JP2005030786A - Method for measuring axle load and weight of bridge passing vehicle, and its device - Google Patents

Method for measuring axle load and weight of bridge passing vehicle, and its device Download PDF

Info

Publication number
JP2005030786A
JP2005030786A JP2003193080A JP2003193080A JP2005030786A JP 2005030786 A JP2005030786 A JP 2005030786A JP 2003193080 A JP2003193080 A JP 2003193080A JP 2003193080 A JP2003193080 A JP 2003193080A JP 2005030786 A JP2005030786 A JP 2005030786A
Authority
JP
Japan
Prior art keywords
vehicle
passing
axle
bridge
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003193080A
Other languages
Japanese (ja)
Inventor
Hiroshi Katsuura
啓 勝浦
Takuya Arakawa
卓哉 荒川
Nobuo Amano
信雄 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003193080A priority Critical patent/JP2005030786A/en
Publication of JP2005030786A publication Critical patent/JP2005030786A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring an axle load and weight of a bridge passing vehicle, and its device which measure the vehicle weight in the noncontact state between the vehicle and a measuring instrument, to thereby dispense with traffic regulation at the vehicle weight measuring time, and to avoid breakage occurrence caused by contact of the measuring instrument with the vehicle, and also measure highly accurately the weight in every running state or the stopping state, for example, at the vehicle running time at constant speed, at the speed reducing time, at the speed increasing time or at the stopping time. <P>SOLUTION: In this weight measuring means of the bridge passing vehicle, a plurality of speed detection sensors are installed along a running route, to thereby detect the running speed of the passing vehicle. An axle detection sensor is installed on the running route, to thereby detect the axle position and the number of axles of the passing vehicle, and vehicle recognition of the passing vehicle is performed by the running speed and the axle position. A deformation quantity measuring means is installed on the bridge, to thereby measure the deformation quantity of the bridge in a plurality of times within a set measuring time corresponding to at least the axle of the passing vehicle recognized as a vehicle, and the weight of the passing vehicle is calculated with vehicle recognition data and measurement data of the deformation quantity corresponding to the axle. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、橋梁の走行路上を通過する車両の重量を計測する橋梁通過車両の車軸荷重及び重量計測方法及びその装置に関する。
【0002】
【従来の技術】
高速道路や橋梁上の走行路上を通過する車両の重量を計測する技術として、特許文献1及び非特許文献1等の技術が提供されている。
前記特許文献1の技術においては、走行路の路面内に埋設された軸重検出器及び車両を1台づつ判別する車両検知器からの検出信号により、走行車両の変動軸重値を微小サンプリング時間毎に多数回計測して変動軸重値データ列とし、該変動軸重値データ列から走行中における車両の変動成分の周波数を算出し、該周波数と共通位相とを用いて車軸の変動成分の振幅と静止軸重値を求めるように構成されている。
【0003】
一方、前記非特許文献1の技術においては、軸重W〜W、軸間距離Lが明らかな試験車両を走行させて橋梁等の走行路における歪ε(t)を計測し、この実測歪ε(t)から、次の方法により車両の軸重を算出する。
先ず、歪の影響線ε(t)を次の手順にて求める。
【0004】
f(x)=a+ax+a+…a(aは係数) (1)
ε(t)=Wf(x+h)+Wf(x+h)+…Wf(x+h)(2)
x=vt(xは基準位置、v(車速)=一定速度) (3)
【0005】
ここで、hは基準位置xからの各軸のずれ量
上記(1)〜(3)式のよって歪ε(t)を仮定し、該ε(t)と前記実測歪ε(t)とを比較して最小2乗法を用いてε(t)−ε(t)が最小となる係数a〜aを決定し、f(x)を決定する。
そして、軸重が未知の車両が計測走行路に来たときは、前記実測歪ε(t)とε(t)との差(ε(t)−ε(t))が少なくなるような軸重W〜Wを求める。
【0006】
【特許文献1】
特開平11−101683号公報
【非特許文献1】
橋梁と基礎 87年4月号(41〜45頁)(走行車両の重量測定)
【0007】
【発明が解決するための課題】
特許文献1の技術にあっては、軸重検出器及び車両検知器を走行路の路面内に埋設しているため、車両と軸重検出器及び車両検知器とが接触することとなり、軸重計測時には走行路の交通規制を行う必要があり、また軸重検出器及び車両検知器等の計測器具が車両に接触するため破損を起こし易い。
【0008】
また、非特許文献1の技術にあっては、計測器具と車両とが非接触であるため前記のような不具合の発生は回避できるが、v(車速)が一定速度のときの歪波形の形状全体から歪の影響線ε(t)を算出しているため、増速時や減速時のように車速vに変動があったり車両が停止している際には、前記歪波形が崩れて軸重の計測が困難となり、車両重量の計測が実質的に不可能となる。
等の問題点を有している。
【0009】
本発明はかかる従来技術の課題に鑑み、複数車両、複数車線の橋梁において車両と計測器具とを非接触状態にて車両重量を計測可能として車両重量計測時の交通規制を不要と計測器具の車両への接触にともなう破損の発生を回避し、さらには車両の一定速度での走行時、減速時、増速時、停止時等のあらゆる走行あるいは停車状態における重量を高精度で計測することを可能とした橋梁通過車両の車軸荷重及び重量計測方法及びその装置を提供することを目的とする。
【0010】
【問題を解決するための手段】
本発明はかかる目的を達成するため、橋梁の走行路上を通過する車両の車軸荷重及び重量を計測する橋梁通過車両の車軸荷重及び重量計測方法において、前記走行路に沿って複数の速度検知用センサを所定間隔で設置して該速度検知用センサにより通過車両の走行速度を検出するとともに、前記走行路に車軸検知用センサを設置して車軸検知用センサにより前記通過車両の車軸位置及び車軸数を検出して、前記走行速度と車軸位置により前記通過車両の車両認識を行い、さらに前記橋梁に歪ゲージ等の変形量計測手段を設置して該変形量計測手段により通過車両による橋梁の変形量を設定された計測時間内に複数回、かつ少なくとも前記車両認識された通過車両の車軸に対応して計測し、前記車両認識データと車軸に対応した変形量の計測データに基づき前記通過車両の車軸荷重及び重量を算出することを特徴とする。
【0011】
また、かかる方法発明を実施する装置として、橋梁の走行路上を通過する車両の車軸荷重及び重量を計測するように構成された橋梁通過車両の重量計測装置において、前記走行路に沿って所定間隔で複数個配設され通過車両の走行速度を検出する速度検知用センサと、前記走行路に1個または該走行路に沿って複数個配設され通過車両の車軸位置及び車軸数を検出する車軸検知用センサと、前記橋梁に1個または複数個配設され前記通過車両による橋梁の変形量を設定された計測時間内に複数回、かつ少なくとも前記車両認識された通過車両の車軸に対応して計測する変形量計測手段と、前記走行速度と車軸位置により前記通過車両の車両認識を行い該車両認識データと車軸に対応した変形量の計測データに基づき前記通過車両の重量を算出する制御演算装置とを備えてなることを特徴とする。
【0012】
かかる発明において、好ましくは次のように構成する。
即ち、前記通過車両の走行速度の検出値と車軸位置及び車軸数の検出値とにより該通過車両の車軸間距離を算出し、該車軸間距離の分布状態によって車両認識を行う。
