JP2005029811A - High-corrosion-resistant steel material for cold forging, and cold forging method using it - Google Patents

High-corrosion-resistant steel material for cold forging, and cold forging method using it Download PDF

Info

Publication number
JP2005029811A
JP2005029811A JP2003192820A JP2003192820A JP2005029811A JP 2005029811 A JP2005029811 A JP 2005029811A JP 2003192820 A JP2003192820 A JP 2003192820A JP 2003192820 A JP2003192820 A JP 2003192820A JP 2005029811 A JP2005029811 A JP 2005029811A
Authority
JP
Japan
Prior art keywords
cold forging
steel
corrosion
deformation resistance
bearings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003192820A
Other languages
Japanese (ja)
Inventor
Morihiko Nakasaki
盛彦 中崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2003192820A priority Critical patent/JP2005029811A/en
Publication of JP2005029811A publication Critical patent/JP2005029811A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-corrosion-resistant steel material for cold rolling used for bearings, etc., and also to provide a cold forging method using it. <P>SOLUTION: The high-corrosion-resistant steel has a raw material steel composition containing, by mass, 0.35 to 0.65% C, 7.0 to 10.0% Cr, 0.050 to 0.20% N, ≤2.0% Si and ≤1.5% Mn and satisfying C+N≤0.70%. In the steel, a deformation resistance coefficient k in a deformation resistance formula and a work hardening exponent n are made to 1,000 to 1,060 MPa and 0.12 to 0.18, respectively. By this method, continuous cold forging for bearings is made possible, and various characteristics, such as rolling fatigue characteristics, wear resistance, corrosion resistance and acoustic characteristics, required of bearings can be satisfied. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ベアリング等に使用される冷間鍛造用高耐食鋼材およびそれを用いた冷間鍛造方法に関する。
【0002】
【従来の技術】
従来より、自動車のベアリング、歯車等の所要の形状を有し、靭性を必要とする部品においては、すべての加工面を切削加工のみとすることは歩留まりが悪く、加工時間が長くなり生産性が低下し、また鍛造加工固有の靭性を得ることができない。
【0003】
そのため、加熱工程を加えない連続冷間鍛造加工のみで成形することが要望されているが、加工度が高いと素材に割れが発生するため、熱間鍛造加工とするか、冷間鍛造の工程中に熱処理を加える方法が使用されている。
【0004】
さらに、ベアリングにおいては、冷間鍛造性、被削性といった加工性のほかに転動疲労特性、耐摩耗性、耐食性、音響特性等の諸性能やコストが高度のレベルで要求されることから、ベアリングに使用される素材鋼についても上記諸特性に対応する高度の特性が要求されている。
