JP2005032629A - Organic electroluminescent element and its manufacturing method - Google Patents

Organic electroluminescent element and its manufacturing method Download PDF

Info

Publication number
JP2005032629A
JP2005032629A JP2003271957A JP2003271957A JP2005032629A JP 2005032629 A JP2005032629 A JP 2005032629A JP 2003271957 A JP2003271957 A JP 2003271957A JP 2003271957 A JP2003271957 A JP 2003271957A JP 2005032629 A JP2005032629 A JP 2005032629A
Authority
JP
Japan
Prior art keywords
organic
pair
light emitting
layer
electrode bodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003271957A
Other languages
Japanese (ja)
Inventor
Kan Suzuka
敢 鈴鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2003271957A priority Critical patent/JP2005032629A/en
Publication of JP2005032629A publication Critical patent/JP2005032629A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a white organic EL element which has a broad emission spectrum taking into consideration excimer fluorescence and exciplex fluorescence. <P>SOLUTION: PEDOT, which is a conductive polymer, is formed using a spin coater on a glass substrate 10 with ITO that is carried out a slit patterning, and after drying, completed. A luminous layer 13 is formed on the top of this layer. The luminous layer is filled with PVK as a hole transport material and Bu-PBD as as electron transport material 100:30 in weight ratio, and Pyrene-R is used as a luminous colorant, and using a spin coater the layer is formed, dried and completed. The Al film 24 as a cathode arranged on the luminous layer 23 is formed by a vacuum vapor deposition method. The luminescence of this element is in white color region in the CIE color coordinates. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、エキシマー・エキシプレックス蛍光を利用した有機エレクトロルミネッセンス素子とその製造方法に関する。   The present invention relates to an organic electroluminescence device using excimer / exciplex fluorescence and a method for producing the same.

有機EL(エレクトロルミネッセンス)素子は、単色光だけでなく白色光も得ることができ、色調も太陽光のような白、白熱電球のような白等のように必要に応じて設計し、実現することができる発光素子であり、次世代ディスプレイデバイス、照明機器等への実現に向け、研究、開発が行われている。現在実用化されている主な白色発光EL素子は、白色蛍光を有する有機色素を発光中心として用いたものと、青、緑、赤の三原色である三種の色素からの発光を混合して白色とする素子構造を挙げられる。蛍光は、モノマーの蛍光、励起分子ニ量体からの蛍光(エキシマー蛍光、エキシプレックス蛍光)等があり、現在は蛍光、りん光、エキシマー・エキシプレックス蛍光といった様々な発光メカニズムからのアプローチが試みられている。
特開2002−164171 特開2002−237386
An organic EL (electroluminescence) element can obtain not only monochromatic light but also white light, and the color tone is designed and realized as necessary, such as white like sunlight, white like an incandescent bulb, etc. It is a light-emitting element that can be used, and research and development are being conducted toward the realization of next-generation display devices, lighting equipment, and the like. The main white light-emitting EL elements currently in practical use are white by mixing light from organic dyes with white fluorescence as the light emission center and light from the three primary colors of blue, green, and red. The element structure which performs is mentioned. Fluorescence includes monomer fluorescence, fluorescence from excited molecular dimers (excimer fluorescence, exciplex fluorescence), etc. Currently, approaches from various emission mechanisms such as fluorescence, phosphorescence, and excimer / exciplex fluorescence have been attempted. ing.
JP 2002-164171 A JP2002-237386

ところで有機EL素子は、表示素子にかぎっては既に商品化され、一般市場に流通しているが、照明機器の商品化については未だ初期段階的なものであり、さらに開発の余地があると考えられている。   By the way, organic EL elements have already been commercialized only for display elements and distributed to the general market, but commercialization of lighting equipment is still in an early stage, and there is room for further development. It has been.

そこで本願発明者は、エキシマー蛍光、エキシプレックス蛍光に注目し、ブロードな発光スペクトルを有する白色有機EL素子を提供することを目的とする。   Therefore, the inventor of the present application pays attention to excimer fluorescence and exciplex fluorescence and aims to provide a white organic EL element having a broad emission spectrum.

白色発光について簡単に説明する。図1は光の三原色(A)とその波長(B)を表す。一般的な白色光は、このRGB混色になるが、三原色を用いなくても、例えば黄色と青の混色等により白色を得ることができる。フルカラーディスプレイ等の用途ではRGB混色が必要であるが、照明機器に限ればRGB混色の必要はない。   The white light emission will be briefly described. FIG. 1 shows the three primary colors (A) of light and their wavelengths (B). General white light is a mixed color of RGB, but a white color can be obtained by, for example, a mixed color of yellow and blue without using the three primary colors. In applications such as full-color displays, RGB color mixing is necessary, but RGB color mixing is not necessary only for lighting equipment.

エキシマー蛍光原理は次のようなものである。まずエキシマー生成の原理は図2に示すように、基底状態の分子〔A〕と励起状態の分子〔A〕が会合して安定な励起分子錯体を形成するというものである。この種の分子の励起二量体はエキシマーと呼ばれており、こういった励起二量体は基底状態で解離する。このような励起二量体の基底状態は解離型のポテンシャルであるため構造がなく、したがって幅の広い蛍光を発するのである。 The excimer fluorescence principle is as follows. First, the principle of excimer generation is that, as shown in FIG. 2, the ground state molecule [A] and the excited state molecule [A * ] associate to form a stable excited molecular complex. Excited dimers of this type of molecule are called excimers, and these excited dimers dissociate in the ground state. Since the ground state of such an excited dimer is a dissociative potential, it has no structure, and therefore emits a broad fluorescence.