そして、かかる方法を行うための装置として、前記制御演算装置が、前記速度検知用センサによる前記通過車両の走行速度の検出値と前記車軸検知用センサによる車軸位置及び車軸数の検出値とにより該通過車両の車軸間距離を算出する車軸間距離算出手段と、該車軸間距離算出手段で算出された前記車軸間距離の分布状態によって車両認識を行う手段とを有するように構成した橋梁通過車両の重量計測装置とするのが好ましい。
前記変形量計測手段としては、歪ゲージを橋梁下部に取付ける手段、圧電素子を橋梁下部に取付ける手段、レーザ変位計を非接触で橋梁に取付ける手段、加速度計、速度計、接触式変位計等が好適である。
【0013】
かかる発明によれば、速度検知用センサにより検出した橋梁上走行路における通過車両の走行速度と、車軸検知用センサによりにより検出した前記通過車両の車軸位置及び車軸数により前記通過車両の車両認識を行い、走行路に設置された変形量計測手段により、設定された計測時間内に複数回、かつ前記車両認識された通過車両の車軸に対応する部位及びその近傍において橋梁の歪等の変形量を計測し、制御演算装置において前記車両認識データと変形量の計測データに基づき前記通過車両の車軸荷重及び重量を算出するので、設定された計測時間内に通過する車両による橋梁の変形量を該車両の通過時間中に複数点に亘って時系列的に検出し、かかる時系列的な変形量計測データと前記通過車両の車両認識データとによって前記通過車両の車軸荷重及び重量を時系列的に算出することができる。
【0014】
これにより、特許文献1のように軸荷重計測装置を走行路中に埋設することなく走行路の側部に該車両と非接触で以って車両の重量計測を行うことができるとともに、前記非特許文献1のように車両の増、減速時や停止時での重量計測が不可能となることなく、複数車両、複数車線の橋梁において車両の一定速度での走行時、減速時、増速時、さらには停止時のあらゆる走行あるいは停車状態における重量を高精度で計測することが可能となる。
【0015】
また、前記制御演算装置において通過車両の走行速度の検出値と車軸位置及び車軸数の検出値とにより該通過車両の車軸間距離を算出して該車軸間距離の分布状態によって車両認識を行うので、該車軸間距離の計測長さと車種別の設定長さとを対比させることにより通過車両の車両認識を正確に行うことができて、この車両認識データと前記時系列的な歪計測データとを照合させることにより、車両の重量計測精度をさらに向上できる。
【0016】
また本発明において好ましくは、前記走行路の一側、又は両側に設置した車両位置検知用距離センサにより各走行車線を通過する車両と該センサとの間の距離を計測し、該距離の計測値に基づき前記通過車両の走行車線を検知するように構成する。
そして、かかる方法を行うための装置として、前記走行路の一側、又は両側に配設され各走行車線を通過する車両と該センサとの間の距離を計測する車両位置検知用距離センサを備え、前記制御演算装置は前記車両位置検知用距離センサによる前記距離の計測値に基づき前記通過車両の走行車線を検知する手段を有するように構成した橋梁通過車両の重量計測装置とするのが好ましい。
【0017】
このように構成すれば、走行路の一側、又は両側に設置した光電センサ等の車両位置検知用距離センサによって複数の走行車線における通過車両と該車両位置検知用距離センサとの距離を計測することにより、走行車線が複数の橋梁であっても、該走行車線を通過する車両毎に車軸荷重及び車両重量を検知することが可能となる。
【0018】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載が無い限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
【0019】
図1は、本発明の実施例に係る橋梁通過車両の重量計測装置の制御ブロック図である。図2は前記実施例における橋梁走行路への計測器具の取付状態を示す要部側面図、図3は図2のA矢視図、図4は図3のB矢視図である。図5は車両位置検知用距離センサの他の例を示す正面図である。図6は速度検知用センサによる車両速度の検出方法の説明図、図7は車軸検知用センサによる車軸位置検出方法の説明図、図8は車両位置検知用距離センサによる複数車線での車両認識方法の説明図である。図9は前記実施例における橋梁通過車両の重量計測の制御フロー図である。
【0020】
本発明の実施例に係る橋梁通過車両における重量計測装置の計測器具の取付状態を示す図2ないし図4において、100は車軸間距離Lなる重量計測計測対象の車両、101は橋梁、102は該橋梁101上の走行路である。
1は光電センサからなる(他の型式のセンサでもよい)速度検知用センサで、前記走行路102の一側に該走行路102に沿って所定の間隔Aで以って、SV、SV、SV、SVのように複数個配設されて、該走行路102を通過する車両100の走行速度を後述のようにして検出し、後述する制御演算装置20に入力するものである。
該速度検知用センサ1の設置間隔Aは、車両100の車軸間距離Lよりも大きく設定する。
【0021】
2は光電センサからなる車軸検知用センサで、前記走行路102の一側に1個、あるいは図のように該走行路102に沿って所定間隔で以ってSJ、SJ、SJのように複数個配設されて、該走行路102を通過する車両100の車軸位置及び車軸数を後述のようにして検出し、後述する制御演算装置20に入力するものである。
尚、前記車軸検知用センサ2の光電センサに代えて、図5に示されるように、ビデオカメラ6を走行路102の一側に設置して、該ビデオカメラ6の画像から車軸の位置を検出することもできる。
【0022】
3はレーザ変位計からなる車両位置検知用距離センサで、前記走行路102の一側にSkのように設置され、複数の走行車線を通過する車両100と該車両位置検知用距離センサ3との距離を計測して後述する制御演算装置20に入力するものである。
このように構成すれば、走行路102の一側、又は両側に設置した前記車両位置検知用距離センサ3によって複数の走行車線における通過車両100と該車両位置検知用距離センサ3との距離を計測することにより、走行車線が複数の橋梁101であっても、該走行車線を通過する車両100毎に車両重量を検知することが可能となる。
105は前記各センサ1,2,3からの光電信号を反射して制御演算装置20の受信部に伝送するための反射板である。
【0023】
4は歪ゲージで、前記橋梁101における走行路102裏側の車両通過時の歪が最も大きくなる部位に1個、あるいは図2に示されるように、該走行路100の走行方向に沿ってSH、SH、SHのように複数個配設され,さらには図4に示されるように該走行路100の幅方向にSH11、SH21、SH31、SH41のように複数個配設され、前記通過車両100の車軸に対応する部位及びその近傍において橋梁101の歪を計測し、設定された計測時間内に時系列的に計測し、後述する制御演算装置20に入力するものである。
【0024】
次に、図1及び図6ないし図9に基づき、かかる橋梁通過車両の重量計測装置の動作を説明する。
前記速度検知用センサ1においては、図6(A)、(B)に示されるように、走行路102に沿って所定間隔Aで以って配設された相隣るセンサSV〜SVi+1間における車両の通過時間差Δtを計測して、図1における制御演算装置20の車速算出部21に入力する。
該車速算出部21においては、前記通過時間差Δtと間隔Aとにより、式
v=A/Δt
によって通過車両100の車速vを算出し、車両軸間距離算出部22に入力する。
【0025】
前記車軸検知用センサ2においては、図7(A)、(B)に示されるように、車両100の通過前から車軸間隔Lなる車軸が通過する毎に車軸位置の光電信号をSJ、SJ、SJの順に発信し(あるいは車軸検知用センサ2を1個設けて、1個の車軸検知用センサ2を車軸が通過する毎に光電信号を発信するようにしてもよい)、反射板105を介して受信し、図1における制御演算装置20の車両軸間距離算出部22に入力する。
該車両軸間距離算出部22においては、前記車軸検知用センサ2の車軸位置の光電信号により通過車両100の車軸位置と車軸数を検出し、車軸位置及び車軸数と前記車速算出部21から入力された通過車両100の車速vの算出値とによって、車両重量の算出対象となる通過車両100の車両認識を行い、該車両認識信号を図1における車両軸重量算出部24に入力する。
【0026】
さらに複数の車両が走行中の場合は、各軸位置を次の考えで特定する。
複数位置に配置された軸検知センサの信号から、対象区間内に存在する車軸の個数を知ることができる。その個数がSの場合、各軸の信号に符号をつけ、それをSs(s=1、S)とする。
車軸位置検知センサの設置座標をXj(j=1、n)(ここにnは、軸検知センサの個数)とする。
車軸Ssは時刻とともに位置を変えていくので、その座標をXs(t)(s=1,S)と記号付け、かつ、次の時間に関する式で表現する。
Xs(t)=C1s・tα+C2s・tβ+・・・・・・
車軸Ssが、軸位置検知センサの座標Xjを通過した時刻をtsjとすれば、それらのデータからC1s、C2s・・が求まるから、全ての車軸の座標を時間の関数で表現できる。
【0027】
また、前記車両位置検知用距離センサ3においては、図8(A)、(B)に示されるように、複数の走行車線102a、102b、102cを通過する車両100ごとに該センサ3(Sk)からレーザ信号、又はレーザ変位計からの信号を発信し、受信する図1における制御演算装置20の走行車線検出部23に入力する。
該走行車線検出部23においては、前記車軸位置検知用距離センサ3からのレーザ信号、又はレーザ変位計からの信号から、該車軸位置検知用距離センサ3と車両100との距離を算出し、当該通過車両100の走行車線(102a、102b、102c)を判定して車両軸重量算出部24に入力する。
【0028】
車両軸重量算出部24においては、次の方法によって車両重量(車軸重量)Wを算出する。
橋梁101を車両100が通過する場合に、該橋梁に発生する歪εは以下のようにして求められる。
橋梁101の機械的データを下記とする。
支点間の長さ ;L
ヤング率 ;E
断面係数 ;Z
着目する径間の支点の一つを座標の原点にとり、道路軸方向に1次元座標をとる。
【0029】
橋梁101に取付けた歪ゲージ4(SH、SH、SHあるいはSH11、SH21、SH31、SH41)の座標をaとする。
時刻tに橋梁101を通過する複数の車両100の車軸に関して、下記のように設定する。
車軸の総計 ;S
各車軸荷重 ;W (i=1,S)
の座標 ;x(t
上記の車両走行状態に関して橋梁に発生する歪εは、2径間連続梁に発生する歪に近い。その場合、荷重軸位置x(t)が、歪εに与える影響係数は下記であることが知られている。
【0030】

