JP2005033130A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2005033130A
JP2005033130A JP2003273455A JP2003273455A JP2005033130A JP 2005033130 A JP2005033130 A JP 2005033130A JP 2003273455 A JP2003273455 A JP 2003273455A JP 2003273455 A JP2003273455 A JP 2003273455A JP 2005033130 A JP2005033130 A JP 2005033130A
Authority
JP
Japan
Prior art keywords
film
electrode
semiconductor
substrate
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003273455A
Other languages
Japanese (ja)
Other versions
JP3767585B2 (en
Inventor
Ichiji Kondo
市治 近藤
Keiji Mayama
恵次 真山
Shoji Miura
昭二 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003273455A priority Critical patent/JP3767585B2/en
Publication of JP2005033130A publication Critical patent/JP2005033130A/en
Application granted granted Critical
Publication of JP3767585B2 publication Critical patent/JP3767585B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a semiconductor wafer from being warped to an utmost in manufacturing in a semiconductor chip wherein a metal electrode including an external connection Ni film is provided on an Al electrode formed on the front surface of a semiconductor substrate, and a rear electrode is provided on the rear surface of the semiconductor substrate. <P>SOLUTION: In the semiconductor chip wherein an Al electrode 11 is provided on a front surface 1a, which is an element formation surface, of a semiconductor substrate 1 and a rear electrode 4 is formed on the rear surface 1b of the semiconductor substrate 1, a metal electrode 13 configured by laminating an Ni plating layer 13a and an Au plating layer 13b successively from the side of a front surface is formed on the front surface of the Al electrode 11, the rear electrode 4 is composed of an Ni film 4b formed by physical vapor deposition, and the film stress of the Ni film 4b is three-times or more as large as the film stress of the Ni plating layer 13a in the metal electrode 13. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体基板の表面に形成されたアルミニウム電極の表面に対してはんだ付けやワイヤボンディング等が行われる外部接続用の金属電極を形成するとともに、半導体基板の裏面に裏面電極を形成してなる半導体装置に関し、例えば、IGBT(絶縁ゲート型バイポーラトランジスタ)等のパワー素子等に好適である。   The present invention forms a metal electrode for external connection that is soldered or wire bonded to the surface of an aluminum electrode formed on the surface of a semiconductor substrate, and forms a back electrode on the back surface of the semiconductor substrate. For example, the semiconductor device is suitable for a power element such as an IGBT (Insulated Gate Bipolar Transistor).

この種の半導体装置としては、例えば、IGBT等、半導体基板の素子形成面である基板表面にアルミニウム電極を形成し、基板裏面に裏面電極を形成し、表面側のアルミニウム電極に対してヒートシンク等をはんだ付けするようにしたものが提案されている(例えば、特許文献1、特許文献2参照)。   As this type of semiconductor device, for example, an IGBT, such as an IGBT, is formed with an aluminum electrode on the substrate surface, which is an element formation surface of the semiconductor substrate, a back electrode is formed on the back surface of the substrate, A soldering type has been proposed (see, for example, Patent Document 1 and Patent Document 2).

このような半導体装置の場合、フリップチップ技術のバンプ電極(例えば、特許文献3参照)を応用して、半導体基板の基板表面上において、アルミニウム電極の上に保護膜を形成し、この保護膜に開口部を形成した後、この開口部から臨むアルミニウム電極の表面上に、はんだ付け用の金属電極をメッキにより形成することが望まれる。
特開2002−110893号公報 特開2003−110064号公報 特開昭63−305532号公報
In the case of such a semiconductor device, a bump electrode of flip chip technology (for example, see Patent Document 3) is applied, and a protective film is formed on the aluminum electrode on the surface of the semiconductor substrate. After forming the opening, it is desired to form a metal electrode for soldering on the surface of the aluminum electrode facing the opening by plating.
JP 2002-110893 A JP 2003-110064 A JP-A 63-305532

本発明者らは、この種の半導体装置について試作検討を行った。図11は、本発明者らの試作品としての半導体装置の要部を示す概略断面図である。   The inventors of the present invention conducted a trial production of this type of semiconductor device. FIG. 11 is a schematic cross-sectional view showing a main part of a semiconductor device as a prototype of the present inventors.

このような半導体装置は、シリコン半導体等からなる半導体ウェハにおいて、チップ単位毎に、周知の半導体プロセス技術を用いて製造され、ダイシングカット等により最終的にチップに分断されることで形成される。   Such a semiconductor device is formed in a semiconductor wafer made of a silicon semiconductor or the like by using a well-known semiconductor process technology for each chip unit and finally divided into chips by dicing cut or the like.

すなわち、熱拡散やイオン注入等により半導体基板1の基板表面1aに素子(図示せず)を形成するとともに、アルミニウム(以下、Alという)からなるAl電極11を形成する。   That is, an element (not shown) is formed on the substrate surface 1a of the semiconductor substrate 1 by thermal diffusion, ion implantation, or the like, and an Al electrode 11 made of aluminum (hereinafter referred to as Al) is formed.

その上に、ポリイミド等からなる保護膜12を形成するとともに、この保護膜12に開口部12aを形成する。そして、この開口部12aから臨むAl電極11の表面上に、はんだ付け用の金属電極13をメッキ等により形成する。   A protective film 12 made of polyimide or the like is formed thereon, and an opening 12a is formed in the protective film 12. Then, a metal electrode 13 for soldering is formed on the surface of the Al electrode 11 facing the opening 12a by plating or the like.

ここで、金属電極13は無電解メッキを行うことにより、下側からニッケル(Ni)メッキ層13a、金(Au)メッキ層13bが積層された無電解Ni/Auメッキ膜として構成した。一方、半導体基板1の基板裏面1bには、スパッタ等の物理的気相成長法によりNi膜を含む膜からなる裏面電極4が形成される。   Here, the metal electrode 13 is configured as an electroless Ni / Au plating film in which a nickel (Ni) plating layer 13a and a gold (Au) plating layer 13b are laminated from the lower side by performing electroless plating. On the other hand, a back electrode 4 made of a film containing a Ni film is formed on the substrate back surface 1b of the semiconductor substrate 1 by a physical vapor deposition method such as sputtering.

このようなはんだ付け用の金属電極13は、マスクを用いずに無電解Ni/Auメッキにより形成することができるため、低コストであるというメリットがある。しかし、一方では、金属電極13に対してはんだ60を接合するため、金属電極13におけるNiメッキ層13aの膜厚が大きいものとなる。例えば、Niメッキ層13aの膜厚は5μm程度となる。   Since such a metal electrode 13 for soldering can be formed by electroless Ni / Au plating without using a mask, there is an advantage that the cost is low. However, on the other hand, since the solder 60 is joined to the metal electrode 13, the thickness of the Ni plating layer 13a in the metal electrode 13 is large. For example, the film thickness of the Ni plating layer 13a is about 5 μm.

これは、はんだ60を構成する金属(例えばSn)のNiメッキ層13aへの拡散が生じ、Niとはんだ構成金属との合金層が形成されることではんだ接合がなされることによる。つまり、金属電極13におけるNiメッキ層13aが薄いものであると、はんだ接合の強度が不十分となってしまう。   This is because the metal constituting the solder 60 (for example, Sn) diffuses into the Ni plating layer 13a, and the solder layer is formed by forming an alloy layer of Ni and the solder constituent metal. In other words, if the Ni plating layer 13a in the metal electrode 13 is thin, the strength of the solder joint will be insufficient.

このようなNiメッキ層13aは、膜応力が引っ張り応力であるうえに、その膜厚が大きいので、Niメッキ層13aの全応力が大きいものとなる。その結果、半導体装置の製造工程において、金属電極13の形成後に、半導体ウェハは、金属電極13側すなわち基板表面1a側が凹となり基板裏面1b側が凸となるように大きく反ることになる。   Such a Ni plating layer 13a has not only a tensile stress but also a large film thickness, so that the total stress of the Ni plating layer 13a is large. As a result, in the manufacturing process of the semiconductor device, after the formation of the metal electrode 13, the semiconductor wafer is greatly warped so that the metal electrode 13 side, that is, the substrate surface 1a side is concave and the substrate back surface 1b side is convex.

このような半導体ウェハにおける大きな反りは、本発明者らの検討では、数mm程度にも及んでおり、後工程での処理、検査に不具合を生じる。さらに、半導体ウェハをダイシングカットしてチップとした後においても、上記反りの影響が及ぶため、半導体装置の実装時等においても不具合が発生する。   Such a large warp in the semiconductor wafer reaches about several millimeters in the study by the present inventors, and causes a problem in processing and inspection in a later process. Further, even after the semiconductor wafer is diced and cut into chips, the influence of the warp is exerted, and thus a problem occurs even when the semiconductor device is mounted.

そこで本発明は上記問題に鑑み、半導体基板の基板表面に形成されたAl電極の上に外部接続用のNi膜を含む金属電極を設け、半導体基板の基板裏面に裏面電極を設けてなる半導体装置において、製造時における半導体ウェハの反りを極力抑制できるようにすることを目的とする。   In view of the above problems, the present invention provides a semiconductor device in which a metal electrode including a Ni film for external connection is provided on an Al electrode formed on a substrate surface of a semiconductor substrate, and a back electrode is provided on the back surface of the semiconductor substrate. It is an object of the present invention to make it possible to suppress the warpage of the semiconductor wafer during manufacturing as much as possible.