ピレン誘導体(Pyrene)−Rの蛍光スペクトルについて説明する。ピレン誘導体溶液の蛍光スペクトルを図3に示す。ピレン誘導体の濃度を高くするにしたがって、モノマーの蛍光の長波長側に新たなバンドが現れる。この蛍光がエキシマー蛍光である。   The fluorescence spectrum of pyrene derivative (Pyrene) -R will be described. The fluorescence spectrum of the pyrene derivative solution is shown in FIG. As the concentration of the pyrene derivative is increased, a new band appears on the longer wavelength side of the fluorescence of the monomer. This fluorescence is excimer fluorescence.

すなわちエキシマー・エキシプレックス蛍光は、本来の単体の電子遷移よりも非常に長波長側に現れ、振動構造のないブロードな発光スペクトルとなる。本願発明者は、この現象を利用すると白色発光有機EL素子に応用できるものと考え、かつエキシマー蛍光を有する代表的な分子として知られているピレン誘導体分子を発光色素に用いたのである。   That is, excimer exciplex fluorescence appears on the very long wavelength side of the original single electron transition, and has a broad emission spectrum without a vibration structure. The inventor of the present application considers that this phenomenon can be applied to a white light emitting organic EL element, and uses a pyrene derivative molecule known as a representative molecule having excimer fluorescence as a light emitting dye.

そして、本発明の請求項1に係る有機エレクトロルミネッセンス素子は、上記目的を達成するために、一対の電極体間に有機分子性結晶薄膜を挟んでなり、白色光を発する有機エレクトロルミネッセンス素子であって、上記有機分子性結晶薄膜が、ホール輸送性材料としてのα―NPDと電子輸送兼発光層としてのピレン誘導体からなることを特徴とする。   An organic electroluminescent device according to claim 1 of the present invention is an organic electroluminescent device that emits white light by sandwiching an organic molecular crystal thin film between a pair of electrode bodies in order to achieve the above object. The organic molecular crystal thin film is characterized by comprising α-NPD as a hole transporting material and a pyrene derivative as an electron transporting / emitting layer.

同請求項2に係るものは、上記目的を達成するために、請求項1の有機EL素子において、上記一対の電極体の一がITO基板であり、他がAl等の陰電極素材からなることを特徴とする。   In order to achieve the above object, according to claim 2, in the organic EL element according to claim 1, one of the pair of electrode bodies is an ITO substrate, and the other is made of a negative electrode material such as Al. It is characterized by.

同請求項3に係る有機エレクトロルミネッセンス素子の製造方法は、上記目的を達成するために、 一対の電極体間に有機分子性結晶薄膜を挟んでなる白色光を発する有機エレクトロルミネッセンス素子の製造方法であって、上記有機分子性結晶薄膜が、ホール輸送性材料としてのα―NPDの膜と電子輸送兼発光材料としてのピレン誘導体の膜からなり、上記一対の電極体の一をなす透明基板上に上記α―NPD、上記ピレン誘導体の順に真空蒸着法で製膜し、さらにその上に他の電極体を製膜してなることを特徴とする。   In order to achieve the above object, a method for producing an organic electroluminescent element according to claim 3 is a method for producing an organic electroluminescent element that emits white light with an organic molecular crystal thin film sandwiched between a pair of electrode bodies. The organic molecular crystal thin film comprises an α-NPD film as a hole transporting material and a pyrene derivative film as an electron transporting and light emitting material, and is formed on a transparent substrate forming one of the pair of electrode bodies. The α-NPD and the pyrene derivative are formed in this order by a vacuum deposition method, and another electrode body is further formed thereon.

同請求項4に係るものは、上記目的を達成するために、一対の電極体間に有機分子性結晶薄膜を挟んでなる白色光を発する有機エレクトロルミネッセンス素子の製造方法であって、上記有機分子性結晶薄膜が、ホール輸送性材料としてのα―NPDの膜と、電子輸送兼発光材料としてのピレン誘導体の膜からなり、ITO基板上に上記α―NPD、上記ピレン誘導体の順に真空蒸着法で製膜し、さらに他の電極体としてAl等の陰電極素材を真空蒸着法で製膜してなることを特徴とする。   According to the fourth aspect of the present invention, there is provided a method of manufacturing an organic electroluminescent element that emits white light, in which an organic molecular crystal thin film is sandwiched between a pair of electrode bodies, in order to achieve the above object. The crystalline crystal thin film is composed of an α-NPD film as a hole transporting material and a pyrene derivative film as an electron transporting and light emitting material. The α-NPD and the pyrene derivative are sequentially deposited on the ITO substrate by a vacuum deposition method. A film is formed, and a negative electrode material such as Al is formed as another electrode body by a vacuum deposition method.