【0005】
そのため、例えば特許文献1には高C高Cn組成にNを添加し、焼なまし状態の組織中にFeとCrの微細な窒化物を形成させ、軸受に成形後の熱処理で容易に固溶するような状態を創出して焼戻し後の強度を一段と向上させ、転動疲労特性を向上し、耐摩耗性と耐食性とが従来鋼であるSUS440C並の性質を備えたものが示されている。
【0006】
また、特許文献2には加工性の改善と焼入れ焼戻し硬さを両立させるためにC+N量を必要最小限に抑え、かつCr量を13%Cr系鋼より少ない10%以下としてコスト低下を図りながら、さらにNを含有させるとともにNiを含有させることにより耐食性を向上させたものが示されている。
【0007】
【特許文献1】
特開平07−233442号公報
【特許文献2】
特開2002−105600号公報
【0008】
【発明が解決しようとする課題】
しかしながら、冷間鍛造加工において従来から広く使用されている軸受鋼SUJ2では高歪みの連続冷間鍛造加工を行うと割れが比較的容易に発生するため、工程の途中で加熱処理を追加することが必要となり生産性が低下し、コストアップの要因となっている。また耐食性が十分ではないため腐食環境下で使用されるベアリングには適用できない。
【0009】
また、上記特許文献1に記載の素材鋼では耐食性は改善されているが、軸受鋼SUJ2と同様に高歪みの連続冷間鍛造加工を行うと割れが発生する。
【0010】
また、上記特許文献2に記載の素材鋼は耐食性の向上を素材開発の主眼としたものであるから冷間鍛造素材としての活用性については十分な検討がされていなかった。
【0011】
本発明は上記問題点に鑑みてなされたものであり、従来開発された軸受鋼の特性を踏まえ、種々の検討を行い素材鋼の歪みと応力の関係に着目してなされたものである。
【0012】
【課題を解決するための手段】
前記目的を達成するための第1の手段は、mass%で、C:0.35〜0.65%、Cr:7.0〜10.0%、N:0.050〜0.20%、Si:2.0%以下、Mn:1.5%以下、C+N≦0.70%、かつ変形抵抗式の変形抵抗定数k:1000〜1060MPa、加工硬化指数n:0.12〜0.18あることを特徴とする冷間鍛造用高耐食鋼である。
【0013】
第2の手段は、請求項1に記載の冷間鍛造用高耐食鋼を素材鋼として、冷間鍛造法で製作したことを特徴とするベアリングである。
第3の手段は、mass%で、C:0.35〜0.65%、Cr:7.0〜10.0%、N:0.050〜0.20%、Si:2.0%以下、Mn:1.5%以下、C+N≦0.70%である中炭素鋼の内から、変形抵抗式の変形抵抗定数k:1000〜1060MPa、加工硬化指数n:0.12〜0.18である鋼材を選定して、それを素材鋼とすることを特徴とする冷間鍛造方法である。
【0014】
第4の手段は、請求項3に記載した冷間鍛造方法を使用したことを特徴とするベアリングの製造方法である。
【0015】
【発明の実施の形態】
ベアリングの冷間鍛造性を向上させるには、比較的低い応力で容易に変形する素材を選定すれば良いことになる、即ち素材鋼の歪みー応力特性を示した図1において曲線の傾きの小さい曲線(イ)の特性を有する素材鋼を選定すればよいことになるが、ベアリングにおいては、上記の通り冷間鍛造性、被削性等の加工性のほか転動疲労特性、耐摩耗性、耐食性、音響特性等の諸性能が高度のレベルで要求されることから、曲線(イ)の特性を有する素材鋼ではベアリングに要求される冷間鍛造性、被削性等の加工性を満足しても転動疲労特性、耐摩耗性を満足し得ない。
【0016】
これとは反対に図1において、傾きの大きい曲線(ハ)の特性を有する素材鋼を選択すると転動疲労特性、耐摩耗性は満足するが、変形抵抗が過大となり鍛造機械の負荷が大きくなると共に、素材が型形状に追従した変形をしなくなり、形状不良や割れが発生し、鍛造型の摩耗・損傷を生じて、本発明の課題とする冷間鍛造性の改善を図ることができない。
【0017】
そこで、素材鋼の要求特性に配慮しながら歪みε:1のとき応力σ:1000MPa程度となる素材を第1次選択し、その中から加工歪みが大きくなっても加工硬化の進行が適度で材料の変形能の大きい材料を第2次選択することにした。
【0018】
そして、これらの検討の結果、mass%で、C:0.35〜0.65%、Cr:7.0〜10.0%、N:0.050〜0.20%、Si:2.0%以下、Mn:1.5%以下、C+N≦0.70%とし、かつ変形抵抗式の変形抵抗定数k:1000〜1060MPa、加工硬化指数n:0.12〜0.18とする素材鋼が、冷間鍛造性、被削性等の加工性を向上させ、ベアリングに要求される転動疲労特性、耐摩耗性、耐食性、音響特性等の諸特性を高度のレベルで満足させることができた。
【0019】
【実施例】
連続鋳造設備から得られた中・高炭素鋼片を素材鋼として第1次選択し、これから試験片を作製し、拘束型据え込み試験による圧縮試験を行い、歪み−応力特性を調査した。
【0020】