上記目的を達成するため、鋭意検討した結果、裏面電極にNi膜を用いるようにし、この基板表面のNi膜と基板裏面のNi膜との膜応力のバランスを考慮すれば、半導体ウェハの反りを従来に比べて大幅に低減できることを実験的に見いだした。   In order to achieve the above object, as a result of intensive studies, a Ni film is used for the back electrode, and if the balance of the film stress between the Ni film on the substrate surface and the Ni film on the substrate back surface is taken into account, the warpage of the semiconductor wafer can be reduced. We have found experimentally that it can be significantly reduced compared to the prior art.

本発明者らの検討によれば、半導体装置の製造工程において、汎用装置を用いた場合には、半導体ウェハの反りは1mm以下に抑えることが望ましい。   According to the study by the present inventors, when a general-purpose device is used in the semiconductor device manufacturing process, it is desirable to suppress the warpage of the semiconductor wafer to 1 mm or less.

また、本発明者らが、半導体ウェハの反りに対応した治具、すなわち反り対応の専用装置を作製し、この専用装置を用いて適切に半導体装置の製造を行うようにした場合であっても、適切に対応可能な半導体ウェハの反りの大きさは、せいぜい3mm以下である。   Further, even when the present inventors have produced a jig corresponding to warpage of a semiconductor wafer, that is, a dedicated device for warping, and appropriately manufactured a semiconductor device using this dedicated device. The warp size of a semiconductor wafer that can be appropriately handled is at most 3 mm or less.

つまり、半導体ウェハの反りは最悪でも3mm以下程度に抑えることが望ましい。そして、製造時における半導体ウェハの反りを3mm以下に抑えることを指標として、実験検討した結果、当該指標を満足するような半導体基板の基板表面のNi膜の膜応力と基板裏面のNi膜の膜応力との関係を実験的に見出した。その知見に基づいて本発明が創出されたのである。   That is, it is desirable to suppress the warpage of the semiconductor wafer to about 3 mm or less at the worst. Then, as a result of conducting an experimental study with an index of suppressing the warpage of the semiconductor wafer during manufacturing to 3 mm or less, the film stress of the Ni film on the substrate surface of the semiconductor substrate and the film of the Ni film on the back surface of the substrate satisfying the index. The relationship with stress was found experimentally. The present invention has been created based on this knowledge.

すなわち、請求項1に記載の発明では、半導体基板(1)における素子が形成された面である基板表面(1a)にAlからなるAl電極(11)を備え、前記半導体基板における前記基板表面とは反対側の基板裏面(1b)に裏面電極(4)を備えてなる半導体装置において、前記Al電極の表面には、メッキ形成されたNiメッキ層(13a)を含む外部接続用の金属電極(13)が形成されており、前記裏面電極は物理的気相成長法により形成されたNi膜(4b)を含み、前記Ni膜の膜応力が前記金属電極における前記Niメッキ層の膜応力の3倍以上であることを特徴とする。   That is, according to the first aspect of the present invention, an Al electrode (11) made of Al is provided on a substrate surface (1a) which is a surface on which an element is formed in the semiconductor substrate (1), and the substrate surface in the semiconductor substrate is In the semiconductor device having the back electrode (4) on the opposite substrate back surface (1b), an external connection metal electrode including a plated Ni plating layer (13a) is formed on the surface of the Al electrode. 13), the back electrode includes a Ni film (4b) formed by physical vapor deposition, and the film stress of the Ni film is 3 of the film stress of the Ni plating layer in the metal electrode. It is characterized by being more than double.

ここで、膜応力としては、一般に知られているように、内部応力(単位:PaまたはN/m2)と、この内部応力に膜の膜厚を乗じた全応力(単位:N/m)とがあるが、本発明では、膜応力とは、内部応力のことである。 Here, as generally known, the film stress is an internal stress (unit: Pa or N / m 2 ) and a total stress (unit: N / m) obtained by multiplying the internal stress by the film thickness of the film. However, in the present invention, the film stress is an internal stress.

このように、裏面電極(4)を物理的気相成長法により形成されたNi膜(4b)からなるものとし、当該Ni膜の膜応力を金属電極(13)におけるNiメッキ層(13a)の膜応力の3倍以上とすれば、製造時における半導体ウェハ(100)の反りを3mm以下に抑えることができる(図8参照)。   As described above, the back electrode (4) is made of the Ni film (4b) formed by physical vapor deposition, and the film stress of the Ni film is measured on the Ni plating layer (13a) of the metal electrode (13). If the film stress is three times or more, the warp of the semiconductor wafer (100) during manufacturing can be suppressed to 3 mm or less (see FIG. 8).

よって、本発明によれば、従来に比べて製造時における半導体ウェハ(100)の反りを極力抑制することができる。   Therefore, according to this invention, the curvature of the semiconductor wafer (100) at the time of manufacture can be suppressed as much as possible compared with the past.

ここで、請求項2に記載の発明のように、裏面電極(4)のNi膜(4b)の膜応力を2.7×108Pa以上とし、金属電極(13)におけるNiメッキ層(13a)の膜応力を8.9×107Pa以下とすることができる。 Here, as in the invention described in claim 2, the film stress of the Ni film (4b) of the back electrode (4) is set to 2.7 × 10 8 Pa or more, and the Ni plating layer (13a) in the metal electrode (13) is formed. ) Film stress of 8.9 × 10 7 Pa or less.

それによれば、裏面電極(4)のNi膜(4b)の膜応力を金属電極(13)におけるNiメッキ層(13a)の膜応力の3倍以上とすることを、適切に実現することができる。   According to this, it is possible to appropriately realize the film stress of the Ni film (4b) of the back electrode (4) to be three times or more of the film stress of the Ni plating layer (13a) of the metal electrode (13). .

請求項3に記載の発明では、請求項1または2に記載の半導体装置において、前記半導体基板(1)の厚さが200μm以下であることを特徴とする。   According to a third aspect of the present invention, in the semiconductor device according to the first or second aspect, the thickness of the semiconductor substrate (1) is 200 μm or less.

このように、半導体基板(1)の厚さすなわち半導体ウェハ(100)の厚さが200μm以下と薄い場合、半導体ウェハの反りが生じやすい。そのような場合に対して、請求項1に記載の手段を採用することは、効果的である。   Thus, when the thickness of the semiconductor substrate (1), that is, the thickness of the semiconductor wafer (100) is as thin as 200 μm or less, the warp of the semiconductor wafer is likely to occur. In such a case, it is effective to adopt the means described in claim 1.

請求項4に記載の発明では、請求項1〜請求項3に記載の半導体装置において、前記半導体基板(1)の前記基板表面(1a)の全面積に対する前記Al電極(11)の占める占有面積の比率が30%以上であることを特徴とする。   According to a fourth aspect of the present invention, in the semiconductor device according to the first to third aspects, the Al electrode (11) occupies the entire area of the substrate surface (1a) of the semiconductor substrate (1). The ratio is 30% or more.

このように、半導体基板(1)の基板表面(1a)全域に対するAl電極(11)の占有率が30%以上である場合、半導体基板の基板表面において、Niメッキ層(13a)もその占有率に近い比率で多く存在することになり、半導体ウェハ(100)の反りが大きくなりやすい。そのような場合に対して、請求項1に記載の手段を採用することは、効果的である。   Thus, when the occupation rate of the Al electrode (11) over the entire substrate surface (1a) of the semiconductor substrate (1) is 30% or more, the Ni plating layer (13a) is also occupied on the substrate surface of the semiconductor substrate. Therefore, the warpage of the semiconductor wafer (100) tends to increase. In such a case, it is effective to adopt the means described in claim 1.

また、請求項5に記載の発明では、請求項1ないし4のいずれか一つに記載の半導体装置において、前記金属電極(13)上にはSnを主成分とするはんだが接続されるものであり、前記ニッケルメッキ層(13a)の膜厚は少なくとも5μm程度以上に調整されていることを特徴としている。   According to a fifth aspect of the present invention, in the semiconductor device according to any one of the first to fourth aspects, a solder containing Sn as a main component is connected to the metal electrode (13). The thickness of the nickel plating layer (13a) is adjusted to at least about 5 μm or more.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。   In addition, the code | symbol in the bracket | parenthesis of each said means is an example which shows a corresponding relationship with the specific means as described in embodiment mentioned later.

以下、本発明を図に示す実施形態について説明する。図1は、本発明の実施形態に係る半導体装置10を用いた実装構造を示す概略断面図である。また、図2は、本実施形態の要部拡大図であって、(a)は図1中の半導体装置10におけるエミッタ電極2の近傍部の拡大断面図、(b)は図1中の半導体装置10におけるコレクタ電極4の一部を拡大して示す概略断面図である。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments shown in the drawings will be described below. FIG. 1 is a schematic cross-sectional view showing a mounting structure using a semiconductor device 10 according to an embodiment of the present invention. 2 is an enlarged view of the main part of the present embodiment, where (a) is an enlarged cross-sectional view of the vicinity of the emitter electrode 2 in the semiconductor device 10 in FIG. 1, and (b) is the semiconductor in FIG. FIG. 2 is a schematic cross-sectional view showing a part of a collector electrode 4 in the device 10 in an enlarged manner.