Figure 2005030786
【0031】
時刻(t)において着目している歪ε(t)は、次のように求められる。
【0032】
ε(t)=ΣA(x(t))・W(i=1,S) (31)
【0033】
式(31)の関係式を用いれば、各軸荷重Wは次のようにして求めることができる。
車両100が走行していく過程で、時間t=tからt=tまで、S回の歪測定を行い、同じ時刻における各車軸の座標の捕捉を行えば、次の関係式が得られる。
【0034】
ε(t)= ΣA(x(t))・W
ε(t)= ΣA(x(t))・W
・・・・ (34)
・・・・
ε(t)= ΣA(x(t))・W
【0035】
式(34)は未知数Wに関する定数係数の多次元一次方程式であるので、逆行列などを使ってWを求めることができる。
【0036】
図9は、以上のような、車両重量(車軸重量)Wの算出手順のフローを示したものである。
ここで、車両重量などの算出には、前述の時刻tからtの間の軸位置データ及び変形量測定データを用いるので、車両重量などの算出はリアルタイムで行うのではなく、蓄積データからtからtの間のデータを抽出して行う。
図9において、使用する最小限の計測データは、車両位置検知センサの出力と、車軸位置検知センサの出力と、橋梁101の歪測定値の計3種の時刻暦である(S1)。
それらの計測時刻の中に、車両重量算出の解析開始時刻tを設定し、その時刻以降のある時間経過する間の車軸位置検知センサの出力から、関与する車軸数を分析し、その数Sを求める(S2)。
次いで全車軸の座標計算式;X(t)を設定する(S3)。
【0037】
次いで、解析時間間隔dtを決定してから(S4)、解析時刻t=t+ndtを決定する(S5)。
次いで、前記歪履歴ε(t)の検出値を用いて、各時刻の解析適用必要量を下記のように抽出し計算する(S6)。
歪;ε(t
各軸の座標;X(t
n=0,S−1 p=1,S
【0038】
次いで、各軸の軸重Wsを計算し(S7)、車両位置検知センサの出力と軸位置検知センサとの照合から、車両とそれに属する車軸を特定して、各車軸荷重の合計値としての車両重量を計算する(S8)。
【0039】
かかる実施例によれば、設定された計測区間内に通過する複数の車両100の一定速度での走行時、減速時、増速時、さらには停止時のあらゆる走行あるいは停車状態における重量を高精度で計測することが可能となる。また、軸荷重計測装置を走行路102中に埋設することなく、該走行路の側部に車両100と非接触で以って車両100の重量計測を行うことができる。
【0040】
また、前記制御演算装置20において、通過車両100の走行速度の検出値vと車軸位置及び車軸数の検出値とにより該通過車両100の車軸間距離Lを算出し,該車軸間距離Lの分布状態つまり該車軸間距離Lの計測長さと車種別の設定長さとを対比させて通過車両100がどの車種であるかを認識する。これにより、
通過車両100の車両認識を正確に行うことができて、この車両認識データと前記のような時系列的な歪計測データε(t)、ε(t)…ε(t)とを照合させることにより、車両100の重量計測精度をさらに向上できる。
尚、前記歪ゲージSHに代えて、圧電素子を橋梁101下部に取付ける手段、レーザ変位計を非接触で橋梁101に取付ける手段、加速度計、速度計、接触式変位計を用いることができる。
【0041】
【発明の効果】
以上記載の如く本発明によれば、橋梁に設置された変形量計測手段により、設定された計測時間内に複数回、かつ車両認識された通過車両の車軸に対応する部位及びその近傍において橋梁の歪等の変形量を計測し、制御演算装置において前記車両認識データと変形量の計測データに基づき通過車両の重量を算出するので、設定された計測時間内に通過する車両による橋梁の変形量を該車両の通過時間中に複数点に亘って時系列的に検出し、かかる時系列的な変形量計測データと前記通過車両の車両認識データとによって前記通過車両の重量を時系列的に算出することができる。
これにより、車両の一定速度での走行時、減速時、増速時、さらには停止時のあらゆる走行あるいは停車状態における車両重量を高精度で計測することが可能となる。また、軸荷重計測装置を走行路中に埋設することなく走行路の側部に該車両と非接触で以って車両の重量計測を行うことができる。
【0042】
また、通過車両の走行速度の検出値と車軸位置及び車軸数の検出値とにより該通過車両の車軸間距離を算出し該車軸間距離の分布状態によって車両認識を行い、該車軸間距離の計測長さと車種別の設定長さとを対比させることにより通過車両の車両認識を正確に行うことができるので、この車両認識データと前記時系列的な歪計測データとを照合させることにより、車両の重量計測精度をさらに向上できる。
【図面の簡単な説明】
【図1】本発明の実施例に係る橋梁通過車両の重量計測装置の制御ブロック図である。
【図2】前記実施例における橋梁走行路への計測器具の取付状態を示す要部側面図である。
【図3】図2のA矢視図である。
【図4】図3のB矢視図である。
【図5】車両位置検知用距離センサの他の例を示す正面図である。
【図6】速度検知用センサによる車両速度の検出方法の説明図である。
【図7】車軸検知用センサによる車軸位置検出方法の説明図である。
【図8】車両位置検知用距離センサによる複数車線での車両認識方法の説明図である。
【図9】前記実施例における橋梁通過車両の重量計測の制御フロー図である。
【符号の説明】
1 速度検知用センサ
2 車軸検知用センサ
3 車両位置検知用距離センサ
4 歪ゲージ
6 ビデオカメラ
20 制御演算装置
21 車速算出部
22 車両軸間距離算出部
23 走行車線検出部
24 車両軸重量算出部
100 車両
101 橋梁
102 走行路
105 反射板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an axle load and weight measurement method for a vehicle passing through a bridge and a device for measuring the weight of a vehicle passing through a bridge running path.
[0002]
[Prior art]
Techniques such as Patent Document 1 and Non-Patent Document 1 are provided as techniques for measuring the weight of a vehicle passing on a road on a highway or a bridge.
In the technique of Patent Document 1, the fluctuation axle weight value of the traveling vehicle is detected by a minute sampling time based on the detection signal from the axle weight detector embedded in the road surface of the traveling road and the vehicle detector that discriminates one vehicle at a time. Measured many times each time to obtain a variable axle weight value data string, calculate the frequency of the fluctuation component of the vehicle while traveling from the variable axle weight value data string, and use the frequency and the common phase to calculate the fluctuation component of the axle It is comprised so that an amplitude and a static shaft weight value may be calculated | required.
[0003]
On the other hand, in the technique of Non-Patent Document 1, a strain ε 0 (t) in a traveling path such as a bridge is measured by running a test vehicle with a clear axle load W 1 to W n and an inter-axis distance L. From the measured strain ε 0 (t), the axle load of the vehicle is calculated by the following method.
First, the strain influence line ε (t) is obtained by the following procedure.
[0004]
f (x) = a 0 + a 1 x + a 2 x 2 +... a n x m (a i is a coefficient) (1)
ε (t) = W 1 f (x + h 1 ) + W 2 f (x + h 2 ) +... W n f (x + h n ) (2)
x = vt (x is a reference position, v (vehicle speed) = constant speed) (3)
[0005]
Here, h i is the deviation amount above (1) for each axis from the reference position x ~ (3) equation thus assumes strain epsilon a (t), the epsilon (t) and the measured strain epsilon 0 (t) using a least squares method by comparing the preparative ε 0 (t) -ε (t ) determines the coefficients a 1 ~a n that minimizes, to determine f (x).
When a vehicle with an unknown axle load comes to the measurement travel path, the difference (ε 0 (t) −ε (t)) between the measured strain ε 0 (t) and ε (t) is reduced. The axial weights W 1 to W n are obtained.
[0006]
[Patent Document 1]
JP 11-101683 A [Non-patent Document 1]
Bridge and foundation April 1987 issue (pages 41-45) (weight measurement of traveling vehicles)
[0007]
[Problem to be Solved by the Invention]
In the technique of Patent Document 1, since the axle load detector and the vehicle detector are embedded in the road surface of the traveling road, the vehicle and the axle load detector and the vehicle detector come into contact with each other. It is necessary to regulate the traffic on the road during measurement, and the measuring instruments such as the axle load detector and the vehicle detector come into contact with the vehicle, and are easily damaged.
[0008]
Further, in the technique of Non-Patent Document 1, since the measurement instrument and the vehicle are not in contact with each other, the occurrence of the above-described problem can be avoided, but the shape of the distortion waveform when v (vehicle speed) is a constant speed. Since the distortion influence line ε (t) is calculated from the whole, when the vehicle speed v fluctuates or the vehicle stops, such as during acceleration or deceleration, the distortion waveform collapses and the axis It becomes difficult to measure the weight, and it becomes impossible to measure the vehicle weight.
And so on.
[0009]
In view of the problems of the prior art, the present invention makes it possible to measure the vehicle weight in a non-contact state between the vehicle and the measuring instrument in a plurality of vehicles and a bridge of a plurality of lanes. It is possible to avoid the occurrence of damage due to contact with the vehicle, and to measure the weight of the vehicle in any driving or stationary state, such as when the vehicle is traveling at a constant speed, decelerating, accelerating, or stopping. An object of the present invention is to provide an axle load and weight measuring method and apparatus for a vehicle passing through a bridge.
[0010]
[Means for solving problems]
In order to achieve the above object, the present invention provides a method for measuring the axle load and weight of a vehicle passing through a bridge that measures the axle load and weight of a vehicle passing over the road of a bridge, and a plurality of speed detection sensors along the road. Are installed at predetermined intervals, the traveling speed of the passing vehicle is detected by the speed detection sensor, and the axle detection sensor is installed on the travel path, and the axle position and the number of axles of the passing vehicle are determined by the axle detection sensor. And detecting the passing vehicle by the travel speed and the axle position, and installing a deformation amount measuring means such as a strain gauge on the bridge, and determining the deformation amount of the bridge by the passing vehicle by the deformation amount measuring means. Measurement is performed a plurality of times within a set measurement time, and at least corresponding to the axle of the passing vehicle recognized by the vehicle, and the deformation data corresponding to the vehicle recognition data and the axle is measured. And calculates the axle load and the weight of the passing vehicle based on the data.
[0011]
In addition, as an apparatus for carrying out the method invention, in a weight measuring device for a bridge passing vehicle configured to measure an axle load and a weight of a vehicle passing on a traveling road of a bridge, the weight measuring device of the passing vehicle at a predetermined interval along the traveling road is provided. A plurality of speed detection sensors for detecting the traveling speed of a passing vehicle, and an axle detection for detecting the axle position and the number of axles of the passing vehicle, one or a plurality along the traveling path. And one or more sensors for the bridge, and the amount of deformation of the bridge by the passing vehicle is measured a plurality of times within a set measurement time, and at least corresponding to the axle of the passing vehicle recognized by the vehicle. A vehicle that recognizes the passing vehicle based on the travel speed and the axle position, and calculates the weight of the passing vehicle based on the vehicle recognition data and the deformation measurement data corresponding to the axle. Characterized by comprising a that processing device.
[0012]
In this invention, the following configuration is preferable.
That is, the distance between the axles of the passing vehicle is calculated from the detected value of the traveling speed of the passing vehicle and the detected values of the axle position and the number of axles, and the vehicle is recognized based on the distribution state of the distance between the axles.
Then, as an apparatus for performing such a method, the control arithmetic device is based on the detected value of the traveling speed of the passing vehicle by the speed detecting sensor and the detected value of the axle position and the number of axles by the axle detecting sensor. An inter-axle distance calculating means for calculating a distance between axles of a passing vehicle, and a means for performing vehicle recognition according to a distribution state of the inter-axle distance calculated by the inter-axle distance calculating means. A weight measuring device is preferable.