表1は組成の比較表であり実施例1から3、および比較例1から3の6種の素材鋼の組成を示している。図3は歪み−応力曲線であり、表1の6例の内、実施例1と比較例1〜3の4種の素材鋼の歪み−応力曲線を示しており、図3中斜線領域は本発明の課題の達成が可能な領域である。
【0021】
表2は素材鋼および製品の特性を表1の6種の素材鋼に対応させて示したものである。上記図3のグラフに示された変形抵抗式 σ=kε(σ:応力、ε:歪み、k:変形抵抗定数、n:加工硬化指数)から算出した変形抵抗定数kと加工硬化指数n、および連続冷間鍛造時の割れの有無、耐食性、転動疲労寿命を示している。
【0022】
図2は実施例に係るベアリングの外輪の冷間鍛造工程図であり、第1〜3の3つの工程で構成されており、円筒形状(直径(B)×高さ(H))の素材鋼から加工が進められ、第3工程の被加工品の外周部がベアリンの外輪部を形成し、第3工程の後に中心部を打ち抜き内輪面側を切削加工して外輪の基本形状が完成される。
【0023】
表2に記載の「割れ」とは、上記3つの工程の連続冷間鍛造工程中における素材の割れの有無を表している。「耐食性」とは、上記鋼片素材から製作した試験片を6%NaCl+0.5%Hの腐食液に6時間浸漬して、腐食によって生じる重量の減少量である。
【0024】
また、「転動疲労寿命」とは、1050℃で30分保持した後油冷し、続けて160℃×60分で焼戻した試験片を、潤滑油としてスピンドル油(#60)を使用し、面圧5400MPa、30cpsで試験したときの10%破損寿命(B10寿命)を従来鋼と比較して評価したものである。
【0025】
表1、表2、図3を参照しながら実施例と比較例を見ていくと、実施例1はCが0.38%で応力―歪み曲線の傾きが小さく、変形抵抗定数k:1036MPa、加工硬化指数n:0.16であるため、冷間鍛造時の加工硬化の度合いが緩やかで鍛造時の割れの発生がなく(○)、Cr:9.8%含有し、N、C+Nを適度に含有しているので耐食性は特に良好(◎)であり転動疲労寿命も良好(○)である。
【0026】
一方、比較例1、2はCが1.00%と0.95%の高炭素鋼であり、応力―歪み曲線の傾きが大きく、変形抵抗定数k:1094MPa、1187MPa、加工硬化指数n:0.21、0.19であるため、冷間鍛造時の加工硬化の度合いが大きく割れが発生(×)した。またCr:1.42%、1.50%と少ないため耐食性の評価は低かった(×)が、Cの含有量が多く転動疲労寿命は良好(○)であった。
【0027】
比較例3は周知のSUS440C相当材を使用したものであり、C、Crとも含有比率が高く、加工硬化指数nは0.12と高くはないが、変形抵抗定数k:1237MPaと大きいため鍛造時の割れが生じている。一方Cr:17.1%と高いので耐食性は良い(○)が、一次結晶炭化物の存在により転動疲労寿命がやや劣る(△)。
【0028】
図3の斜線領域は複数の実施例より求めた課題達成領域を示している。
【0029】
図4は実施例に係るベアリングの冷間鍛造工程におけるCAE解析による歪みと応力分布図であり、図2の第3工程における歪みと応力分布を実施例1と比較例3について対比して示したものである。左側は歪みの分布図であるが両者の間に顕著な差異は見られない。右側は静水応力の分布を示し比較例3において、実機で割れの発生した個所に相当する部位の静水応力が最高値となっている。
【0030】
【表1】組成の比較

Figure 2005029811
【0031】
【表2】特性の比較
Figure 2005029811
○:良好(または割れ無し) ×:不良(または割れ有り)
△:やや劣る ◎:特に良好
【0032】
【発明の効果】´
本願発明は、素材鋼の組成がmass%で、C:0.35〜0.65%、Cr:7.0〜10.0%、N:0.050〜0.20%、Si:2.0%以下、Mn:1.5%以下、C+N≦0.70%であり、かつ変形抵抗式における変形抵抗定数k:1000〜1060MPa、加工硬化指数n:0.12〜0.18であることを特徴とする冷間鍛造用高耐食鋼であるから、連続冷間鍛造加工が可能となり、ベアリングに要求される転動疲労特性、耐摩耗性、耐食性、音響特性等の諸特性を満足させることがでる。
【図面の簡単な説明】
【図1】本実施形態に係る連続冷間鍛造に係る素材鋼の歪み−応力特性の説明図。
【図2】本実施の実施例に係るベアリングの外輪の冷間鍛造工程図である。
【図3】本発明の実施例に係る素材鋼と比較例に係る素材鋼の歪み−応力曲線である。
【図4】本発明の実施例に係るベアリングの冷間鍛造工程におけるCAE解析による歪みと応力分布図である。
【符号の説明】
10・・・素材鋼(鋼片)
20・・・外輪部
30・・・中心凹部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high corrosion resistant steel material for cold forging used for bearings and the like and a cold forging method using the same.