図1に示すように、本実施形態では、半導体装置としては、IGBT(絶縁ゲート型バイポーラトランジスタの略称)が形成された半導体チップ10を採用したものとしている。   As shown in FIG. 1, in this embodiment, a semiconductor chip 10 on which an IGBT (abbreviation of an insulated gate bipolar transistor) is formed is used as a semiconductor device.

そして、この半導体チップ10の実装形態としては、半導体チップ10をその両面にはんだ付けされたヒートシンク20、30、40によって挟み込み、さらに樹脂50にてモールドした構成としている。以下、この実装形態を両面はんだ付けモールド構造ということにする。   As a mounting form of the semiconductor chip 10, the semiconductor chip 10 is sandwiched between the heat sinks 20, 30, and 40 soldered to both surfaces and further molded with the resin 50. Hereinafter, this mounting form is referred to as a double-sided soldering mold structure.

半導体チップ10は、シリコン半導体等の半導体基板1を本体として構成されている。この半導体基板1の厚みは例えば70μm〜400μm程度のものにすることができる。なお、半導体基板1の厚さは、半導体ウェハの状態で研削等を行うことにより調整できる。   The semiconductor chip 10 is configured with a semiconductor substrate 1 such as a silicon semiconductor as a main body. The thickness of the semiconductor substrate 1 can be, for example, about 70 μm to 400 μm. Note that the thickness of the semiconductor substrate 1 can be adjusted by grinding or the like in the state of the semiconductor wafer.

以下、半導体チップ10すなわち半導体基板1の外表面のうち、図1中の上面側に相当する素子形成面側の面を基板表面1aといい、一方、半導体チップ10すなわち半導体基板1の外表面のうち、上記基板表面1aとは反対側の面(図1中の下面側に相当)を基板裏面1bという。   Hereinafter, of the outer surfaces of the semiconductor chip 10, that is, the semiconductor substrate 1, the surface on the element forming surface side corresponding to the upper surface side in FIG. Of these, the surface opposite to the substrate surface 1a (corresponding to the lower surface side in FIG. 1) is referred to as substrate back surface 1b.

なお、図示しないが、半導体基板1の基板表面1a側には、熱拡散やイオン注入等により不純物拡散層が形成されることにより、トランジスタ等の素子が形成されている。   Although not shown, an element such as a transistor is formed on the substrate surface 1a side of the semiconductor substrate 1 by forming an impurity diffusion layer by thermal diffusion, ion implantation, or the like.

そして、半導体チップ10の基板表面1aにはエミッタ電極2およびゲート電極3が形成されており、基板表面1aとは反対側の基板裏面1bには裏面電極としてのコレクタ電極4が形成されている。   An emitter electrode 2 and a gate electrode 3 are formed on the substrate surface 1a of the semiconductor chip 10, and a collector electrode 4 as a back electrode is formed on the substrate back surface 1b opposite to the substrate surface 1a.

ここで、エミッタ電極2には、はんだ60を介して第1のヒートシンク20が接合されており、さらに、第1のヒートシンク20の外側には、はんだ60を介して第2のヒートシンク30が接合されている。   Here, the first heat sink 20 is joined to the emitter electrode 2 via the solder 60, and the second heat sink 30 is joined to the outside of the first heat sink 20 via the solder 60. ing.

また、ゲート電極3にはボンディングワイヤ70が接続されており、このボンディングワイヤ70を介して、ゲート電極3と半導体チップ10の周辺に設けられた外部接続用のリード80とが結線され電気的に接続されている。   A bonding wire 70 is connected to the gate electrode 3, and the gate electrode 3 and an external connection lead 80 provided around the semiconductor chip 10 are connected via the bonding wire 70 to be electrically connected. It is connected.

また、コレクタ電極4は、はんだ60を介して第3のヒートシンク40と接合されている。ここで、はんだ60としては、鉛フリーはんだが用いられるが、例えば、鉛フリーはんだとしては、Sn−Ag−Cu系はんだやSn−Ni−Cu系はんだ等、Snを主成分とするはんだを採用することができる。   Further, the collector electrode 4 is joined to the third heat sink 40 via the solder 60. Here, lead-free solder is used as the solder 60. For example, Sn-Ag-Cu solder or Sn-Ni-Cu solder such as Sn-Ag-Cu solder is used as the lead-free solder. can do.

また、ヒートシンク20、30、40は銅(Cu)等の熱伝導性に優れた材料からなるものである。ボンディングワイヤ70は、一般的なAlや金(Au)等からなるワイヤをワイヤボンディング法により形成したものである。   The heat sinks 20, 30, and 40 are made of a material having excellent thermal conductivity such as copper (Cu). The bonding wire 70 is formed by forming a wire made of general Al, gold (Au), or the like by a wire bonding method.

ここで、エミッタ電極2およびゲート電極3の詳細な構成は図2(a)に示される。図2(a)はエミッタ電極2を表しているが、ゲート電極3についても、接続相手がはんだ60とボンディングワイヤ70との違いはあるものの、当該エミッタ電極2と同様の構成となっている。   Here, the detailed structure of the emitter electrode 2 and the gate electrode 3 is shown by Fig.2 (a). Although FIG. 2A shows the emitter electrode 2, the gate electrode 3 has the same configuration as the emitter electrode 2, although the connection partner is a solder 60 and a bonding wire 70.

図2(a)に示すように、半導体基板1の基板表面1a上に、AlからなるAl電極11が形成されている。Al電極11は、蒸着やスパッタ等の物理的気相成長法(PVD法)により形成されたAlの膜であり、例えば、膜厚は5μm程度のものとすることができる。   As shown in FIG. 2A, an Al electrode 11 made of Al is formed on the substrate surface 1 a of the semiconductor substrate 1. The Al electrode 11 is an Al film formed by physical vapor deposition (PVD method) such as vapor deposition or sputtering. For example, the film thickness can be about 5 μm.

このAl電極11の上には、電気絶縁性材料からなる保護膜12が形成されている。この保護膜12は、例えばポリイミド系樹脂等の電気絶縁性材料を用いたスピンコート法により成膜することができる。   A protective film 12 made of an electrically insulating material is formed on the Al electrode 11. The protective film 12 can be formed by a spin coating method using an electrically insulating material such as a polyimide resin.

また、この保護膜12には、Al電極11の表面を開口させる開口部12aが形成されている。この開口部12aは、例えばフォトリソグラフ技術を用いたエッチングを行うことにより形成することができる。   In addition, an opening 12 a that opens the surface of the Al electrode 11 is formed in the protective film 12. The opening 12a can be formed, for example, by performing etching using a photolithography technique.

そして、開口部12aから臨むAl電極11の表面上には、金属電極13が形成されている。この金属電極13は外部接続用の電極であって、エミッタ電極2においてははんだ付け用のものとして構成され、ゲート電極3においてはワイヤボンディング用のものとして構成されている。   A metal electrode 13 is formed on the surface of the Al electrode 11 facing the opening 12a. The metal electrode 13 is an electrode for external connection. The emitter electrode 2 is configured for soldering, and the gate electrode 3 is configured for wire bonding.

本実施形態では、金属電極13は、Al電極11の表面側からNiメッキ層13a、Auメッキ層13bが順次無電解メッキにより形成され積層されてなる膜すなわち無電解Ni/Auメッキ膜としている。メッキ形成時の各膜厚は、例えば、Niメッキ層13aは、少なくとも5μm程度にすることができ、Auメッキ層13bは、0.1μm程度にすることができる。   In this embodiment, the metal electrode 13 is a film in which a Ni plating layer 13a and an Au plating layer 13b are sequentially formed from the surface side of the Al electrode 11 by electroless plating, that is, an electroless Ni / Au plating film. For example, the Ni plating layer 13a can have a thickness of about 5 μm and the Au plating layer 13b can have a thickness of about 0.1 μm.

このように、本実施形態では、エミッタ電極2およびゲート電極3は、Al電極11と無電解Ni/Auメッキ膜である金属電極13との積層膜として構成されたものとなっている。   Thus, in this embodiment, the emitter electrode 2 and the gate electrode 3 are comprised as a laminated film of the Al electrode 11 and the metal electrode 13 which is an electroless Ni / Au plating film.

また、図1において、半導体基板1の基板裏面1bに形成され第3のヒートシンク40とはんだ付けされているコレクタ電極4は、裏面電極として構成されるものであって、基板裏面1bの略全面にスパッタや蒸着等の物理的気相成長法(PVD法)により形成されたNi膜からなる。   Further, in FIG. 1, the collector electrode 4 formed on the substrate back surface 1b of the semiconductor substrate 1 and soldered to the third heat sink 40 is configured as a back surface electrode, and is formed on the substantially entire surface of the substrate back surface 1b. It consists of a Ni film formed by a physical vapor deposition method (PVD method) such as sputtering or vapor deposition.

ここで、コレクタ電極4がNi膜からなることとは、コレクタ電極4がNi膜のみからなるものでもよいし、Ni膜と他の膜との積層膜からなるものでもよいことを意味している。   Here, the collector electrode 4 being made of a Ni film means that the collector electrode 4 may be made of only a Ni film or a laminated film of a Ni film and another film. .

図2(b)では、上記図1に示す半導体チップ10において本例のコレクタ電極4の一部が拡大して示されている。本例では、半導体基板1の基板裏面1bにはスパッタにより成膜されたAl膜5が設けられており、コレクタ電極4は、このAl膜5の表面に形成されている。   FIG. 2B shows an enlarged part of the collector electrode 4 of the present example in the semiconductor chip 10 shown in FIG. In this example, an Al film 5 formed by sputtering is provided on the substrate back surface 1 b of the semiconductor substrate 1, and the collector electrode 4 is formed on the surface of the Al film 5.

