JP2005034998A - Liquid ejection head - Google Patents

Liquid ejection head Download PDF

Info

Publication number
JP2005034998A
JP2005034998A JP2003196960A JP2003196960A JP2005034998A JP 2005034998 A JP2005034998 A JP 2005034998A JP 2003196960 A JP2003196960 A JP 2003196960A JP 2003196960 A JP2003196960 A JP 2003196960A JP 2005034998 A JP2005034998 A JP 2005034998A
Authority
JP
Japan
Prior art keywords
shallow groove
hole
pressure chamber
substrate
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003196960A
Other languages
Japanese (ja)
Inventor
Tomoaki Takahashi
智明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003196960A priority Critical patent/JP2005034998A/en
Publication of JP2005034998A publication Critical patent/JP2005034998A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To ensure a rigidity required for the barrier wall of a through hole even if nozzle openings are formed at a density higher than before and to simplify control. <P>SOLUTION: A shallow groove section 21 consists of a main shallow groove section 23 formed on the resilient plate 15 side and having one end communicating with a reservoir through an ink supply opening 10, and a sub-shallow groove section 24 formed on the nozzle plate 16 side. Through hole sections 22 are classified into first through hole sections 25 located on the side remote from the reservoir 8, and second through hole sections 26 located on the side close to the reservoir 8 wherein the first through hole sections 25 and the second through hole sections 26 are arranged alternately in the arranging direction of pressure chambers. The pressure chamber cavity section comprises a first pressure chamber cavity section consisting of the main shallow groove section 23 and the first through hole section 25 and having L-shaped cross-section, and a second pressure chamber cavity section consisting of the second through hole section 26 and the sub-shallow groove section 24 and having crank-like cross-section. A nozzle opening 11 faces the first through hole section 25 and the sub-shallow groove section 24 and the nozzle openings 11 are made along the arranging direction of the pressure chambers. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、圧力室内の液体に圧力変動を生じさせることでノズル開口から液滴を吐出させる液体噴射ヘッドに関する。
【0002】
【従来の技術】
圧力室内の液体に圧力変動を生じさせることでノズル開口から液滴を吐出させる液体噴射ヘッドとしては、例えば、画像記録装置用の記録ヘッドや製造装置用の噴射ヘッドが提供されている。記録ヘッドを有する画像記録装置としては、インクジェット式プリンタ、インクジェット式プロッタ、ファクシミリ装置が提供されている。また、噴射ヘッドを有する製造装置としては、液晶ディスプレー等のカラーフィルタを製造するディスプレー製造装置,有機EL(Electro Luminescence)ディスプレーやFED(面発光ディスプレー)等の電極を形成する電極製造装置,バイオチップ(生物化学素子)を製造するチップ製造装置等が提供されている。そして、上記の画像記録装置では記録ヘッドから液状のインクを吐出し、ディスプレー製造装置では色材噴射ヘッドからR(Red)・G(Green)・B(Blue)の各色材の溶液を吐出する。また、電極製造装置では電極材噴射ヘッドから液状の電極材料を吐出し、チップ製造装置では生体有機物噴射ヘッドから生体有機物の溶液を吐出する。
【0003】
このような液体噴射ヘッドは、圧力発生素子の作動に伴う液体の圧力変動を利用して液滴を吐出させるので、圧力発生素子の状態変化を効率よく液体に伝達することが求められる。このため、従来の液体噴射ヘッドの圧力室としては、例えば、一端が液体供給口を通じてリザーバに連通された浅溝部と、液体供給口から遠い側の浅溝部先端からノズル開口まで板厚方向に貫通する貫通孔部とからなる断面倒L字形状のものが提案されている(例えば、特許文献1)。この液体噴射ヘッドでは、圧力発生素子の作動によって浅溝部内の液体に圧力変動を生じさせ、この圧力変動を利用してノズル開口から液滴を吐出させる。このL字形状の圧力室は、例えば、141μm間隔(即ち、ノズル開口で180dpi相当)で形成されていた。
【0004】
【特許文献1】
特開平9−327909号公報(第5図)
【0005】
【発明が解決しようとする課題】
この種の液体噴射装置では、ノズル開口をより高密度化することが求められている。ここで、単にピッチを半分にすると(例えば、ノズル開口を360dpi相当に設けると)、圧力室の幅や流路隔壁の幅が半分になる。そして、流路隔壁の厚みが半分になると剛性が下がるため、流路隔壁が圧力室内の液体圧力で変形してしまう可能性が高くなる。流路隔壁が変形してしまうと、隣の圧力室内の液体に圧力変動が生じ、インク滴の吐出特性がずれてしまう虞がある。即ち、隣接するノズル開口の吐出状態に応じて、注目するノズル開口の吐出特性が異なる現象(いわゆる隣接クロストーク)が生じ得る。この隣接クロストーク現象が顕著に現れると、非吐出のノズル開口であるにも拘わらず、隣接する圧力室の影響によってインク滴が吐出してしまういわゆるミスファイヤー現象が生じてしまう。
【0006】
特に、貫通孔部は基板を貫通しているので、貫通孔部同士を区画する流路隔壁(貫通孔隔壁)は、浅溝部同士を区画する流路隔壁(浅溝隔壁)よりも剛性が低くなりがちであり変形しやすい。従って、貫通孔隔壁については変形を確実に防止する必要がある。この場合において、貫通孔隔壁を従来よりも厚くして剛性を高めることが考えられるが、ノズル開口の形成ピッチを高密度化するという要求に反することとなり、好ましくない。
【0007】
また、この種の液体噴射装置では、液滴の高周波吐出も求められている。これは、液滴をより高い周波数で吐出できると、処理時間の短縮化が図れるからである。このため、圧力室形状を変更して流路隔壁の剛性を高めることができたとしても、制御が複雑になってしまうのは好ましくない。
【0008】
本発明は、このような事情に鑑みてなされたものであり、その目的は、ノズル開口の形成ピッチを従来より高密度化しても、貫通孔隔壁に必要な剛性を確保でき、且つ、制御も簡素化できる液体噴射ヘッドを提供することにある。
【0009】
【課題を解決するための手段】
本発明は、上記目的を達成するために提案されたものであり、圧力室となる圧力室空部を、隔壁を挟んで複数列設してなる流路基板と、前記流路基板の一方の面に接合され、前記圧力室空部における一側の開口を塞ぐ封止部材と、前記封止部材とは反対側の流路基板表面に接合され、複数のノズル開口を開設したノズルプレートとを備え、前記圧力室内の液体に生じた圧力変動を利用することで、前記ノズル開口から液滴を吐出可能に構成した液体噴射ヘッドにおいて、
前記圧力室空部は、封止部材側に形成されてその一端が液体供給口を介してリザーバに連通した主浅溝部と、前記流路基板を貫通する貫通孔部とを有し、
前記貫通孔部を、リザーバから遠い側に位置する第1貫通孔部と、リザーバに近い側に位置する第2貫通孔部とに種分けして、これらの第1貫通孔部と第2貫通孔部とを圧力室列設方向へ交互に配置し、
第2貫通孔部を含む圧力室空部においては、ノズルプレート側に当該第2貫通孔部から離隔する方向に副浅溝部を形成して断面を略クランク形状とし、
前記第1貫通孔部及び副浅溝部にノズル開口を臨ませることで各ノズル開口の開設位置を圧力室列設方向に揃えたことを特徴とする。
【0010】
この発明において、隣り合う貫通孔部同士のずれ量を貫通孔部の開口長さの1/2以上に設定する構成が好ましい。なお、貫通孔部の開口長さとは、浅溝部長手方向の長さを意味する。
【0011】
これらの発明によれば、圧力室列設方向に見て隣り合う貫通孔部同士の間には、隣りの貫通孔部と重なっていない非重畳部分が作成される。そして、この非重畳部分に存在する貫通孔隔壁は、1つ先の貫通孔部との間に亘って設けられる。このため、貫通孔隔壁を十分に厚くでき、変形を防止することができる。また、第1貫通孔部よりもリザーバに近い第2貫通孔部については、副浅溝部によってリザーバから離隔する方向に流路が拡張される。この副浅溝部を第1貫通孔部の形成位置まで延設することで、ノズル開口の形成位置を圧力室列設方向に揃えることができる。これにより、液滴の吐出制御を、第1貫通孔部を含む圧力室空部と第2貫通孔部を含む圧力室空部とで区別することなく行うことができ、制御の簡素化が図れる。
【0012】
上記発明において、同列に属する各浅溝部の同じ側の端部に前記液体供給口を設け、共通のリザーバから液体を供給可能とする構成が好ましい。
この発明によれば、一列の圧力室に対して共通のリザーバから液体が供給されるため、液体噴射ヘッドの小型化、構造の簡略化が図れる。
【0013】
上記発明において、前記主浅溝部の溝幅及び溝深さと副浅溝部の溝幅及び溝深さとを揃える構成が好ましい。
この発明によれば、主浅溝部の断面積と副浅溝部の断面積とが揃うので、第1貫通孔部を含む圧力室空部と第2貫通孔部を含む圧力室空部についてリザーバからノズル開口までの流路長さ、断面積、体積等をより精度良く揃えることができ、両者の特性を高い精度であわせることができる。
【0014】
上記発明において、前記流路基板をシリコン単結晶板の異方性エッチングによって作製する構成が好ましい。
この発明によれば、各浅溝部及び各貫通孔部を区画する壁面がシリコンの結晶面で区画されるので、従来より高密度化してもこれらの各部を寸法精度良く作製することができる。
【0015】
上記発明において、前記流路基板を、主浅溝部及び液体供給口となる開口窓部を開設した第1浅溝基板と、副浅溝部となる開口窓部を開設した第2浅溝基板と、貫通孔部を形成した貫通孔基板とから構成することが好ましい。
この発明において、第1浅溝基板、第2浅溝基板、及び、貫通孔基板を金属板のプレス加工によって作製する構成が好ましい。
これらの発明によれば、各浅溝部や各貫通孔部がそれぞれの基板を貫通した形態に設けられるので基板を容易に作成できる。これにより、生産性の向上が図れ、量産に適する。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。なお、以下の説明は、液体噴射ヘッドの一種であるインクジェット式記録ヘッド(即ち、本発明における液体の一種である液体状のインクをインク滴として吐出させるもの。以下、記録ヘッドという。)を例に挙げて行う。
【0017】
まず、図1に基づいて、記録ヘッド1の全体構成について説明する。例示した記録ヘッド1は、ケース2と、このケース2内に収納固定される振動子ユニット3と、ケース2の先端面に接合される流路ユニット4とから概略構成される。ケース2は、内部に振動子ユニット3を収納可能な収納空部5を設けたブロック状であり、例えば、エポキシ樹脂等の成型性が良好な樹脂によって作製される。上記の収納空部5は、ケース先端面(図1における下面)からケース2の内部を貫通して反対側の取付面(同上面)に開口した空部である。この収納空部5内であって高さ方向の途中には、振動子ユニット3の固定板6が当接される段部を形成してある。
【0018】
上記の振動子ユニット3は、複数の圧電振動子(圧電素子)7と、これらの圧電振動子7が接合される固定板6等から構成される。圧電振動子7は、一枚の圧電板を歯割りすることで作製された櫛歯状であり、列状に形成される。この圧電振動子7は、圧力発生素子の一種であり、供給される駆動信号の電圧に応じて変形する。例示した圧電振動子7は、圧電体層と電極層とを交互に配置した積層タイプであって、充電によって素子長手方向(積層方向と直交する方向)に収縮し、放電によって素子長手方向に伸長する縦振動モードである。この圧電振動子7は、極めて細い幅に切り分けられ、例えば90本〜180本程度設けられる。本実施形態では35μm前後の幅に切り分けられている。これは、インク滴を吐出するノズル開口の形成ピッチが70μm間隔(360dpi相当)と、従来の半分になっていることによる。
【0019】
各圧電振動子7は、固定端部を固定板6の表面に接合することで、自由端部を固定板6の縁よりも外側に突出させている。即ち、各圧電振動子7は、所謂片持ち梁の状態で固定板6上に支持されている。また、各圧電振動子7を支持する固定板6は、圧電振動子7からの反力を受け止め得る剛性を備えた板状部材であり、本実施形態では厚さ1mm程度のステンレス板によって構成している。