[0002]
[Prior art]
Conventionally, in parts that have required shapes such as automobile bearings and gears and require toughness, it is poor to make all the machining surfaces only cutting, resulting in poor yields and long machining times. The toughness inherent to the forging process cannot be obtained.
[0003]
Therefore, it is required to form only by continuous cold forging without adding a heating process, but if the degree of work is high, cracking occurs in the material, so hot forging or cold forging process A method in which heat treatment is applied is used.
[0004]
Furthermore, in bearings, in addition to workability such as cold forgeability and machinability, various performances and costs such as rolling fatigue characteristics, wear resistance, corrosion resistance, and acoustic characteristics are required at a high level. The material steel used for the bearing is also required to have advanced characteristics corresponding to the above characteristics.
[0005]
Therefore, for example, in Patent Document 1, N is added to a high C high Cn composition to form fine nitrides of Fe and Cr in the annealed structure, and the solid solution can be easily dissolved by heat treatment after forming on the bearing. Such a state is created, the strength after tempering is further improved, the rolling fatigue characteristics are improved, and the wear resistance and corrosion resistance are the same as those of conventional steel SUS440C.
[0006]
In Patent Document 2, in order to achieve both workability improvement and quenching and tempering hardness, the C + N amount is suppressed to the minimum necessary, and the Cr amount is reduced to 10% or less, which is smaller than 13% Cr steel, while reducing costs. Further, it is shown that the corrosion resistance is improved by further containing N and Ni.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 07-233442 [Patent Document 2]
JP 2002-105600 A
[Problems to be solved by the invention]
However, in bearing steel SUJ2, which has been widely used in the cold forging process, cracking occurs relatively easily when high strain continuous cold forging process is performed. Therefore, heat treatment may be added during the process. It becomes necessary and productivity is lowered, which is a factor of cost increase. In addition, it cannot be applied to bearings used in corrosive environments due to insufficient corrosion resistance.
[0009]
Moreover, although the corrosion resistance is improved in the material steel described in Patent Document 1, cracking occurs when high strain continuous cold forging is performed in the same manner as the bearing steel SUJ2.
[0010]
Moreover, since the material steel described in the above-mentioned Patent Document 2 has been focused on the development of the corrosion resistance, the sufficient utilization as a cold forging material has not been sufficiently studied.
[0011]
The present invention has been made in view of the above-mentioned problems, and has been made by paying attention to the relationship between strain and stress of material steel based on various studies based on the characteristics of conventionally developed bearing steel.
[0012]
[Means for Solving the Problems]
The first means for achieving the above object is mass%, C: 0.35 to 0.65%, Cr: 7.0 to 10.0%, N: 0.050 to 0.20%, Si: 2.0% or less, Mn: 1.5% or less, C + N ≦ 0.70%, deformation resistance constant of deformation resistance k: 1000 to 1060 MPa, work hardening index n: 0.12 to 0.18 This is a high corrosion resistance steel for cold forging.
[0013]
A second means is a bearing manufactured by a cold forging method using the high corrosion resistant steel for cold forging according to claim 1 as a material steel.
The third means is mass%, C: 0.35 to 0.65%, Cr: 7.0 to 10.0%, N: 0.050 to 0.20%, Si: 2.0% or less. Mn: 1.5% or less, C + N ≦ 0.70% medium carbon steel, deformation resistance constant of deformation resistance k: 1000 to 1060 MPa, work hardening index n: 0.12 to 0.18 It is a cold forging method characterized by selecting a steel material and using it as a raw steel.