具体的には、本例の裏面電極は、基板裏面1b側から順次、Al(アルミ)膜5、コレクタ電極4を構成するTi(チタン)膜4a、Ni膜4b、Au膜4cが、各々スパッタにより積層形成されたAl/Ti/Ni/Au膜としている。   Specifically, the back electrode of this example is formed by sequentially forming an Al (aluminum) film 5 and a Ti (titanium) film 4a, a Ni film 4b, and an Au film 4c constituting the collector electrode 4 from the substrate back surface 1b side. Thus, an Al / Ti / Ni / Au film is formed by lamination.

これら裏面電極における各膜の膜厚は、形成時において、例えば、Al(アルミ)膜5は200〜250nm程度、Ti(チタン)膜4aは200〜250nm程度、Ni膜4bは550〜680nm程度、Au膜4cは100〜120nm程度の膜厚とすることができる。   The film thickness of each film on these back electrodes is, for example, about 200 to 250 nm for the Al (aluminum) film 5, about 200 to 250 nm for the Ti (titanium) film 4 and about 550 to 680 nm for the Ni film 4b. The Au film 4c can have a thickness of about 100 to 120 nm.

本実施形態では、このように基板表面1a側の金属電極13および裏面電極としてのコレクタ電極4において、ともにNi膜を構成要素としている。   In this embodiment, both the metal electrode 13 on the substrate surface 1a side and the collector electrode 4 serving as the back electrode use Ni films as constituent elements.

そして、ここにおいて、裏面電極であるコレクタ電極4のNi膜4bの膜応力を金属電極13におけるNiメッキ層13aの膜応力の3倍以上としている。   Here, the film stress of the Ni film 4 b of the collector electrode 4, which is the back electrode, is set to three times or more of the film stress of the Ni plating layer 13 a in the metal electrode 13.

ここで、膜応力としては、一般に知られているように、内部応力(単位:PaまたはN/m2)と、この内部応力に膜の膜厚を乗じた全応力(単位:N/m)とがあるが、本実施形態では、膜応力とは、内部応力のことである。 Here, as generally known, the film stress is an internal stress (unit: Pa or N / m 2 ) and a total stress (unit: N / m) obtained by multiplying the internal stress by the film thickness of the film. In this embodiment, the film stress is an internal stress.

そして、この膜応力は周知の方法で求められる。すなわち、測定すべき膜を例えば半導体ウェハの一面に形成し、その半導体ウェハの反りを求め、この求められた反りからストーニーの式を用いて容易に算出することができる。なお、半導体ウェハ100の反った状態およびその反りtは、図3に示される。   And this film | membrane stress is calculated | required by a known method. That is, for example, a film to be measured can be formed on one surface of a semiconductor wafer, the warpage of the semiconductor wafer can be obtained, and the calculated warpage can be easily calculated using the Stony equation. The warped state of the semiconductor wafer 100 and the warp t are shown in FIG.

具体的には、コレクタ電極4のNi膜4bの膜応力を2.7×108Pa以上とし、金属電極13におけるNiメッキ層13aの膜応力を8.9×107Pa以下とすることで、上記膜応力の関係が適切に実現される。 Specifically, the film stress of the Ni film 4b of the collector electrode 4 is set to 2.7 × 10 8 Pa or more, and the film stress of the Ni plating layer 13a in the metal electrode 13 is set to 8.9 × 10 7 Pa or less. The relationship of the film stress is appropriately realized.

ここで、Niメッキ層13aの膜応力を変えることは、例えば、メッキに用いる添加剤の量を調整することで容易に可能である。また、コレクタ電極4のNi膜4bの膜応力は、その膜密度を変えることで可能である。そして、コレクタ電極4におけるNi膜4bの膜密度を変えることは、例えばスパッタにおけるアルゴン圧を変えることで容易に可能である。   Here, it is possible to easily change the film stress of the Ni plating layer 13a by adjusting the amount of the additive used for plating, for example. The film stress of the Ni film 4b of the collector electrode 4 can be changed by changing the film density. The film density of the Ni film 4b in the collector electrode 4 can be easily changed, for example, by changing the argon pressure in sputtering.

また、半導体チップ10においては、基板表面1a側の電極2、3は、パターニングされた形状であるが、基板裏面1b側のコレクタ電極4は、基板裏面1bのほぼ全域に形成されている。   In the semiconductor chip 10, the electrodes 2 and 3 on the substrate surface 1 a side have a patterned shape, but the collector electrode 4 on the substrate back surface 1 b side is formed almost over the entire substrate back surface 1 b.

図4は、半導体チップ10における基板表面1a側からみたときのエミッタ電極2およびゲート電極3におけるAl電極11の平面パターンの一例を示す平面図であり、Al電極11の表面には便宜上ハッチングが施してある。ここで、本実施形態では、半導体基板1の基板表面1aの全面積に対するAl電極11の占める占有面積の比率が30%以上80%以下程度となっている。   FIG. 4 is a plan view showing an example of a planar pattern of the Al electrode 11 in the emitter electrode 2 and the gate electrode 3 when viewed from the substrate surface 1a side in the semiconductor chip 10. The surface of the Al electrode 11 is hatched for convenience. It is. Here, in the present embodiment, the ratio of the occupied area of the Al electrode 11 to the total area of the substrate surface 1a of the semiconductor substrate 1 is about 30% to 80%.

また、上記図1において、樹脂50は第2のヒートシンク30と第3のヒートシンク40との間に充填され、当該ヒートシンク30、40間に位置する構成部品を封止している。   In FIG. 1, the resin 50 is filled between the second heat sink 30 and the third heat sink 40 to seal the components located between the heat sinks 30 and 40.

ここで、リード80については、ボンディングワイヤ70との接続部が樹脂50にて封止されている。このような樹脂50としてはエポキシ系樹脂等、通常のモールド材料を採用することができる。   Here, with respect to the lead 80, the connection portion with the bonding wire 70 is sealed with the resin 50. As such a resin 50, a normal molding material such as an epoxy resin can be employed.

このようにして、本実施形態における半導体チップ10の実装構造が構成されている。この実装構造では、半導体チップ10からの発熱を熱伝導性にも優れたはんだ60を介して各ヒートシンク20、30、40に伝え、放熱を行うことができるようになっている。つまり、本実施形態では、半導体チップ10の表裏両面1a、1bからの放熱が可能となっている。   Thus, the mounting structure of the semiconductor chip 10 in this embodiment is configured. In this mounting structure, heat generated from the semiconductor chip 10 can be transmitted to the heat sinks 20, 30, 40 via the solder 60 having excellent thermal conductivity so that heat can be dissipated. That is, in the present embodiment, heat can be radiated from the front and back surfaces 1 a and 1 b of the semiconductor chip 10.

また、各ヒートシンク20、30、40は半導体チップ10との電気的な経路となっている。つまり、第1および第2のヒートシンク20、30を介して半導体チップ10のエミッタ電極2の導通が図られ、第3のヒートシンク40を介して半導体チップ10のコレクタ電極4の導通が図られるようになっている。   Each heat sink 20, 30, 40 is an electrical path to the semiconductor chip 10. That is, the emitter electrode 2 of the semiconductor chip 10 is conducted through the first and second heat sinks 20 and 30 and the collector electrode 4 of the semiconductor chip 10 is conducted through the third heat sink 40. It has become.

次に、半導体チップ10の製造方法および製造された半導体チップ10の実装方法について、図5および図6も参照して述べる。   Next, a method for manufacturing the semiconductor chip 10 and a method for mounting the manufactured semiconductor chip 10 will be described with reference to FIGS.

図5は、本製造方法に用いる半導体ウェハ100の概略平面図であり、ダイシングライン(スクライブライン)によって多数のチップ単位Uが区画されている。図6は、半導体チップ10の製造方法を示す工程図であり、半導体ウェハ100の概略断面図として示してある。   FIG. 5 is a schematic plan view of the semiconductor wafer 100 used in this manufacturing method, and a large number of chip units U are partitioned by dicing lines (scribe lines). FIG. 6 is a process diagram showing a method for manufacturing the semiconductor chip 10, and is shown as a schematic cross-sectional view of the semiconductor wafer 100.

まず、図5、図6(a)に示すように、半導体ウェハ100を用意する。そして、図示しないが、この半導体ウェハ100の表面100aにはチップ単位毎に注入や拡散等によりトランジスタ等の素子が形成されている。   First, as shown in FIGS. 5 and 6A, a semiconductor wafer 100 is prepared. Although not shown, elements such as transistors are formed on the surface 100a of the semiconductor wafer 100 by injection, diffusion, or the like for each chip.

次に、半導体ウェハ100の表面100aにスパッタやフォトリソグラフ技術等を用いてAl電極11を形成し(図6(b)参照)、Al電極11の上に保護膜12をスピンコート法等を用いて形成し、フォトエッチング等により保護膜12に開口部12aを形成する(図6(c)参照)。   Next, an Al electrode 11 is formed on the surface 100a of the semiconductor wafer 100 using sputtering or photolithography technology (see FIG. 6B), and a protective film 12 is formed on the Al electrode 11 using a spin coating method or the like. An opening 12a is formed in the protective film 12 by photoetching or the like (see FIG. 6C).