同請求項5に係る有機エレクトロルミネッセンス素子は、上記目的を達成するために、一対の電極体間に有機化合物を挟んでなり、白色光を発する有機エレクトロルミネッセンス素子であって、上記一対の電極体の一上に導電性ポリマー層としてのPEDOT層と、発光層とを設けてなり、該発光層が、正孔輸送材料としてのPVKと、電子輸送材料としてのBu−PBDとからなり、かつ発光色素としてピレン誘導体を混入してなることを特徴とする。   The organic electroluminescence device according to claim 5 is an organic electroluminescence device that emits white light by sandwiching an organic compound between a pair of electrode bodies in order to achieve the above object, and the pair of electrode bodies A PEDOT layer as a conductive polymer layer and a light-emitting layer are provided on the substrate, and the light-emitting layer is composed of PVK as a hole transport material and Bu-PBD as an electron transport material, and emits light. A pyrene derivative is mixed as a pigment.

同請求項6に係るものは、上記目的を達成するために、請求項5の有機EL素子において、上記一対の電極体の一がスリットパターニングしたITO基板であり、他がAl等の陰電極素材からなることを特徴とする。   In order to achieve the above object, according to claim 6, in the organic EL device according to claim 5, one of the pair of electrode bodies is a slit-patterned ITO substrate, and the other is a negative electrode material such as Al. It is characterized by comprising.

同請求項7に係る有機エレクトロルミネッセンス素子の製造方法は、上記目的を達成するために、一対の電極体間に有機化合物を挟んでなる白色光を発する有機エレクトロルミネッセンス素子の製造方法であって、上記一対の電極体の一の上に導電性ポリマー層としてのPEDOT層と発光層とを設けてなり、該発光層が、正孔輸送材料としてのPVKと電子輸送材料としてのBu−PBDとからなりかつ発光色素としてピレン誘導体を混入してなり、上記一対の電極体の一をなす透明基板上に上記PEDOTをスピンコート法により製膜し、その上に上記発光層をスピンコート法により製膜し、さらにその上に他の電極体を製膜してなることを特徴とする。   The method for producing an organic electroluminescent element according to claim 7 is a method for producing an organic electroluminescent element that emits white light in which an organic compound is sandwiched between a pair of electrode bodies in order to achieve the above object. A PEDOT layer as a conductive polymer layer and a light emitting layer are provided on one of the pair of electrode bodies, and the light emitting layer is composed of PVK as a hole transport material and Bu-PBD as an electron transport material. The PEDOT film is formed by spin coating on a transparent substrate forming one of the pair of electrode bodies, and the light emitting layer is formed thereon by spin coating. In addition, another electrode body is formed thereon.

同請求項8に係るものは、上記目的を達成するために、一対の電極体間に有機化合物を挟んでなる白色光を発する有機エレクトロルミネッセンス素子の製造方法であって、上記一対の電極体の一の上に導電性ポリマー層としてのPEDOT層と発光層とを設けてなり、該発光層が、正孔輸送材料としてのPVKと電子輸送材料としてのBu−PBDとからなりかつ発光色素としてピレン誘導体を混入してなり、スリットパターニングされたITO基板上に上記PEDOTをスピンコート法により製膜し、その上に上記発光層をスピンコート法により製膜し、さらにその上に他の電極体としてAl等の陰電極素材を真空蒸着法で製膜してなることを特徴とする。   In order to achieve the above object, the invention according to claim 8 is a method of manufacturing an organic electroluminescent element that emits white light in which an organic compound is sandwiched between a pair of electrode bodies. A PEDOT layer as a conductive polymer layer and a light-emitting layer are provided on the surface, and the light-emitting layer is composed of PVK as a hole transport material and Bu-PBD as an electron transport material, and pyrene as a light-emitting dye. The PEDOT film is formed on a slit patterned ITO substrate formed by a spin coating method, and the light emitting layer is formed thereon by a spin coating method. Further, another electrode body is formed thereon. A negative electrode material such as Al is formed by vacuum deposition.

本発明に係る、エキシマー・エキシプレックス蛍光を利用した有機エレクトロルミネッセンス素子は、ブロードな発光スペクトルを有する白色発光が可能である。   The organic electroluminescence device utilizing excimer / exciplex fluorescence according to the present invention can emit white light having a broad emission spectrum.

また本発明に係る、有機エレクトロルミネッセンス素子の製造方法は、以上説明してきたように、ブロードな発光スペクトルを有する白色発光が可能な有機エレクトロルミネッセンス素子を作り出すことを可能とする。   Moreover, the manufacturing method of the organic electroluminescent element based on this invention makes it possible to produce the organic electroluminescent element which can emit white light which has a broad emission spectrum, as demonstrated above.

以下本発明の実施の形態を図面を参照して説明する。
本発明は、一対の電極間に有機化合物を挟んでなる白色光を発する有機EL(エレクトロルミネッセンス)素子、具体的には、ピレン誘導体分子を用いてブロードな発光スペクトルを有する分子性結晶薄膜を用いた有機EL素子(ITO/α―NPD/Pyrene−R/Al)及び色素分散型ポリマーEL素子(ITO/(PVK+Bu−PBD+Pyrene)/Al)を製造しようとするものである。
Embodiments of the present invention will be described below with reference to the drawings.
The present invention uses an organic EL (electroluminescence) element that emits white light with an organic compound sandwiched between a pair of electrodes, specifically, a molecular crystal thin film having a broad emission spectrum using pyrene derivative molecules. Organic EL elements (ITO / α-NPD / Pyrene-R / Al) and dye-dispersed polymer EL elements (ITO / (PVK + Bu-PBD + Pyrene) / Al).

