0.07 micrometer when the thickness of this copper thin film was measured with the electrolytic film thickness meter.

図4に、この銅薄膜の化学分析用電子分光(ESCA)分析の結果を示す。Cu2p3/2が933eVに検出され、金属銅であることが確認できた。   In FIG. 4, the result of the electron spectroscopy for chemical analysis (ESCA) analysis of this copper thin film is shown. Cu2p3 / 2 was detected at 933 eV, and was confirmed to be metallic copper.

得られた銅薄膜を給電層として硫酸銅めっき浴を用いて電気銅めっきを行なったところ、市販の銅箔を給電層とした場合と同様に銅めっき膜が形成された。   When the obtained copper thin film was used as a power feeding layer and electrolytic copper plating was performed using a copper sulfate plating bath, a copper plating film was formed in the same manner as when a commercially available copper foil was used as the power feeding layer.

(実施例4)
実施例2で得られた青色の析出物を等量のシクロヘキサノールと混合し、ペースト状とした。
(Example 4)
The blue precipitate obtained in Example 2 was mixed with an equal amount of cyclohexanol to obtain a paste.

得られたペーストをプリント配線板用のガラスエポキシ基材上に20g/m2になるように均一に塗布し、これを真空オーブンに入れて10kPaに減圧した後、170℃で30分間加熱した。ついで50℃まで冷却した後、真空オーブンより取り出した。 The obtained paste was uniformly applied on a glass epoxy substrate for a printed wiring board so as to be 20 g / m 2 , put in a vacuum oven and depressurized to 10 kPa, and then heated at 170 ° C. for 30 minutes. Subsequently, after cooling to 50 degreeC, it took out from the vacuum oven.

取り出したガラスエポキシ基材上に赤銅色の銅薄膜が形成された。   A copper-colored copper thin film was formed on the glass epoxy substrate taken out.

この銅薄膜の厚さを電解式膜厚計で測定したところ0.38μmであった。   It was 0.38 micrometer when the thickness of this copper thin film was measured with the electrolytic film thickness meter.

得られた銅薄膜を給電層として硫酸銅めっき浴を用いて電気銅めっきを行なったところ、市販の銅箔を給電層とした場合と同様に銅めっき膜が形成された。   When the obtained copper thin film was used as a power feeding layer and electrolytic copper plating was performed using a copper sulfate plating bath, a copper plating film was formed in the same manner as when a commercially available copper foil was used as the power feeding layer.

(実施例5)
実施例1で得られた青色の析出物をメタノールに溶解し、ガラス基板上に塗布し、メタノールを留去してガラス基板上に10g/m2の量で析出させた。
(Example 5)
The blue precipitate obtained in Example 1 was dissolved in methanol and applied on a glass substrate, and the methanol was distilled off to deposit on the glass substrate in an amount of 10 g / m 2 .

このガラス基板を電気炉に入れ、炉内を窒素ガスで不活性雰囲気に置換した。次に170℃で30分加熱した後冷却し、50℃以下に下がってからオーブンから取り出した。取り出したガラス基板上に赤銅色の銅薄膜が形成された。   This glass substrate was put into an electric furnace, and the inside of the furnace was replaced with an inert atmosphere with nitrogen gas. Next, the mixture was heated at 170 ° C. for 30 minutes and then cooled. A copper-colored copper thin film was formed on the glass substrate taken out.

得られた銅薄膜の厚さを電解式膜厚計で測定したところ0.12μmであった。
得られた銅薄膜を給電層として硫酸銅めっき浴を用いて電気銅めっきを行なったところ、市販の銅箔を給電層とした場合と同様に銅めっき膜が形成された。
It was 0.12 micrometer when the thickness of the obtained copper thin film was measured with the electrolytic film thickness meter.
When the obtained copper thin film was used as a power feeding layer and electrolytic copper plating was performed using a copper sulfate plating bath, a copper plating film was formed in the same manner as when a commercially available copper foil was used as the power feeding layer.

本発明は、シリコン、ガラス基板等に大規模な真空蒸着装置を用いずに銅配線を形成できるので、太陽電池、半導体デバイス、電子ディスプレイ等の製造に極めて有用である。   Since the present invention can form copper wiring on a silicon, glass substrate or the like without using a large-scale vacuum vapor deposition apparatus, it is extremely useful for manufacturing solar cells, semiconductor devices, electronic displays and the like.

さらに本発明の銅薄膜の製造方法は、電子部品のみならず、装飾品、家具、建材等、いずれの用途にも利用することができる。   Furthermore, the manufacturing method of the copper thin film of this invention can be utilized not only for an electronic component but for any use, such as a decorative article, furniture, and a building material.