次に、開口部12aから臨むAl電極11の表面に、無電解メッキにより無電解Ni/Auメッキ膜としての金属膜13を形成する(図6(d)参照)。このようにして、Al電極11および金属電極13より構成されるエミッタ電極2およびゲート電極3ができあがる。   Next, a metal film 13 as an electroless Ni / Au plating film is formed by electroless plating on the surface of the Al electrode 11 facing the opening 12a (see FIG. 6D). In this way, the emitter electrode 2 and the gate electrode 3 composed of the Al electrode 11 and the metal electrode 13 are completed.

次に、半導体ウェハ100をその裏面側より研削してウェハ厚を調整した後、の裏面100bに、スパッタによりAl膜5を成膜し、さらに、Ti膜4a、Ni膜4b、Au膜4cを順次成膜する。   Next, after the semiconductor wafer 100 is ground from the back surface side to adjust the wafer thickness, the Al film 5 is formed on the back surface 100b by sputtering, and the Ti film 4a, Ni film 4b, and Au film 4c are further formed. Films are sequentially formed.

こうして、裏面電極としてのコレクタ電極4ができあがる(図6(e)参照)。しかる後、ダイシングカットを行い、半導体ウェハ100をチップ単位毎に分断することにより、半導体装置としての半導体チップ10ができあがる。   Thus, the collector electrode 4 as the back electrode is completed (see FIG. 6E). Thereafter, dicing cut is performed and the semiconductor wafer 100 is divided into chip units, whereby the semiconductor chip 10 as a semiconductor device is completed.

この半導体チップ10の実装方法は次の通りである。   The mounting method of the semiconductor chip 10 is as follows.

半導体チップ10における各電極2〜4の表面にはんだ60を配設する。そして、半導体チップ10に対してはんだ60を介して第1および第3のヒートシンク20、40を接合し、ワイヤボンディングを行って半導体チップ10のゲート電極3とリード80とをボンディングワイヤ70により電気的に接続する。   Solder 60 is disposed on the surfaces of the electrodes 2 to 4 in the semiconductor chip 10. Then, the first and third heat sinks 20 and 40 are joined to the semiconductor chip 10 via the solder 60, and wire bonding is performed to electrically connect the gate electrode 3 and the lead 80 of the semiconductor chip 10 with the bonding wire 70. Connect to.

その後、第1のヒートシンク20の外側に第2のヒートシンク30をはんだ60を介して接合する。続いて、樹脂50によるモールドを行う。こうして、上記図1に示す実装構造が完成する。   Thereafter, the second heat sink 30 is joined to the outside of the first heat sink 20 via the solder 60. Subsequently, molding with the resin 50 is performed. Thus, the mounting structure shown in FIG. 1 is completed.

なお、この実装時のはんだ溶融等の熱履歴により、表面側、裏面側の各電極において金属膜相互間および金属膜とはんだとの間で合金層が生成される。   Note that an alloy layer is generated between the metal films and between the metal film and the solder in each electrode on the front surface side and the back surface side due to the thermal history such as solder melting at the time of mounting.

ところで、本実施形態の半導体チップ10においては、裏面電極であるコレクタ電極4をPVD法により形成されたNi膜4bからなるものとし、当該Ni膜4bの膜応力を、基板表面4a側の金属電極13におけるNiメッキ層13aの膜応力の3倍以上としている。このようにした根拠について述べる。   By the way, in the semiconductor chip 10 of the present embodiment, the collector electrode 4 as the back electrode is made of the Ni film 4b formed by the PVD method, and the film stress of the Ni film 4b is applied to the metal electrode on the substrate surface 4a side. 13 or more than the film stress of the Ni plating layer 13a. The basis for this will be described.

図7は、Ni膜応力比と半導体ウェハ100の反り(単位:mm)との関係を調べた結果を示す図である。   FIG. 7 is a diagram showing the results of examining the relationship between the Ni film stress ratio and the warpage (unit: mm) of the semiconductor wafer 100.

ここで、図7において、Ni膜応力比は、「裏面Ni膜応力」すなわち裏面電極であるコレクタ電極4のNi膜4bの膜応力を、「表面Ni膜応力」すなわち基板表面1a側の金属電極13におけるNiメッキ層13aの膜応力で割った比(裏面膜応力/表面Ni膜応力)である。   Here, in FIG. 7, the Ni film stress ratio is the “back Ni film stress”, that is, the film stress of the Ni film 4b of the collector electrode 4 which is the back electrode, and the “surface Ni film stress”, ie, the metal electrode on the substrate surface 1a side. 13 is a ratio (back surface film stress / front surface Ni film stress) divided by the film stress of the Ni plating layer 13a.

また、半導体ウェハ100の反りについては、上記図6(e)に示すようにエミッタ電極2、ゲート電極3、コレクタ電極4を表裏両面に形成した半導体ウェハ100において、上記図3に示す反りtを求めたものである。   As for the warpage of the semiconductor wafer 100, the warp t shown in FIG. 3 is applied to the semiconductor wafer 100 in which the emitter electrode 2, the gate electrode 3, and the collector electrode 4 are formed on both the front and back surfaces as shown in FIG. It is what I have sought.

ここで、半導体ウェハ100は、図3に示すように、エミッタ、ゲート電極2、3が形成されている表面100aが凹、コレクタ電極4が形成されている裏面100bが凸となるように反る。   Here, as shown in FIG. 3, the semiconductor wafer 100 warps so that the front surface 100a on which the emitter and gate electrodes 2 and 3 are formed is concave and the back surface 100b on which the collector electrode 4 is formed is convex. .

この図7においては、半導体ウェハ100は、サイズが直径6インチ、厚さが70μm〜400μmのものを用いた。また、チップ単位すなわち上記半導体チップ10でみた場合、半導体基板1の基板表面1aの全面積に対するAl電極11の占める占有面積の比率は、30%以上80%以下程度である。   In FIG. 7, a semiconductor wafer 100 having a size of 6 inches in diameter and a thickness of 70 μm to 400 μm was used. Further, when viewed in chip units, that is, the semiconductor chip 10, the ratio of the occupied area of the Al electrode 11 to the total area of the substrate surface 1a of the semiconductor substrate 1 is about 30% to 80%.

さらに、この図7に関する半導体ウェハ100においては、当該ウェハ100の表面100aに形成した金属電極13のうちNiメッキ層13aの厚さは5μm程度、Auメッキ層13bの厚さは0.1μm程度とし、一方、裏面100bに形成したAl膜5を200nm程度、コレクタ電極4のうちTi膜4aについては200nm程度、Ni膜4bについては550nm程度、Au膜4cについては100nm程度の膜厚とした。   Further, in the semiconductor wafer 100 related to FIG. 7, the Ni plating layer 13a has a thickness of about 5 μm and the Au plating layer 13b has a thickness of about 0.1 μm among the metal electrodes 13 formed on the surface 100a of the wafer 100. On the other hand, the Al film 5 formed on the back surface 100b has a thickness of about 200 nm, and the collector electrode 4 has a thickness of about 200 nm for the Ti film 4a, about 550 nm for the Ni film 4b, and about 100 nm for the Au film 4c.

このような半導体ウェハ100において、Ni膜応力比の調整は、表面Ni膜応力および裏面Ni膜応力を変えることで行った。上述したように、表面Ni膜応力すなわちNiメッキ層13aの膜応力を変えることは、例えば、メッキに用いる添加剤の量を調整することで容易に可能である。   In such a semiconductor wafer 100, the Ni film stress ratio was adjusted by changing the front Ni film stress and the back Ni film stress. As described above, the surface Ni film stress, that is, the film stress of the Ni plating layer 13a can be easily changed by, for example, adjusting the amount of the additive used for plating.

また、上述したが、裏面Ni膜応力すなわちコレクタ電極4のNi膜4bの膜応力は、その膜密度を変えることで可能であり、Ni膜4bの膜密度を変えることは、例えばスパッタにおけるアルゴン圧を変えることで容易に可能である。   As described above, the back surface Ni film stress, that is, the film stress of the Ni film 4b of the collector electrode 4 can be changed by changing the film density. For example, the argon film pressure in sputtering can be changed. It is possible easily by changing.

図8は、この裏面Ni膜4bについて、その膜応力(単位:MPa)とその膜密度(任意単位)との関係を具体的に調べた結果を示す図である。この図8に示す結果の場合、コレクタ電極4のNi膜4bをスパッタで形成する際にアルゴン圧を変えることで膜密度を変えた。   FIG. 8 is a diagram showing the results of a specific examination of the relationship between the film stress (unit: MPa) and the film density (arbitrary unit) of the back Ni film 4b. In the case of the result shown in FIG. 8, the film density was changed by changing the argon pressure when forming the Ni film 4b of the collector electrode 4 by sputtering.

限定するものではないが、そのスパッタ条件は、パワーについては2nm/secの成膜レートとなるように調整し、温度は180℃として、アルゴン圧を変えていった。アルゴン圧が大きくなるにつれて、膜密度は小さくなる。ここでは、アルゴン圧を5mTorr〜25mTorrまで変えていった。   Although not limited, the sputtering conditions were adjusted such that the power was a film formation rate of 2 nm / sec, the temperature was 180 ° C., and the argon pressure was changed. As the argon pressure increases, the film density decreases. Here, the argon pressure was changed from 5 mTorr to 25 mTorr.