有機EL素子(ITO/α―NPD/Pyrene−R/Al)について説明する。
分子性結晶薄膜は真空蒸着法で製膜するプロセスを用いる。図4は、製造装置例を示す。図において1は真空槽、2はシャッタ、3は蒸着源である蒸着ボート、4はターボポンプ、5は粗引きポンプを示す。真空槽1内の真空度は例えば2×10−5Torrとする。もちろんこの真空蒸着装置は単なる一例であり、種々公知の装置を採用できる。図5は製造した素子構造を概念的に示す断面図である。図中10は有機EL素子、11はITO付きのガラス基板(ITOやその他基板としての構成要素は図示を省略してある。)、12はα―NPD層、13はPyrene−R層、14は陰極電極としてのAl層を示す。なお図6(A)はα―NPD(p型有機半導体である低分子量アリールアミン誘導体)、(B)はPyrene−Rの化学構造を示す。
The organic EL element (ITO / α-NPD / Pyrene-R / Al) will be described.
The molecular crystal thin film is formed by a vacuum deposition method. FIG. 4 shows an example of a manufacturing apparatus. In the figure, 1 is a vacuum chamber, 2 is a shutter, 3 is a vapor deposition boat as a vapor deposition source, 4 is a turbo pump, and 5 is a roughing pump. The degree of vacuum in the vacuum chamber 1 is, for example, 2 × 10 −5 Torr. Of course, this vacuum deposition apparatus is merely an example, and various known apparatuses can be employed. FIG. 5 is a sectional view conceptually showing the manufactured element structure. In the figure, 10 is an organic EL element, 11 is a glass substrate with ITO (ITO and other components as substrates are not shown), 12 is an α-NPD layer, 13 is a Pyrene-R layer, and 14 is An Al layer as a cathode electrode is shown. 6A shows a chemical structure of α-NPD (a low molecular weight arylamine derivative which is a p-type organic semiconductor), and FIG. 6B shows a chemical structure of Pyrene-R.

本実施例では、ホール輸送性材料のα―NPDを100nm、電子輸送兼発光層としてPyrene−Rを100nm蒸着し、陰極電極としてAlを蒸着した。そして光励起による発光スペクトル、ELスペクトルを測定したところ次の結果を得た。   In this example, α-NPD as a hole transporting material was deposited to 100 nm, Pyrene-R was deposited to 100 nm as an electron transporting / emitting layer, and Al was deposited as a cathode electrode. And when the emission spectrum by light excitation and the EL spectrum were measured, the following result was obtained.

<薄膜の蛍光スペクトル>
図7は、光励起によるPyrene−R結晶薄膜の蛍光スペクトルを示す。励起波長300nmにより薄膜の蛍光スペクトルを観測した。蛍光はピークが465nmのブロードなスペクトルを観測し、370nmから600nmにわたる幅の広いスペクトルになった。
<Fluorescence spectrum of thin film>
FIG. 7 shows a fluorescence spectrum of a Pyrene-R crystal thin film by photoexcitation. The fluorescence spectrum of the thin film was observed at an excitation wavelength of 300 nm. The fluorescence had a broad spectrum with a peak of 465 nm and became a broad spectrum ranging from 370 nm to 600 nm.

<ELスペクトル>
図8は、ITO/α―NPD/Pyrene−R/Alの構造を有する素子のELスペクトルを示す。印加電圧10Vのとき、ピーク波長465nmのブロードなスペクトルを観測し、このELスペクトルは光励起発光スペクトル(PL)と一致した。したがってこの465nm付近のブロードなピークをエキシマー蛍光と解釈できた。
<EL spectrum>
FIG. 8 shows an EL spectrum of an element having a structure of ITO / α-NPD / Pyrene-R / Al. When the applied voltage was 10 V, a broad spectrum having a peak wavelength of 465 nm was observed, and this EL spectrum coincided with the photoexcitation emission spectrum (PL). Therefore, this broad peak around 465 nm could be interpreted as excimer fluorescence.

色素分散型ポリマーEL素子(ITO/(PVK+Bu−PBD+Pyrene)/Al)について説明する。
本例では、スピンコート法と呼ばれるウェットプロセス及び真空蒸着法で製膜するプロセスを用いる。図9は、本実施例の製造過程を示す図である。また図10は製造した素子構造を概念的に示す断面図である。図中20は有機EL素子、21はスリットパターニングされたITO付きのガラス基板(先の例と同様に、ITOやその他基板としての構成要素は図示を省略してある。)、22はPEDOT(ポリチオフェン、poly(ethylenedioxy)thiophene)層、23は発光層、24は陰極電極とAl膜を示し、発光層23は、正孔輸送材料としてのPVK(Poly(9−vinylcarbazole))と電子輸送材料としてのBu−PBD(オキサジアゾール誘導体(2−(4’−t−butylphenyl)−5−(4’’−biphenylyl)−1,3,4−oxadiazole:t−BuPBD))とからなり、かつ発光色素としてピレン誘導体(Pyrene−R)を混入してなる。なお図11(A)はPVK、(B)はBu−PBDの化学構造を示す。
The dye-dispersed polymer EL element (ITO / (PVK + Bu-PBD + Pyrene) / Al) will be described.
In this example, a wet process called a spin coating method and a film forming process using a vacuum deposition method are used. FIG. 9 is a diagram showing the manufacturing process of the present embodiment. FIG. 10 is a sectional view conceptually showing the manufactured element structure. In the figure, 20 is an organic EL element, 21 is a glass substrate with ITO patterned with slits (as in the previous example, ITO and other components as substrates are not shown), and 22 is PEDOT (polythiophene). , Poly (ethylenedioxy) thiophene) layer, 23 is a light emitting layer, 24 is a cathode electrode and an Al film, and the light emitting layer 23 is PVK (Poly (9-vinylcarbazole)) as a hole transport material and an electron transport material. Bu-PBD (oxadiazole derivative (2- (4′-t-butylphenyl) -5- (4 ″ -biphenylyl) -1,3,4-oxadiazole: t-BuPBD)) As a pyrene derivative (Pyrene-R). 11A shows the chemical structure of PVK, and FIG. 11B shows the chemical structure of Bu-PBD.