本発明の実施例1で得られた析出物の赤外(IR)分析チャート。The infrared (IR) analysis chart of the deposit obtained in Example 1 of this invention. 本発明の実施例1で得られた銅化合物の熱重量測定(TG)チャート。The thermogravimetry (TG) chart of the copper compound obtained in Example 1 of this invention. 本発明の実施例1で得られた銅化合物の粉末X線回折チャート。The powder X-ray-diffraction chart of the copper compound obtained in Example 1 of this invention. 本発明の実施例3で得られた銅薄膜の化学分析用電子分光(ESCA)分析チャート。The electron spectroscopy (ESCA) analysis chart for chemical analysis of the copper thin film obtained in Example 3 of this invention.

Claims (11)

分解温度が100〜300℃の範囲であって、下記式(1):
Figure 2005035984
(但し、nは1〜3、mは1〜3、pは0〜1、n個のR1はそれぞれ下記式(2),CH22,CH22(CHX2q、NH2,Hを表わし、同じであっても異なっていても良く、
又はnは2であって、2個の[R1COO]は一緒になって下記式(3)を表わし、
2,R3,R4は、それぞれCH22,CH22(CHX2q、NH2,H、
5は−(CHX2r−、
2は、H,OH,NH2
rは0〜4、
qは1〜4、
1はNH4 +、H2O又は溶媒分子)
で表される単位が1又は複数連結した銅化合物。
Figure 2005035984
Figure 2005035984
The decomposition temperature is in the range of 100 to 300 ° C., and the following formula (1):
Figure 2005035984
(Where n is 1 to 3, m is 1 to 3, p is 0 to 1, and n R 1 s are each represented by the following formula (2), CH 2 X 2 , CH 2 X 2 (CHX 2 ) q , NH 2 and H, which may be the same or different,
Or n is 2, and two [R 1 COO] together represent the following formula (3):
R 2 , R 3 and R 4 are respectively CH 2 X 2 , CH 2 X 2 (CHX 2 ) q , NH 2 , H,
R 5 represents — (CHX 2 ) r —,
X 2 is H, OH, NH 2 ,
r is 0 to 4,
q is 1 to 4,
X 1 is NH 4 + , H 2 O or a solvent molecule)
A copper compound in which one or more units represented by
Figure 2005035984
Figure 2005035984
前記式(1)が、下記式(4):
Figure 2005035984
(但し、nは1〜3、mは1〜3、pは0〜1、X1はNH4 +、H2O又は溶媒分子である)
で表される単位が1又は複数連結した請求項1に記載の銅化合物。
The formula (1) is converted into the following formula (4):
Figure 2005035984
(Where, n is 1 to 3, m is 1 to 3, p is 0 to 1, X 1 is NH 4 +, an H 2 O or solvent molecules)
The copper compound according to claim 1, wherein one or a plurality of units represented by the formula:
前記式(1)が、下記式(5):
Figure 2005035984
(但し、pは前記と同じ、X3はH2O又は溶媒分子である)で表される単位が1又は複数連結した請求項1に記載の銅化合物。
The formula (1) is converted into the following formula (5):
Figure 2005035984
The copper compound according to claim 1, wherein one or a plurality of units represented by (wherein p is the same as above, X 3 is H 2 O or a solvent molecule) are connected.
前記式(1)が、下記式(6):
Figure 2005035984
(但し、2個のR1は、それぞれ前記と同じであってもよく、異なっていてもよい)
で表される単位が1又は複数連結した請求項1に記載の銅化合物。
The formula (1) is represented by the following formula (6):
Figure 2005035984
(However, two R 1 s may be the same as or different from each other.)
The copper compound according to claim 1, wherein one or a plurality of units represented by the formula:
前記式(1)が、下記式(7):
Figure 2005035984
(但し、R5は前記と同じ)
で表される単位が1又は複数連結した請求項1に記載の銅化合物。
The formula (1) is represented by the following formula (7):
Figure 2005035984
(However, R 5 is the same as above)
The copper compound according to claim 1, wherein one or a plurality of units represented by the formula:
分解温度が100〜300℃の範囲であって、下記式(8):
Figure 2005035984
(但し、nは1〜3、mは1〜3、pは0〜1、n個のR1はそれぞれ下記式(9),CH22,CH22(CHX2q、NH2,Hを表わし、同じであっても異なっていても良く、
又はnは2であって、2個の[R1COO]は一緒になって下記式(10)を表わし、
2,R3,R4は、それぞれCH22,CH22(CHX2q、NH2,H、
5は−(CHX2r−、
2は、H,OH,NH2
rは0〜4、
qは1〜4、
1はNH4 +、H2O又は溶媒分子)
Figure 2005035984
Figure 2005035984
で表される単位が1又は複数連結した銅化合物を、
銅の非酸化雰囲気下で、100〜300℃に加熱した後、