図8に示されるように、裏面Ni膜4bの膜密度すなわちコレクタ電極4のNi膜4bの膜密度が大きくなるにつれて、裏面Ni膜4bの膜応力も大きくなっていくことがわかる。   As shown in FIG. 8, it can be seen that as the film density of the back Ni film 4b, that is, the Ni film 4b of the collector electrode 4 increases, the film stress of the back Ni film 4b also increases.

このようにして、半導体ウェハ100において、Ni膜応力比を変えていき、そのときの半導体ウェハ100の反りt(単位:mm)を調べた結果が、上記図7に示されている。   FIG. 7 shows the result of examining the warp t (unit: mm) of the semiconductor wafer 100 while changing the Ni film stress ratio in the semiconductor wafer 100 in this manner.

図7に示すように、Ni膜応力比が大きくなるにつれて、半導体ウェハ100の反りは小さくなっていくことがわかる。具体的には、Ni膜応力比が3以上であれば半導体ウェハ100の反りは、専用装置に対応可能な3mm以下に抑えられ、さらには、Ni膜応力比がほぼ4になれば半導体ウェハ100の反りは、汎用装置に対応可能な1mm以下に抑えられる。   As shown in FIG. 7, it can be seen that the warpage of the semiconductor wafer 100 decreases as the Ni film stress ratio increases. Specifically, if the Ni film stress ratio is 3 or more, the warp of the semiconductor wafer 100 can be suppressed to 3 mm or less, which is compatible with a dedicated device, and if the Ni film stress ratio is approximately 4, the semiconductor wafer 100 is suppressed. The warpage is suppressed to 1 mm or less which is compatible with general-purpose devices.

このように、裏面電極であるコレクタ電極4をPVD法により形成されたNi膜4bからなるものとし、当該Ni膜4bの膜応力を金属電極13におけるNiメッキ層13aの膜応力の3倍以上とすれば、製造時における半導体ウェハ100の反りを3mm以下に抑えることができる。   Thus, the collector electrode 4 as the back electrode is made of the Ni film 4b formed by the PVD method, and the film stress of the Ni film 4b is three times or more of the film stress of the Ni plating layer 13a in the metal electrode 13. If it does, the curvature of the semiconductor wafer 100 at the time of manufacture can be restrained to 3 mm or less.

よって、本実施形態によれば、従来に比べて製造時における半導体ウェハ100の反りを極力抑制することができる。   Therefore, according to the present embodiment, it is possible to suppress the warpage of the semiconductor wafer 100 during manufacturing as much as possible as compared with the conventional case.

また、コレクタ電極4のNi膜4bの膜応力を2.7×108Pa以上とし、金属電極13におけるNiメッキ層13aの膜応力を8.9×107Pa以下とすることで、上記膜応力の関係すなわちNi膜応力比が3倍以上という関係が適切に実現される。この根拠は、上記図8にて例示される。 Further, the film stress of the Ni film 4b of the collector electrode 4 is set to 2.7 × 10 8 Pa or more, and the film stress of the Ni plating layer 13a in the metal electrode 13 is set to 8.9 × 10 7 Pa or less. The relationship of stress, that is, the relationship that the Ni film stress ratio is three times or more is appropriately realized. The basis for this is illustrated in FIG.

図8に示されている裏面Ni膜4bの膜応力の最小値は、2.7×108Paである。本発明者らの検討によれば、この最小膜応力未満の範囲では、裏面Ni膜4bの膜密度が小さすぎてしまい、基板裏面1b側に接合されるはんだ60(上記図1、図2(b)参照)の異常拡散が発生しやすくなる。すると、基板裏面1b側でのはんだ接合強度が確保しにくくなってしまう。 The minimum value of the film stress of the back Ni film 4b shown in FIG. 8 is 2.7 × 10 8 Pa. According to the study by the present inventors, in the range below the minimum film stress, the film density of the back Ni film 4b is too small, and the solder 60 joined to the substrate back surface 1b side (see FIGS. 1 and 2 above). The abnormal diffusion of b) is likely to occur. Then, it becomes difficult to ensure the solder joint strength on the substrate back surface 1b side.

このようなことから、裏面Ni膜4bの膜密度を適度な大きさに維持するためにも、その膜応力は2.7×108Pa以上であることが好ましい。そして、このことと、上述したNi膜応力比が3以上であることとの関係から、基板表面1a側の金属電極13におけるNiメッキ層13aの膜応力は8.9×107Pa以下が好ましいことが、導き出される。 For this reason, the film stress is preferably 2.7 × 10 8 Pa or more in order to maintain the film density of the back Ni film 4b at an appropriate level. Then, from the relationship between this and the above-described Ni film stress ratio of 3 or more, the film stress of the Ni plating layer 13a in the metal electrode 13 on the substrate surface 1a side is preferably 8.9 × 10 7 Pa or less. Is derived.

また、上述したように、本実施形態では、半導体基板1の厚みは例えば70μm〜400μm程度のものにできるが、特に、200μm以下とすることで上述した反り抑制の効果が有効に発揮される。   Further, as described above, in the present embodiment, the thickness of the semiconductor substrate 1 can be, for example, about 70 μm to 400 μm. In particular, when the thickness is 200 μm or less, the above-described warp suppressing effect is effectively exhibited.

図9は、半導体基板1の厚さ(単位:μm)と半導体ウェハ100の反り(単位mm)との関係について調べた結果を示す図である。   FIG. 9 is a diagram showing the results of examining the relationship between the thickness (unit: μm) of the semiconductor substrate 1 and the warp (unit: mm) of the semiconductor wafer 100.

ここにおいて、半導体基板1の厚さは、そのまま、半導体ウェハ100の厚さとなる。また、半導体ウェハ100の反りについては、上記図7の場合と同じように、各電極2〜4を表裏両面に形成した半導体ウェハ100において、上記図3に示す反りtを求めたものである。   Here, the thickness of the semiconductor substrate 1 becomes the thickness of the semiconductor wafer 100 as it is. As for the warp of the semiconductor wafer 100, the warp t shown in FIG. 3 is obtained in the semiconductor wafer 100 in which the electrodes 2 to 4 are formed on both the front and back surfaces, as in the case of FIG.

また、図9において、半導体ウェハ100のサイズは直径6インチとし、半導体基板1の基板表面1aの全面積に対するAl電極11の占める占有面積の比率は70%となるようにした。また、表面Ni膜応力を8.9×107Paとし、裏面Ni膜応力を2.7×108Paとして、Ni膜応力比は3とした。 In FIG. 9, the size of the semiconductor wafer 100 is 6 inches in diameter, and the ratio of the occupied area of the Al electrode 11 to the total area of the substrate surface 1a of the semiconductor substrate 1 is 70%. Further, the surface Ni film stress was 8.9 × 10 7 Pa, the back surface Ni film stress was 2.7 × 10 8 Pa, and the Ni film stress ratio was 3.

そして、図9では、研削によって、半導体ウェハ100の厚さ、すなわち半導体基板1の厚さを変えていき、そのようにしたときの半導体ウェハ100の反りを調べた結果が示されている。   FIG. 9 shows the result of examining the warpage of the semiconductor wafer 100 when the thickness of the semiconductor wafer 100, that is, the thickness of the semiconductor substrate 1 is changed by grinding, and the warp of the semiconductor wafer 100 in such a manner is shown.

図9に示すように、大きな反りを生じやすい厚さ200μm以下の半導体ウェハ100であっても、半導体ウェハ100の反りは3mm以下に抑えられている。   As shown in FIG. 9, even if the semiconductor wafer 100 has a thickness of 200 μm or less which is likely to cause a large warp, the warp of the semiconductor wafer 100 is suppressed to 3 mm or less.

また、上述したように、本実施形態では、半導体基板1の基板表面1aの全面積に対するAl電極11の占める占有面積の比率(以下、Al電極占有率という)は、30%〜80%程度のものにできる。   Further, as described above, in the present embodiment, the ratio of the occupied area occupied by the Al electrode 11 to the total area of the substrate surface 1a of the semiconductor substrate 1 (hereinafter referred to as the Al electrode occupation ratio) is about 30% to 80%. Can be a thing.

このAl電極占有率が大きいということは、半導体基板1の基板表面1aにおいて、Niメッキ層13aもそのAl電極占有率に近い比率で多く存在することになり、その結果、半導体ウェハ100の反りが大きくなりやすい。   The fact that the Al electrode occupancy is large means that the Ni plating layer 13a is also present at a ratio close to the Al electrode occupancy on the substrate surface 1a of the semiconductor substrate 1, and as a result, the warp of the semiconductor wafer 100 occurs. Easy to grow.

特に、このAl電極占有率が30%以上のものでは、半導体ウェハ100の反りが大きくなりやすいため、本実施形態の対策を採ることにより上述した反り抑制の効果が有効に発揮される。   In particular, when the Al electrode occupancy is 30% or more, the warp of the semiconductor wafer 100 tends to be large. Therefore, by taking the measures of the present embodiment, the above-described warp suppression effect is effectively exhibited.

図10は、Al電極占有率(単位:%)と半導体ウェハ100の反り(単位:mm)との関係を調べた結果を示す図である。   FIG. 10 is a diagram showing the results of examining the relationship between the Al electrode occupation ratio (unit:%) and the warp (unit: mm) of the semiconductor wafer 100.