【0020】
上記の流路ユニット4は、その内部に、共通インク室としてのリザーバ8と、インク(液体状のインク)に圧力を付与する圧力室9と、リザーバ8と圧力室9とを連通するインク供給口(本発明の液体供給口の一種,図4参照)10と、インク滴が吐出するノズル開口11等を備える。そして、インク供給口10から圧力室9を通ってノズル開口11に至るインク流路を、圧力室9に対応した複数有している。本実施形態では、この流路ユニット4を、圧力室9となる圧力室空部12及びリザーバ8となるリザーバ空部13を有する流路基板14と、この流路基板14の一方の面に接合されて圧力室空部12やリザーバ空部13における一側の開口を塞ぐ弾性板(本発明の封止板の一種)15と、弾性板15とは反対側となる流路基板14の他方の面に接合され、複数のノズル開口11が形成されたノズルプレート16とから構成している。
【0021】
上記の流路基板14は、例えば、シリコンウェハ(シリコンの単結晶板)の異方性エッチングによって作製される。即ち、エッチング加工により、圧力室空部12、インク供給口10、及び、リザーバ空部13等が作製される。このように、流路基板14をシリコンウェハのエッチングで作製したのは、極く微細な形状を寸法精度良く作製できるからである。
【0022】
そして、図1から図3に示すように、圧力室空部12は、浅溝部21(23,24)と貫通孔部22とを含んで構成される。ここで、浅溝部21は、弾性板15側の主浅溝部23とノズルプレート16側の副浅溝部24とからなる。主浅溝部23は、ノズル開口11の列(ノズル列)の形成方向(即ち、圧力室列設方向)とは直交する方向に細長く、その一端がインク供給口10を介してリザーバ空部13に連通された扁平な凹部である。そして、この主浅溝部23は、後述する第1圧力室空部12Aと第2圧力室空部12Bの両方に含まれる。また、副浅溝部24は、圧力室列設方向と直交する方向に細長い扁平な凹部である。なお、この副浅溝部24は、後述する第2圧力室空部12Bのみに含まれる。貫通孔部22は、流路基板14を板厚方向に貫通する部分であり、第1貫通孔部25(図3参照)と第2貫通孔部26(図2参照)とに種分けされる。そして、第1貫通孔部25は主浅溝部23の先端部(即ち、リザーバ8と反対側の端部)とノズル開口11との間を連通し、第2貫通孔部26は主浅溝部23の先端部と副浅溝部24の基端(即ち、リザーバ8側の端部)とを連通している。なお、この流路基板14については後で詳細に説明する。
【0023】
上記の弾性板15は、圧力室空部12の浅溝部側開口、及び、リザーバ空部13の一方の開口を封止する部材であり、本実施形態では樹脂フィルム27をステンレス板にラミネートした複合板材を用いている。詳しくは、ステンレス板における圧力室空部12の部分を選択的に除去することで樹脂フィルム27だけの弾性部(薄肉部)と、島部(厚肉部)28とを設けている。そして、島部28の表面には圧電振動子7の先端面を接合している。このため、圧電振動子7が伸長すると島部28は圧力室9側(ノズルプレート16側)に移動し、圧力室9が収縮する。一方、圧電振動子7が収縮すると、島部28は圧力室9から離隔する方向に移動し、圧力室9が膨張する。
【0024】
上記のノズルプレート16は、複数のノズル開口11が列状に形成された薄手の板材であり、本実施形態ではステンレス板によって作製している。このノズルプレート16は、弾性板15とは反対側の流路基板表面に接合されており、この接合状態において、各ノズル開口11が対応する圧力室空部12(詳しくは、第1貫通孔部25や副浅溝部24)に臨む。また、このノズルプレート16によってリザーバ空部13の他方の開口が封止される。
【0025】
上記構成の記録ヘッド1では、インクカートリッジ等のインク供給源から供給されたインクは一旦リザーバ8に貯留され、その後、インク供給口10を通じて圧力室9内に導入される。圧力室9内に導入されたインクは、圧電振動子7の作動によってノズル開口11からインク滴となって吐出される。即ち、この記録ヘッド1は、圧力室9の膨張や収縮に伴って生じたインクの圧力変動を利用してインク滴を吐出させる。
【0026】
ところで、本実施形態のように、360dpi程度の高解像度になると、上記の圧力室空部12を70μm間隔で形成する必要がある。この場合、複数の貫通孔部22を直線上に並べて形成すると、隣り合う貫通孔部22同士を区画する貫通孔隔壁が極めて薄くなってしまう。特に貫通孔部22は流路基板14を貫通しているので、貫通孔隔壁の剛性は低くなりがちであり変形しやすい。この貫通孔隔壁の変形は、所謂隣接クロストークの原因となるので好ましくない。ここで、貫通孔隔壁を従来よりも厚くして剛性を高めることが考えられるが、ノズル開口11の形成ピッチを高密度化することが困難になってしまう。
【0027】
このような事情に鑑み、この記録ヘッド1では、浅溝部先端とノズル開口11の間を連通する貫通孔部22に関し、各貫通孔部22を隣の貫通孔部22に対して浅溝部長手方向へ位置をずらして千鳥状に形成している。即ち、各貫通孔部22をリザーバ8から遠い側に位置する第1貫通孔部25(図3参照)と、リザーバ8に近い側に位置する第2貫通孔部26(図2参照)とから構成すると共に、第1貫通孔部25と第2貫通孔部26とを圧力室列設方向へ交互に形成している(図4参照)。
【0028】
ここで、ノズル開口11を第1貫通孔部25及び第2貫通孔部26のそれぞれに連通させる構成を採ると、ノズル開口11が千鳥状に設けられることになるので、インク滴の吐出制御を複雑化してしまう。即ち、インク滴の着弾位置を揃えるためには、インク滴の吐出タイミングを調整するデータ処理が必要となる。このようなデータ処理は、インク滴の高周波吐出を行う場合の障害となり得る。また、ノズル開口11のずれ量は、印字データの処理による制約を受ける。例えば、印字データの処理が1Byte毎に行われる場合には、ノズル開口11同士を印字解像度単位の1Byte分でずらさなければならず(例えば、8/720dpi=282μm)、必要以上に圧力室9を長くせざるを得なくなる場合もある。従って、ノズル開口11を第1貫通孔部25及び第2貫通孔部26のそれぞれに連通させる構成は、制御上と構造上の両方で問題がある。
【0029】
そこで、本実施形態では、第2貫通孔部26には副浅溝部24を連通させ、流路をリザーバ8から離隔する方向に拡張している。言い換えると、圧力室空部12を、主浅溝部23及び第1貫通孔部25からなる略L字状断面の第1圧力室空部12A(図3参照)と、主浅溝部23、第2貫通孔部26及び副浅溝部24からなる略クランク状断面の第2圧力室空部12B(図2参照)とから構成している。そして、ノズル開口11を第1貫通孔部25及び副浅溝部24に連通させることで、各ノズル開口11の形成位置を圧力室列設方向に揃えている。即ち、各ノズル開口11を圧力室列設方向の直線に沿って開設している。以下、これらの点を中心に、流路基板14について詳細に説明する。
【0030】
ここで、図4は流路ユニット4の一部分を島部28側からみた図、図5は流路基板14の一部分を副浅溝部24側からみた図である。これらの図に示すように、主浅溝部23は、平面から見て横に細長い平行四辺形状の窪部によって構成されている。このように、平行四辺形状の空部となっているのは、流路基板14をシリコン単結晶板の異方性エッチングで作製しているからである。即ち、このエッチング加工では、窪部の各面はシリコンの結晶面によって区画されるので、結晶面の角度で形状が定まる。このため、図4の例では、主浅溝部23を区画する平行四辺形状の壁部に関し、長辺部分がY方向(圧力室長手方向)と平行に形成され、短辺部分はX方向(圧力室長手方向Yと直交する方向,ノズル列方向)に対して時計回り方向に35度傾斜して形成される。
【0031】
この主浅溝部23の幅W23は55μmである。ここで、幅W23を55μmに設定したのは、弾性板15の変形量との兼ね合いによる。即ち、所要量のインク滴を吐出させるために最低限必要な幅として55μmに設定している。また、この主浅溝部23の全長は、連通される貫通孔部22に応じて異なる。即ち、リザーバ8から遠い第1貫通孔部25が連通される主浅溝部23(長い側の主浅溝部23,第1主浅溝部23Aとも表現できる。)は、その全長(Y方向の長さ)L23Aが620μmである。一方、リザーバ8に近い第2貫通孔部26が連通される主浅溝部23(短い側の主浅溝部23,第2主浅溝部23Bとも表現できる。)は、その全長L23Bが500μmである。ここで、第1貫通孔部25の開口長さ(Y方向の長さ)L25は、本実施形態において120μmである。つまり、短い側の主浅溝部23の全長L23Bは、長い側の主浅溝部23の全長L23Aから第1貫通孔部25の開口長さL25を引いた長さといえる。
【0032】
浅溝部21同士を区画する浅溝隔壁31は、本実施形態ではその幅(厚さ)が約15μmに設定されている。浅溝隔壁31の幅は、圧力室9(ノズル開口11)の形成ピッチと主浅溝部23の幅によって規定される。即ち、本実施形態では、圧力室9を約70μm間隔で作製するが、上記したように主浅溝部23の幅W23は55μmに設定される。このため、浅溝隔壁31の幅が約15μmに定まる。また、この浅溝隔壁31の高さ(浅溝部21の深さ)は30μmに設定されている。浅溝隔壁31の高さは、圧力室9内のインク圧力によって過度な変形が生じない範囲で可及的に高く設定されるが、貫通孔部22の高さよりも低く設定することが好ましい。
【0033】
また、この浅溝隔壁31において、浅溝部21よりもリザーバ空部13側の部分は、その一部が隣の浅溝隔壁31に向かって台形状に突出しており、この台形状の突出部32によってインク供給口10が区画形成される。このインク供給口10は、台形の上底部分によって区画される狭窄部33と、この狭窄部33よりもリザーバ空部13側に位置する浅溝供給部34とから構成される。本実施形態では、狭窄部33の長さを100μm、幅を20μmに設定している。なお、これらの狭窄部33及び浅溝供給部34は、上記した浅溝部21と同じ深さに作製される。即ち、これらの深さは、浅溝隔壁31の高さと同じである。また、狭窄部33及び浅溝供給部34は、連通される主浅溝部23(第1主浅溝部23A,第2主浅溝部23B)の種類に拘わらず同じ形状であり、リザーバ空部13からの距離も同じである。
【0034】
貫通孔部22は、上記したように、第1貫通孔部25と第2貫通孔部26とから構成される。これらの第1貫通孔部25及び第2貫通孔部26は、板厚方向に形成した垂直貫通孔部として構成され、主浅溝部23の先端部分、即ち、主浅溝部23内におけるリザーバ空部13から最も離れた場所に形成される。具体的には、第1貫通孔部25は第1主浅溝部23Aの先端部分に開設され、第2貫通孔部26は第2主浅溝部23Bの先端部分に開設されている。これらの第1貫通孔部25及び第2貫通孔部26の開口形状もまた平行四辺形状である。これは、上記したように、シリコン単結晶板のエッチングによって作製していることによる。従って、両貫通孔部25,26の開口を構成する各辺の角度は、主浅溝部23と同じ角度となる。そして、両貫通孔部25,26の開口形状は同一である。具体的には、両貫通孔部25,26の開口幅W25,W26は、主浅溝部23の幅W23よりも小さく形成され、本実施形態では40μmである。また、開口長さL25,L26は120μmである。
【0035】
これらの第1貫通孔部25と第2貫通孔部26は、リザーバ8(リザーバ空部13)からの距離、即ち、浅溝部長手方向の位置が異なっている。具体的には、第1貫通孔部25はリザーバ8から遠い側に位置し、第2貫通孔部26はリザーバ8に近い側に位置している。そして、両貫通孔部25,26のずれ量は、上記したように開口長さ分とされ、本実施形態では120μmである。また、これらの第1貫通孔部25と第2貫通孔部26は、圧力室列設方向へ交互に形成されている。
【0036】
上記の副浅溝部24も、主浅溝部23と同様に底面から見て横に細長い平行四辺形状の窪部によって構成されている。これも、流路基板14をシリコン単結晶板の異方性エッチングで作製しているためである。また、この副浅溝部24の幅W24は55μm、深さは30μmであり、何れも主浅溝部23に揃えられている。また、この副浅溝部24の長さL24は、第1貫通孔部25から第2貫通孔部26までの距離に揃えられる。具体的には、第1貫通孔部25の先端部(リザーバ8とは反対側の端部)から第2貫通孔部26のリザーバ側端部までのY方向(浅溝部長手方向)の距離に設定される。言い換えると、副浅溝部24の先端から第2主浅溝部23Bのリザーバ側端部までのY方向の距離(L24+L23B−L26)が、第1主浅溝部23Aの長さ(L23A)と等しくなるように設定される。
【0037】
副浅溝部24の形状をこのように設定したのは、第1圧力室空部12Aと第2圧力室空部12Bの特性、特に圧力室9内におけるインクの固有振動周期を揃えるためである。即ち、第1圧力室空部12Aは主浅溝部23と第1貫通孔部25とから構成され、第2圧力室空部12Bは主浅溝部23と第2貫通孔部26と副浅溝部24とから構成されている。ここで、第1貫通孔部25と第2貫通孔部26はその開口形状が同一であり、いずれも基板の厚さ方向に貫通している。このため、流路抵抗やイナータンスは等しい。また、第1貫通孔部25に連通する主浅溝部23(第1主浅溝部23A)と第2貫通孔部26に連通する主浅溝部23(第2主浅溝部23B)とは、幅と深さは同じ寸法であるが、第2貫通孔部26側の主浅溝部23の方が短い。従って、その分だけイナータンスや流路抵抗が小さくなっている。
【0038】
そして、本実施形態のように副浅溝部24の形状を設定すると、第2主浅溝部23Bの断面積と副浅溝部24の断面積とが揃う。この断面積は、第1主浅溝部23Aとも同じである。さらに、第1圧力室空部12Aの浅溝部23の長さと、第2圧力室空部12Bにおける浅溝部23の長さに関し、第1圧力室空部12A側が1本で構成され、第2圧力室空部12B側が2本で構成されている点で相違しているが、実質的に同じである。これにより、第2圧力室空部12B側における浅溝部21(第2主浅溝部23B,副浅溝部24)のイナータンス及び流路抵抗を、第1圧力室空部12Aにおける浅溝部21(第1主浅溝部23A)のイナータンス及び流路抵抗と揃えることができる。また、第1圧力室空部12Aと第2圧力室空部12Bとに関し、リザーバ8からノズル開口11までの流路長さ、断面積、体積も同じになる。その結果、第1圧力室空部12Aにおける固有振動周期と第2圧力室空部12Bにおける固有振動周期とを揃えることができ、インク滴の吐出特性を高い精度であわせることができる。
【0039】