As the deformation amount measuring means, there are means for attaching a strain gauge to the lower part of the bridge, means for attaching the piezoelectric element to the lower part of the bridge, means for attaching the laser displacement meter to the bridge in a non-contact manner, an accelerometer, a speedometer, a contact displacement meter, etc. Is preferred.
[0013]
According to this invention, the vehicle recognition of the passing vehicle is performed based on the traveling speed of the passing vehicle on the road on the bridge detected by the speed detection sensor and the axle position and the number of axles of the passing vehicle detected by the axle detection sensor. The deformation amount measuring means installed on the road is used several times within the set measurement time, and the deformation amount such as the distortion of the bridge in the vicinity of the portion corresponding to the axle of the passing vehicle recognized by the vehicle and the vicinity thereof. Since the axle load and the weight of the passing vehicle are calculated based on the vehicle recognition data and the deformation measurement data in the control arithmetic unit, the amount of deformation of the bridge by the vehicle passing within the set measurement time is measured. The passing vehicle is detected in a time series over a plurality of points during the passing time of the vehicle, and the passing vehicle is detected based on the time series deformation measurement data and the vehicle recognition data of the passing vehicle. It is possible to calculate the axle loads and weight in time series.
[0014]
As a result, the weight of the vehicle can be measured without contact with the vehicle on the side of the traveling road without embedding the axial load measuring device in the traveling road as in Patent Document 1. As in Patent Document 1, weight measurement at the time of increase, deceleration or stop of the vehicle is not possible, and when the vehicle is traveling at a constant speed on a bridge of multiple vehicles and multiple lanes, at the time of deceleration, at the time of acceleration In addition, it is possible to measure the weight in any running or stopped state at the time of stopping with high accuracy.
[0015]
Further, in the control arithmetic unit, the distance between the axles of the passing vehicle is calculated from the detected value of the traveling speed of the passing vehicle and the detected values of the axle position and the number of axles, and the vehicle is recognized by the distribution state of the distance between the axles. By comparing the measurement distance of the distance between the axles and the set length of the vehicle type, the vehicle recognition of the passing vehicle can be accurately performed, and the vehicle recognition data is compared with the time-series distortion measurement data. By doing so, the weight measurement accuracy of the vehicle can be further improved.
[0016]
In the present invention, preferably, a distance between a vehicle passing through each traveling lane and the sensor is measured by a vehicle position detection distance sensor installed on one side or both sides of the road, and the measured value of the distance is measured. Based on the above, the traveling lane of the passing vehicle is detected.
As a device for carrying out such a method, a vehicle position detection distance sensor is provided which measures the distance between a vehicle passing through each travel lane and the sensor disposed on one or both sides of the travel path. The control arithmetic device is preferably a weight measuring device for a vehicle passing through a bridge configured to have means for detecting a travel lane of the passing vehicle based on a measured value of the distance by the distance sensor for vehicle position detection.
[0017]
If comprised in this way, the distance of the passing vehicle and the vehicle position detection distance sensor in several driving | running | working lanes will be measured by vehicle position detection distance sensors, such as a photoelectric sensor installed in the one side or both sides of a road. As a result, even if the traveling lane is a plurality of bridges, it is possible to detect the axle load and the vehicle weight for each vehicle passing through the traveling lane.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention unless otherwise specified. Absent.
[0019]
FIG. 1 is a control block diagram of a weight measuring device for a vehicle passing through a bridge according to an embodiment of the present invention. 2 is a side view of an essential part showing a mounting state of the measuring instrument on the bridge travel path in the above embodiment, FIG. 3 is a view as seen from an arrow A in FIG. 2, and FIG. 4 is a view as seen from an arrow B in FIG. FIG. 5 is a front view showing another example of a vehicle position detection distance sensor. 6 is an explanatory diagram of a vehicle speed detection method using a speed detection sensor, FIG. 7 is an explanatory diagram of an axle position detection method using an axle detection sensor, and FIG. 8 is a vehicle recognition method in a plurality of lanes using a vehicle position detection distance sensor. It is explanatory drawing of. FIG. 9 is a control flow chart for measuring the weight of the vehicle passing through the bridge in the embodiment.
[0020]
In FIG. 2 to FIG. 4 showing the attachment state of the measuring instrument of the weight measuring device in the vehicle passing through the bridge according to the embodiment of the present invention, reference numeral 100 denotes a vehicle for weight measurement and measurement with an inter-axle distance L, 101 denotes a bridge, and 102 denotes the bridge This is a travel path on the bridge 101.
Reference numeral 1 denotes a speed detection sensor composed of a photoelectric sensor (or another type of sensor). SV 1 and SV 2 are arranged on one side of the travel path 102 at a predetermined interval A along the travel path 102. , SV 3 , SV 4 , a plurality of vehicles 100 are arranged so as to detect the traveling speed of the vehicle 100 passing through the traveling path 102 as described later and to input to the control arithmetic unit 20 described later.
The installation interval A of the speed detection sensor 1 is set larger than the inter-axle distance L of the vehicle 100.
[0021]
2 is an axle detection sensor composed of a photoelectric sensor, one on one side of the traveling road 102, or SJ 1 , SJ 2 , SJ 3 at predetermined intervals along the traveling road 102 as shown in the figure. In this manner, a plurality of axle positions and the number of axles of the vehicle 100 passing through the travel path 102 are detected as described later, and input to the control arithmetic unit 20 described later.
Instead of the photoelectric sensor of the axle detection sensor 2, as shown in FIG. 5, a video camera 6 is installed on one side of the traveling road 102, and the position of the axle is detected from the video camera 6 image. You can also
[0022]
Reference numeral 3 denotes a vehicle position detection distance sensor composed of a laser displacement meter. The vehicle position detection distance sensor 3 is installed on one side of the travel path 102 like Sk and passes through a plurality of travel lanes and the vehicle position detection distance sensor 3. The distance is measured and input to the control arithmetic unit 20 described later.
With this configuration, the distance between the passing vehicle 100 and the vehicle position detection distance sensor 3 in a plurality of travel lanes is measured by the vehicle position detection distance sensor 3 installed on one side or both sides of the road 102. By doing so, even if the travel lane is a plurality of bridges 101, it is possible to detect the vehicle weight for each vehicle 100 passing through the travel lane.
Reference numeral 105 denotes a reflector for reflecting the photoelectric signals from the sensors 1, 2, 3 and transmitting them to the receiving unit of the control arithmetic unit 20.
[0023]
Reference numeral 4 denotes a strain gauge, one of the bridges 101 in the bridge 101 on the back side of the traveling road 102 when the vehicle passes through the strain, or SH 1 along the traveling direction of the traveling road 100 as shown in FIG. , SH 2 , SH 3 , and a plurality of SH 11 , SH 21 , SH 31 , SH 41 in the width direction of the travel path 100 as shown in FIG. The distortion of the bridge 101 is measured at a portion corresponding to the axle of the passing vehicle 100 and in the vicinity thereof, measured in time series within the set measurement time, and input to the control arithmetic unit 20 described later. .
[0024]
Next, based on FIG.1 and FIG.6 thru | or FIG. 9, operation | movement of the weight measuring apparatus of this bridge passing vehicle is demonstrated.
In the speed detection sensor 1, as shown in FIGS. 6A and 6B, adjacent sensors SV i to SV i + 1 arranged at a predetermined interval A along the traveling path 102. The vehicle passing time difference Δt is measured and input to the vehicle speed calculation unit 21 of the control arithmetic device 20 in FIG.
In the vehicle speed calculation unit 21, the equation v = A / Δt is calculated based on the passage time difference Δt and the interval A.
Is used to calculate the vehicle speed v of the passing vehicle 100 and input it to the inter-vehicle distance calculator 22.
[0025]
In the axle detection sensor 2, as shown in FIGS. 7A and 7B, every time an axle having an axle interval L passes from before the vehicle 100 passes, the photoelectric signal at the axle position is sent to SJ 1 , SJ. 2 and SJ 3 in order (or one axle detection sensor 2 may be provided, and a photoelectric signal may be transmitted every time the axle passes through one axle detection sensor 2). 105 and input to the inter-vehicle distance calculation unit 22 of the control arithmetic unit 20 in FIG.
The inter-axle distance calculation unit 22 detects the axle position and the number of axles of the passing vehicle 100 from the photoelectric signal of the axle position of the axle detection sensor 2, and inputs the axle position, the number of axles, and the vehicle speed calculation unit 21. Based on the calculated value of the vehicle speed v of the passing vehicle 100, the vehicle recognition of the passing vehicle 100 that is the object of vehicle weight calculation is performed, and the vehicle recognition signal is input to the vehicle axle weight calculation unit 24 in FIG.