ここで、Al電極占有率は、半導体ウェハ100に形成されるAl電極11のサイズを変えることで変えていった。また、半導体ウェハ100の反りについては上記図7と同様に、各電極2〜4を表裏両面に形成した半導体ウェハ100において、上記図3に示す反りtを求めたものである。   Here, the Al electrode occupation ratio is changed by changing the size of the Al electrode 11 formed on the semiconductor wafer 100. Further, as for the warpage of the semiconductor wafer 100, the warpage t shown in FIG. 3 is obtained for the semiconductor wafer 100 in which the electrodes 2 to 4 are formed on both the front and back surfaces, as in FIG.

また、図10においては、半導体ウェハ100のサイズは直径6インチとし、その厚さは70μmと比較的薄いものとした。また、この図10においては、表面Ni膜応力を8.9×107Paとし、裏面Ni膜応力を2.7×108Paとして、Ni膜応力比は3とした。 In FIG. 10, the size of the semiconductor wafer 100 is 6 inches in diameter, and its thickness is relatively thin, 70 μm. In FIG. 10, the surface Ni film stress was 8.9 × 10 7 Pa, the back Ni film stress was 2.7 × 10 8 Pa, and the Ni film stress ratio was 3.

図10に示すように、Al電極占有率が30%以上である場合であっても、上述したNi膜応力を3以上とした関係を満足させることにより、半導体ウェハ100の反りを3mm以下に抑えることができる。   As shown in FIG. 10, even when the Al electrode occupation ratio is 30% or more, the warp of the semiconductor wafer 100 is suppressed to 3 mm or less by satisfying the above-described relationship in which the Ni film stress is 3 or more. be able to.

以上述べてきたように、本実施形態では、半導体基板1における基板表面1aにAl電極11を備え、半導体基板1における基板裏面1bに裏面電極4を備えてなる半導体装置としての半導体チップ10が提供される。   As described above, in the present embodiment, the semiconductor chip 10 is provided as a semiconductor device including the Al electrode 11 on the substrate surface 1a of the semiconductor substrate 1 and the back electrode 4 on the substrate back surface 1b of the semiconductor substrate 1. Is done.

そして、この半導体チップ10においては、Al電極11の表面に、当該表面側からNiメッキ層13a、Auメッキ層13bが順次無電解メッキにより積層されてなる金属電極13が形成されており、裏面電極4はPVD法により形成されたNi膜4bからなり、該Ni膜4bの膜応力が金属電極13におけるNiメッキ層13aの膜応力の3倍以上であることを主たる特徴としている。   In this semiconductor chip 10, a metal electrode 13 is formed on the surface of the Al electrode 11, in which a Ni plating layer 13 a and an Au plating layer 13 b are sequentially laminated from the surface side by electroless plating. 4 is composed of the Ni film 4b formed by the PVD method, and the main feature is that the film stress of the Ni film 4b is three times or more of the film stress of the Ni plating layer 13a in the metal electrode 13.

なお、上述したように、このような特徴を有する金属電極13としては、接続相手がはんだ60であるエミッタ電極2の金属電極13の場合だけではなく、接続相手がボンディングワイヤ70であるゲート電極3の金属電極13の場合についても、同様のものである。   As described above, the metal electrode 13 having such characteristics is not limited to the case of the metal electrode 13 of the emitter electrode 2 whose connection partner is the solder 60, but the gate electrode 3 whose connection partner is the bonding wire 70. The same applies to the case of the metal electrode 13.

つまり、本実施形態の金属電極13は、外部接続用のものであって、はんだやボンディングワイヤといった外部接続部材以外にも、その他の外部接続部材と接続されるものであってもよい。   That is, the metal electrode 13 of the present embodiment is for external connection, and may be connected to other external connection members in addition to the external connection members such as solder and bonding wires.

また、半導体装置の実装形態は、上記したヒートシンク20〜40を用いた両面はんだ付けモールド構造に限定されるものではなく、例えば、リードフレームやプリント基板等を用いた実装を行うようにしてもよい。   Further, the mounting form of the semiconductor device is not limited to the double-sided soldering mold structure using the heat sinks 20 to 40 described above. For example, mounting using a lead frame or a printed board may be performed. .

また、本発明においては、上記Ni膜応力比が3以上であることを要部構成とするものであり、その他、半導体ウェハのサイズや厚さ、半導体基板に形成される素子の種類等は適宜設計変更してもよい。   In the present invention, the Ni film stress ratio is 3 or more, and the main part is configured. In addition, the size and thickness of the semiconductor wafer, the type of elements formed on the semiconductor substrate, etc. The design may be changed.

本発明の実施形態に係る半導体装置としての半導体チップを用いた実装構造を示す概略断面図である。It is a schematic sectional drawing which shows the mounting structure using the semiconductor chip as a semiconductor device which concerns on embodiment of this invention. (a)は図1中の半導体チップにおけるエミッタ電極の近傍部の拡大断面図であり、(b)は図1中の半導体チップにおけるコレクタ電極の一部を拡大して示す概略断面図である。(A) is an enlarged sectional view of the vicinity of the emitter electrode in the semiconductor chip in FIG. 1, and (b) is a schematic sectional view showing an enlarged part of the collector electrode in the semiconductor chip in FIG. 半導体ウェハの反りの様子を示す図である。It is a figure which shows the mode of the curvature of a semiconductor wafer. 半導体チップの基板表面におけるAl電極の平面パターンの一例を示す平面図である。It is a top view which shows an example of the plane pattern of Al electrode in the board | substrate surface of a semiconductor chip. 半導体チップの製造に用いる半導体ウェハの概略平面図である。It is a schematic plan view of the semiconductor wafer used for manufacture of a semiconductor chip. 半導体チップの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of a semiconductor chip. Ni膜応力比と半導体ウェハの反りとの関係を調べた結果を示す図である。It is a figure which shows the result of having investigated the relationship between Ni film | membrane stress ratio and the curvature of a semiconductor wafer. 裏面Ni膜の膜応力とその膜密度との関係を具体的に調べた結果を示す図である。It is a figure which shows the result of having investigated concretely the relationship between the film | membrane stress of a back surface Ni film | membrane, and its film | membrane density. 半導体基板の厚さと半導体ウェハの反りとの関係について調べた結果を示す図である。It is a figure which shows the result investigated about the relationship between the thickness of a semiconductor substrate, and the curvature of a semiconductor wafer. Al電極占有率と半導体ウェハの反りとの関係を調べた結果を示す図である。It is a figure which shows the result of having investigated the relationship between Al electrode occupation rate and the curvature of a semiconductor wafer. 本発明者らの試作品としての半導体装置の要部を示す概略断面図である。It is a schematic sectional drawing which shows the principal part of the semiconductor device as a prototype of the present inventors.

符号の説明Explanation of symbols

1…半導体基板、1a…半導体基板の基板表面、
1b…半導体基板の基板裏面、4…裏面電極としてのコレクタ電極、
4b…コレクタ電極のNi膜、10…半導体装置としての半導体チップ、
11…Al電極、13…金属電極、13a…Niメッキ層、
13b…Auメッキ層、100…半導体ウェハ。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 1a ... The substrate surface of a semiconductor substrate,
1b ... back surface of semiconductor substrate, 4 ... collector electrode as back electrode,
4b ... Ni film of collector electrode, 10 ... Semiconductor chip as semiconductor device,
11 ... Al electrode, 13 ... Metal electrode, 13a ... Ni plating layer,
13b ... Au plating layer, 100 ... semiconductor wafer.

Claims (5)

半導体基板(1)における素子が形成された面である基板表面(1a)にアルミニウムからなるアルミニウム電極(11)を備え、前記半導体基板における前記基板表面とは反対側の基板裏面(1b)に裏面電極(4)を備えてなる半導体装置において、
前記アルミニウム電極の表面には、メッキ形成されたニッケルメッキ層(13a)を含む外部接続用の金属電極(13)が形成されており、
前記裏面電極は物理的気相成長法により形成されたニッケル膜(4b)を含み、前記ニッケル膜の膜応力が前記金属電極における前記ニッケルメッキ層の膜応力の3倍以上であることを特徴とする半導体装置。
An aluminum electrode (11) made of aluminum is provided on a substrate surface (1a) that is a surface on which an element is formed in a semiconductor substrate (1), and a back surface on a substrate back surface (1b) opposite to the substrate surface in the semiconductor substrate. In the semiconductor device comprising the electrode (4),
On the surface of the aluminum electrode, a metal electrode (13) for external connection including a nickel plating layer (13a) formed by plating is formed,
The back electrode includes a nickel film (4b) formed by physical vapor deposition, and the film stress of the nickel film is more than three times the film stress of the nickel plating layer in the metal electrode. Semiconductor device.
前記ニッケル膜(4b)の膜応力が2.7×108Pa以上であり、前記ニッケルメッキ層(13a)の膜応力が8.9×107Pa以下であることを特徴とする請求項1に記載の半導体装置。 The film stress of the nickel film (4b) is 2.7 × 10 8 Pa or more, and the film stress of the nickel plating layer (13a) is 8.9 × 10 7 Pa or less. A semiconductor device according to 1. 前記半導体基板(1)の厚さが200μm以下であることを特徴とする請求項1または2に記載の半導体装置。 The semiconductor device according to claim 1, wherein the semiconductor substrate has a thickness of 200 μm or less. 前記半導体基板(1)の前記基板表面(1a)の全面積に対する前記アルミニウム電極(11)の占める占有面積の比率が30%以上であることを特徴とする請求項1ないし3のいずれか一つに記載の半導体装置。 4. The ratio of the occupied area occupied by the aluminum electrode (11) to the total area of the substrate surface (1a) of the semiconductor substrate (1) is 30% or more. A semiconductor device according to 1. 前記金属電極(13)上にはSnを主成分とするはんだが接続されるものであり、前記ニッケルメッキ層(13a)の膜厚は少なくとも5μm程度以上に調整されていることを特徴とする請求項1ないし4のいずれか一つに記載の半導体装置。
Solder mainly composed of Sn is connected to the metal electrode (13), and the thickness of the nickel plating layer (13a) is adjusted to at least about 5 μm or more. Item 5. The semiconductor device according to any one of Items 1 to 4.
JP2003273455A 2003-07-11 2003-07-11 Semiconductor device Expired - Lifetime JP3767585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003273455A JP3767585B2 (en) 2003-07-11 2003-07-11 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003273455A JP3767585B2 (en) 2003-07-11 2003-07-11 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2005033130A true JP2005033130A (en) 2005-02-03
JP3767585B2 JP3767585B2 (en) 2006-04-19