そして、上記のように構成したことにより、貫通孔隔壁に必要な剛性を確保できると共に制御の簡素化も図れる。即ち、リザーバ8からの距離が異なる2種類の貫通孔部25,26を圧力室列設方向へ交互に設けたことにより、第1貫通孔部25と第2貫通孔部26とが千鳥状に形成される。このように、両貫通孔部25,26を千鳥状に作製すると、貫通孔部22(25,26)同士の間には、圧力室列設方向から見た場合に、隣りの貫通孔部22と重なっていない非重畳部分(圧力室長手方向に重なっていない部分とも表現できる。)が作成される。図6(a),(b)に示すように、この非重畳部分に存在する貫通孔隔壁35は、1つ先の貫通孔部22との間に亘って設けられる。このため、貫通孔隔壁35の厚さを十分に確保することができて必要な剛性が得られ、その変形を防止することができる。従って、所謂隣接クロストークを防止できてインク滴吐出を安定化することができる。
なお、この観点からすれば、隣り合う貫通孔部22同士のずれ量を貫通孔部22の開口長さの1/2以上に設定すれば、貫通孔隔壁35に十分な剛性が得られる。
【0040】
また、リザーバ8に近い第2貫通孔部26には副浅溝部24を連通させ、一連のインク流路(液体流路の一種)をリザーバ8から離隔する方向に拡張している。これにより、各ノズル開口11を直線に沿って配置可能となり、制御の簡素化が図れる。即ち、副浅溝部24に関し、リザーバ8とは反対側の端部を圧力室長手方向へ第1貫通孔部25と揃うまで延長し、ノズル開口11を臨ませている。この構成により、各ノズル開口11の開設位置を圧力室列設方向に揃えても、各ノズル開口11を第1貫通孔部25や副浅溝部24に連通させることができる。これにより、第1圧力室空部12A用の圧電振動子7と第2圧力室空部12B用の圧電振動子7とを区別することなく、同じように制御できる。その結果、制御の簡素化が図れ、インク滴の高周波吐出に適する。
【0041】
さらに、第2圧力室空部12Bに関しては、第2主浅溝部23B、第2貫通孔部26、及び、副浅溝部24によってクランク状のインク流路(即ち、第2圧力室空部12B)を作製している。このようにクランク状の流路としたので、流路内におけるインクの淀みを可及的に少なくできる。これにより、気泡の排出性を向上させることができる。即ち、この種の記録ヘッド1では、インクカートリッジやインクパック等のインク貯留部(液体貯留部の一種)が交換式になっているため、気泡の流路内への入り込みが生じ得る。このような気泡は、インク滴の吐出不良の原因となり得るので、積極的に除去する必要がある。気泡の除去には種々の方法が提案されているが、その1つに、ノズルプレート16の表面をキャップ部材で覆い、吸引ポンプの作動によって記録ヘッド1内のインクを強制的に吸い出す方法がある。この方法では、吸引によるインクの流れに気泡を乗せ、インクと共に気泡を排出する。この場合において、記録ヘッド1内のインク流路に淀みがあると、その淀みに気泡が停滞して排出が困難になってしまう。本実施形態のように、インク流路をクランク状に作製すると、流路内におけるインクの淀みを少なくできて気泡の停滞を防止でき、気泡の排出性を高めることができる。
【0042】
ところで、上記の第1実施形態では、1枚のシリコンウェハをエッチング加工することで流路基板14を作製していたが、本発明はこの構成に限定されるものではない。例えば、流路基板を複数の板状部材によって作製してもよい。以下、このように構成した第2実施形態について説明する。なお、この第2実施形態は、流路ユニット4の構成に特徴を有し、他の部分は第1実施形態と同様の構成である。このため、第1実施形態と同様の構成については同一符号を付して示し、簡単に説明することにする。
【0043】
ここで、図7は、第2実施形態を説明する図であり、(a)は流路ユニット4の一部分を弾性板15側から見た図、(b)は流路ユニット4を第2圧力室空部12Bの位置で切断した断面図、(c)は流路ユニット4を第1圧力室空部12Aの位置で切断した断面図である。また、図8は、流路基板40を構成する第1浅溝基板41、第2浅溝基板42、貫通孔基板43を説明する図である。
【0044】
これらの図に示すように、本実施形態では、流路基板40が3ピース構成となっている。即ち、流路基板40は、主浅溝部44及びインク供給口10となる開口窓部45(便宜上、第1開口窓部45という。)を開設した第1浅溝基板41と、副浅溝部46や連通窓部47となる開口窓部48(便宜上、第2開口窓部48という。)を開設した第2浅溝基板42と、貫通孔部22(第1貫通孔部49,第2貫通孔部50)を形成した貫通孔基板43とから構成されている。本実施形態において、これらの各基板41,42,43は金属板をプレス加工することで作製されている。例えば、第1浅溝基板41は、厚さ30μmのニッケル板或いはステンレス板に対し、第1開口窓部45を打ち抜くことで作製される。同様に、第2浅溝基板42も、厚さ30μmのニッケル板或いはステンレス板に対し、第2開口窓部48を打ち抜くことで作製される。また、貫通孔基板43は、厚さ270μmのニッケル板或いはステンレス板に対し、第1貫通孔部49及び第2貫通孔部50を打ち抜くことで作製される。
【0045】
このように、流路基板40を構成する各基板41,42,43を金属板に対するプレス加工で作製していることから、上記の第1開口窓部45,第2開口窓部48,第1貫通孔部49,及び,第2貫通孔部50は比較的自由な形状に作製できる。このため、本実施形態では、主浅溝部44及び副浅溝部46を、圧力室列設方向とは直交する方向に細長い矩形状開口によって構成している。同様に、第1貫通孔部49及び第2貫通孔部50も矩形状開口の貫通孔によって構成している。また、インク供給口10は、第1実施形態と同様に、第1浅溝基板41における浅溝隔壁51の一部分52を、対向する浅溝隔壁51に向かって台形状に突出させることで作製している。
【0046】
これらの第1浅溝基板41、第2浅溝基板42、及び、貫通孔基板43から流路基板40を作製するには、これらの各基板41,42,43を接着して一体化する。即ち、貫通孔基板43の一方の表面に第1浅溝基板41を接着し、貫通孔基板43の他方の表面に第2浅溝基板42を接着する。このようにして作製された流路基板40には、ノズルプレート16や弾性板15が接合され、流路ユニット4が作製される。
【0047】
この流路ユニット4では、流路ユニット4を構成する各基板41,42,43に開口窓部45,48或いは貫通孔部22(49,50)が形成されるが、これらの開口窓部45,48や貫通孔部22は何れも板厚方向に貫通しているため、寸法精度良く作製することができる。即ち、開口窓部45,48や貫通孔部22は、打ち抜き加工によって作製される。この加工時において、基板(ワーク)には瞬間的に大きな剪断力が加わるものの、破断によって極く短時間で解放される。このため、加工に伴う変形を最小限に抑えることができて寸法精度を高めることができる。
【0048】
そして、本実施形態でも、貫通孔隔壁53に必要な剛性を確保できると共に制御の簡素化も図れる。即ち、リザーバ8からの距離が異なる2種類の貫通孔部49,50を圧力室列設方向へ交互に設けたので、貫通孔部同士の間に非重畳部分が作成される。この非重畳部分の貫通孔隔壁53は、その厚さを十分に確保することができ、必要な剛性が得られる。また、第2貫通孔部50には副浅溝部46を連通させてインク流路をリザーバ8から離隔する方向に拡張している。これにより、各ノズル開口11が直線上に配置可能となって制御の簡素化が図れる。
【0049】
なお、以上の説明は、圧力発生素子として圧電振動子7を用いた記録ヘッド1を例示して行ったが、この記録ヘッド1に限定されない。圧力発生素子としては、厚膜印刷法で作製された圧電素子であってもよい。また、この他に、静電アクチュエータ、発熱素子、磁歪素子等を用いることができる。
【0050】
また、本発明は、記録ヘッド以外の液体噴射ヘッドにも適用できる。例えば、ディスプレー製造装置用の色材噴射ヘッド、電極製造装置用の電極材噴射ヘッド、チップ製造装置用の生体有機物噴射ヘッドにも適用できる。さらに、マイクロピペットにも適用できる。
【図面の簡単な説明】
【図1】記録ヘッドの構成を説明する断面図である。
【図2】流路ユニットを第2圧力室空部の位置で切断した断面図であり、図4のA−A断面図である。
【図3】流路ユニットを第1圧力室空部の位置で切断した断面図であり、図4のB−B断面図である。
【図4】流路ユニットの一部分を島部側からみた図である。
【図5】流路基板の一部分を副浅溝部側からみた図である。
【図6】貫通孔隔壁を説明するであり、(a)は図4のC−C断面図、(b)は図4のD−D断面図である。
【図7】第2実施形態を説明する図であり、(a)は流路ユニットの一部分を島部側からみた図、(b)は(a)のE−E断面図、(c)は(b)のF−F断面図である。
【図8】第2実施形態の流路ユニットを説明する図であり、(a)は第1浅溝基板の説明図、(b)は連通孔基板の説明図、(c)は第2浅溝基板の説明図である。
【符号の説明】
1…インクジェット式記録ヘッド,2…ケース,3…振動子ユニット,4…流路ユニット,5…収納空部,6…固定板,7…圧電振動子,8…リザーバ,9…圧力室,10…インク供給口,11…ノズル開口,12…圧力室空部,13…リザーバ空部,14…流路基板,15…弾性板,16…ノズルプレート,21…浅溝部,22…貫通孔部,23…主浅溝部,24…副浅溝部,25…第1貫通孔部,26…第2貫通孔部,27…樹脂フィルム,28…島部,31…浅溝隔壁,32…浅溝隔壁の突出部,33…狭窄部,34…浅溝供給部,35…貫通孔隔壁,40…流路基板,41…第1浅溝基板,42…第2浅溝基板,43…貫通孔基板,44…主浅溝部,45…第1開口窓部,46…副浅溝部,47…連通窓部,48…第2開口窓部,49…第1貫通孔部,50…第2貫通孔部,51…浅溝隔壁,52…浅溝隔壁の突出部,53…貫通孔隔壁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid ejecting head that ejects liquid droplets from nozzle openings by causing pressure fluctuations in liquid in a pressure chamber.
[0002]
[Prior art]
For example, a recording head for an image recording apparatus and an ejection head for a manufacturing apparatus are provided as liquid ejecting heads that discharge liquid droplets from nozzle openings by causing pressure fluctuations in the liquid in the pressure chamber. As an image recording apparatus having a recording head, an ink jet printer, an ink jet plotter, and a facsimile apparatus are provided. Moreover, as a manufacturing apparatus having an ejection head, a display manufacturing apparatus for manufacturing a color filter such as a liquid crystal display, an electrode manufacturing apparatus for forming an electrode such as an organic EL (Electro Luminescence) display or FED (surface emitting display), a biochip Chip manufacturing apparatuses and the like for manufacturing (biochemical elements) are provided. In the image recording apparatus, liquid ink is ejected from the recording head, and in the display manufacturing apparatus, a solution of each color material of R (Red), G (Green), and B (Blue) is ejected from the color material ejecting head. The electrode manufacturing apparatus discharges a liquid electrode material from the electrode material ejecting head, and the chip manufacturing apparatus discharges a bioorganic solution from the bioorganic ejecting head.
[0003]
Since such a liquid ejecting head ejects liquid droplets by utilizing the pressure fluctuation of the liquid accompanying the operation of the pressure generating element, it is required to efficiently transmit the state change of the pressure generating element to the liquid. For this reason, as a pressure chamber of a conventional liquid ejecting head, for example, a shallow groove portion whose one end communicates with the reservoir through the liquid supply port, and a front end of the shallow groove portion far from the liquid supply port to the nozzle opening penetrate in the plate thickness direction. The thing of the cross-sectional fall L-shape which consists of a through-hole part which does is proposed (for example, patent document 1). In this liquid ejecting head, pressure fluctuation is generated in the liquid in the shallow groove portion by the operation of the pressure generating element, and droplets are ejected from the nozzle opening using this pressure fluctuation. For example, the L-shaped pressure chambers were formed at intervals of 141 μm (that is, equivalent to 180 dpi at the nozzle openings).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 9-327909 (FIG. 5)
[0005]
[Problems to be solved by the invention]
In this type of liquid ejecting apparatus, it is required to increase the density of the nozzle openings. Here, if the pitch is simply halved (for example, if nozzle openings are provided corresponding to 360 dpi), the width of the pressure chamber and the width of the flow path partition will be halved. And since the rigidity will fall when the thickness of a channel partition becomes half, possibility that a channel partition will change with the liquid pressure in a pressure chamber becomes high. If the flow path partition wall is deformed, pressure fluctuations occur in the liquid in the adjacent pressure chamber, and there is a possibility that the ejection characteristics of the ink droplets are shifted. That is, a phenomenon (so-called adjacent crosstalk) in which the discharge characteristics of the nozzle opening of interest differ according to the discharge state of the adjacent nozzle openings can occur. If this adjacent crosstalk phenomenon appears prominently, a so-called misfire phenomenon occurs in which ink droplets are ejected due to the influence of the adjacent pressure chambers in spite of the non-ejection nozzle openings.
[0006]
In particular, since the through hole portion penetrates the substrate, the flow path partition wall (through hole partition wall) that partitions the through hole portions has lower rigidity than the flow path partition wall (shallow groove partition wall) that partitions the shallow groove portions. It tends to be easily deformed. Therefore, it is necessary to reliably prevent the through-hole partition wall from being deformed. In this case, it is conceivable to increase the rigidity by making the through-hole partition wall thicker than before, but this is against the requirement of increasing the formation pitch of the nozzle openings, which is not preferable.
[0007]
Further, in this type of liquid ejecting apparatus, high-frequency ejection of droplets is also required. This is because if the droplets can be ejected at a higher frequency, the processing time can be shortened. For this reason, even if the shape of the pressure chamber can be changed to increase the rigidity of the flow path partition wall, it is not preferable that the control becomes complicated.
[0008]
The present invention has been made in view of such circumstances, and its purpose is to ensure the rigidity necessary for the through-hole partition wall and control even if the nozzle opening formation pitch is made higher than before. An object of the present invention is to provide a liquid jet head that can be simplified.
[0009]
[Means for Solving the Problems]
The present invention has been proposed to achieve the above object, and includes a flow path substrate in which a plurality of rows of pressure chamber vacancies serving as pressure chambers are provided across a partition wall, and one of the flow path substrates. A sealing member that is bonded to a surface and closes an opening on one side of the pressure chamber cavity, and a nozzle plate that is bonded to the surface of the flow path substrate opposite to the sealing member and has a plurality of nozzle openings. A liquid ejecting head configured to be able to eject liquid droplets from the nozzle openings by utilizing pressure fluctuations generated in the liquid in the pressure chamber;
The pressure chamber empty portion has a main shallow groove portion formed on the sealing member side, one end of which communicates with the reservoir via the liquid supply port, and a through hole portion that penetrates the flow path substrate,
The through-hole portion is classified into a first through-hole portion located on the side far from the reservoir and a second through-hole portion located on the side close to the reservoir, and these first through-hole portion and second through-hole portion are classified. The holes and the pressure chambers are alternately arranged in the direction in which they are arranged,
In the pressure chamber vacant portion including the second through-hole portion, a sub shallow groove portion is formed on the nozzle plate side in a direction away from the second through-hole portion, and the cross section has a substantially crank shape.
The opening positions of the nozzle openings are aligned in the pressure chamber arrangement direction by making the nozzle openings face the first through-hole portion and the sub shallow groove portion.
[0010]
In this invention, the structure which sets the deviation | shift amount of adjacent through-hole parts to 1/2 or more of the opening length of a through-hole part is preferable. In addition, the opening length of a through-hole part means the length of a shallow groove part longitudinal direction.
[0011]
According to these inventions, a non-overlapping portion that does not overlap with an adjacent through-hole portion is created between adjacent through-hole portions as viewed in the pressure chamber arrangement direction. And the through-hole partition which exists in this non-overlapping part is provided ranging between one through-hole part ahead. For this reason, a through-hole partition can be made thick enough and a deformation | transformation can be prevented. Further, for the second through-hole portion closer to the reservoir than the first through-hole portion, the flow path is expanded in a direction away from the reservoir by the sub shallow groove portion. By extending the sub shallow groove portion to the formation position of the first through hole portion, the formation position of the nozzle openings can be aligned in the pressure chamber arrangement direction. Thereby, the droplet discharge control can be performed without distinguishing between the pressure chamber space including the first through-hole portion and the pressure chamber space including the second through-hole portion, and the control can be simplified. .
[0012]
In the above invention, it is preferable that the liquid supply port is provided at the same end of each shallow groove portion belonging to the same row so that liquid can be supplied from a common reservoir.
According to the present invention, since the liquid is supplied from the common reservoir to the row of pressure chambers, the liquid ejecting head can be reduced in size and the structure can be simplified.
[0013]
In the above invention, a configuration in which the groove width and the groove depth of the main shallow groove portion and the groove width and the groove depth of the sub shallow groove portion are preferably aligned.
According to this invention, since the cross-sectional area of the main shallow groove portion and the cross-sectional area of the sub shallow groove portion are aligned, the pressure chamber empty portion including the first through hole portion and the pressure chamber empty portion including the second through hole portion are separated from the reservoir. The flow path length to the nozzle opening, the cross-sectional area, the volume, and the like can be more accurately aligned, and the characteristics of both can be matched with high accuracy.
[0014]
In the above invention, a configuration in which the flow path substrate is manufactured by anisotropic etching of a silicon single crystal plate is preferable.
According to the present invention, since the wall surfaces defining the respective shallow groove portions and the respective through-hole portions are defined by the crystal plane of silicon, these portions can be manufactured with high dimensional accuracy even when the density is increased as compared with the prior art.
[0015]
In the above invention, the flow path substrate includes a first shallow groove substrate having an opening window portion serving as a main shallow groove portion and a liquid supply port, and a second shallow groove substrate having an opening window portion serving as a sub shallow groove portion, It is preferable to comprise from the through-hole board | substrate which formed the through-hole part.
In the present invention, a configuration in which the first shallow groove substrate, the second shallow groove substrate, and the through hole substrate are manufactured by pressing a metal plate is preferable.
According to these inventions, since each shallow groove part and each through-hole part are provided in the form which penetrated each board | substrate, a board | substrate can be created easily. Thereby, productivity can be improved and it is suitable for mass production.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, an ink jet recording head which is a kind of liquid ejecting head (that is, a liquid ink which is a kind of liquid in the present invention is ejected as ink droplets; hereinafter referred to as a recording head) is taken as an example. To do.
[0017]
First, the overall configuration of the recording head 1 will be described with reference to FIG. The illustrated recording head 1 is schematically constituted by a case 2, a vibrator unit 3 housed and fixed in the case 2, and a flow path unit 4 joined to the front end surface of the case 2. The case 2 is in the form of a block provided with a housing space 5 in which the vibrator unit 3 can be housed, and is made of a resin having good moldability such as an epoxy resin. The housing empty portion 5 is an empty portion that penetrates the inside of the case 2 from the case front end surface (lower surface in FIG. 1) and opens to the opposite mounting surface (the same upper surface). A step portion with which the fixed plate 6 of the vibrator unit 3 is brought into contact is formed in the housing empty portion 5 in the middle of the height direction.
[0018]
The vibrator unit 3 includes a plurality of piezoelectric vibrators (piezoelectric elements) 7 and a fixed plate 6 to which these piezoelectric vibrators 7 are joined. The piezoelectric vibrator 7 has a comb-teeth shape formed by splitting a single piezoelectric plate, and is formed in a row. The piezoelectric vibrator 7 is a kind of pressure generating element, and deforms according to the voltage of the supplied drive signal. The illustrated piezoelectric vibrator 7 is a laminated type in which piezoelectric layers and electrode layers are alternately arranged. The piezoelectric vibrator 7 contracts in the element longitudinal direction (direction perpendicular to the lamination direction) by charging and expands in the element longitudinal direction by discharging. This is a longitudinal vibration mode. The piezoelectric vibrators 7 are cut into extremely narrow widths, and for example, about 90 to 180 are provided. In this embodiment, it is cut into a width of around 35 μm. This is because the formation pitch of the nozzle openings for ejecting ink droplets is 70 μm intervals (equivalent to 360 dpi), which is half of the conventional pitch.
[0019]
Each piezoelectric vibrator 7 has a fixed end portion bonded to the surface of the fixed plate 6 so that the free end portion protrudes outward from the edge of the fixed plate 6. That is, each piezoelectric vibrator 7 is supported on the fixed plate 6 in a so-called cantilever state. In addition, the fixed plate 6 that supports each piezoelectric vibrator 7 is a plate-like member having rigidity capable of receiving a reaction force from the piezoelectric vibrator 7, and in the present embodiment, is constituted by a stainless steel plate having a thickness of about 1 mm. ing.
[0020]
The flow path unit 4 includes a reservoir 8 as a common ink chamber, a pressure chamber 9 that applies pressure to ink (liquid ink), and an ink supply that communicates the reservoir 8 and the pressure chamber 9. A mouth (a kind of liquid supply port of the present invention, see FIG. 4) 10 and a nozzle opening 11 for ejecting ink droplets are provided. A plurality of ink flow paths corresponding to the pressure chamber 9 are provided from the ink supply port 10 through the pressure chamber 9 to the nozzle opening 11. In the present embodiment, the flow path unit 4 is joined to a flow path substrate 14 having a pressure chamber empty portion 12 serving as the pressure chamber 9 and a reservoir empty portion 13 serving as the reservoir 8, and one surface of the flow path substrate 14. An elastic plate (a kind of sealing plate of the present invention) 15 that closes the opening on one side of the pressure chamber empty portion 12 and the reservoir empty portion 13 and the other of the flow path substrate 14 that is opposite to the elastic plate 15. The nozzle plate 16 is joined to the surface and formed with a plurality of nozzle openings 11.
[0021]
The flow path substrate 14 is produced, for example, by anisotropic etching of a silicon wafer (silicon single crystal plate). That is, the pressure chamber empty portion 12, the ink supply port 10, the reservoir empty portion 13, and the like are produced by etching. The reason why the flow path substrate 14 is produced by etching a silicon wafer in this way is that an extremely fine shape can be produced with high dimensional accuracy.
[0022]
As shown in FIGS. 1 to 3, the pressure chamber void portion 12 includes a shallow groove portion 21 (23, 24) and a through hole portion 22. Here, the shallow groove portion 21 includes a main shallow groove portion 23 on the elastic plate 15 side and a sub shallow groove portion 24 on the nozzle plate 16 side. The main shallow groove portion 23 is elongated in a direction orthogonal to the formation direction of the nozzle openings 11 (nozzle row) (that is, the pressure chamber arrangement direction), and one end of the main shallow groove portion 23 enters the reservoir empty portion 13 via the ink supply port 10. It is the flat recessed part connected. And this main shallow groove part 23 is contained in both the 1st pressure chamber empty part 12A and the 2nd pressure chamber empty part 12B which are mentioned later. Further, the sub shallow groove portion 24 is a flat concave portion elongated in a direction orthogonal to the direction in which the pressure chambers are arranged. In addition, this sub shallow groove part 24 is contained only in the 2nd pressure chamber empty part 12B mentioned later. The through-hole portion 22 is a portion that penetrates the flow path substrate 14 in the plate thickness direction, and is classified into a first through-hole portion 25 (see FIG. 3) and a second through-hole portion 26 (see FIG. 2). . The first through hole 25 communicates between the tip of the main shallow groove 23 (that is, the end opposite to the reservoir 8) and the nozzle opening 11, and the second through hole 26 is the main shallow groove 23. And the base end of the sub shallow groove portion 24 (that is, the end portion on the reservoir 8 side) communicate with each other. The flow path substrate 14 will be described later in detail.
[0023]
The elastic plate 15 is a member that seals the opening on the shallow groove portion side of the pressure chamber space 12 and one opening of the reservoir space 13. In this embodiment, the composite is obtained by laminating a resin film 27 on a stainless steel plate. Board material is used. In detail, the elastic part (thin part) only of the resin film 27 and the island part (thick part) 28 are provided by selectively removing the part of the pressure chamber empty part 12 in the stainless steel plate. The tip surface of the piezoelectric vibrator 7 is bonded to the surface of the island portion 28. For this reason, when the piezoelectric vibrator 7 extends, the island portion 28 moves to the pressure chamber 9 side (nozzle plate 16 side), and the pressure chamber 9 contracts. On the other hand, when the piezoelectric vibrator 7 contracts, the island portion 28 moves in a direction away from the pressure chamber 9, and the pressure chamber 9 expands.
[0024]
The nozzle plate 16 is a thin plate material in which a plurality of nozzle openings 11 are formed in a row. In the present embodiment, the nozzle plate 16 is made of a stainless steel plate. The nozzle plate 16 is bonded to the flow path substrate surface opposite to the elastic plate 15, and in this bonded state, each nozzle opening 11 corresponds to the corresponding pressure chamber space 12 (specifically, the first through-hole portion). 25 and the sub shallow groove portion 24). Further, the other opening of the reservoir empty portion 13 is sealed by the nozzle plate 16.
[0025]
In the recording head 1 configured as described above, ink supplied from an ink supply source such as an ink cartridge is temporarily stored in the reservoir 8 and then introduced into the pressure chamber 9 through the ink supply port 10. The ink introduced into the pressure chamber 9 is ejected as an ink droplet from the nozzle opening 11 by the operation of the piezoelectric vibrator 7. In other words, the recording head 1 ejects ink droplets by utilizing the pressure fluctuation of the ink that occurs as the pressure chamber 9 expands and contracts.
[0026]
By the way, as in this embodiment, when the resolution is about 360 dpi, it is necessary to form the pressure chamber cavities 12 at intervals of 70 μm. In this case, when the plurality of through-hole portions 22 are formed in a straight line, the through-hole partition walls that partition adjacent through-hole portions 22 are extremely thin. In particular, since the through-hole portion 22 penetrates the flow path substrate 14, the rigidity of the through-hole partition tends to be low and is easily deformed. This deformation of the through-hole partition wall is not preferable because it causes so-called adjacent crosstalk. Here, it is conceivable to increase the rigidity by making the through-hole partition wall thicker than before, but it is difficult to increase the density of the formation pitch of the nozzle openings 11.
[0027]
In view of such circumstances, in the recording head 1, with respect to the through hole portion 22 that communicates between the tip of the shallow groove portion and the nozzle opening 11, each through hole portion 22 is longer than the adjacent through hole portion 22. The position is shifted in the direction to form a staggered pattern. That is, each through-hole portion 22 includes a first through-hole portion 25 (see FIG. 3) located on the side far from the reservoir 8 and a second through-hole portion 26 (see FIG. 2) located on the side near the reservoir 8. In addition, the first through-hole portions 25 and the second through-hole portions 26 are alternately formed in the pressure chamber arrangement direction (see FIG. 4).
[0028]
Here, if the nozzle opening 11 is configured to communicate with each of the first through-hole portion 25 and the second through-hole portion 26, the nozzle openings 11 are provided in a staggered manner, so that the ink droplet ejection control is performed. It becomes complicated. That is, in order to align the landing positions of the ink droplets, data processing for adjusting the ejection timing of the ink droplets is required. Such data processing can be an obstacle when performing high frequency ejection of ink droplets. Further, the displacement amount of the nozzle opening 11 is restricted by the processing of the print data. For example, when the print data is processed every 1 byte, the nozzle openings 11 must be shifted by 1 byte of the print resolution unit (for example, 8/720 dpi = 282 μm), and the pressure chamber 9 is more than necessary. In some cases, it must be long. Therefore, the configuration in which the nozzle opening 11 communicates with each of the first through hole portion 25 and the second through hole portion 26 has a problem in both control and structure.
[0029]
Therefore, in the present embodiment, the sub shallow groove portion 24 is communicated with the second through-hole portion 26 and the flow path is expanded in a direction away from the reservoir 8. In other words, the pressure chamber void portion 12 is divided into a first pressure chamber void portion 12A (see FIG. 3) having a substantially L-shaped cross section composed of the main shallow groove portion 23 and the first through hole portion 25, the main shallow groove portion 23, and the second shallow groove portion. The second pressure chamber void portion 12B (see FIG. 2) having a substantially crank-shaped cross section composed of the through hole portion 26 and the sub shallow groove portion 24 is formed. The nozzle openings 11 are communicated with the first through-hole portion 25 and the sub shallow groove portion 24 so that the formation positions of the nozzle openings 11 are aligned in the pressure chamber arrangement direction. That is, each nozzle opening 11 is opened along a straight line in the direction in which the pressure chambers are arranged. Hereinafter, the flow path substrate 14 will be described in detail focusing on these points.
[0030]
4 is a view of a part of the flow path unit 4 as viewed from the island portion 28 side, and FIG. 5 is a view of a portion of the flow path substrate 14 as viewed from the sub-shallow groove portion 24 side. As shown in these drawings, the main shallow groove portion 23 is configured by a parallelogram-shaped recess portion that is elongated horizontally when viewed from the plane. The reason why the parallelogram-shaped voids are formed in this way is that the flow path substrate 14 is produced by anisotropic etching of a silicon single crystal plate. That is, in this etching process, each surface of the recess is partitioned by the crystal plane of silicon, and the shape is determined by the angle of the crystal plane. For this reason, in the example of FIG. 4, with respect to the parallelogram-shaped wall portion defining the main shallow groove portion 23, the long side portion is formed in parallel with the Y direction (pressure chamber longitudinal direction), and the short side portion is in the X direction (pressure It is formed with an inclination of 35 degrees in the clockwise direction with respect to the chamber longitudinal direction Y (the direction perpendicular to the chamber longitudinal direction, nozzle row direction).
[0031]
The width W23 of the main shallow groove portion 23 is 55 μm. Here, the reason why the width W23 is set to 55 μm is due to the balance with the deformation amount of the elastic plate 15. That is, the minimum required width for ejecting a required amount of ink droplets is set to 55 μm. Further, the overall length of the main shallow groove portion 23 varies depending on the through-hole portion 22 communicated. That is, the main shallow groove portion 23 (which can also be expressed as the longer main shallow groove portion 23 and the first main shallow groove portion 23A) with which the first through-hole portion 25 far from the reservoir 8 is communicated is the total length (the length in the Y direction). ) L23A is 620 μm. On the other hand, the main shallow groove portion 23 (which can also be expressed as the short main shallow groove portion 23 and the second main shallow groove portion 23B) with which the second through-hole portion 26 close to the reservoir 8 communicates has a total length L23B of 500 μm. Here, the opening length (length in the Y direction) L25 of the first through-hole portion 25 is 120 μm in the present embodiment. That is, it can be said that the total length L23B of the short main shallow groove portion 23 is a length obtained by subtracting the opening length L25 of the first through-hole portion 25 from the total length L23A of the long main shallow groove portion 23.
[0032]
In this embodiment, the width (thickness) of the shallow groove partition wall 31 that partitions the shallow groove portions 21 is set to about 15 μm. The width of the shallow groove partition 31 is defined by the formation pitch of the pressure chambers 9 (nozzle openings 11) and the width of the main shallow groove portion 23. That is, in this embodiment, the pressure chambers 9 are produced at intervals of about 70 μm, but as described above, the width W23 of the main shallow groove portion 23 is set to 55 μm. For this reason, the width of the shallow groove partition 31 is determined to be about 15 μm. Further, the height of the shallow groove partition wall 31 (the depth of the shallow groove portion 21) is set to 30 μm. The height of the shallow groove partition wall 31 is set as high as possible within a range in which excessive deformation does not occur due to the ink pressure in the pressure chamber 9, but is preferably set lower than the height of the through-hole portion 22.
[0033]
Further, in this shallow groove partition wall 31, a part of the portion closer to the reservoir empty portion 13 than the shallow groove portion 21 protrudes in a trapezoidal shape toward the adjacent shallow groove partition wall 31, and this trapezoidal protrusion portion 32. Thus, the ink supply port 10 is partitioned. The ink supply port 10 includes a narrowed portion 33 defined by a trapezoidal upper bottom portion and a shallow groove supply portion 34 located on the reservoir empty portion 13 side of the narrowed portion 33. In the present embodiment, the length of the narrowed portion 33 is set to 100 μm and the width is set to 20 μm. The narrowed portion 33 and the shallow groove supply portion 34 are manufactured to the same depth as the shallow groove portion 21 described above. That is, these depths are the same as the height of the shallow groove partition wall 31. The narrowed portion 33 and the shallow groove supply portion 34 have the same shape regardless of the type of the main shallow groove portion 23 (the first main shallow groove portion 23A and the second main shallow groove portion 23B) communicated with each other. The distance is the same.
[0034]
As described above, the through-hole portion 22 includes the first through-hole portion 25 and the second through-hole portion 26. The first through-hole portion 25 and the second through-hole portion 26 are configured as vertical through-hole portions formed in the plate thickness direction, and the tip portion of the main shallow groove portion 23, that is, the reservoir empty portion in the main shallow groove portion 23. It is formed in a place farthest from 13. Specifically, the first through-hole portion 25 is opened at the distal end portion of the first main shallow groove portion 23A, and the second through-hole portion 26 is opened at the distal end portion of the second main shallow groove portion 23B. The opening shapes of the first through-hole portion 25 and the second through-hole portion 26 are also parallelogram shapes. This is because the silicon single crystal plate is manufactured by etching as described above. Therefore, the angles of the sides constituting the openings of the through-hole portions 25 and 26 are the same as those of the main shallow groove portion 23. And the opening shape of both the through-hole parts 25 and 26 is the same. Specifically, the opening widths W25 and W26 of both through-hole portions 25 and 26 are formed to be smaller than the width W23 of the main shallow groove portion 23, and are 40 μm in this embodiment. The opening lengths L25 and L26 are 120 μm.
[0035]
The first through-hole portion 25 and the second through-hole portion 26 are different in distance from the reservoir 8 (reservoir empty portion 13), that is, in a position in the longitudinal direction of the shallow groove portion. Specifically, the first through-hole portion 25 is located on the side far from the reservoir 8, and the second through-hole portion 26 is located on the side near the reservoir 8. And the deviation | shift amount of both the through-hole parts 25 and 26 is made into an opening length as above-mentioned, and is 120 micrometers in this embodiment. The first through hole portions 25 and the second through hole portions 26 are alternately formed in the pressure chamber arrangement direction.
[0036]
Similarly to the main shallow groove portion 23, the sub shallow groove portion 24 is also constituted by a parallelogram-shaped recess that is elongated horizontally when viewed from the bottom surface. This is also because the flow path substrate 14 is produced by anisotropic etching of a silicon single crystal plate. The sub shallow groove portion 24 has a width W24 of 55 μm and a depth of 30 μm, all of which are aligned with the main shallow groove portion 23. Further, the length L24 of the sub shallow groove portion 24 is aligned with the distance from the first through hole portion 25 to the second through hole portion 26. Specifically, the distance in the Y direction (shallow groove longitudinal direction) from the tip of the first through-hole 25 (the end opposite to the reservoir 8) to the reservoir-side end of the second through-hole 26 Set to In other words, the distance in the Y direction (L24 + L23B-L26) from the tip of the sub shallow groove portion 24 to the reservoir side end of the second main shallow groove portion 23B is equal to the length (L23A) of the first main shallow groove portion 23A. Set to
[0037]
The reason why the shape of the sub shallow groove portion 24 is set in this way is to align the characteristics of the first pressure chamber empty portion 12A and the second pressure chamber empty portion 12B, particularly the natural vibration period of the ink in the pressure chamber 9. That is, the first pressure chamber void portion 12A is composed of the main shallow groove portion 23 and the first through hole portion 25, and the second pressure chamber void portion 12B is composed of the main shallow groove portion 23, the second through hole portion 26, and the sub shallow groove portion 24. It consists of and. Here, the opening shape of the 1st through-hole part 25 and the 2nd through-hole part 26 is the same, and all have penetrated in the thickness direction of the board | substrate. For this reason, the channel resistance and inertance are equal. The main shallow groove portion 23 (first main shallow groove portion 23A) communicating with the first through-hole portion 25 and the main shallow groove portion 23 (second main shallow groove portion 23B) communicating with the second through-hole portion 26 are defined as width, Although the depth is the same size, the main shallow groove portion 23 on the second through-hole portion 26 side is shorter. Accordingly, the inertance and flow path resistance are reduced accordingly.
[0038]
And if the shape of the sub shallow groove part 24 is set like this embodiment, the cross-sectional area of the 2nd main shallow groove part 23B and the cross-sectional area of the sub shallow groove part 24 will be equal. This cross-sectional area is the same as that of the first main shallow groove portion 23A. Furthermore, regarding the length of the shallow groove portion 23 in the first pressure chamber empty portion 12A and the length of the shallow groove portion 23 in the second pressure chamber empty portion 12B, the first pressure chamber empty portion 12A side is constituted by one, and the second pressure Although the difference is that the room empty part 12B side is constituted by two, it is substantially the same. As a result, the inertance and flow path resistance of the shallow groove portion 21 (second main shallow groove portion 23B, sub-shallow groove portion 24) on the second pressure chamber empty portion 12B side are set as the shallow groove portion 21 (first first chamber in the first pressure chamber empty portion 12A). The inertance and flow path resistance of the main shallow groove portion 23A) can be aligned. Further, regarding the first pressure chamber empty portion 12A and the second pressure chamber empty portion 12B, the channel length, the cross-sectional area, and the volume from the reservoir 8 to the nozzle opening 11 are also the same. As a result, the natural vibration period in the first pressure chamber empty part 12A and the natural vibration period in the second pressure chamber empty part 12B can be aligned, and the ink droplet ejection characteristics can be matched with high accuracy.
[0039]
And since it comprised as mentioned above, the rigidity required for a through-hole partition can be ensured and control can also be simplified. That is, by providing two types of through-hole portions 25 and 26 having different distances from the reservoir 8 in the pressure chamber arrangement direction, the first through-hole portion 25 and the second through-hole portion 26 are staggered. It is formed. Thus, when both the through-hole parts 25 and 26 are produced in a zigzag shape, when it sees from the pressure chamber row | line | column arrangement | positioning direction between the through-hole parts 22 (25, 26), the adjacent through-hole part 22 is. A non-overlapping portion that does not overlap (can also be expressed as a portion that does not overlap in the longitudinal direction of the pressure chamber) is created. As shown in FIGS. 6A and 6B, the through-hole partition wall 35 existing in this non-overlapping portion is provided between the previous through-hole portion 22. For this reason, it is possible to sufficiently secure the thickness of the through-hole partition wall 35, to obtain necessary rigidity, and to prevent deformation thereof. Therefore, so-called adjacent crosstalk can be prevented and ink droplet ejection can be stabilized.
From this point of view, if the shift amount between the adjacent through-hole portions 22 is set to be 1/2 or more of the opening length of the through-hole portion 22, sufficient rigidity can be obtained for the through-hole partition wall 35.
[0040]
Further, the sub shallow groove portion 24 is communicated with the second through hole portion 26 close to the reservoir 8, and a series of ink flow paths (a kind of liquid flow path) is expanded in a direction away from the reservoir 8. Thereby, each nozzle opening 11 can be arranged along a straight line, and simplification of control can be achieved. That is, with respect to the sub shallow groove portion 24, the end opposite to the reservoir 8 is extended in the longitudinal direction of the pressure chamber until it is aligned with the first through hole portion 25, and the nozzle opening 11 is exposed. With this configuration, each nozzle opening 11 can be communicated with the first through-hole portion 25 and the sub shallow groove portion 24 even if the opening positions of the nozzle openings 11 are aligned in the pressure chamber arrangement direction. Accordingly, the piezoelectric vibrator 7 for the first pressure chamber empty portion 12A and the piezoelectric vibrator 7 for the second pressure chamber empty portion 12B can be controlled in the same manner without being distinguished. As a result, the control can be simplified and suitable for high frequency ejection of ink droplets.
[0041]
Further, with respect to the second pressure chamber empty portion 12B, a crank-shaped ink flow path (that is, the second pressure chamber empty portion 12B) is formed by the second main shallow groove portion 23B, the second through-hole portion 26, and the sub shallow groove portion 24. Is making. Since the crank-shaped flow path is formed in this way, ink stagnation in the flow path can be reduced as much as possible. Thereby, the discharge property of bubbles can be improved. That is, in this type of recording head 1, the ink reservoir (a kind of liquid reservoir) such as an ink cartridge or an ink pack is replaceable, so that bubbles may enter the flow path. Since such bubbles can cause defective ejection of ink droplets, it is necessary to positively remove them. Various methods for removing bubbles have been proposed. One of them is a method of covering the surface of the nozzle plate 16 with a cap member and forcibly sucking out ink in the recording head 1 by operating a suction pump. . In this method, bubbles are put on the ink flow by suction, and the bubbles are discharged together with the ink. In this case, if there is a stagnation in the ink flow path in the recording head 1, the bubbles stagnate in the stagnation, making it difficult to discharge. If the ink flow path is formed in a crank shape as in the present embodiment, it is possible to reduce the stagnation of ink in the flow path, prevent the stagnation of the air bubbles, and improve the discharge performance of the air bubbles.
[0042]
In the first embodiment described above, the flow path substrate 14 is manufactured by etching one silicon wafer, but the present invention is not limited to this configuration. For example, the flow path substrate may be made of a plurality of plate members. Hereinafter, the second embodiment configured as above will be described. In addition, this 2nd Embodiment has the characteristics in the structure of the flow path unit 4, and the other part is the structure similar to 1st Embodiment. For this reason, the same components as those in the first embodiment are denoted by the same reference numerals and will be described briefly.
[0043]
Here, FIG. 7 is a diagram for explaining the second embodiment, (a) is a view of a part of the flow path unit 4 as viewed from the elastic plate 15 side, and (b) is a view showing the flow path unit 4 at the second pressure. Sectional drawing cut | disconnected in the position of the chamber empty part 12B, (c) is sectional drawing which cut | disconnected the flow path unit 4 in the position of the 1st pressure chamber empty part 12A. FIG. 8 is a diagram for explaining the first shallow groove substrate 41, the second shallow groove substrate 42, and the through-hole substrate 43 that constitute the flow path substrate 40.
[0044]
As shown in these drawings, in this embodiment, the flow path substrate 40 has a three-piece configuration. That is, the flow path substrate 40 includes a first shallow groove substrate 41 having a main shallow groove portion 44 and an opening window portion 45 (referred to as a first opening window portion 45 for convenience) serving as the ink supply port 10 and a sub shallow groove portion 46. And a second shallow groove substrate 42 having an opening window 48 (referred to as a second opening window 48 for convenience) serving as a communication window 47 and a through hole 22 (first through hole 49, second through hole). Part 50) and a through-hole substrate 43 formed thereon. In the present embodiment, each of these substrates 41, 42, 43 is produced by pressing a metal plate. For example, the first shallow groove substrate 41 is manufactured by punching out the first opening window 45 with respect to a nickel plate or a stainless steel plate having a thickness of 30 μm. Similarly, the second shallow groove substrate 42 is also produced by punching the second opening window 48 against a nickel plate or stainless plate having a thickness of 30 μm. The through-hole substrate 43 is manufactured by punching the first through-hole portion 49 and the second through-hole portion 50 against a nickel plate or stainless steel plate having a thickness of 270 μm.
[0045]
Thus, since each board | substrate 41,42,43 which comprises the flow-path board | substrate 40 is produced by the press work with respect to a metal plate, said 1st opening window part 45, 2nd opening window part 48, 1st The through-hole portion 49 and the second through-hole portion 50 can be made in a relatively free shape. For this reason, in this embodiment, the main shallow groove portion 44 and the sub shallow groove portion 46 are configured by elongated rectangular openings in a direction orthogonal to the pressure chamber arrangement direction. Similarly, the 1st through-hole part 49 and the 2nd through-hole part 50 are also comprised by the through-hole of rectangular opening. Further, the ink supply port 10 is produced by causing a portion 52 of the shallow groove partition 51 in the first shallow groove substrate 41 to protrude in a trapezoidal shape toward the opposing shallow groove partition 51, as in the first embodiment. ing.
[0046]
In order to manufacture the flow path substrate 40 from the first shallow groove substrate 41, the second shallow groove substrate 42, and the through-hole substrate 43, these substrates 41, 42, and 43 are bonded and integrated. That is, the first shallow groove substrate 41 is bonded to one surface of the through hole substrate 43, and the second shallow groove substrate 42 is bonded to the other surface of the through hole substrate 43. The nozzle plate 16 and the elastic plate 15 are joined to the flow path substrate 40 thus manufactured, and the flow path unit 4 is manufactured.
[0047]
In this flow path unit 4, opening windows 45, 48 or through-hole parts 22 (49, 50) are formed on the respective substrates 41, 42, 43 constituting the flow path unit 4. , 48 and the through-hole portion 22 penetrate through in the thickness direction, so that they can be manufactured with high dimensional accuracy. That is, the opening window portions 45 and 48 and the through hole portion 22 are manufactured by punching. During this processing, although a large shearing force is momentarily applied to the substrate (work), the substrate (work) is released in a very short time due to breakage. For this reason, the deformation | transformation accompanying a process can be suppressed to the minimum and a dimensional accuracy can be improved.
[0048]
Also in this embodiment, the rigidity necessary for the through-hole partition wall 53 can be secured and the control can be simplified. That is, since two types of through-hole portions 49 and 50 having different distances from the reservoir 8 are alternately provided in the pressure chamber arrangement direction, a non-overlapping portion is created between the through-hole portions. The through-hole partition wall 53 of the non-overlapping portion can secure a sufficient thickness, and necessary rigidity can be obtained. Further, the sub shallow groove portion 46 is communicated with the second through hole portion 50 so as to extend the ink flow path in a direction away from the reservoir 8. Thereby, each nozzle opening 11 can be arrange | positioned on a straight line, and simplification of control can be achieved.
[0049]
Although the above description has been given by taking the recording head 1 using the piezoelectric vibrator 7 as a pressure generating element as an example, the present invention is not limited to this recording head 1. The pressure generating element may be a piezoelectric element manufactured by a thick film printing method. In addition, an electrostatic actuator, a heating element, a magnetostrictive element, or the like can be used.
[0050]
The present invention can also be applied to liquid jet heads other than the recording head. For example, the present invention can also be applied to a color material ejecting head for a display manufacturing apparatus, an electrode material ejecting head for an electrode manufacturing apparatus, and a bioorganic matter ejecting head for a chip manufacturing apparatus. Furthermore, it can be applied to a micropipette.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a configuration of a recording head.
2 is a cross-sectional view of the flow path unit cut at a position of a second pressure chamber empty portion, and is a cross-sectional view taken along the line AA in FIG. 4;
3 is a cross-sectional view of the flow path unit cut at the position of the first pressure chamber space, and is a cross-sectional view taken along the line BB of FIG.
FIG. 4 is a view of a part of the flow path unit as seen from the island side.
FIG. 5 is a view of a part of the flow path substrate as viewed from the sub-shallow groove side.
6A and 6B illustrate a through-hole partition, wherein FIG. 6A is a cross-sectional view taken along the line CC in FIG. 4, and FIG. 6B is a cross-sectional view taken along the line DD in FIG.
FIGS. 7A and 7B are diagrams illustrating a second embodiment, in which FIG. 7A is a view of a part of a flow path unit as viewed from the island side, FIG. 7B is a cross-sectional view taken along line EE in FIG. It is FF sectional drawing of (b).
8A and 8B are diagrams for explaining a flow path unit according to the second embodiment, in which FIG. 8A is an explanatory diagram of a first shallow groove substrate, FIG. 8B is an explanatory diagram of a communication hole substrate, and FIG. It is explanatory drawing of a groove substrate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Inkjet recording head, 2 ... Case, 3 ... Vibrator unit, 4 ... Flow path unit, 5 ... Storage empty part, 6 ... Fixed plate, 7 ... Piezoelectric vibrator, 8 ... Reservoir, 9 ... Pressure chamber, 10 DESCRIPTION OF SYMBOLS ... Ink supply port, 11 ... Nozzle opening, 12 ... Pressure chamber empty part, 13 ... Reservoir empty part, 14 ... Flow path substrate, 15 ... Elastic plate, 16 ... Nozzle plate, 21 ... Shallow groove part, 22 ... Through-hole part, 23 ... Main shallow groove part, 24 ... Sub shallow groove part, 25 ... First through hole part, 26 ... Second through hole part, 27 ... Resin film, 28 ... Island part, 31 ... Shallow groove partition, 32 ... Shallow groove partition Projection, 33 ... Narrowing part, 34 ... Shallow groove supply part, 35 ... Through hole partition, 40 ... Channel substrate, 41 ... First shallow groove substrate, 42 ... Second shallow groove substrate, 43 ... Through hole substrate, 44 ... main shallow groove part, 45 ... first opening window part, 46 ... sub shallow groove part, 47 ... communication window part, 48 ... second opening window part, 4 ... first through hole, 50 ... second through hole, 51 ... shallow partition wall, 52 ... protruding portion of the shallow groove partition wall, 53 ... through hole septum

Claims (7)

圧力室となる圧力室空部を、隔壁を挟んで複数列設してなる流路基板と、前記流路基板の一方の面に接合され、前記圧力室空部における一側の開口を塞ぐ封止部材と、前記封止部材とは反対側の流路基板表面に接合され、複数のノズル開口を開設したノズルプレートとを備え、前記圧力室内の液体に生じた圧力変動を利用することで、前記ノズル開口から液滴を吐出可能に構成した液体噴射ヘッドにおいて、
前記圧力室空部は、封止部材側に形成されてその一端が液体供給口を介してリザーバに連通した主浅溝部と、前記流路基板を貫通する貫通孔部とを有し、
前記貫通孔部を、リザーバから遠い側に位置する第1貫通孔部と、リザーバに近い側に位置する第2貫通孔部とに種分けして、これらの第1貫通孔部と第2貫通孔部とを圧力室列設方向へ交互に配置し、
第2貫通孔部を含む圧力室空部においては、ノズルプレート側に当該第2貫通孔部から離隔する方向に副浅溝部を形成して断面を略クランク形状とし、
前記第1貫通孔部及び副浅溝部にノズル開口を臨ませることで各ノズル開口の開設位置を圧力室列設方向に揃えたことを特徴とする液体噴射ヘッド。
Pressure chamber vacancies, which serve as pressure chambers, are joined to a flow path substrate formed in a plurality of rows across a partition wall, and one surface of the flow path substrate, and sealed to close one side opening in the pressure chamber vacancy. A stop member and a nozzle plate bonded to the surface of the flow path substrate opposite to the sealing member and having a plurality of nozzle openings are used, and by utilizing the pressure fluctuation generated in the liquid in the pressure chamber, In the liquid jet head configured to be capable of discharging droplets from the nozzle opening,
The pressure chamber empty portion has a main shallow groove portion formed on the sealing member side, one end of which communicates with the reservoir via the liquid supply port, and a through hole portion that penetrates the flow path substrate,
The through-hole portion is classified into a first through-hole portion located on the side far from the reservoir and a second through-hole portion located on the side close to the reservoir, and these first through-hole portion and second through-hole portion are classified. The holes and the pressure chambers are alternately arranged in the direction in which they are arranged,
In the pressure chamber vacant portion including the second through-hole portion, a sub shallow groove portion is formed on the nozzle plate side in a direction away from the second through-hole portion, and the cross section has a substantially crank shape.
The liquid ejecting head according to claim 1, wherein the opening positions of the nozzle openings are aligned in the direction in which the pressure chambers are arranged by causing the nozzle openings to face the first through hole portion and the sub shallow groove portion.
隣り合う貫通孔部同士のずれ量を貫通孔部の開口長さの1/2以上に設定したことを特徴とする請求項1に記載の液体噴射ヘッド。The liquid ejecting head according to claim 1, wherein a deviation amount between adjacent through-hole portions is set to ½ or more of an opening length of the through-hole portion. 同列に属する各浅溝部の同じ側の端部に前記液体供給口を設け、共通のリザーバから液体を供給可能としたことを特徴とする請求項1又は請求項2に記載の液体噴射ヘッド。The liquid ejecting head according to claim 1, wherein the liquid supply port is provided at an end portion on the same side of each shallow groove portion belonging to the same row so that the liquid can be supplied from a common reservoir. 前記主浅溝部の溝幅及び溝深さと副浅溝部の溝幅及び溝深さとを揃えたことを特徴とする請求項1から請求項3の何れかに記載の液体噴射ヘッド。4. The liquid jet head according to claim 1, wherein a groove width and a groove depth of the main shallow groove portion and a groove width and a groove depth of the sub shallow groove portion are aligned. 5. 前記流路基板をシリコン単結晶板の異方性エッチングによって作製したことを特徴とする請求項1から請求項4の何れかに記載の液体噴射ヘッド。The liquid jet head according to claim 1, wherein the flow path substrate is manufactured by anisotropic etching of a silicon single crystal plate. 前記流路基板を、主浅溝部及び液体供給口となる開口窓部を開設した第1浅溝基板と、副浅溝部となる開口窓部を開設した第2浅溝基板と、貫通孔部を形成した貫通孔基板とから構成したことを特徴とする請求項1から請求項4の何れかに記載の液体噴射ヘッド。The flow path substrate includes a first shallow groove substrate having an opening window portion serving as a main shallow groove portion and a liquid supply port, a second shallow groove substrate having an opening window portion serving as a sub shallow groove portion, and a through hole portion. The liquid ejecting head according to claim 1, wherein the liquid ejecting head includes a formed through-hole substrate. 前記第1浅溝基板、第2浅溝基板、及び、貫通孔基板を金属板のプレス加工によって作製したことを特徴とする請求項6に記載の液体噴射ヘッド。The liquid jet head according to claim 6, wherein the first shallow groove substrate, the second shallow groove substrate, and the through hole substrate are manufactured by pressing a metal plate.
JP2003196960A 2003-07-15 2003-07-15 Liquid ejection head Pending JP2005034998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003196960A JP2005034998A (en) 2003-07-15 2003-07-15 Liquid ejection head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003196960A JP2005034998A (en) 2003-07-15 2003-07-15 Liquid ejection head

Publications (1)

Publication Number Publication Date
JP2005034998A true JP2005034998A (en) 2005-02-10

Family

ID=34207252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003196960A Pending JP2005034998A (en) 2003-07-15 2003-07-15 Liquid ejection head

Country Status (1)

Country Link
JP (1) JP2005034998A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098371A1 (en) 2008-03-07 2009-09-09 Seiko Epson Corporation Liquid ejecting method, liquid ejecting head, and liquid ejecting apparatus
EP2098370A1 (en) 2008-03-07 2009-09-09 Seiko Epson Corporation Liquid ejecting method, liquid ejecting head, and liquid ejecting apparatus
EP2105301A1 (en) 2008-03-26 2009-09-30 Seiko Epson Corporation Liquid discharging method, liquid discharging head, and liquid discharging apparatus
JP2011131571A (en) * 2009-11-26 2011-07-07 Ricoh Co Ltd Liquid ejection head and image forming apparatus
US8109588B2 (en) 2008-03-26 2012-02-07 Seiko Epson Corporation Liquid ejecting method, liquid ejecting head, and liquid ejecting apparatus
US8113630B2 (en) 2008-02-29 2012-02-14 Seiko Epson Corporation Method, head, and apparatus for ejecting liquid
JP2013063590A (en) * 2011-09-16 2013-04-11 Ricoh Co Ltd Liquid discharge head and image forming device
JP2014065205A (en) * 2012-09-26 2014-04-17 Seiko Epson Corp Liquid jet head and liquid jet apparatus
JP2014113796A (en) * 2012-12-12 2014-06-26 Seiko Epson Corp Liquid jet head and liquid jet device
JP2014148105A (en) * 2013-02-01 2014-08-21 Seiko Epson Corp Liquid jet head, liquid jet device, and method for manufacturing liquid jet head
JP2015217679A (en) * 2014-05-13 2015-12-07 ゼロックス コーポレイションXerox Corporation Printhead with narrow aspect ratio

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8113630B2 (en) 2008-02-29 2012-02-14 Seiko Epson Corporation Method, head, and apparatus for ejecting liquid
EP2098370A1 (en) 2008-03-07 2009-09-09 Seiko Epson Corporation Liquid ejecting method, liquid ejecting head, and liquid ejecting apparatus
US8061819B2 (en) 2008-03-07 2011-11-22 Seiko Epson Corporation Liquid ejecting method, liquid ejecting head, and liquid ejecting apparatus
US8382256B2 (en) 2008-03-07 2013-02-26 Seiko Epson Corporation Method, head and apparatus for ejecting viscous liquids
EP2098371A1 (en) 2008-03-07 2009-09-09 Seiko Epson Corporation Liquid ejecting method, liquid ejecting head, and liquid ejecting apparatus
US8740330B2 (en) 2008-03-26 2014-06-03 Seiko Epson Corporation Liquid ejecting method, liquid ejecting head, and liquid ejecting apparatus
EP2105301A1 (en) 2008-03-26 2009-09-30 Seiko Epson Corporation Liquid discharging method, liquid discharging head, and liquid discharging apparatus
US8109588B2 (en) 2008-03-26 2012-02-07 Seiko Epson Corporation Liquid ejecting method, liquid ejecting head, and liquid ejecting apparatus
JP2011131571A (en) * 2009-11-26 2011-07-07 Ricoh Co Ltd Liquid ejection head and image forming apparatus
JP2013063590A (en) * 2011-09-16 2013-04-11 Ricoh Co Ltd Liquid discharge head and image forming device
US8684498B2 (en) 2011-09-16 2014-04-01 Ricoh Company, Ltd. Liquid ejection head and image forming apparatus including same
JP2014065205A (en) * 2012-09-26 2014-04-17 Seiko Epson Corp Liquid jet head and liquid jet apparatus
US8827423B2 (en) 2012-09-26 2014-09-09 Seiko Epson Corporation Liquid ejecting head and liquid ejecting apparatus
US9022526B2 (en) 2012-09-26 2015-05-05 Seiko Epson Corporation Liquid ejecting head and liquid ejecting apparatus
JP2014113796A (en) * 2012-12-12 2014-06-26 Seiko Epson Corp Liquid jet head and liquid jet device
JP2014148105A (en) * 2013-02-01 2014-08-21 Seiko Epson Corp Liquid jet head, liquid jet device, and method for manufacturing liquid jet head
JP2015217679A (en) * 2014-05-13 2015-12-07 ゼロックス コーポレイションXerox Corporation Printhead with narrow aspect ratio

Similar Documents

Publication Publication Date Title
JP4385656B2 (en) Liquid ejecting head and manufacturing method thereof
JP2005034998A (en) Liquid ejection head
JP2005034997A (en) Liquid ejection head
US9022529B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP2004142438A (en) Piezoelectric actuator unit, its manufacturing process, piezoelectric structure and liquid ejector employing it
JPH05229116A (en) Ink jet head
JP7031293B2 (en) Piezoelectric devices, liquid discharge heads, and liquid discharge devices
JP2014034138A (en) Liquid jetting head and liquid jetting device
JP2002361861A (en) Head chip and its manufacturing method
JP2001010040A (en) Ink jet head
JP6036385B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP4792890B2 (en) Inkjet recording head and printing apparatus therefor
US7494206B2 (en) Liquid ejection head and method of producing same
JP2008055900A (en) Liquid droplet ejection device and manufacturing method of liquid droplet ejection device
JP4517917B2 (en) Liquid jet head
JP2007168096A (en) Inkjet head
JPH1178030A (en) Manufacture of ink jet head
JP4765505B2 (en) Inkjet head
JP2005153243A (en) Liquid jetting head, its manufacturing method and liquid jetting apparatus
JP3326970B2 (en) Ink jet recording head and method of manufacturing the same
JP4492059B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP7220328B1 (en) HEAD CHIP, LIQUID JET HEAD AND LIQUID JET RECORDING APPARATUS
JPH05318730A (en) Ink jet head
JP2007320061A (en) Liquid droplet discharging apparatus
JPH04286650A (en) Liquid droplet jet apparatus