[0026]
Further, when a plurality of vehicles are traveling, the position of each axis is specified based on the following idea.
The number of axles existing in the target section can be known from the signals of the axis detection sensors arranged at a plurality of positions. When the number is S, a sign is assigned to the signal of each axis, which is Ss (s = 1, S).
The installation coordinates of the axle position detection sensor are Xj (j = 1, n) (where n is the number of axis detection sensors).
Since the position of the axle Ss changes with time, its coordinates are labeled as Xs (t) (s = 1, S), and are expressed by an expression relating to the next time.
Xs (t) = C1s · t α + C2s · t β +
If the time when the axle Ss passes the coordinate Xj of the axis position detection sensor is tsj, C1s, C2s,... Can be obtained from those data, so that the coordinates of all axles can be expressed as a function of time.
[0027]
In the vehicle position detection distance sensor 3, as shown in FIGS. 8A and 8B, the sensor 3 (Sk) is provided for each vehicle 100 passing through the plurality of travel lanes 102a, 102b, 102c. A laser signal or a signal from a laser displacement meter is transmitted and received and input to the traveling lane detector 23 of the control arithmetic device 20 in FIG.
The travel lane detector 23 calculates the distance between the axle position detection distance sensor 3 and the vehicle 100 from the laser signal from the axle position detection distance sensor 3 or the signal from the laser displacement meter, and The travel lane (102a, 102b, 102c) of the passing vehicle 100 is determined and input to the vehicle shaft weight calculation unit 24.
[0028]
In the vehicle axis by weight calculating unit 24 calculates the vehicle weight (axle weight) W i by the following methods.
When the vehicle 100 passes through the bridge 101, the strain ε generated in the bridge is obtained as follows.
The mechanical data of the bridge 101 is as follows.
Length between fulcrums; L 1
Young's modulus E
Section modulus; Z
One fulcrum between the spans of interest is taken as the origin of coordinates, and one-dimensional coordinates are taken in the road axis direction.
[0029]
The coordinate of the strain gauge 4 (SH 1 , SH 2 , SH 3 or SH 11 , SH 21 , SH 31 , SH 41 ) attached to the bridge 101 is a.
At time t 1 with respect to the axle of the plurality of vehicles 100 that passes through the bridges 101 are set as follows.
Total number of axles; S
Each axle load; Wi (i = 1, S)
W i coordinates; x i (t 1 )
The strain ε generated in the bridge in the above vehicle running state is close to the strain generated in the two-span continuous beam. In this case, it is known that the influence coefficient of the load axis position x i (t 1 ) on the strain ε is as follows.
[0030]
Figure 2005030786
[0031]
The strain ε (t 1 ) focused on at time (t 1 ) is obtained as follows.
[0032]
ε (t 1 ) = ΣA i (x i (t 1 )) · W i (i = 1, S) (31)
[0033]
Using the relation of equation (31), each shaft load W i may be determined as follows.
In the course of the vehicle 100 is gradually running from the time t = t 1 to t = t s, performs distortion measurements S times, by performing the acquisition of the coordinates of each axle at the same time, the following relationship is obtained .
[0034]
ε (t 1 ) = ΣA i (x i (t 1 )) · W i
ε (t 2 ) = ΣA i (x i (t 2 )) · W i
(34)
...
ε (t s) = ΣA i (x i (t s)) · W i
[0035]
Since Equation (34) is a multidimensional linear equation of constant coefficients related to the unknown number W i , W i can be obtained using an inverse matrix or the like.
[0036]
FIG. 9 shows the flow of the procedure for calculating the vehicle weight (axle weight) W as described above.
Here, the calculation of such vehicle weight, because use of the axial position data and the deformation amount measurement data between time t 1 of the aforementioned t s, is calculated such as vehicle weight, instead of doing real time, from the accumulated data carried out by extracting the data between t s from t 1.
In FIG. 9, the minimum measurement data to be used are three kinds of time calendars, that is, the output of the vehicle position detection sensor, the output of the axle position detection sensor, and the strain measurement value of the bridge 101 (S1).
The vehicle weight calculation analysis start time t 0 is set in these measurement times, and the number of involved axles is analyzed from the output of the axle position detection sensor during a certain period of time after that time. Is obtained (S2).
Next, a coordinate calculation formula for all axles; X s (t) is set (S3).
[0037]
Next, after the analysis time interval dt is determined (S4), the analysis time t n = t 0 + ndt is determined (S5).
Next, using the detected value of the strain history ε (t), the analysis application required amount at each time is extracted and calculated as follows (S6).
Strain; ε (t n )
Coordinate of each axis; X p (t n )
n = 0, S-1 p = 1, S
[0038]
Next, the axle load Ws of each axis is calculated (S7), the vehicle and the axle belonging to it are identified from the collation between the output of the vehicle position detection sensor and the axis position detection sensor, and the vehicle as the total value of each axle load. The weight is calculated (S8).
[0039]
According to such an embodiment, the plurality of vehicles 100 that pass within the set measurement section travel at a constant speed, decelerate, increase in speed, and at any stop or stop weights with high accuracy. It becomes possible to measure with. Further, the weight measurement of the vehicle 100 can be performed without burying the axial load measuring device in the traveling road 102 without contacting the vehicle 100 on the side of the traveling road.
[0040]
Further, the control arithmetic unit 20 calculates the inter-axle distance L of the passing vehicle 100 from the detected value v of the traveling speed of the passing vehicle 100 and the detected values of the axle position and the number of axles, and the distribution of the inter-axle distance L. The state, that is, the measured length of the inter-axle distance L is compared with the set length of the vehicle type to recognize which vehicle type the passing vehicle 100 is. This
The vehicle recognition of the passing vehicle 100 can be performed accurately, and the vehicle recognition data and the time-series distortion measurement data ε (t 1 ), ε (t 2 )... Ε (t s ) as described above. By checking, the weight measurement accuracy of the vehicle 100 can be further improved.
Instead of the strain gauge SH, means for attaching the piezoelectric element to the lower portion of the bridge 101, means for attaching the laser displacement meter to the bridge 101 in a non-contact manner, an accelerometer, a speedometer, and a contact displacement meter can be used.
[0041]
【The invention's effect】
As described above, according to the present invention, the deformation amount measuring means installed on the bridge is used a plurality of times within the set measurement time, and at the site corresponding to the axle of the passing vehicle recognized by the vehicle and in the vicinity thereof. Since the amount of deformation such as strain is measured and the weight of the passing vehicle is calculated based on the vehicle recognition data and the deformation amount measurement data in the control arithmetic unit, the deformation amount of the bridge due to the vehicle passing within the set measurement time is calculated. Detected in a time series over a plurality of points during the passing time of the vehicle, and calculates the weight of the passing vehicle in a time series based on the time series deformation measurement data and the vehicle recognition data of the passing vehicle. be able to.
As a result, the vehicle weight can be measured with high accuracy when the vehicle is traveling at a constant speed, when it is decelerated, when it is accelerated, and when it is stopped or when it is stopped. In addition, the weight of the vehicle can be measured without contacting the vehicle on the side of the traveling road without burying the axial load measuring device in the traveling road.
[0042]
Further, the distance between the axles of the passing vehicle is calculated from the detected value of the traveling speed of the passing vehicle and the detected values of the axle position and the number of axles, the vehicle is recognized by the distribution state of the distance between the axles, and the distance between the axles is measured. By comparing the length and the set length of the vehicle type, vehicle recognition of the passing vehicle can be performed accurately. Therefore, by comparing the vehicle recognition data with the time-series distortion measurement data, the vehicle weight Measurement accuracy can be further improved.
[Brief description of the drawings]
FIG. 1 is a control block diagram of a weight measuring device for a vehicle passing through a bridge according to an embodiment of the present invention.
FIG. 2 is a side view of an essential part showing a mounting state of a measuring instrument on a bridge traveling path in the embodiment.
FIG. 3 is a view on arrow A in FIG. 2;
4 is a view taken in the direction of arrow B in FIG. 3;
FIG. 5 is a front view showing another example of a vehicle position detection distance sensor.
FIG. 6 is an explanatory diagram of a vehicle speed detection method by a speed detection sensor.
FIG. 7 is an explanatory diagram of an axle position detection method using an axle detection sensor.
FIG. 8 is an explanatory diagram of a vehicle recognition method in a plurality of lanes by a vehicle position detection distance sensor.
FIG. 9 is a control flow diagram of weight measurement of a vehicle passing through a bridge in the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Speed detection sensor 2 Axle detection sensor 3 Vehicle position detection distance sensor 4 Strain gauge 6 Video camera 20 Control arithmetic unit 21 Vehicle speed calculation part 22 Inter-axle distance calculation part 23 Travel lane detection part 24 Vehicle axle weight calculation part 100 Vehicle 101 Bridge 102 Traveling path 105 Reflector