Family

ID=34210688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003273455A Expired - Lifetime JP3767585B2 (en) 2003-07-11 2003-07-11 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3767585B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019458A (en) * 2005-06-07 2007-01-25 Denso Corp Semiconductor device and its manufacturing method
US20070173045A1 (en) 2006-01-23 2007-07-26 Mitsubishi Electric Corporation Method of manufacturing semiconductor device
JP2008028079A (en) * 2006-07-20 2008-02-07 Denso Corp Semiconductor device, and its manufacturing method
JP2011077203A (en) * 2009-09-29 2011-04-14 Fuji Electric Systems Co Ltd Semiconductor device manufacturing method
JP2011077201A (en) * 2009-09-29 2011-04-14 Fuji Electric Systems Co Ltd Semiconductor device manufacturing method
KR20120004997A (en) * 2009-04-08 2012-01-13 이피션트 파워 컨버젼 코퍼레이션 Bumped, self-isolated gan transistor chip with electrically isolated back surface
KR20140011686A (en) * 2012-07-18 2014-01-29 삼성전자주식회사 Power device and power device module
JP2015109334A (en) * 2013-12-04 2015-06-11 株式会社デンソー Semiconductor device
JP2016157882A (en) * 2015-02-26 2016-09-01 株式会社日立製作所 Semiconductor device, semiconductor device manufacturing method and power conversion device
DE102015104570A1 (en) * 2015-03-26 2016-09-29 Infineon Technologies Ag PROCESS FOR PROCESSING A CHIP
JP2017120938A (en) * 2013-11-22 2017-07-06 富士電機株式会社 Method for manufacturing silicon carbide semiconductor device
JP2018061053A (en) * 2015-04-06 2018-04-12 三菱電機株式会社 Semiconductor device and method for manufacturing the same
US11456265B2 (en) 2016-11-15 2022-09-27 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122782A (en) * 1982-01-14 1983-07-21 Nippon Telegr & Teleph Corp <Ntt> Diode
JPS63305532A (en) * 1987-06-05 1988-12-13 Toshiba Corp Forming method for bump
JPH02167890A (en) * 1988-09-15 1990-06-28 Nippondenso Co Ltd Nickel film and sputtering forming same film
JPH06216065A (en) * 1993-01-20 1994-08-05 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JP2002110893A (en) * 2000-10-04 2002-04-12 Denso Corp Semiconductor device
JP2003110064A (en) * 2001-07-26 2003-04-11 Denso Corp Semiconductor device
JP2004221416A (en) * 2003-01-16 2004-08-05 Toyota Industries Corp Method for manufacturing semiconductor device, and semiconductor device manufactured by the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122782A (en) * 1982-01-14 1983-07-21 Nippon Telegr & Teleph Corp <Ntt> Diode
JPS63305532A (en) * 1987-06-05 1988-12-13 Toshiba Corp Forming method for bump
JPH02167890A (en) * 1988-09-15 1990-06-28 Nippondenso Co Ltd Nickel film and sputtering forming same film
JPH06216065A (en) * 1993-01-20 1994-08-05 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JP2002110893A (en) * 2000-10-04 2002-04-12 Denso Corp Semiconductor device
JP2003110064A (en) * 2001-07-26 2003-04-11 Denso Corp Semiconductor device
JP2004221416A (en) * 2003-01-16 2004-08-05 Toyota Industries Corp Method for manufacturing semiconductor device, and semiconductor device manufactured by the same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019458A (en) * 2005-06-07 2007-01-25 Denso Corp Semiconductor device and its manufacturing method
US20070173045A1 (en) 2006-01-23 2007-07-26 Mitsubishi Electric Corporation Method of manufacturing semiconductor device
US8183144B2 (en) 2006-01-23 2012-05-22 Mitsubishi Electric Corporation Method of manufacturing semiconductor device
JP2008028079A (en) * 2006-07-20 2008-02-07 Denso Corp Semiconductor device, and its manufacturing method
KR101660871B1 (en) * 2009-04-08 2016-09-28 이피션트 파워 컨버젼 코퍼레이션 Bumped, self-isolated gan transistor chip with electrically isolated back surface
KR20120004997A (en) * 2009-04-08 2012-01-13 이피션트 파워 컨버젼 코퍼레이션 Bumped, self-isolated gan transistor chip with electrically isolated back surface
CN102439713A (en) * 2009-04-08 2012-05-02 宜普电源转换公司 Bumped, self-isolated gan transistor chip with electrically isolated back surface
JP2012523695A (en) * 2009-04-08 2012-10-04 エフィシエント パワー コンヴァーション コーポレーション Bumped self-separating GaN transistor chip with electrically isolated backside
JP2011077203A (en) * 2009-09-29 2011-04-14 Fuji Electric Systems Co Ltd Semiconductor device manufacturing method
JP2011077201A (en) * 2009-09-29 2011-04-14 Fuji Electric Systems Co Ltd Semiconductor device manufacturing method
KR20140011686A (en) * 2012-07-18 2014-01-29 삼성전자주식회사 Power device and power device module
KR101998340B1 (en) * 2012-07-18 2019-07-09 삼성전자주식회사 Power Device Module and Method of fabricating the same
JP2017120938A (en) * 2013-11-22 2017-07-06 富士電機株式会社 Method for manufacturing silicon carbide semiconductor device
JP2015109334A (en) * 2013-12-04 2015-06-11 株式会社デンソー Semiconductor device
CN105931954A (en) * 2015-02-26 2016-09-07 株式会社日立功率半导体 Semiconductor Device, Method Of Manufacturing Semiconductor Device, And Power Conversion Device
JP2016157882A (en) * 2015-02-26 2016-09-01 株式会社日立製作所 Semiconductor device, semiconductor device manufacturing method and power conversion device
DE102015104570A1 (en) * 2015-03-26 2016-09-29 Infineon Technologies Ag PROCESS FOR PROCESSING A CHIP
US10340227B2 (en) 2015-03-26 2019-07-02 Infineon Technologies Ag Method for processing a die
DE102015104570B4 (en) 2015-03-26 2019-07-11 Infineon Technologies Ag POWER CHIP AND CHIP ASSEMBLY
JP2018061053A (en) * 2015-04-06 2018-04-12 三菱電機株式会社 Semiconductor device and method for manufacturing the same
US11456265B2 (en) 2016-11-15 2022-09-27 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP3767585B2 (en) 2006-04-19

Similar Documents

Publication Publication Date Title
JP5413707B2 (en) Metal-ceramic composite substrate and manufacturing method thereof
US7880285B2 (en) Semiconductor device comprising a semiconductor chip stack and method for producing the same
JP4049035B2 (en) Manufacturing method of semiconductor device
JP2018037684A (en) Power semiconductor device
JP3767585B2 (en) Semiconductor device
JP2008016818A (en) Semiconductor device and its manufacturing method
US7030496B2 (en) Semiconductor device having aluminum and metal electrodes and method for manufacturing the same
US7678609B2 (en) Semiconductor package with redistributed pads
US10026695B2 (en) Semiconductor device and method for manufacturing the same
JP2007005368A (en) Method of manufacturing semiconductor device
JP4604641B2 (en) Semiconductor device
US7045831B2 (en) Semiconductor device
WO2007034791A1 (en) Solder layer, heat sink using such solder layer and method for manufacturing such heat sink
JP4344560B2 (en) Semiconductor chip and semiconductor device using the same
JP2023174895A (en) Semiconductor element and semiconductor device
TWI775075B (en) Ceramic substrate assemblies and components with metal thermally conductive bump pads
JP2006261415A (en) Manufacturing method for semiconductor device
JP2011193007A (en) Semiconductor chip and semiconductor device using the same
JP2016219749A (en) Semiconductor device and method of manufacturing the same
JP2019125758A (en) Method of manufacturing semiconductor device
US20220238425A1 (en) Semiconductor package structure
US11552014B2 (en) Semiconductor package structure and method of making the same
JP5720287B2 (en) Semiconductor device
JP4775369B2 (en) Semiconductor chip, semiconductor device, and manufacturing method
JP7254602B2 (en) Semiconductor device and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3767585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term