[0014]
A fourth means is a method for manufacturing a bearing characterized in that the cold forging method according to claim 3 is used.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In order to improve the cold forgeability of the bearing, it is only necessary to select a material that can be easily deformed with a relatively low stress. That is, in FIG. 1 showing the strain-stress characteristics of the material steel, the slope of the curve is small. It is only necessary to select a material steel having the characteristics of the curve (A). In the bearing, as described above, in addition to workability such as cold forgeability and machinability, rolling fatigue characteristics, wear resistance, Since various performances such as corrosion resistance and acoustic characteristics are required at a high level, the material steel having the characteristics of curve (a) satisfies the workability such as cold forgeability and machinability required for bearings. However, rolling fatigue characteristics and wear resistance cannot be satisfied.
[0016]
On the other hand, in FIG. 1, if a material steel having the characteristic of the curve (c) with a large inclination is selected, the rolling fatigue characteristics and the wear resistance are satisfied, but the deformation resistance becomes excessive and the load on the forging machine increases. At the same time, the material will not be deformed following the shape of the mold, resulting in shape defects and cracks, and wear and damage of the forging die, making it impossible to improve the cold forgeability that is the subject of the present invention.
[0017]
Therefore, considering the required properties of the material steel, a material having a stress σ of about 1000 MPa when the strain ε is 1 is selected first, and the work hardening progresses moderately even if the work strain increases. The material having a large deformability was selected secondarily.
[0018]
And as a result of these examination, it is mass%, C: 0.35-0.65%, Cr: 7.0-10.0%, N: 0.050-0.20%, Si: 2.0 %, Mn: 1.5% or less, C + N ≦ 0.70%, deformation resistance constant deformation resistance k: 1000 to 1060 MPa, work hardening index n: 0.12 to 0.18 We improved the workability such as cold forgeability and machinability, and were able to satisfy various characteristics such as rolling fatigue characteristics, wear resistance, corrosion resistance and acoustic characteristics required for bearings at a high level. .
[0019]
【Example】
The medium and high carbon steel pieces obtained from the continuous casting equipment were selected as the primary steel, the test pieces were produced from them, the compression test was conducted by the restraint type upsetting test, and the strain-stress characteristics were investigated.
[0020]
Table 1 is a comparative table of compositions showing the compositions of the six types of material steels of Examples 1 to 3 and Comparative Examples 1 to 3. FIG. 3 is a strain-stress curve, and shows strain-stress curves of four types of material steels of Example 1 and Comparative Examples 1 to 3 among the six examples in Table 1. The hatched area in FIG. This is an area where the object of the invention can be achieved.
[0021]
Table 2 shows the characteristics of the steel materials and products corresponding to the six steel materials shown in Table 1. Deformation resistance constant k and work hardening index n calculated from the deformation resistance equation σ = kε n (σ: stress, ε: strain, k: deformation resistance constant, n: work hardening index) shown in the graph of FIG. It also shows the presence or absence of cracks during continuous cold forging, corrosion resistance, and rolling fatigue life.
[0022]
FIG. 2 is a cold forging process diagram of the outer ring of the bearing according to the embodiment, which is composed of the first to third processes, and has a cylindrical shape (diameter (B 0 ) × height (H 0 )). Processing starts with raw steel, the outer periphery of the work piece in the third step forms the outer ring part of the bearin, and after the third step, the center part is punched and the inner ring surface side is cut to complete the basic shape of the outer ring. Is done.
[0023]
The “crack” described in Table 2 represents the presence or absence of a crack in the material during the continuous cold forging process of the above three processes. “Corrosion resistance” is a weight reduction caused by corrosion by immersing a test piece manufactured from the above steel slab material in a corrosive solution of 6% NaCl + 0.5% H 2 O 2 for 6 hours.
[0024]
In addition, the “rolling fatigue life” means that a test piece that was kept at 1050 ° C. for 30 minutes and then oil-cooled and subsequently tempered at 160 ° C. × 60 minutes was obtained by using spindle oil (# 60) as a lubricating oil, The 10% failure life (B10 life) when tested at a surface pressure of 5400 MPa and 30 cps is evaluated in comparison with conventional steel.