Claims (6)

橋梁の走行路上を通過する複数の車両の車軸荷重及び重量を計測する橋梁通過車両の車軸荷重及び重量計測方法において、前記走行路に沿って複数の速度検知用センサを所定間隔で設置して該速度検知用センサにより通過車両の走行速度を検出するとともに、前記走行路に車軸検知用センサを設置して車軸検知用センサにより前記通過車両の車軸位置を検出して、前記走行速度と車軸位置により前記通過車両の車両認識を行い、さらに前記橋梁に歪ゲージ等の変形量計測手段を設置して該変形量計測手段により通過車両による橋梁の変形量を測定し、その記録から設定された計測時間内に複数回、かつ少なくとも前記車両認識された通過車両の車軸数に対応して変形量を抽出し、前記車両認識データと車軸数に対応した変形量の計測データに基づき前記通過車両の車軸荷重及び重量を算出することを特徴とする橋梁通過車両の車軸荷重及び重量計測方法。In the axle load and weight measurement method for a vehicle passing through a bridge for measuring the axle load and weight of a plurality of vehicles passing on the road of the bridge, a plurality of speed detection sensors are installed at predetermined intervals along the road. The traveling speed of the passing vehicle is detected by the speed detection sensor, the axle detection sensor is installed on the traveling path, the axle position of the passing vehicle is detected by the axle detection sensor, and the traveling speed and the axle position are detected. The vehicle time of the passing vehicle is recognized, a deformation amount measuring means such as a strain gauge is installed on the bridge, and the deformation amount of the bridge by the passing vehicle is measured by the deformation amount measuring means, and the measurement time set from the record The amount of deformation is extracted a plurality of times and at least corresponding to the number of axles of the passing vehicle recognized by the vehicle, and the vehicle recognition data and the deformation amount measurement data corresponding to the number of axles are extracted. Axle load and weight measurement method of the bridge passing vehicle and calculates the axle load and the weight of the passing vehicle Hazuki. 前記通過車両の走行速度の検出値と車軸位置及び車軸数の検出値とにより該通過車両の車軸間距離を算出し、該車軸間距離の分布状態によって車両認識を行うことを特徴とする請求項1記載の橋梁通過車両の車軸荷重及び重量計測方法。The distance between the axles of the passing vehicle is calculated from the detected value of the traveling speed of the passing vehicle and the detected values of the axle position and the number of axles, and vehicle recognition is performed based on a distribution state of the distance between the axles. 2. Axle load and weight measurement method for vehicles passing through a bridge according to 1. 前記走行路の一側、又は両側に設置した車両位置検知用距離センサにより各走行車線を通過する車両と該センサとの間の距離を計測し、該距離の計測値に基づき前記通過車両の走行車線を検知することを特徴とする請求項1記載の橋梁通過車両の車軸荷重及び重量計測方法。A distance between a vehicle passing through each travel lane is measured by a vehicle position detection distance sensor installed on one or both sides of the travel path, and the travel of the passing vehicle is based on the measured value of the distance. 2. A method for measuring axle load and weight of a vehicle passing through a bridge according to claim 1, wherein a lane is detected. 橋梁の走行路上を通過する車両の重量を計測するように構成された橋梁通過車両の重量計測装置において、前記走行路に沿って所定間隔で複数個配設され通過車両の走行速度を検出する速度検知用センサと、前記走行路に1個または該走行路に沿って複数個配設され通過車両の車軸位置を検出する車軸検知用センサと、前記橋梁に1個または複数個配設され前記通過車両による橋梁の変形量を設定された計測時間内計測する変形量計測手段と、前記走行速度と車軸位置により前記通過車両の車両認識を行い該車両認識データと車軸数に対応した変形量の計測データに基づき前記通過車両の車軸荷重及び重量を算出する制御演算装置とを備えてなることを特徴とする橋梁通過車両の重量計測装置。In a weight measuring device for a vehicle passing through a bridge configured to measure the weight of a vehicle passing on a road running on a bridge, a speed at which a plurality of vehicles are arranged at predetermined intervals along the road to detect a running speed of the passing vehicle. A sensor for detection, one or a plurality of axle detection sensors arranged on the road and detecting the axle position of a passing vehicle, and one or more on the bridge. Deformation amount measuring means for measuring the amount of deformation of the bridge by the vehicle within a set measurement time, vehicle recognition of the passing vehicle is performed based on the travel speed and axle position, and the deformation amount corresponding to the vehicle recognition data and the number of axles is measured. A weighting device for a vehicle passing through a bridge, comprising: a control arithmetic device that calculates an axle load and a weight of the passing vehicle based on data. 前記制御演算装置は、前記速度検知用センサによる前記通過車両の走行速度の検出値と前記車軸検知用センサによる車軸位置及び車軸数の検出値とにより該通過車両の車軸間距離を算出する車軸間距離算出手段と、該車軸間距離算出手段で算出された前記車軸間距離の分布状態によって車両認識を行う手段とを有してなることを特徴とする請求項4記載の橋梁通過車両の重量計測装置。The control arithmetic unit calculates an inter-axle distance of the passing vehicle based on a detected value of the traveling speed of the passing vehicle by the speed detecting sensor and an detected value of the axle position and the number of axles by the axle detecting sensor. 5. The weight measurement of a vehicle passing through a bridge according to claim 4, further comprising: a distance calculation unit; and a unit that recognizes a vehicle according to a distribution state of the inter-axle distance calculated by the inter-axle distance calculation unit. apparatus. 前記走行路の一側、又は両側に配設され各走行車線を通過する車両との間の距離を計測する車両位置検知用距離センサを備え、前記制御演算装置は前記車両位置検知用距離センサによる前記距離の計測値に基づき前記通過車両の走行車線を検知する手段を有してなることを特徴とする請求項4記載の橋梁通過車両の重量計測装置。A vehicle position detection distance sensor that measures a distance between the vehicle that is disposed on one side or both sides of the travel path and that passes through each travel lane; 5. The weight measuring device for a vehicle passing through a bridge according to claim 4, further comprising means for detecting a travel lane of the passing vehicle based on the measured value of the distance.
JP2003193080A 2003-07-07 2003-07-07 Method for measuring axle load and weight of bridge passing vehicle, and its device Pending JP2005030786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003193080A JP2005030786A (en) 2003-07-07 2003-07-07 Method for measuring axle load and weight of bridge passing vehicle, and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003193080A JP2005030786A (en) 2003-07-07 2003-07-07 Method for measuring axle load and weight of bridge passing vehicle, and its device

Publications (1)

Publication Number Publication Date
JP2005030786A true JP2005030786A (en) 2005-02-03

Family

ID=34204681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003193080A Pending JP2005030786A (en) 2003-07-07 2003-07-07 Method for measuring axle load and weight of bridge passing vehicle, and its device

Country Status (1)

Country Link
JP (1) JP2005030786A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051688A (en) * 2006-08-25 2008-03-06 Matsushita Electric Ind Co Ltd Automatic measurement device of vehicle, automatic measurement system of vehicle, and automatic measurement method of vehicle
JP2009237805A (en) * 2008-03-26 2009-10-15 Ntt Data Corp Bridge passage vehicle monitoring system, bridge passage vehicle monitoring method and computer program
JP2010107246A (en) * 2008-10-28 2010-05-13 Hanshin Kosoku Doro Kanri Gijutsu Center Method for measuring live load of bridge
JP2010197249A (en) * 2009-02-25 2010-09-09 Tokyo Institute Of Technology Vehicle weight measuring system and method for vehicle passing on bridge, and computer program
JP2011191060A (en) * 2010-03-11 2011-09-29 Matsue Doken Kk Rolling compaction control system and rolling compaction control method
WO2012026517A1 (en) * 2010-08-25 2012-03-01 株式会社エヌ・ティ・ティ・データ Passage time estimation device, vehicle speed calculation method, and program
AT510973B1 (en) * 2011-04-11 2012-08-15 Markus Dipl Ing Dr Petschacher SYSTEM FOR MEASURING THE LOAD OF A BRIDGE WHILE DRIVING A VEHICLE
JP2017025662A (en) * 2015-07-27 2017-02-02 株式会社Ttes Device, method, program, and recording medium for identifying vehicle's traveling position in transverse direction of traffic road
JP2017067723A (en) * 2015-10-02 2017-04-06 セイコーエプソン株式会社 Measurement device, measurement system, measurement method and program
JP2017075821A (en) * 2015-10-14 2017-04-20 株式会社Ttes Apparatus, method and program for specifying weight of vehicle traveling traffic route, and recording medium
JP2018059896A (en) * 2016-08-10 2018-04-12 パナソニックIpマネジメント株式会社 Load measuring device, load measuring method, load measuring program, displacement coefficient calculating device, displacement coefficient calculating method, displacement coefficient calculating program
WO2018159124A1 (en) * 2017-02-28 2018-09-07 パナソニックIpマネジメント株式会社 Load meter, and load measurement method
US10139308B2 (en) 2015-12-28 2018-11-27 Seiko Epson Corporation Physical quantity detection apparatus, measurement system, and measurement apparatus
US10139307B2 (en) 2016-11-29 2018-11-27 Korea Institute Of Civil Engineering And Building Technology Safety inspection apparatus for bridge using expansion joint with load cell and method for the same
US10190936B2 (en) * 2015-01-05 2019-01-29 Bae Systems Plc Mobile bridge apparatus
US10198640B2 (en) 2015-10-02 2019-02-05 Seiko Epson Corporation Measuring device, measuring system, measuring method, and program
US10203350B2 (en) 2015-10-02 2019-02-12 Seiko Epson Corporation Measurement instrument, measurement method, measurement system, and program
US10202729B2 (en) 2015-01-05 2019-02-12 Bae Systems Plc Mobile bridge module
CN109612559A (en) * 2018-12-28 2019-04-12 东南大学 Bridge type dynamic weighing method based on distributed long gauge length optical fibre grating sensor
CN109883528A (en) * 2017-12-06 2019-06-14 北京万集科技股份有限公司 Acquisition methods, device, storage medium and the processor of the vehicle number of axle
US10697821B2 (en) 2017-02-28 2020-06-30 Panasonic Intellectual Property Management Co., Ltd. Weight calibration for a vehicle weight load determination meter
US10768145B2 (en) 2015-12-28 2020-09-08 Seiko Epson Corporation Measurement apparatus, attenuation characteristic calculation method, program, and measurement system
US10877061B2 (en) 2015-10-02 2020-12-29 Seiko Epson Corporation Measurement instrument, measurement method, measurement system, and program