本実施例では、まずスリットパターニングされたITO付きガラス基板(例えば20mm×20mm)10上に導電性ポリマーであるPEDOTをスピンコーターを用い、7000rpm、60秒で製膜し、約110℃で20分間乾燥させて形成した。膜厚は50nmとした。さらにこの層の上に発光層13を6000rmp、60秒で製膜した。膜厚は100nmとした。発光層23は、正孔輸送材料のPVK、電子輸送材料であるBu−PBDを重量比で100:30で入れ、発光色素にはPyrene−Rを用い、1モル%、5モル%、10モル%の割合で混入したジクロロエタン溶液を同じくスピンコーターを用い、製膜、乾燥させて形成した。発光層23上に配する陰電極としてのAl膜24は、第1実施例と同様に真空蒸着法で製膜した。   In this embodiment, first, PEDOT, which is a conductive polymer, is formed on a glass substrate 10 with slit patterning ITO (for example, 20 mm × 20 mm) 10 using a spin coater at 7000 rpm for 60 seconds, and at about 110 ° C. for 20 minutes. Formed by drying. The film thickness was 50 nm. Further, a light emitting layer 13 was formed on this layer at 6000 rpm for 60 seconds. The film thickness was 100 nm. For the light emitting layer 23, PVK as a hole transporting material and Bu-PBD as an electron transporting material are added at a weight ratio of 100: 30, and Pyrene-R is used as a light emitting dye. 1 mol%, 5 mol%, 10 mol A dichloroethane solution mixed at a ratio of% was formed by film formation and drying using the same spin coater. The Al film 24 as the negative electrode disposed on the light emitting layer 23 was formed by a vacuum deposition method as in the first example.

<薄膜の蛍光スペクトル>
図12は、光励起によるポリマー薄膜の蛍光スペクトルを示す。励起波長300nmにより薄膜の蛍光スペクトルを観測した。PVK+Bu−PBDのみの蛍光スペクトルのピーク波長は430nmになり。この薄膜に発光色素であるピレン誘導体を添加すると、濃度が高くなるにつれて新たに長波長側にブロードなピークが現れる。これがエキシマー蛍光であり、ポリマー中といった固相中でも観測される。また高濃度分散(5モル%、10モル%)ではピレン誘導体の通常蛍光が観測された。
<Fluorescence spectrum of thin film>
FIG. 12 shows the fluorescence spectrum of the polymer thin film by photoexcitation. The fluorescence spectrum of the thin film was observed at an excitation wavelength of 300 nm. The peak wavelength of the fluorescence spectrum of only PVK + Bu-PBD is 430 nm. When a pyrene derivative, which is a luminescent dye, is added to this thin film, a broad peak newly appears on the long wavelength side as the concentration increases. This is excimer fluorescence, which is observed even in a solid phase such as in a polymer. In addition, normal fluorescence of the pyrene derivative was observed at high concentration dispersion (5 mol%, 10 mol%).

<ELスペクトル>
図13は、ITO/PEDOT/(PVK+Bu−PBD+Pyrene−R:1モル%)/Al系有機EL素子のELスペクトルを示す。電場を印加したところ、460nm付近にピークを持つブロードなEL発光を観察された。電場をより多く印加するにつれて発光強度も大きくなった。本例の素子構造では、18V付近からピーク波長が約30nm長波長側にシフトしたスペクトルに変化する。この状態のEL発光は白色に見える。ELスペクトルは光励起発光スペクトル(PL)と一致した(8V〜16V)。ここでPVKやBu−PBDからの発光は観測されなかった。電子が発光色素に有効にトラップされているために発光中心が色素になったと考え得る。
<EL spectrum>
FIG. 13 shows an EL spectrum of ITO / PEDOT / (PVK + Bu-PBD + Pyrene-R: 1 mol%) / Al-based organic EL element. When an electric field was applied, broad EL emission having a peak near 460 nm was observed. The emission intensity increased as more electric field was applied. In the element structure of this example, the peak wavelength is changed from about 18 V to a spectrum shifted to about 30 nm long wavelength side. The EL emission in this state appears white. The EL spectrum was consistent with the photoexcitation emission spectrum (PL) (8V-16V). Here, no luminescence from PVK or Bu-PBD was observed. It can be considered that the luminescent center has become a dye because electrons are effectively trapped in the luminescent dye.

図14は、ITO/PEDOT/(PVK+Bu−PBD+Pyrene−R:5モル%)/Al系有機EL素子のELスペクトルを示す。電場を印加したところ、380nm、400nmにシャープなEL発光、460nm付近にピークを持つブロードなEL発光を観察した。   FIG. 14 shows an EL spectrum of ITO / PEDOT / (PVK + Bu-PBD + Pyrene-R: 5 mol%) / Al-based organic EL element. When an electric field was applied, sharp EL emission at 380 nm and 400 nm was observed, and broad EL emission having a peak near 460 nm was observed.