60℃以下まで冷却して銅薄膜を形成することを特徴とする銅薄膜の製造方法。
The decomposition temperature is in the range of 100 to 300 ° C., and the following formula (8):
Figure 2005035984
(However, n is 1 to 3, m is 1 to 3, p is 0 to 1, and n R 1 s are each represented by the following formula (9), CH 2 X 2 , CH 2 X 2 (CHX 2 ) q , NH 2 and H, which may be the same or different,
Or n is 2, and two [R 1 COO] together represent the following formula (10):
R 2 , R 3 and R 4 are respectively CH 2 X 2 , CH 2 X 2 (CHX 2 ) q , NH 2 , H,
R 5 represents — (CHX 2 ) r —,
X 2 is H, OH, NH 2 ,
r is 0 to 4,
q is 1 to 4,
X 1 is NH 4 + , H 2 O or a solvent molecule)
Figure 2005035984
Figure 2005035984
A copper compound in which one or more units represented by
After heating to 100-300 ° C. in a non-oxidizing atmosphere of copper,
A method for producing a copper thin film, comprising cooling to 60 ° C. or lower to form a copper thin film.
前記非酸化雰囲気が、還元性雰囲気、不活性雰囲気、減圧雰囲気、還元性ガス及び不活性ガスの超臨界状態の雰囲気から選ばれる少なくとも一つの雰囲気である請求項6に記載の銅薄膜の製造方法。   The method for producing a copper thin film according to claim 6, wherein the non-oxidizing atmosphere is at least one atmosphere selected from a reducing atmosphere, an inert atmosphere, a reduced-pressure atmosphere, a reducing gas, and an atmosphere in a supercritical state of an inert gas. . 前記式(8)が、下記式(11):
Figure 2005035984
(但し、nは1〜3、mは1〜3、pは0〜1、X1はNH4 +、H2O又は溶媒分子である)
で表される単位が1又は複数連結した請求項6に記載の銅薄膜の製造方法。
The formula (8) is represented by the following formula (11):
Figure 2005035984
(Where, n is 1 to 3, m is 1 to 3, p is 0 to 1, X 1 is NH 4 +, an H 2 O or solvent molecules)
The manufacturing method of the copper thin film of Claim 6 with which the unit represented by these was connected one or more.
前記式(8)が、下記式(12):
Figure 2005035984
(但し、pは前記と同じ、X3はH2O又は溶媒分子である)で表される単位が1又は複数連結した請求項6に記載の銅薄膜の製造方法。
The formula (8) is represented by the following formula (12):
Figure 2005035984
The method for producing a copper thin film according to claim 6, wherein one or a plurality of units represented by (wherein p is the same as described above, X 3 is H 2 O or a solvent molecule) are connected.
前記式(8)が、下記式(13):
Figure 2005035984
(但し、2個のR1は、それぞれ前記と同じであってもよく、異なっていてもよい)
で表される単位が1又は複数連結した請求項6に記載の銅薄膜の製造方法。
The formula (8) is converted into the following formula (13):
Figure 2005035984
(However, two R 1 s may be the same as or different from each other.)
The manufacturing method of the copper thin film of Claim 6 with which the unit represented by these was connected one or more.
前記式(8)が、下記式(14):
Figure 2005035984
(但し、R5は前記と同じ)
で表される単位が1又は複数連結した請求項6に記載の銅薄膜の製造方法。
The formula (8) is converted into the following formula (14):
Figure 2005035984
(However, R 5 is the same as above)
The manufacturing method of the copper thin film of Claim 6 with which the unit represented by these was connected one or more.
JP2004181403A 2003-07-03 2004-06-18 Method for producing copper thin film Expired - Fee Related JP4360981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004181403A JP4360981B2 (en) 2003-07-03 2004-06-18 Method for producing copper thin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003270570 2003-07-03
JP2004181403A JP4360981B2 (en) 2003-07-03 2004-06-18 Method for producing copper thin film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009027030A Division JP2009102432A (en) 2003-07-03 2009-02-09 Copper compound