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051688A (en) * 2006-08-25 2008-03-06 Matsushita Electric Ind Co Ltd Automatic measurement device of vehicle, automatic measurement system of vehicle, and automatic measurement method of vehicle
JP2009237805A (en) * 2008-03-26 2009-10-15 Ntt Data Corp Bridge passage vehicle monitoring system, bridge passage vehicle monitoring method and computer program
JP2010107246A (en) * 2008-10-28 2010-05-13 Hanshin Kosoku Doro Kanri Gijutsu Center Method for measuring live load of bridge
JP2010197249A (en) * 2009-02-25 2010-09-09 Tokyo Institute Of Technology Vehicle weight measuring system and method for vehicle passing on bridge, and computer program
JP2011191060A (en) * 2010-03-11 2011-09-29 Matsue Doken Kk Rolling compaction control system and rolling compaction control method
WO2012026517A1 (en) * 2010-08-25 2012-03-01 株式会社エヌ・ティ・ティ・データ Passage time estimation device, vehicle speed calculation method, and program
JP2012048365A (en) * 2010-08-25 2012-03-08 Ntt Data Corp Passage time estimation device, vehicle speed calculation method, and program
AT510973B1 (en) * 2011-04-11 2012-08-15 Markus Dipl Ing Dr Petschacher SYSTEM FOR MEASURING THE LOAD OF A BRIDGE WHILE DRIVING A VEHICLE
AT510973A4 (en) * 2011-04-11 2012-08-15 Markus Dipl Ing Dr Petschacher SYSTEM FOR MEASURING THE LOAD OF A BRIDGE WHILE DRIVING A VEHICLE
US8955386B2 (en) 2011-04-11 2015-02-17 Markus Petschacher System for measuring the load on a bridge when being used by a vehicle
US10202729B2 (en) 2015-01-05 2019-02-12 Bae Systems Plc Mobile bridge module
US10190936B2 (en) * 2015-01-05 2019-01-29 Bae Systems Plc Mobile bridge apparatus
JP2017025662A (en) * 2015-07-27 2017-02-02 株式会社Ttes Device, method, program, and recording medium for identifying vehicle's traveling position in transverse direction of traffic road
JP2017067723A (en) * 2015-10-02 2017-04-06 セイコーエプソン株式会社 Measurement device, measurement system, measurement method and program
US10198640B2 (en) 2015-10-02 2019-02-05 Seiko Epson Corporation Measuring device, measuring system, measuring method, and program
US10203350B2 (en) 2015-10-02 2019-02-12 Seiko Epson Corporation Measurement instrument, measurement method, measurement system, and program
US10877061B2 (en) 2015-10-02 2020-12-29 Seiko Epson Corporation Measurement instrument, measurement method, measurement system, and program
JP2017075821A (en) * 2015-10-14 2017-04-20 株式会社Ttes Apparatus, method and program for specifying weight of vehicle traveling traffic route, and recording medium
US10139308B2 (en) 2015-12-28 2018-11-27 Seiko Epson Corporation Physical quantity detection apparatus, measurement system, and measurement apparatus
US10768145B2 (en) 2015-12-28 2020-09-08 Seiko Epson Corporation Measurement apparatus, attenuation characteristic calculation method, program, and measurement system
JP2018059896A (en) * 2016-08-10 2018-04-12 パナソニックIpマネジメント株式会社 Load measuring device, load measuring method, load measuring program, displacement coefficient calculating device, displacement coefficient calculating method, displacement coefficient calculating program
US10139307B2 (en) 2016-11-29 2018-11-27 Korea Institute Of Civil Engineering And Building Technology Safety inspection apparatus for bridge using expansion joint with load cell and method for the same
WO2018159124A1 (en) * 2017-02-28 2018-09-07 パナソニックIpマネジメント株式会社 Load meter, and load measurement method
CN110023722A (en) * 2017-02-28 2019-07-16 松下知识产权经营株式会社 Load instrument and load measurement method
JPWO2018159124A1 (en) * 2017-02-28 2019-12-19 パナソニックIpマネジメント株式会社 Load cell and load measurement method
US10697821B2 (en) 2017-02-28 2020-06-30 Panasonic Intellectual Property Management Co., Ltd. Weight calibration for a vehicle weight load determination meter
US11536602B2 (en) 2017-02-28 2022-12-27 Panasonic Intellectual Property Management Co., Ltd. Load meter and load measurement method
CN109883528A (en) * 2017-12-06 2019-06-14 北京万集科技股份有限公司 Acquisition methods, device, storage medium and the processor of the vehicle number of axle
CN109612559A (en) * 2018-12-28 2019-04-12 东南大学 Bridge type dynamic weighing method based on distributed long gauge length optical fibre grating sensor

Similar Documents

Publication Publication Date Title
JP2005030786A (en) Method for measuring axle load and weight of bridge passing vehicle, and its device
US9804017B2 (en) Method for weighing a vehicle, and measuring system and measuring arrangement therefor
US20140316719A1 (en) Stress detection in rail
CN108431880A (en) Monitor the magnitude of traffic flow
JP5164100B2 (en) Bridge passing vehicle monitoring system, bridge passing vehicle monitoring method, and computer program
US20170098127A1 (en) Measuring device, measuring system, measuring method, and program
US20220291078A1 (en) Measurement Method, Measurement Device, Measurement System, And Measurement Program
CN110530480B (en) Bridge dynamic weighing system based on ranging laser sensor and method thereof
Jeon et al. Development of displacement estimation method of girder bridges using measured strain signal induced by vehicular loads
Algohi et al. Detection of speed and axle configuration of moving vehicles using acoustic emission
Martinez et al. Bridge flexural rigidity calculation using measured drive-by deflections
Breccolotti et al. Bridge damage detection through combined quasi-static influence lines and weigh-in-motion devices
RU2722061C2 (en) Weight measuring device and method for measuring weight
KR101247542B1 (en) Weight measuring system considering changes of speed and lane and method thereof
MacLeod et al. Enhanced bridge weigh-in-motion system using hybrid strain–acceleration sensor data
KR101366103B1 (en) Bridge weigh in motion system using reaction force of supporting points and method for controlling the same
Nagayama et al. A numerical study on bridge deflection estimation using multi-channel acceleration measurement
CN207751471U (en) The test system that detection end of the bridge differential settlement influences simply supported girder bridge shock effect
KR101055314B1 (en) Structural damage detection method using acceleration and strain signals
Zeng et al. Reconstruction of vehicle-induced vibration on concrete pavement using distributed fiber optic
JP7404577B2 (en) Vehicle analysis system and vehicle analysis method
US11982595B2 (en) Determining abnormalities in the superstructure of a bridge based on acceleration data
JP7434030B2 (en) Deterioration detection device, deterioration detection system, deterioration detection method, weight measurement device, weight measurement method and program
Algohi et al. BWIM with constant and variable velocity: theoretical derivation
CN206885071U (en) A kind of gauge Monitoring on Dynamic Change device based on strain measurement inverting deformation acceleration responsive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060705

A711 Notification of change in applicant

Effective date: 20060809

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060921

A131 Notification of reasons for refusal

Effective date: 20080530

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20081003

Free format text: JAPANESE INTERMEDIATE CODE: A02