図15は、ITO/PEDOT/(PVK+Bu−PBD+Pyrene−R:10モル%)/Al系有機EL素子のELスペクトルを示す。電場を印加したところ、380nm、400nmにシャープなEL発光、460nm付近にピークを持つブロードなEL発光を観察した。   FIG. 15 shows an EL spectrum of ITO / PEDOT / (PVK + Bu-PBD + Pyrene-R: 10 mol%) / Al-based organic EL element. When an electric field was applied, sharp EL emission at 380 nm and 400 nm was observed, and broad EL emission having a peak near 460 nm was observed.

以上説明してきた両実施例とも、素子の発光はCIE色座標において白色領域に入った。例えば、第2実施例の測定結果からV=18のときX=0.289、Y=0.438、V=19のときX=0.293、Y=0.438、V=20のときX=0.304、Y=0.438となった。これをCIE色座標に示したのが図16である。図示のように、測定結果値はいわゆるピュア・ホワイトではないが、白色光と言える範囲に入った。   In both examples described above, the light emission of the element entered the white region in the CIE color coordinates. For example, from the measurement result of the second embodiment, when V = 18, X = 0.289, Y = 0.438, when V = 19, X = 0.293, Y = 0.438, and when V = 20, X = 0. = 0.304, Y = 0.438. This is shown in CIE color coordinates in FIG. As shown in the figure, the measurement result value is not so-called pure white, but is in a range that can be said to be white light.

本発明によれば、白熱電球のような白を発光可能とする発光素子の提供が可能となり、次世代ディスプレイデバイス、照明機器等への応用が可能となる。   According to the present invention, it is possible to provide a light-emitting element that can emit white light such as an incandescent bulb, and it can be applied to a next-generation display device, lighting equipment, and the like.

光の三原色(A)とその波長(B)を表す図である。It is a figure showing the three primary colors of light (A) and its wavelength (B). エキシマー生成の原理を示す図である。It is a figure which shows the principle of excimer production | generation. ピレン誘導体溶液の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of a pyrene derivative solution. 真空蒸着装置例を示す図である。It is a figure which shows the example of a vacuum evaporation system. 第1実施例の素子構造を概念的に示す断面図である。It is sectional drawing which shows notionally the element structure of 1st Example. α―NPDの化学構造(A)と、Pyrene−Rの化学構造(B)を示す図である。It is a figure which shows the chemical structure (A) of (alpha) -NPD, and the chemical structure (B) of Pyrene-R. 光励起によるPyrene−R結晶薄膜の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of the Pyrene-R crystal thin film by optical excitation. ITO/α―NPD/Pyrene−R/Alの構造を有する素子のELスペクトルを示す図である。It is a figure which shows the EL spectrum of the element which has a structure of ITO / (alpha) -NPD / Pyrene-R / Al. 第2実施例の製造過程を示す図である。It is a figure which shows the manufacture process of 2nd Example. 第2実施例の素子構造を概念的に示す断面図である。It is sectional drawing which shows notionally the element structure of 2nd Example. PVKの化学構造(A)とBu−PBDの化学構造(B)を示す図である。It is a figure which shows the chemical structure (A) of PVK, and the chemical structure (B) of Bu-PBD. 光励起によるポリマー薄膜の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of the polymer thin film by photoexcitation. ITO/PEDOT/(PVK+Bu−PBD+Pyrene−R 1モル%)/Al系有機EL素子のELスペクトルを示す図である。It is a figure which shows the EL spectrum of ITO / PEDOT / (PVK + Bu-PBD + Pyrene-R 1 mol%) / Al type organic EL element. ITO/PEDOT/(PVK+Bu−PBD+Pyrene−R 5モル%)/Al系有機EL素子のELスペクトルを示す図である。It is a figure which shows the EL spectrum of ITO / PEDOT / (PVK + Bu-PBD + Pyrene-R 5 mol%) / Al type organic EL element. ITO/PEDOT/(PVK+Bu−PBD+Pyrene−R 10モル%)/Al系有機EL素子のELスペクトルを示す図である。It is a figure which shows the EL spectrum of ITO / PEDOT / (PVK + Bu-PBD + Pyrene-R 10 mol%) / Al type organic EL element. 第2実施例の測定結果によるCIE色座標を示す図である。It is a figure which shows the CIE color coordinate by the measurement result of 2nd Example.

符号の説明Explanation of symbols

1 真空槽
2 シャッタ
3 蒸着ボート
4 ターボポンプ
5 粗引きポンプ
10 有機EL素子
11 ITO付きのガラス基板
12 α―NPD層
13 Pyrene−R層
14 Al層
20 有機EL素子
21 ITO付きのガラス基板
22 PEDOT層
23 発光層
24 Al膜
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Shutter 3 Evaporation boat 4 Turbo pump 5 Roughing pump 10 Organic EL element 11 Glass substrate with ITO 12 α-NPD layer 13 Pyrene-R layer 14 Al layer 20 Organic EL element 21 Glass substrate with ITO 22 PEDOT Layer 23 Light emitting layer 24 Al film

Claims (8)