Publications (3)

Publication Number Publication Date
JP2005035984A true JP2005035984A (en) 2005-02-10
JP2005035984A5 JP2005035984A5 (en) 2006-04-20
JP4360981B2 JP4360981B2 (en) 2009-11-11

Family

ID=34220673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004181403A Expired - Fee Related JP4360981B2 (en) 2003-07-03 2004-06-18 Method for producing copper thin film

Country Status (1)

Country Link
JP (1) JP4360981B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013466A (en) * 2006-07-04 2008-01-24 Seiko Epson Corp Copper formate complex, method for producing copper particle and method for producing circuit board
JP2008111093A (en) * 2006-10-03 2008-05-15 Shinko Electric Ind Co Ltd Method for producing copper membrane
JP2013136577A (en) * 2011-12-27 2013-07-11 Samsung Electro-Mechanics Co Ltd Copper organic metal, method for preparing copper organic metal and copper paste
WO2014010328A1 (en) 2012-07-09 2014-01-16 四国化成工業株式会社 Copper film-forming agent and method for forming copper film
JP2016145140A (en) * 2015-02-09 2016-08-12 小林 博 Glass paste manufacturing and method for manufacturing glass paste
JP2017075385A (en) * 2015-10-14 2017-04-20 小林 博 Manufacture of aggregate of pellets of synthetic resin covered with aggregate of particulates of metal or alloy and manufacture of compact of synthetic resin having properties of metal or alloy
WO2017134769A1 (en) * 2016-02-03 2017-08-10 学校法人工学院大学 Metal film-forming composition and metal film-forming method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013466A (en) * 2006-07-04 2008-01-24 Seiko Epson Corp Copper formate complex, method for producing copper particle and method for producing circuit board
JP2008111093A (en) * 2006-10-03 2008-05-15 Shinko Electric Ind Co Ltd Method for producing copper membrane
JP2013136577A (en) * 2011-12-27 2013-07-11 Samsung Electro-Mechanics Co Ltd Copper organic metal, method for preparing copper organic metal and copper paste
WO2014010328A1 (en) 2012-07-09 2014-01-16 四国化成工業株式会社 Copper film-forming agent and method for forming copper film
KR20150034168A (en) 2012-07-09 2015-04-02 시코쿠가세이고교가부시키가이샤 Copper film-forming agent and method for forming copper film
US10405422B2 (en) 2012-07-09 2019-09-03 Shikoku Chemicals Corporation Copper film-forming agent and method for forming copper film
JP2016145140A (en) * 2015-02-09 2016-08-12 小林 博 Glass paste manufacturing and method for manufacturing glass paste
JP2017075385A (en) * 2015-10-14 2017-04-20 小林 博 Manufacture of aggregate of pellets of synthetic resin covered with aggregate of particulates of metal or alloy and manufacture of compact of synthetic resin having properties of metal or alloy
WO2017134769A1 (en) * 2016-02-03 2017-08-10 学校法人工学院大学 Metal film-forming composition and metal film-forming method
WO2017135330A1 (en) * 2016-02-03 2017-08-10 学校法人工学院大学 Metal film forming composition and metal film forming method
JPWO2017135330A1 (en) * 2016-02-03 2018-11-29 学校法人 工学院大学 Metal film forming composition and metal film forming method

Also Published As

Publication number Publication date
JP4360981B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP2009102432A (en) Copper compound
KR100997297B1 (en) Low temperature thermal conductive inks
JP5167522B2 (en) Forming material for metallic silver and method for producing metallic silver
TWI627194B (en) Electroless plating primer comprising hyperbranched polymer, metal fine particle and alkoxysilane
EP3580284B1 (en) Printable molecular ink
JP5712635B2 (en) Silver-containing composition
CN102326211A (en) Method for preparing metallic thin film
JP4360981B2 (en) Method for producing copper thin film
EP1484430A2 (en) Deposition of copper layers on substrates
EP2684917A1 (en) Zinc oxide film-forming composition, zinc oxide film production method, and zinc compound
JP7175532B2 (en) METAL FILM-FORMING COMPOSITION AND METAL FILM-FORMING METHOD
Suren et al. Conductive film by spray pyrolysis of self-reducing copper–silver amine complex solution
AT396944B (en) METHOD FOR ADHESIVE DEPOSITION OF SILVER FILMS
KR102373554B1 (en) Method for metallizing dielectric substrate surface, and dielectric substrate provided with metal film
US4985071A (en) Process for producing a base metal thin film and an electronic device using the same
JP6736610B2 (en) Method for manufacturing conductive pattern
JPH01255670A (en) Production of metal structure on non-conductor
KR20110071805A (en) Organic metal complexs for forming metal thin layer, ink comprising the same and method for forming metal thin layer using the same
JP7130631B2 (en) Method for producing conductor, method for producing wiring board, and method for producing composition for forming conductor
Bei et al. Research Status and Prospects of Particle-Free Silver Conductive Ink
JP2020004648A (en) Method for manufacturing conductive pattern, and plasma treatment apparatus
EP1520060A2 (en) Metallisation
JP7174543B2 (en) METHOD FOR MANUFACTURING CONDUCTIVE PATTERN, AND PLASMA PROCESSING APPARATUS
CN105440801A (en) Conductive ink and method for preparing printed circuit from conductive ink
JP2702713B2 (en) Method for producing base metal thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Effective date: 20090209

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090811

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees