JP2005033911A - 3相交流−直流電力変換装置 - Google Patents

3相交流−直流電力変換装置 Download PDF

Info

Publication number
JP2005033911A
JP2005033911A JP2003195819A JP2003195819A JP2005033911A JP 2005033911 A JP2005033911 A JP 2005033911A JP 2003195819 A JP2003195819 A JP 2003195819A JP 2003195819 A JP2003195819 A JP 2003195819A JP 2005033911 A JP2005033911 A JP 2005033911A
Authority
JP
Japan
Prior art keywords
pair
terminals
voltage
input
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003195819A
Other languages
English (en)
Inventor
Shinji Sato
伸二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2003195819A priority Critical patent/JP2005033911A/ja
Publication of JP2005033911A publication Critical patent/JP2005033911A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)

Abstract

【課題】3相交流−直流電力変換装置の小型化及び低コスト化が要求されている。
【解決手段】第1、第2及び第3の交流入力端子1a、1b、1cと第1及び第2の直流出力端子3a、3bとの間に第1、第2及び第3の電力変換回路2a、2b、2cが配置されている。第1の電力変換回路2aは、第1及び第2の交流入力端子1a、1bに第1のインダクタL1aを介して接続された整流回路9aと、この整流回路9aの直流端子間に接続されたスイッチQa と、1次巻線N1aと第1のコンデンサC1aとの直列回路と、2次巻線N2aと第2のコンデンサC2aとの直列回路と、ダイオードD5aと第2のインダクタL2aとの直列回路と、2次巻線N2aと共通の平滑コンデンサCo との間に接続されたダイオードD6aとを有している。第2及び第3の電力変換回路2b、2cも第1の電力変換回路2aと同様に形成されている。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、スイッチング回路とトランスとを有して3相交流電力を直流電力に変換する3相交流−直流電力変換装置に関する。
【0002】
【従来の技術】
【特許文献1】特開2002−233155号公報
【特許文献2】特開2002−354816号公報
通信用電源やバッテリー充電器等に使用するための絶縁型3相交流−直流電力変換装置を構成する場合に商用周波数(50Hz又は60Hz)側に絶縁トランスを設け、トランスの2次側に整流回路及び電圧調整用のPWMスイッチング回路を設けると、トランスが大きくなる。この問題を解決するために、3相交流電源に非絶縁のPWM整流器即ち交流−直流コンバータを接続し、このコンバータの出力端子間に直流リンクコンデンサを接続し、直流リンクコンデンサの出力段に高周波絶縁トランスを有する高周波インバータを接続し、このインバータの出力段に整流平滑回路を設けることがある。この場合には、トランスとして高周波トランスを使用するので、トランスの小型化を図ることができる。
しかし、6個のスイッチから成る交流−直流コンバータ、直流リンクコンデンサ、4個のスイッチから成るインバータ、トランス、整流平滑回路が必要になるので、トランス以外の部品点数が多くなり、回路が複雑且つコスト高になる。
【0003】
この問題を解決するための3相交流−直流電力変換装置が前記特許文献1及び前記特許文献2に開示されている。ここに開示されている3相交流−直流電力変換装置は、3相交流の各線間に接続され且つ同一のコアに巻き回された第1、第2及び第3の1次巻線と、各1次巻線に直列に接続された交流スイッチと、3相共通の2次巻線と、2次巻線に接続された整流平滑回路とから成る。
【0004】
【発明が解決しようとする課題】
前記特許文献1及び2に記載されている3相交流−直流電力変換装置によれば、構成の大幅な簡略化を達成することができる。しかし、3相分の交流スイッチを構成するために6個のスイッチング素子が必要になる。また、トランスを3相共通に構成するために必然的にトランスが大きくなる。このため、トランスが3相個別であるにも拘らず小型且つ低コスト化を図ることができる3相交流−直流電力変換装置が要求されている。
【0005】
そこで、本発明の目的は、上記要求を満足させることができる3相交流−直流電力変換装置を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決し、上記目的を達成するための本発明を図面の符号を参照して説明する。但し、特許請求の範囲及びここでの本発明の説明における参照符号は、本発明の理解を助けるためのものであって、本発明を限定するものではない。本発明は、3相交流電力を直流電力に変換するための3相交流−直流電力変換装置であって、
3相交流電圧を供給するための第1,第2及び第3の交流入力端子(1a,1b,1c)と、
負荷(3)に直流電圧を供給するための第1及び第2の直流出力端子(3a,3b)と、
前記第1及び第2の交流入力端子(1a,1b)に接続された第1の対の交流入力導体(5a,6a)と前記第1及び第2の直流出力端子(3a,3b)に接続された第1の対の直流出力導体(7a,8a)とを有して前記第1の対の交流入力導体(5a,6a)間の交流電圧を直流電圧に変換する第1の電力変換回路(2a)と、
前記第2及び第3の交流入力端子(1b,1c)に接続された第2の対の交流入力導体(5b,6b)と前記第1及び第2の直流出力端子(3a,3b)に接続された第2の対の直流出力導体(7b,8b)とを有して前記第2の対の交流入力導体(5b,6b)間の交流電圧を直流電圧に変換する第2の電力変換回路(2b)と、
前記第3及び第1の交流入力端子(1c,1a)に接続された第3の対の交流入力導体(5c,6c)と前記第1及び第2の直流出力端子(3a,3b)に接続された第3の対の直流出力導体(7c,8c)とを有して前記第3の対の交流入力導体(5c,6c)間の交流電圧を直流電圧に変換する第3の電力変換回路(2c)とを備え、
前記第1,第2及び第3の電力変換回路(2a,2b,2c)のそれぞれが、
それぞれの前記対の交流入力導体に接続された対の交流端子と、整流出力用の対の直流端子と、前記対の交流端子の一方と前記対の直流端子の一方との間に接続された第1のダイオードと、前記対の直流端子の他方と前記対の交流端子の一方との間に接続された第2のダイオードと、前記対の交流端子の他方と前記対の直流端子の一方との間に接続された第3のダイオードと、前記対の直流端子の他方と前記対の交流端子の他方との間に接続された第4のダイオードとを有する整流回路と、
前記整流回路の対の直流端子間に接続されたスイッチと、
それぞれの前記対の交流入力導体と前記スイッチとの間の交流ライン又は直流ラインに直列に接続された第1のインダクタと、
前記スイッチに並列に接続されたトランスの1次巻線と第1のコンデンサとの直列回路と、
前記1次巻線に電磁結合された2次巻線と、
前記2次巻線に直列に接続された第2のコンデンサと、
前記2次巻線と前記第2のコンデンサとの直列回路に対して並列に接続された第2のインダクタと第5のダイオードとの直列回路と、
前記第2のインダクタと前記第5のダイオードとの直列回路の一端と前記第1の直流出力端子との間に接続された第6のダイオードと、
前記スイッチを前記3相交流電圧の周波数よりも高い周波数でオン・オフ制御する制御手段と
から成ることを特徴とする3相交流−直流電力変換装置に係わるものである。
【0007】
なお、請求項2、4及び6に示すように、第3及び第4のダイオ−ドに逆方向並列に第1及び第2のスイッチを接続することができる。なお、第3及び第4のダイオ−ドは、個別素子であってもよいし、第1及び第2のスイッチの寄生即ち内蔵ダイオ−ドであってもよい。
また、請求項3に示すように各相の他方の交流入力導体を3相交流電圧の中間電位を与える共通端子(70)に接続することができる。
また、請求項5に示すように、第1、第2及び第3の交流入力端子(1a、1b、1c)に星形結線された第1、第2及び第3の分圧用コンデンサ(Cr、Cs、Ct)を接続し、これ等の共通接続導体(80)に各相の他方の交流入力導体を接続することができる。
【0008】
【発明の効果】
本発明によれば、トランスが3相個別に設けられているにも拘らず、少ない個数のスイッチによって3相交流−直流電力変換装置を構成することができ、小型化、低コスト化を図ることができる。
【0009】
【発明の実施の形態】
次に、本発明の実施形態に従う3相交流−直流電力変換装置を説明する。
【0010】
【実施例1】
本発明の実施例1に従う3相交流−直流電力変換装置は、図1に示すように、3相交流電源Eに接続される第1、第2及び第3の交流入力端子1a、1b、1cと、第1、第2及び第3の電力変換回路2a、2b、2cと、負荷3を接続するための第1及び第2の直流出力端子3a、3bと、三相共通の平滑コンデンサCo と、制御回路4とを備えている。
【0011】
3相交流電源Eは、例えば周波数50Hz、200Vの3相交流電圧を供給するものであり、互いに120度の位相差を有する第1、第2及び第3相正弦波交流電圧を供給する第1、第2及び第3相電源Ea 、Eb 、Ec でモデル化して示されている。
【0012】
第1、第2及び第3の電力変換回路2a、2b、2cは、3相の各線間電圧を直流電圧に変換して共通の第1及び第2の直流出力端子3a、3bに供給するように構成されている。
【0013】
第1の電力変換回路2aの第1の対の交流入力導体5a、6aは第1及び第2の交流入力端子1a、1bに接続され、第1の対の直流出力導体7a、8aは第1及び第2の直流出力端子3a、3bに接続されている。第2の電力変換回路2bの第2の対の交流入力導体5b、6bは第2及び第3の交流入力端子1b、1cに接続され、第2の対の直流出力導体7b、8bは第1及び第2の直流出力端子3a、3bに接続されている。第3の電力変換回路2cの第3の対の交流入力導体5c、6cは第3及び第1の交流入力端子1c、1aに接続され、第3の対の直流出力導体7c、8cは第1及び第2の直流出力端子3a、3bに接続されている。
【0014】
図1から明らかのように、第1、第2及び第3の電力変換回路2a、2b、2cの内部構成は同一であるので、第1、第2及び第3の電力変換回路2a、2b、2cにおいて互いに同一の機能を有する回路要素の参照符号が複数の文字で表わされ、この参照符号の最後以外の文字が同一とされ、最後の文字のみが異なる文字a、b、cとされている。
第1の電力変換回路2aは、第1、第2、第3及び第4のダイオードD1a、D2a、D3a、D4aから成る整流回路9aと、第5及び第6のダイオードD5a、D6aと、スイッチQa と、1次巻線N1a及び2次巻線N2aを有する高周波トランスTa と、第1及び第2のコンデンサC1a、C2aと、第1及び第2のインダクタL1a、L2aとから成る。第2の電力変換回路2bは、第1、第2、第3及び第4のダイオードD1b、D2b、D3b、D4bから成る整流回路9bと、第5及び第6のダイオードD5b、D6bと、スイッチQb と、1次巻線N1b及び2次巻線N2bを有する高周波トランスTb と、第1及び第2のコンデンサC1b、C2bと、第1及び第2のインダクタL1b、L2bとから成る。第3の電力変換回路2cは、第1、第2、第3及び第4のダイオードD1c、D2c、D3c、D4cから成る整流回路9cと、第5及び第6のダイオードD5c、D6cと、スイッチQc と、1次巻線N1c及び2次巻線N2cを有する高周波トランスTc と、第1及び第2のコンデンサC1c、C2cと、第1及び第2のインダクタL1c、L2cとから成る。
【0015】
次に、第1の電力変換回路2aを詳しく説明し、これと同一構成の第2及び第3の電力変換回路2b、2cの詳しい説明は省略する。第1の電力変換回路2aの整流回路9aは第1、第2、第3及び第4のダイオードD1a、D2a、D3a、D4aをブリッジ接続した全波整流回路である。この整流回路9aの一方の交流端子は第1のインダクタL1a及び一方の交流入力導体5aを介して第1の交流入力端子1aに接続され、この他方の交流端子は他方の交流入力導体6aを介して第2の交流入力端子1bに接続されている。従って、第1の電力変換回路2aの整流回路9aは3相交流の第1及び第2相間の線間電圧を整流する。なお、リアクトルから成る第1のインダクタL1aを、他方の交流入力導体6aに接続すること、又は2つの交流入力導体5a、5bに分けて接続すること、又は整流回路9aとスイッチQa との間に接続することもできる。
【0016】
IGBT(絶縁ゲートバイポーラトランジスタ)から成るスイッチQa は整流回路9aの対の直流端子間に接続されている。このスイッチQa をPWM制御するための制御端子(ゲート)は制御回路4の第1の制御信号出力ライン10aに接続されている。第2及び第3の電力変換回路2b、2cのスイッチQb 、Qc の制御端子は制御回路4の第2及び第3の制御信号出力ライン10b、10cに接続されている。
【0017】
相互に電磁結合された1次巻線N1aと2次巻線N2aとから成る高周波トランスTa は商用周波数(50Hz又は60Hz)よりも十分に高い周波数(例えば20〜100kHz )に応答するものから成り、電源E側と負荷3側とを電気的に絶縁する機能を有する。この高周波トランスTa の1次巻線N1aと第1のコンデンサC1aとの直列回路はスイッチQa に対して並列に接続され且つ整流回路9aの対の直流端子間に接続されている。第2のコンデンサC2aは2次巻線N2aに直列に接続されている。第1及び第2のコンデンサC1a、C2aはエネルギ蓄積素子として機能する。第2のインダクタL2aと第5のダイオードD5aとの直列回路が、2次巻線N2aと第2のコンデンサC2aとの直列回路に対して並列に接続されている。また、2次巻線N2aと第2のコンデンサC2aとの直列回路及び第5のダイオードD5aと第2のインダクタL2aとの直列回路は、第6のダイオードD6aを介して第1の対の直流出力導体7a、8aにそれぞれ接続されている。
【0018】
平滑コンデンサCo は第1及び第2の直流出力端子3a、3b間に接続され、第1、第2及び第3の電力変換回路2a、2b、2cの出力で充電される。
【0019】
制御回路4は、第1、第2及び第3の電力変換回路2a、2b、2cのスイッチQa 、Qb 、Qc をオン・オフ制御する制御手段であって、前述したように第1、第2及び第3の制御信号ライン10a、10b、10cによって第1、第2及び第3相のスイッチQa 、Qb 、Qc の制御端子に接続され、且つライン11、12によって第1及び第2の直流出力端子3a、3bに接続され、且つライン13、14、15によって第1、第2及び第3の交流入力端子1a、1b、1cに接続され、且つライン16、17、18によって第1、第2及び第3の電流検出器19、20、21に接続されている。第1、第2及び第3の電流検出器19、20、21は第1、第2及び第3の電力変換回路2a、2b、2cの第1のインダクタL1a,L1b,L1cを通って流れる電流を検出できる位置に配置されている。
【0020】
図2は図1の制御回路4の1例を示す。この制御回路4は商用周波数よりも高い繰返し周波数で各相のスイッチQa 、Qb 、Qc をオン・オフ制御する機能と、各相の第1のインダクタL1a、L1b、L1cを流れる電流Ia 、Ib 、Ic を正弦波に近似させるための制御機能と、直流出力電圧Vo を基準電圧Vo1に追従させる制御機能を有する。
【0021】
図2の出力電圧検出回路22はライン11、12によって図1の第1及び第2の直流出力端子3a、3bに接続され、第1及び第2の直流出力端子3a、3b間の直流出力電圧Vo に比例した出力を発生する。ここでは説明を簡単にするために、出力電圧検出回路22の入力と出力との両方をVo で示し、これを直流出力電圧と呼ぶことにする。
【0022】
入力電圧検出回路23は、ライン13、14、15によって図1の第1、第2及び第3の交流入力端子1a、1b、1cに接続され、正弦波の第1、第2及び第3の線間電圧Vrs、Vst、Vtrをライン24、25、26に送出する。第1の線間電圧Vrsは第1及び第2の交流入力端子1a、1b間の電圧を示し、第2の線間電圧Vstは第2及び第3の交流入力端子1b、1c間の電圧を示し、第3の線間電圧Vtrは第3及び第1の交流入力端子1c、1a間の電圧を示す。
【0023】
電流検出回路27は、ライン16、17、18によって図1の電流検出器19、20、21に接続され、第1、第2及び第3の電力変換回路2a、2b、2cの入力電流Ia 、Ib 、Icの検出信号を出力する。電流検出回路27の出力はabcで示されている絶対値回路27a、27b、27cで絶対値に変換される。図2では電流検出信号の絶対値がIa´、Ib´、Ic´で示されている。
【0024】
制御回路4は、定電圧制御を実行するために基準電圧発生器28と電圧変動検出用減算器29と電流振幅指令演算器30とを有している。減算器29は基準電圧発生器28の基準電圧Vo1から出力電圧検出回路22の直流出力電圧Vo を減算する。減算器29の出力に基づいて電流振幅指令演算器30は直流出力電圧Vo を一定にするための電流振幅指令値Io1を発生する。電流振幅指令演算器30は、比例積分回路と増幅器とから成る。なお、電流振幅指令値Io1を出力電圧制御指令値と呼ぶこともできる。この実施形態では、直流出力電圧を交流側の電流制御によって達成しているので、Io1が電流振幅指令値と呼ばれている。
【0025】
共通の電流振幅指令値Io1によって第1、第2及び第3相のスイッチQa 、Qb 、Qc を制御するために、第1、第2及び第3の乗算器31、32、33が設けられている。第1、第2及び第3の乗算器31、32、33は、ライン24、25、26から供給される正弦波から成る第1、第2及び第3の線間電圧Vrs、Vst、Vtrに電流振幅指令値Io1を乗算して正弦波状の第1、第2及び第3の電流指令値Irs、Ist、Itrを出力する。この電流指令値Irs、Ist、Itrは、直流出力電圧Vo を目標値即ち基準電圧Vo1にするための目標電流指令値に相当する3相交流信号である。第1、第2及び第3の乗算器31,32,33から得られた第1、第2及び第3の電流指令値Irs、Ist、Itrはabsで示されている絶対値回路31a、31b、31cで絶対値に変換される。
【0026】
第1、第2及び第3の減算器34、35、36は一方の側の絶対値回路31a、32a、33aから得られた第1、第2及び第3の電流指令値Irs、Ist、Itrの絶対値から他方の側の絶対値回路27a、27b、27cから得られた各相の電流検出信号の絶対値Ia´、Ib´、Ic´を減算して通流率信号とも呼ぶことができる第1、第2及び第3の通電率指令信号Drs、Dst、Dtrを求めるものである。
【0027】
第1、第2及び第3の減算器34、35、36に接続された第1、第2及び第3の絶対値回路37、38、39は第1、第2及び第3の通電率指令値Drs、Dst、Dtrの絶対値を出力する。ここでは説明を簡略化するために第1、第2及び第3の絶対値回路37、38、39の入力と出力とを同一記号で示し、第1、第2及び第3の絶対値回路37、38、39の出力を第1、第2及び第3の絶対値通電率指令値Drs、Dst、Dtrと呼ぶことにする。第1、第2及び第3の絶対値通電率指令信号Drs、Dst、Dtrは図3に示されている。
【0028】
第1、第2及び第3の絶対値回路37、38、39に接続されたPWM回路40は、第1、第2及び第3の絶対値通電率指令信号Drs、Dst、Dtrと鋸波発生記41から出力された鋸波電圧Vtとを図3に示すように比較して図4に示す第1、第2及び第3の制御信号Vga、Vgb、Vgcを形成する。
【0029】
鋸波発生器41は比較波発生器又はキャリア発生器とも呼ぶことができるものであって、第1、第2及び第3の線間電圧Vrs、Vst、Vtrの周波数よりも高い繰り返し周波数(例えば20〜100kHz)で鋸波電圧Vtを発生する。図3の鋸波線圧Vtは立上りが傾斜し、立下りが垂直の鋸波であるが、逆に立下りが傾斜し、立上りが垂直の鋸波、又は三角波とすることもできる。
【0030】
PWM回路40に含まれている各相の比較器の出力は絶対値通電率指令信号Drs、Dst、Dtrが鋸波電圧Vtよりも高い時に高レベル(H)、低い時に低レベル(L)となる。従って、第1、第2及び第3の制御信号Vga、Vgb、Vgcの低レベルから高レベルへの転換が同時に生じ、第1、第2及び第3相のスイッチQa、Qb、Qcが同時にオンになる。
【0031】
PWM回路40の出力ライン10a、10b、10cの第1、第2及び第3の制御信号Vga、Vgb、Vgcは、図示が省略されている駆動回路を介して図1の第1、第2及び第3相のスイッチQa 、Qb 、Qc の制御端子に送られる。第1、第2及び第3相のスイッチQa 、Qb 、Qc は第1、第2及び第3の制御信号Vga、Vgb、Vgcが論理の1(Hレベル)の時にオン制御される。
【0032】
第1、第2及び第3相のスイッチQa 、Qb 、Qc が図4に示す第1、第2及び第3の制御信号Vga、Vgb、Vgcでオン・オフ制御されると、これ等のオン期間に各相の第1のインダクタL1a、L1b、L1c及び第2のインダクタL2a、L2b、L2cにエネルギが蓄積され、これ等のオフ期間に平滑コンデンサCo 及び負荷3側にエネルギが放出される。
【0033】
第1の交流入力端子1aの電位が第2の交流入力端子1bの電位よりも高い期間に第1の電力変換回路2aのスイッチQa をオン・オフした時の動作を図5(A)(B)(C)を参照して説明する。なお、以下の説明で電流経路を回路要素の参照符号のみで示すこともある。また、図5(A)(B)(C)において、電流が流れる回路が実線で示され、電流が流れない回路が点線で示されている。
【0034】
スイッチQa のオン期間には、図5(A)に示すように、1a−L1a−D1a−Qa −D4a−1bの経路に電流が流れ、第1のインダクタL1aにエネルギが蓄積される。第1のインダクタL1aに流れる電流は第1及び第2の交流入力端子1a、1b間の電圧の振幅に比例するので、正弦波に近似した入力電流を流すことができ、力率が改善される。スイッチQa のオン期間には、上記の動作の他に第1のコンデンサC1aが放電し、C1a−N1a−Qa の経路にも電流が流れる。1次巻線N1aに図5(A)において下側から上側に向って電流が流れると、2次巻線N2aに第2のコンデンサC2aを充電する向きの電流がN2a−C2a−L2a−D5aの経路で流れ、第2のコンデンサC2aが充電される。図5(A)の状態では第6のダイオードD6aは非導通であり、負荷3には平滑コンデンサCo から電力が供給される。
【0035】
図5(A)の状態においてスイッチQaがオフに転換すると、まず図5(B)の経路に電流が流れる。即ち、1a−L1a−D1a−N1a−C1a−D4a−1bの経路に電流が流れ、第1のコンデンサC1aが充電される。1次巻線N1aに上から下に向う方向で電流が流れると、2次巻線N2aに下から上に向う方向の電圧が誘起し、第6のダイオードD6aが導通状態に転換し、N2a−D6a−Co 及び3−C2aの経路で電流が流れ、第2のコンデンサC2aの放電が生じる。同時に、第2のインダクタL2aの蓄積エネルギの放出が生じ、L2a−D5a−D6a−Co 及び3の経路にも電流が流れる。
【0036】
第2のインダクタL2aの蓄積エネルギの放出が終了すると、図5(C)に示すように第5のダイオードD5aが非導通となる。図5(C)において、第5のダイオードD5aと第2のインダクタL2aとを通る電流が零になる他は、図5(B)と同様な電流が流れる。
【0037】
第2の交流入力端子1bの電位が第1の交流入力端子1aの電位よりも低い負の半波期間には第2及び第3のダイオードD2a、D3aが導通し、正の半波期間と同様な動作が生じる。また、第2及び第3の電力変換回路2b、2cも第1の電力変換回路2aと同一に構成されているので、第1の電力変換回路2aと同様に動作する。
【0038】
直流出力電圧Vo が例えば基準電圧Vo1よりも高くなると、電圧変動検出用減算器29の出力が低くなり、電流振幅指令値Io1が低下し、この結果としてPWMパルスの幅が狭くなり、第1、第2及び第3相のスイッチQa 、Qb 、Qc のオン期間に2次側に供給される電力が低下し、直流出力電圧Vo が基準電圧Vo1に戻される。直流出力電圧Vo が基準電圧Vo1よりも低くなった時には、上記の高くなった時と逆の動作になる。
【0039】
第1、第2及び第3の電流指令値Irs、Ist、Itrは、第1、第2及び第3の線間電圧Vrs、Vst、Vtrに基づいて作成された正弦波であり、3相交流に基づく周期性を有して変化する。従って、第1、第2及び第3の交流入力端子1a、1b、1cにおける電流波形が正弦波に近似し、且つ力率が良くなる。
【0040】
実施例1は次の効果を有する。
(1) この実施例の3相交流−直流電力変換装置は、従来よりも少ない3つのスイッチQa 、Qb 、Qc をオン・オフ制御することによって各相の高周波トランスTa 、Tb 、Tc に電力を供給できるので、高周波トランスを含む絶縁型3相交流−直流電力変換装置の小型化及び低コスト化を達成できる。
(2) 力率改善及び直流出力電圧の安定化を容易に達成できる。
(3) 各相の第1のコンデンサC1a、C1b、C1cを各相の1次巻線N1a、N1b、N1cに直列に接続し、各相の第2のコンデンサC2a、C2b、C2cを各相の2次巻線N2a、N2b、N2cに直列に接続したので、各相の高周波トランスTa 、Tb 、Tc の励磁インダクタンスに流れる電流の増加を抑えて高周波トランスTa 、Tb 、Tc の飽和を防止することができる。
【0041】
【実施例2】
次に、図6に示す実施例2の3相交流−直流電力変換装置を説明する。但し、図6及び後述する図7及び図8において図1と実質的に同一の部分には同一の符号を付してその説明を省略する。図6の3相交流−直流電力変換装置は、図1の第1、第2及び第3の電力変換回路2a、2b,2cの3つのスイッチQa 、Qb 、Qc の代りに3個の第1のスイッチQ1a、Q1b、Q1cと3個の第2のスイッチQ2a、Q2b、Q2cとを設け、この他は図1と実質的に同一に形成したものである。
【0042】
各相の第1のスイッチQ1a、Q1b、Q1cは各相の第3のダイオードD3a、D3b、D3cに逆方向並列に接続され、各相の第2のスイッチQ2a、Q2b、Q2cは第4のダイオードD4a、D4b、D4cに逆方向並列に接続されている。また、各相の第1のスイッチQ1a、Q1b、Q1cと第2のスイッチQ2a、Q2b、Q2cは互いに直列に接続され、且つ同一の制御信号ライン10a、10b、10cによって同時にオン制御される。図6では図1との対応関係を明確にするために3個の第3のダイオードD3a、D3b、D3c及び3個の第4のダイオードD4a、D4b、D4cが、3個の第1のスイッチQ1a、Q1b、Q1c及び3個の第2のスイッチQ2a、Q2b、Q2cと分離して個別部品として示されている。しかし、実際には、3個の第3のダイオードD3a、D3b、D3c及び3個の第4のダイオードD4a、D4b、D4cは、それぞれがIGBTから成る3個の第1のスイッチQ1a、Q1b、Q1c及び3個の第2のスイッチQ2a、Q2b、Q2cの寄生ダイオード即ち内蔵ダイオードである。勿論、第3のダイオードD3a、D3b、D3c及び第4のダイオードD4a、D4b、D4cを個別ダイオードとすること、又はIGBT以外の半導体スイッチの内蔵ダイオードとすることもできる。
【0043】
図6の第1の電力変換回路2aにおける第1及びの第2のスイッチQ1a、Q2aを同時にオン制御すると、1a−L1a−D1a−Q1a−1bの経路に電流が流れると共に、C1a−N1a−Q1a−Q2aの経路に第1のコンデンサC1aの放電電流が流れる。図6の高周波トランスTa の2次側の動作は図1のそれと同一である。図6において第1及び第2のスイッチQ1a、Q2aがオフの期間は、図5(B)及び(C)と同一の経路に電流が流れる。図6の第2及び第3の電力変換回路2b、2cの動作は図6の第1の電力変換回路2aの動作と同一である。
【0044】
実施例2によっても実施例1と同一の効果を得ることができる。また、実施例2では各相において2つのスイッチが必要になるが、各相の第3及び第4のダイオードD3a、D3b、D3c、D4a、D4b、D4cが各相の第1及び第2のスイッチQ1a、Q1b、Q1c、Q2a、Q2b、Q2cの内蔵ダイオードであるので、3相交流−直流電力変換装置の全体の寸法はさほど大きくならない。また、図6において図5(A)と同様な状態において、1a−L1a−D1a−Q1a−1bの経路で電流が流れ、第4のダイオードD4aに電流が流れない。従って、図6の回路によれば図1の回路で生じた第4のダイオードD4aの電圧降下分が発生しなくなり、損失の低減を図ることができる。
【0045】
【実施例3】
図7に示す実施例3に従う3相交流−直流電力変換装置は、3相交流電源Eと第1、第2及び第3の電力変換回路2a、2b、2cとの間の接続関係を変え、この他は図1と同一に構成したものである。第1、第2及び第3相電源Ea 、Eb 、Ec の相互接続点がグランド(共通端子)に接続され、第1、第2及び第3の電力変換回路2a、2b、2cの一方の交流入力導体5a、5b、5cは第1、第2及び第3の交流入力端子1a、1b、1cに接続され、他方の交流入力導体6a、6b、6cは中間電位点として機能する共通端子即ちグランド端子70に接続されている。従って、第1、第2及び第3の電力変換回路2a、2b、2cには第1、第2及び第3相電源E1 、E2 、E3 の電圧がそのまま入力電圧として印加される。
【0046】
図7のように電源部分の接続を変形しても実施例1と同一の効果を得ることができる。なお、図6の電源回路部分を図7と同様に変形することができる。
【0047】
【実施例4】
図8の実施例4の3相交流−直流電力変換装置は、同一容量の第1、第2及び第3の分圧用コンデンサCr 、Cs 、Ct の一端を第1、第2及び第3の交流入力端子1a、1b、1cに接続し、それぞれの他端を共通導体80に接続し、中間電位が得られる共通導体80に各相の他方の交流入力導体6a、6b、6cを接続し、この他は図1と同一に形成したものである。図8の回路では星形結線された第1、第2及び第3の分圧用コンデンサCr 、Cs 、Ct の電圧が第1、第2及び第3の電力変換回路2a、2b、2cの入力電圧となる。
【0048】
図8の実施例4によっても実施例1と同一の効果を奏することができる。なお、図6の回路の電源部分を図8と同一に変形することができる。
【0049】
【変形例】
本発明は上述の実施例に限定されるものでなく、例えば次の変形が可能なものである。
(1) スイッチQa 、Qb 、Qc 、Q1a、Q2a、Q1b、Q2b、Q1c、Q2cをトランジスタ、電界効果トランジスタ等の別の半導体スイッチ素子に置き換えることができる。
(2)制御回路4を前記特許文献1及び2等に記載されている別の制御回路に置き換えることができる。
(3)図1、図7及び図8の各相のスイッチQa 、Qb 、Qcをそれぞれ1個で形成せずに、同時にオン・オフする複数のスイッチの直列回路で形成することができる。
(4)3相分の電圧及び電流を3相個別に検出する代わりに、2相分の電圧及び電流を個別に検出し、残りの1相分を演算で求めることができる。
【図面の簡単な説明】
【図1】本発明の実施例1の3相交流−直流電力変換装置を示す回路図である。
【図2】図1の制御回路の1例を示すブロック図である。
【図3】図2の各部の状態を示す波形図である。
【図4】図2の各部の状態を示す波形図である。
【図5】図1の第1の電力変換回路の動作を説明するための回路図である。
【図6】本発明の実施例2の3相交流−直流電力変換装置を示す回路図である。
【図7】本発明の実施例3の3相交流−直流電力変換装置を示す回路図である。
【図8】本発明の実施例4の3相交流−直流電力変換装置を示す回路図である。
【符号の説明】
1a、1b、1c 第1、第2及び第3の交流入力端子
2a、2b、2c 第1、第2及び第3の電力変換回路
3a、3b 第1及び第2の直流出力端子
4 制御回路
5a、5b、5c 一方の交流入力導体
6a、6b、6c 他方の交流入力導体
7a、7b、7c 一方の直流出力導体
8a、8b、8c 他方の直流出力導体
9a、9b、9c 整流回路
Qa 、Qb 、Qc スイッチ
Ta 、Tb 、Tc 高周波トランス
L1a、L1b、L1c 第1のインダクタ
L2a、L2b 、L2c 第2のインダクタ

Claims (6)

  1. 3相交流電力を直流電力に変換するための3相交流−直流電力変換装置であって、
    3相交流電圧を供給するための第1,第2及び第3の交流入力端子(1a,1b,1c)と、
    負荷(3)に直流電圧を供給するための第1及び第2の直流出力端子(3a,3b)と、
    前記第1及び第2の交流入力端子(1a,1b)に接続された第1の対の交流入力導体(5a,6a)と前記第1及び第2の直流出力端子(3a,3b)に接続された第1の対の直流出力導体(7a,8a)とを有して前記第1の対の交流入力導体(5a,6a)間の交流電圧を直流電圧に変換する第1の電力変換回路(2a)と、
    前記第2及び第3の交流入力端子(1b,1c)に接続された第2の対の交流入力導体(5b,6b)と前記第1及び第2の直流出力端子(3a,3b)に接続された第2の対の直流出力導体(7b,8b)とを有して前記第2の対の交流入力導体(5b,6b)間の交流電圧を直流電圧に変換する第2の電力変換回路(2b)と、
    前記第3及び第1の交流入力端子(1c,1a)に接続された第3の対の交流入力導体(5c,6c)と前記第1及び第2の直流出力端子(3a,3b)に接続された第3の対の直流出力導体(7c,8c)とを有して前記第3の対の交流入力導体(5c,6c)間の交流電圧を直流電圧に変換する第3の電力変換回路(2c)とを備え、
    前記第1,第2及び第3の電力変換回路(2a,2b,2c)のそれぞれが、
    それぞれの前記対の交流入力導体に接続された対の交流端子と、整流出力用の対の直流端子と、前記対の交流端子の一方と前記対の直流端子の一方との間に接続された第1のダイオードと、前記対の直流端子の他方と前記対の交流端子の一方との間に接続された第2のダイオードと、前記対の交流端子の他方と前記対の直流端子の一方との間に接続された第3のダイオードと、前記対の直流端子の他方と前記対の交流端子の他方との間に接続された第4のダイオードとを有する整流回路と、
    前記整流回路の対の直流端子間に接続されたスイッチと、
    それぞれの前記対の交流入力導体と前記スイッチとの間の交流ライン又は直流ラインに直列に接続された第1のインダクタと、
    前記スイッチに並列に接続されたトランスの1次巻線と第1のコンデンサとの直列回路と、
    前記1次巻線に電磁結合された2次巻線と、
    前記2次巻線に直列に接続された第2のコンデンサと、
    前記2次巻線と前記第2のコンデンサとの直列回路に対して並列に接続された第2のインダクタと第5のダイオードとの直列回路と、
    前記第2のインダクタと前記第5のダイオードとの直列回路の一端と前記第1の直流出力端子との間に接続された第6のダイオードと、
    前記スイッチを前記3相交流電圧の周波数よりも高い周波数でオン・オフ制御する制御手段と
    から成ることを特徴とする3相交流−直流電力変換装置。
  2. 3相交流電力を直流電力に変換するための3相交流−直流電力変換装置であって、
    3相交流電圧を供給するための第1,第2及び第3の交流入力端子(1a,1b,1c)と、
    負荷(3)に直流電圧を供給するための第1及び第2の直流出力端子(3a,3b)と、
    前記第1及び第2の交流入力端子(1a,1b)に接続された第1の対の交流入力導体(5a,6a)と前記第1及び第2の直流出力端子(3a,3b)に接続された第1の対の直流出力導体(7a,8a)とを有して前記第1の対の交流入力導体(5a,6a)間の交流電圧を直流電圧に変換する第1の電力変換回路(2a)と、
    前記第2及び第3の交流入力端子(1b,1c)に接続された第2の対の交流入力導体(5b,6b)と前記第1及び第2の直流出力端子(3a,3b)に接続された第2の対の直流出力導体(7b,8b)とを有して前記第2の対の交流入力導体(5b,6b)間の交流電圧を直流電圧に変換する第2の電力変換回路(2b)と、
    前記第3及び第1の交流入力端子(1c,1a)に接続された第3の対の交流入力導体(5c,6c)と前記第1及び第2の直流出力端子(3a,3b)に接続された第3の対の直流出力導体(7c,8c)とを有して前記第3の対の交流入力導体(5c,6c)間の交流電圧を直流電圧に変換する第3の電力変換回路(2c)とを備え、
    前記第1,第2及び第3の電力変換回路(2a,2b,2c)のそれぞれが、それぞれの前記対の交流入力導体に接続された対の交流端子と、整流出力用の対の直流端子と、前記対の交流端子の一方と前記対の直流端子の一方との間に接続された第1のダイオードと、前記対の直流端子の他方と前記対の交流端子の一方との間に接続された第2のダイオードと、前記対の交流端子の他方と前記対の直流端子の一方との間に接続された個別の又は後記第1のスイッチに寄生の第3のダイオードと、前記対の直流端子の他方と前記対の交流端子の他方との間に接続された個別の又は後記第2のスイッチに寄生の第4のダイオードとを有する整流回路と、
    前記第3のダイオードに対して逆方向並列に接続された第1のスイッチと、
    前記第4のダイオードに対して逆方向並列に接続され且つ前記第1のスイッチに対して直列に接続された第2のスイッチと、
    それぞれの前記対の交流入力導体と前記第1及び第2のスイッチの直列回路との間の交流ライン又は直流ラインに直列に接続された第1のインダクタと、
    前記第1及び第2のスイッチの直列回路に対して並列に接続されたトランスの1次巻線と第1のコンデンサとの直列回路と、
    前記1次巻線に電磁結合された2次巻線と、
    前記2次巻線に直列に接続された第2のコンデンサと、
    前記2次巻線と前記第2のコンデンサとの直列回路に対して並列に接続された第2のインダクタと第5のダイオードとの直列回路と、
    前記第2のインダクタと前記第5のダイオードとの直列回路の一端と前記第1の直流出力端子との間に接続された第6のダイオードと、
    前記第1及び第2のスイッチを前記3相交流電圧の周波数よりも高い周波数で同時にオン・オフ制御する制御手段と
    から成ることを特徴とする3相交流−直流電力変換装置。
  3. 3相交流電力を直流電力に変換するための3相交流−直流電力変換装置であって、
    3相交流電圧を供給するための第1,第2及び第3の交流入力端子(1a,1b,1c)と、
    前記3相交流電圧の中間電位を与える共通端子(70)と、
    負荷(3)に直流電圧を供給するための第1及び第2の直流出力端子(3a,3b)と、
    前記第1の交流入力端子(1a)と前記共通端子(70)とに接続された第1の対の交流入力導体(5a,6a)と前記第1及び第2の直流出力端子(3a,3b)に接続された第1の対の直流出力導体(7a,8a)とを有して前記第1の対の交流入力導体(5a,6a)間の交流電圧を直流電圧に変換する第1の電力変換回路(2a)と、
    前記第2の交流入力端子(1b)と前記共通端子(70)とに接続された第2の対の交流入力導体(5b,6b)と前記第1及び第2の直流出力端子(3a,3b)に接続された第2の対の直流出力導体(7b,8b)とを有して前記第2の対の交流入力導体(5b,6b)間の交流電圧を直流電圧に変換する第2の電力変換回路(2b)と、
    前記第3の交流入力端子(1c)と前記共通端子(70)とに接続された第3の対の交流入力導体(5c,6c)と前記第1及び第2の直流出力端子(3a,3b)に接続された第3の対の直流出力導体(7c,8c)とを有して前記第3の対の交流入力導体(5c,6c)間の交流電圧を直流電圧に変換する第3の電力変換回路(2c)とを備え、
    前記第1,第2及び第3の電力変換回路(2a,2b,2c)のそれぞれが、それぞれの前記対の交流入力導体に接続された対の交流端子と、整流出力用の対の直流端子と、前記対の交流端子の一方と前記対の直流端子の一方との間に接続された第1のダイオードと、前記対の直流端子の他方と前記対の交流端子の一方との間に接続された第2のダイオードと、前記対の交流端子の他方と前記対の直流端子の一方との間に接続された第3のダイオードと、前記対の直流端子の他方と前記対の交流端子の他方との間に接続された第4のダイオードとを有する整流回路と、
    前記整流回路の対の直流端子間に接続されたスイッチと、
    それぞれの前記対の交流入力導体と前記スイッチとの間の交流ライン又は直流ラインに直列に接続された第1のインダクタと、
    前記スイッチに並列に接続されたトランスの1次巻線と第1のコンデンサとの直列回路と、
    前記1次巻線に電磁結合された2次巻線と、
    前記2次巻線に直列に接続された第2のコンデンサと、
    前記2次巻線と前記第2のコンデンサとの直列回路に対して並列に接続された第2のインダクタと第5のダイオードとの直列回路と、
    前記第2のインダクタと前記第5のダイオードとの直列回路の一端と前記第1の直流出力端子との間に接続された第6のダイオードと、
    前記スイッチを前記3相交流電圧の周波数よりも高い周波数でオン・オフ制御する制御手段と
    から成ることを特徴とする3相交流−直流電力変換装置。
  4. 3相交流電力を直流電力に変換するための3相交流−直流電力変換装置であって、
    3相交流電圧を供給するための第1,第2及び第3の交流入力端子(1a,1b,1c)と、
    前記3相交流電圧の中間電位を与える共通端子(70)と、
    負荷(3)に直流電圧を供給するための第1及び第2の直流出力端子(3a,3b)と、
    前記第1の交流入力端子(1a)と前記共通端子(70)とに接続された第1の対の交流入力導体(5a,6a)と前記第1及び第2の直流出力端子(3a,3b)に接続された第1の対の直流出力導体(7a,8a)とを有して前記第1の対の交流入力導体(5a,6a)間の交流電圧を直流電圧に変換する第1の電力変換回路(2a)と、
    前記第2の交流入力端子(1b)と前記共通端子(70)とに接続された第2の対の交流入力導体(5b,6b)と前記第1及び第2の直流出力端子(3a,3b)に接続された第2の対の直流出力導体(7b,8b)とを有して前記第2の対の交流入力導体(5b,6b)間の交流電圧を直流電圧に変換する第2の電力変換回路(2b)と、
    前記第3の交流入力端子(1c)と前記共通端子(70)とに接続された第3の対の交流入力導体(5c,6c)と前記第1及び第2の直流出力端子(3a,3b)に接続された第3の対の直流出力導体(7c,8c)とを有して前記第3の対の交流入力導体(5c,6c)間の交流電圧を直流電圧に変換する第3の電力変換回路(2c)とを備え、
    前記第1,第2及び第3の電力変換回路(2a,2b,2c)のそれぞれが、それぞれの前記対の交流入力導体に接続された対の交流端子と、整流出力用の対の直流端子と、前記対の交流端子の一方と前記対の直流端子の一方との間に接続された第1のダイオードと、前記対の直流端子の他方と前記対の交流端子の一方との間に接続された第2のダイオードと、前記対の交流端子の他方と前記対の直流端子の一方との間に接続された個別の又は後記第1のスイッチに寄生の第3のダイオードと、前記対の直流端子の他方と前記対の交流端子の他方との間に接続された個別の又は後記第2のスイッチに寄生の第4のダイオードとを有する整流回路と、
    前記第3のダイオードに対して逆方向並列に接続された第1のスイッチと、
    前記第4のダイオードに対して逆方向並列に接続され且つ前記第1のスイッチに対して直列に接続された第2のスイッチと、
    それぞれの前記対の交流入力導体と前記第1及び第2のスイッチの直列回路との間の交流ライン又は直流ラインに直列に接続された第1のインダクタと、
    前記第1及び第2のスイッチの直列回路に対して並列に接続されたトランスの1次巻線と第1のコンデンサとの直列回路と、
    前記1次巻線に電磁結合された2次巻線と、
    前記2次巻線に直列に接続された第2のコンデンサと、
    前記2次巻線と前記第2のコンデンサとの直列回路に対して並列に接続された第2のインダクタと第5のダイオードとの直列回路と、
    前記第2のインダクタと前記第5のダイオードとの直列回路の一端と前記第1の直流出力端子との間に接続された第6のダイオードと、
    前記第1及び第2のスイッチを前記3相交流電圧の周波数よりも高い周波数で同時にオン・オフ制御する制御手段と
    から成ることを特徴とする3相交流−直流電力変換装置。
  5. 3相交流電力を直流電力に変換するための3相交流−直流電力変換装置であって、
    3相交流電圧を供給するための第1,第2及び第3の交流入力端子(1a,1b,1c)と、
    星形結線され且つ前記第1,第2及び第3の交流入力端子(1a,1b,1c)に接続された第1,第2及び第3の分圧用コンデンサ(Cr,Cs,Ct)と、
    負荷(3)に直流電圧を供給するための第1及び第2の直流出力端子(3a,3b)と、
    前記第1の交流入力端子(1a)と前記第1,第2及び第3の分圧用コンデンサ(Cr,Cs,Ct)の共通接続導体(80)とに接続された第1の対の交流入力導体(5a,6a)と前記第1及び第2の直流出力端子(3a,3b)に接続された第1の対の直流出力導体(7a,8a)とを有して前記第1の対の交流入力導体(5a,6a)間の交流電圧を直流電圧に変換する第1の電力変換回路(2a)と、
    前記第2の交流入力端子(1b)と前記共通接続導体(80)とに接続された第2の対の交流入力導体(5b,6b)と前記第1及び第2の直流出力端子(3a,3b)に接続された第2の対の直流出力導体(7b,8b)とを有して前記第2の対の交流入力導体(5b,6b)間の交流電圧を直流電圧に変換する第2の電力変換回路(2b)と、
    前記第3の交流入力端子(1c)と前記共通接続導体(80)とに接続された第3の対の交流入力導体(5c,6c)と前記第1及び第2の直流出力端子(3a,3b)に接続された第3の対の直流出力導体(7c,8c)とを有して前記第3の対の交流入力導体(5c,6c)間の交流電圧を直流電圧に変換する第3の電力変換回路(2c)とを備え、
    前記第1,第2及び第3の電力変換回路(2a,2b,2c)のそれぞれが、それぞれの前記対の交流入力導体に接続された対の交流端子と、整流出力用の対の直流端子と、前記対の交流端子の一方と前記対の直流端子の一方との間に接続された第1のダイオードと、前記対の直流端子の他方と前記対の交流端子の一方との間に接続された第2のダイオードと、前記対の交流端子の他方と前記対の直流端子の一方との間に接続された第3のダイオードと、前記対の直流端子の他方と前記対の交流端子の他方との間に接続された第4のダイオードとを有する整流回路と、
    前記整流回路の対の直流端子間に接続されたスイッチと、
    それぞれの前記対の交流入力導体と前記スイッチとの間の交流ライン又は直流ラインに直列に接続された第1のインダクタと、
    前記スイッチに並列に接続されたトランスの1次巻線と第1のコンデンサとの直列回路と、
    前記1次巻線に電磁結合された2次巻線と、
    前記2次巻線に直列に接続された第2のコンデンサと、
    前記2次巻線と前記第2のコンデンサとの直列回路に対して並列に接続された第2のインダクタと第5のダイオードとの直列回路と、
    前記第2のインダクタと前記第5のダイオードとの直列回路の一端と前記第1の直流出力端子との間に接続された第6のダイオードと、
    前記スイッチを前記3相交流電圧の周波数よりも高い周波数でオン・オフ制御する制御手段と
    から成ることを特徴とする3相交流−直流電力変換装置。
  6. 3相交流電力を直流電力に変換するための3相交流−直流電力変換装置であって、
    3相交流電圧を供給するための第1,第2及び第3の交流入力端子(1a,1b,1c)と、
    星形結線され且つ前記第1,第2及び第3の交流入力端子(1a,1b,1c)に接続された第1,第2及び第3の分圧用コンデンサ(Cr,Cs,Ct)と、
    負荷(3)に直流電圧を供給するための第1及び第2の直流出力端子(3a,3b)と、
    前記第1の交流入力端子(1a)と前記第1,第2及び第3の分圧用コンデンサ(Cr,Cs,Ct)の共通接続導体(80)とに接続された第1の対の交流入力導体(5a,6a)と前記第1及び第2の直流出力端子(3a,3b)に接続された第1の対の直流出力導体(7a,8a)とを有して前記第1の対の交流入力導体(5a,6a)間の交流電圧を直流電圧に変換する第1の電力変換回路(2a)と、
    前記第2の交流入力端子(1b)と前記共通接続導体(80)とに接続された第2の対の交流入力導体(5b,6b)と前記第1及び第2の直流出力端子(3a,3b)に接続された第2の対の直流出力導体(7b,8b)とを有して前記第2の対の交流入力導体(5b,6b)間の交流電圧を直流電圧に変換する第2の電力変換回路(2b)と、
    前記第3の交流入力端子(1c)と前記共通接続導体(80)とに接続された第3の対の交流入力導体(5c,6c)と前記第1及び第2の直流出力端子(3a,3b)に接続された第3の対の直流出力導体(7c,8c)とを有して前記第3の対の交流入力導体(5c,6c)間の交流電圧を直流電圧に変換する第3の電力変換回路(2c)とを備え、
    前記第1,第2及び第3の電力変換回路(2a,2b,2c)のそれぞれが、それぞれの前記対の交流入力導体に接続された対の交流端子と、整流出力用の対の直流端子と、前記対の交流端子の一方と前記対の直流端子の一方との間に接続された第1のダイオードと、前記対の直流端子の他方と前記対の交流端子の一方との間に接続された第2のダイオードと、前記対の交流端子の他方と前記対の直流端子の一方との間に接続された個別の又は後記第1のスイッチに寄生の第3のダイオードと、前記対の直流端子の他方と前記対の交流端子の他方との間に接続された個別の又は後記第2のスイッチに寄生の第4のダイオードとを有する整流回路と、
    前記第3のダイオードに対して逆方向並列に接続された第1のスイッチと、
    前記第4のダイオードに対して逆方向並列に接続され且つ前記第1のスイッチに対して直列に接続された第2のスイッチと、
    それぞれの前記対の交流入力導体と前記第1及び第2のスイッチの直列回路との間の交流ライン又は直流ラインに直列に接続された第1のインダクタと、
    前記第1及び第2のスイッチの直列回路に対して並列に接続されたトランスの1次巻線と第1のコンデンサとの直列回路と、
    前記1次巻線に電磁結合された2次巻線と、
    前記2次巻線に直列に接続された第2のコンデンサと、
    前記2次巻線と前記第2のコンデンサとの直列回路に対して並列に接続された第2のインダクタと第5のダイオードとの直列回路と、
    前記第2のインダクタと前記第5のダイオードとの直列回路の一端と前記第1の直流出力端子との間に接続された第6のダイオードと、
    前記第1及び第2のスイッチを前記3相交流電圧の周波数よりも高い周波数で同時にオン・オフ制御する制御手段と
    から成ることを特徴とする3相交流−直流電力変換装置。
JP2003195819A 2003-07-11 2003-07-11 3相交流−直流電力変換装置 Pending JP2005033911A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003195819A JP2005033911A (ja) 2003-07-11 2003-07-11 3相交流−直流電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003195819A JP2005033911A (ja) 2003-07-11 2003-07-11 3相交流−直流電力変換装置

Publications (1)

Publication Number Publication Date
JP2005033911A true JP2005033911A (ja) 2005-02-03

Family

ID=34206531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003195819A Pending JP2005033911A (ja) 2003-07-11 2003-07-11 3相交流−直流電力変換装置

Country Status (1)

Country Link
JP (1) JP2005033911A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664534A (zh) * 2012-05-09 2012-09-12 哈尔滨工程大学 三相ac-ac直接频率变换器拓扑结构及其控制方法
CN103138597A (zh) * 2012-11-26 2013-06-05 哈尔滨工程大学 新型12单向开关单级交交直接变频器及其控制方法
JP2018038228A (ja) * 2016-09-02 2018-03-08 東芝三菱電機産業システム株式会社 電力変換システム
JP2018196273A (ja) * 2017-05-19 2018-12-06 Ntn株式会社 三相交流用絶縁型スイッチング電源
WO2018235455A1 (ja) * 2017-06-23 2018-12-27 Ntn株式会社 三相交流用絶縁型スイッチング電源
JP2022062337A (ja) * 2020-10-08 2022-04-20 株式会社豊田自動織機 電力変換装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664534A (zh) * 2012-05-09 2012-09-12 哈尔滨工程大学 三相ac-ac直接频率变换器拓扑结构及其控制方法
CN102664534B (zh) * 2012-05-09 2014-06-11 哈尔滨工程大学 三相ac-ac直接频率变换器拓扑结构及其控制方法
CN103138597A (zh) * 2012-11-26 2013-06-05 哈尔滨工程大学 新型12单向开关单级交交直接变频器及其控制方法
JP2018038228A (ja) * 2016-09-02 2018-03-08 東芝三菱電機産業システム株式会社 電力変換システム
JP2018196273A (ja) * 2017-05-19 2018-12-06 Ntn株式会社 三相交流用絶縁型スイッチング電源
WO2018235455A1 (ja) * 2017-06-23 2018-12-27 Ntn株式会社 三相交流用絶縁型スイッチング電源
JP2019009890A (ja) * 2017-06-23 2019-01-17 Ntn株式会社 三相交流用絶縁型スイッチング電源
JP2022062337A (ja) * 2020-10-08 2022-04-20 株式会社豊田自動織機 電力変換装置
JP7351281B2 (ja) 2020-10-08 2023-09-27 株式会社豊田自動織機 電力変換装置

Similar Documents

Publication Publication Date Title
US7289338B2 (en) Input to output isolated DC-DC converter
US6917527B2 (en) Switching power supply
JP4790826B2 (ja) 電源装置およびハードディスク装置
US7463498B1 (en) Apparatus for isolated switching power supply with coupled output inductors
US8737097B1 (en) Electronically isolated method for an auto transformer 12-pulse rectification scheme suitable for use with variable frequency drives
US8531858B2 (en) Power conversion with current sensing coupled through saturating element
US8068355B1 (en) Apparatus for isolated switching power supply with coupled output inductors
JP3393617B2 (ja) 三相正弦波入力スイッチング電源回路
JPH07118915B2 (ja) 共振型dc−dcコンバ−タ
US8971063B2 (en) Grid tied inverter, system and method including a buck-boost mode
WO2018116437A1 (ja) 電力変換装置
US11296607B2 (en) DC-DC converter
JP2011097688A (ja) 電力変換装置及び電力変換方法
US7158389B2 (en) Switching power supply circuit
JP2005033911A (ja) 3相交流−直流電力変換装置
JP6065375B2 (ja) 電力変換装置及びこれを用いた系統連系システム
JP2022080081A (ja) スイッチング電源装置、その制御装置及び制御方法
JP2967579B2 (ja) 整流装置
JPH08126322A (ja) 直流電源装置
Kim et al. Output current balancing method for three-phase interleaved LLC resonant converter employing Y-connected rectifier
JP6821493B2 (ja) 電流共振型dc−dcコンバータ
JP2021100363A (ja) スイッチング電源装置
JP3703024B2 (ja) 交直流両用双方向昇降圧変換器
WO2024090066A1 (ja) Dc/dcコンバータおよび電源装置
JP2003348834A (ja) 単相昇降圧コンバータ