一対の電極体間に有機分子性結晶薄膜を挟んでなり、白色光を発する有機エレクトロルミネッセンス素子であって、上記有機分子性結晶薄膜が、ホール輸送性材料としてのα―NPDと電子輸送兼発光層としてのピレン誘導体からなることを特徴とする有機エレクトロルミネッセンス素子。 An organic electroluminescence device that emits white light by sandwiching an organic molecular crystal thin film between a pair of electrode bodies, the organic molecular crystal thin film comprising α-NPD as a hole transporting material and electron transport and light emission An organic electroluminescence device comprising a pyrene derivative as a layer. 請求項1の有機エレクトロルミネッセンス素子において、上記一対の電極体の一がITO基板であり、他がAl等の陰電極素材からなることを特徴とする有機エレクトロルミネッセンス素子。 2. The organic electroluminescence element according to claim 1, wherein one of the pair of electrode bodies is an ITO substrate and the other is made of a negative electrode material such as Al. 一対の電極体間に有機分子性結晶薄膜を挟んでなる白色光を発する有機エレクトロルミネッセンス素子の製造方法であって、上記有機分子性結晶薄膜が、ホール輸送性材料としてのα―NPDの膜と電子輸送兼発光材料としてのピレン誘導体の膜からなり、上記一対の電極体の一をなす透明基板上に上記α―NPD、上記ピレン誘導体の順に真空蒸着法で製膜し、さらにその上に他の電極体を製膜してなることを特徴とする有機エレクトロルミネッセンス素子の製造方法。 A method for producing an organic electroluminescence device that emits white light with an organic molecular crystal thin film sandwiched between a pair of electrode bodies, wherein the organic molecular crystal thin film comprises an α-NPD film as a hole transporting material, It consists of a film of pyrene derivative as an electron transporting and light-emitting material, and the α-NPD and the pyrene derivative are formed in this order on the transparent substrate forming one of the pair of electrode bodies by a vacuum deposition method. A method for producing an organic electroluminescence element, comprising: forming an electrode body of the above. 一対の電極体間に有機分子性結晶薄膜を挟んでなる白色光を発する有機エレクトロルミネッセンス素子の製造方法であって、上記有機分子性結晶薄膜が、ホール輸送性材料としてのα―NPDの膜と、電子輸送兼発光材料としてのピレン誘導体の膜からなり、ITO基板上に上記α―NPD、上記ピレン誘導体の順に真空蒸着法で製膜し、さらに他の電極体としてAl等の陰電極素材を真空蒸着法で製膜してなることを特徴とする有機エレクトロルミネッセンス素子の製造方法。 A method for producing an organic electroluminescence device that emits white light with an organic molecular crystal thin film sandwiched between a pair of electrode bodies, wherein the organic molecular crystal thin film comprises an α-NPD film as a hole transporting material and It consists of a film of pyrene derivative as an electron transporting and light emitting material, formed on the ITO substrate by the vacuum deposition method in the order of the α-NPD and the pyrene derivative, and a negative electrode material such as Al as another electrode body. A method for producing an organic electroluminescence element, comprising forming a film by a vacuum deposition method. 一対の電極体間に有機化合物を挟んでなり、白色光を発する有機エレクトロルミネッセンス素子であって、上記一対の電極体の一上に導電性ポリマー層としてのPEDOT層と、発光層とを設けてなり、該発光層が、正孔輸送材料としてのPVKと、電子輸送材料としてのBu−PBDとからなり、かつ発光色素としてピレン誘導体を混入してなることを特徴とする有機エレクトロルミネッセンス素子。 An organic electroluminescence element that emits white light by sandwiching an organic compound between a pair of electrode bodies, wherein a PEDOT layer as a conductive polymer layer and a light emitting layer are provided on one of the pair of electrode bodies. The organic electroluminescence device is characterized in that the light emitting layer is made of PVK as a hole transport material and Bu-PBD as an electron transport material, and a pyrene derivative is mixed as a light emitting dye. 請求項5の有機エレクトロルミネッセンス素子において、上記一対の電極体の一がスリットパターニングしたITO基板であり、他がAl等の陰電極素材からなることを特徴とする有機エレクトロルミネッセンス素子。 6. The organic electroluminescence element according to claim 5, wherein one of the pair of electrode bodies is an ITO substrate having a slit pattern, and the other is made of a negative electrode material such as Al. 一対の電極体間に有機化合物を挟んでなる白色光を発する有機エレクトロルミネッセンス素子の製造方法であって、上記一対の電極体の一の上に導電性ポリマー層としてのPEDOT層と発光層とを設けてなり、該発光層が、正孔輸送材料としてのPVKと電子輸送材料としてのBu−PBDとからなりかつ発光色素としてピレン誘導体を混入してなり、上記一対の電極体の一をなす透明基板上に上記PEDOTをスピンコート法により製膜し、その上に上記発光層をスピンコート法により製膜し、さらにその上に他の電極体を製膜してなることを特徴とする有機エレクトロルミネッセンス素子の製造方法。 A method of manufacturing an organic electroluminescent element that emits white light with an organic compound sandwiched between a pair of electrode bodies, wherein a PEDOT layer as a conductive polymer layer and a light emitting layer are formed on one of the pair of electrode bodies. The light emitting layer is made of PVK as a hole transport material and Bu-PBD as an electron transport material, and is mixed with a pyrene derivative as a light emitting dye, and is a transparent material forming one of the pair of electrode bodies. An organic electro-electrode comprising: a PEDOT film formed on a substrate by a spin coating method; the light emitting layer formed thereon by a spin coating method; and another electrode body formed thereon. Manufacturing method of luminescence element. 一対の電極体間に有機化合物を挟んでなる白色光を発する有機エレクトロルミネッセンス素子の製造方法であって、上記一対の電極体の一の上に導電性ポリマー層としてのPEDOT層と発光層とを設けてなり、該発光層が、正孔輸送材料としてのPVKと電子輸送材料としてのBu−PBDとからなりかつ発光色素としてピレン誘導体を混入してなり、スリットパターニングされたITO基板上に上記PEDOTをスピンコート法により製膜し、その上に上記発光層をスピンコート法により製膜し、さらにその上に他の電極体としてAl等の陰電極素材を真空蒸着法で製膜してなることを特徴とする有機エレクトロルミネッセンス素子の製造方法。 A method of manufacturing an organic electroluminescent element that emits white light with an organic compound sandwiched between a pair of electrode bodies, wherein a PEDOT layer as a conductive polymer layer and a light emitting layer are formed on one of the pair of electrode bodies. The PEDOT is formed on a slit patterned ITO substrate, wherein the light emitting layer is made of PVK as a hole transport material and Bu-PBD as an electron transport material, and a pyrene derivative is mixed as a light emitting dye. Is formed by spin coating, and the light emitting layer is formed thereon by spin coating, and a negative electrode material such as Al is formed thereon by vacuum deposition as another electrode body. The manufacturing method of the organic electroluminescent element characterized by these.
JP2003271957A 2003-07-08 2003-07-08 Organic electroluminescent element and its manufacturing method Pending JP2005032629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003271957A JP2005032629A (en) 2003-07-08 2003-07-08 Organic electroluminescent element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003271957A JP2005032629A (en) 2003-07-08 2003-07-08 Organic electroluminescent element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005032629A true JP2005032629A (en) 2005-02-03

Family

ID=34209662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003271957A Pending JP2005032629A (en) 2003-07-08 2003-07-08 Organic electroluminescent element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005032629A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329176A (en) * 2006-06-06 2007-12-20 Univ Nihon Organic electroluminescence element
JP2010135689A (en) * 2008-12-08 2010-06-17 Fujifilm Corp White organic electroluminescent element
KR101259532B1 (en) 2011-05-09 2013-05-06 단국대학교 산학협력단 White organic light-emitting diode with two organic layers and method of manufacturing the same
JP2016006905A (en) * 2012-08-03 2016-01-14 株式会社半導体エネルギー研究所 Light emitting element, light emitting device, lighting device and electronic apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329176A (en) * 2006-06-06 2007-12-20 Univ Nihon Organic electroluminescence element
JP2010135689A (en) * 2008-12-08 2010-06-17 Fujifilm Corp White organic electroluminescent element
KR101259532B1 (en) 2011-05-09 2013-05-06 단국대학교 산학협력단 White organic light-emitting diode with two organic layers and method of manufacturing the same
JP2016006905A (en) * 2012-08-03 2016-01-14 株式会社半導体エネルギー研究所 Light emitting element, light emitting device, lighting device and electronic apparatus
US9559313B2 (en) 2012-08-03 2017-01-31 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US9947885B2 (en) 2012-08-03 2018-04-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10505132B2 (en) 2012-08-03 2019-12-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10644254B2 (en) 2012-08-03 2020-05-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10734594B2 (en) 2012-08-03 2020-08-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US11355722B2 (en) 2012-08-03 2022-06-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US11730007B2 (en) 2012-08-03 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element

Similar Documents

Publication Publication Date Title
Dayneko et al. Solution processed red organic light-emitting-diodes using an N-annulated perylene diimide fluorophore
EP1121000B1 (en) Light source with organic layer and photoluminescent layer
JP4597134B2 (en) White electrophosphorescence from semiconducting polymer blends
JP2004327443A (en) Light source equipped with organic layer and photoluminescent layer
JP2006245003A (en) Electroluminescence device
EP2182563B1 (en) Organic light-emitting diode device and manufacturing method thereof
JP2010034484A (en) Organic electroluminescent element
CN111180601B (en) OLED display device, display substrate and preparation method thereof
JP2003068461A (en) Light-emitting element
JP2007329176A (en) Organic electroluminescence element
JP2005032629A (en) Organic electroluminescent element and its manufacturing method
JP2004031214A (en) Organic electroluminescent element
JP4797247B2 (en) Organic electroluminescence device
Yang et al. High colour rendering index white organic light-emitting devices with three emitting layers
Niu et al. White organic light-emitting diodes based on bis (2-methyl-8-quinolinolato)(para-phenylphenolato) aluminium (III) doped with tiny red dopant
JPH1154277A (en) Organic electroluminescent element
JP2002083682A (en) Organic electroluminescent device
Srivastava et al. Fabrication of white organic light-emitting diodes by co-doping of emissive layer
KR20090034902A (en) White electroluminescent organic diodes based on molecules derived from phosphole
KR100280960B1 (en) Voltage-controlled color variable light emitting device having good stability and the preparation thereof
JP2006066562A (en) Organic electroluminescence element
JP2010027956A (en) Polymer ultraviolet light-emitting element
JP2005050589A (en) Organic electroluminescence device
KR100277486B1 (en) Organic light-emitting diode capable of color tuning
JPH07238280A (en) Organic electroluminescent element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091208