[0025]
Looking at Examples and Comparative Examples with reference to Table 1, Table 2, and FIG. 3, Example 1 shows that C is 0.38%, the slope of the stress-strain curve is small, the deformation resistance constant k is 1036 MPa, Since the work hardening index n is 0.16, the degree of work hardening at the time of cold forging is moderate, there is no cracking at the time of forging (◯), Cr: 9.8% is contained, N, C + N is moderate Therefore, the corrosion resistance is particularly good (◎) and the rolling fatigue life is also good (().
[0026]
On the other hand, Comparative Examples 1 and 2 are high carbon steels having C of 1.00% and 0.95%, a large slope of the stress-strain curve, deformation resistance constants k: 1094 MPa, 1187 MPa, work hardening index n: 0. .21 and 0.19, the degree of work hardening during cold forging was large, and cracking occurred (x). In addition, since Cr: 1.42% and 1.50% were low, the evaluation of corrosion resistance was low (x), but the content of C was large and the rolling fatigue life was good (◯).
[0027]
Comparative Example 3 uses a well-known SUS440C equivalent material, and the content ratio of both C and Cr is high, and the work hardening index n is not as high as 0.12, but because the deformation resistance constant k is as large as 1237 MPa, forging Cracking has occurred. On the other hand, since Cr is as high as 17.1%, the corrosion resistance is good (◯), but the rolling fatigue life is slightly inferior (Δ) due to the presence of the primary crystalline carbide.
[0028]
The hatched area in FIG. 3 indicates the task achievement area obtained from a plurality of embodiments.
[0029]
FIG. 4 is a strain and stress distribution diagram by CAE analysis in the cold forging process of the bearing according to the example. The strain and stress distribution in the third process of FIG. 2 are shown in comparison with Example 1 and Comparative Example 3. Is. The left side is a strain distribution map, but there is no significant difference between the two. The right side shows the distribution of the hydrostatic stress, and in Comparative Example 3, the hydrostatic stress at the site corresponding to the location where the crack occurred in the actual machine is the highest value.
[0030]
[Table 1] Composition comparison
Figure 2005029811
[0031]
[Table 2] Comparison of characteristics
Figure 2005029811
○: Good (or no crack) ×: Bad (or cracked)
Δ: Slightly inferior ◎: Particularly good [0032]
【The invention's effect
In the present invention, the composition of the material steel is mass%, C: 0.35 to 0.65%, Cr: 7.0 to 10.0%, N: 0.050 to 0.20%, Si: 2. 0% or less, Mn: 1.5% or less, C + N ≦ 0.70%, deformation resistance constant k in deformation resistance formula: 1000 to 1060 MPa, work hardening index n: 0.12 to 0.18 Because it is a high corrosion resistant steel for cold forging, it can be continuously cold forged, and it satisfies various characteristics such as rolling fatigue characteristics, wear resistance, corrosion resistance, and acoustic characteristics required for bearings. I get out.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of strain-stress characteristics of material steel according to continuous cold forging according to the present embodiment.
FIG. 2 is a cold forging process diagram of the outer ring of the bearing according to the embodiment.
FIG. 3 is a strain-stress curve of material steel according to an example of the present invention and material steel according to a comparative example.
FIG. 4 is a strain and stress distribution diagram by CAE analysis in a cold forging process of a bearing according to an example of the present invention.
[Explanation of symbols]
10 ... Material steel (steel)
20 ... outer ring part 30 ... central recess

Claims (4)

mass%で、C:0.35〜0.65%、Cr:7.0〜10.0%、N:0.050〜0.20%、Si:2.0%以下、Mn:1.5%以下、C+N≦0.70%、かつ変形抵抗式の変形抵抗定数k:1000〜1060MPa、加工硬化指数n:0.12〜0.18であることを特徴とする冷間鍛造用高耐食鋼。In mass%, C: 0.35 to 0.65%, Cr: 7.0 to 10.0%, N: 0.050 to 0.20%, Si: 2.0% or less, Mn: 1.5 %, C + N ≦ 0.70%, deformation resistance constant k of deformation resistance type: 1000 to 1060 MPa, work hardening index n: 0.12 to 0.18, high corrosion resistance steel for cold forging . 請求項1に記載の冷間鍛造用高耐食鋼を素材鋼として、冷間鍛造法で製作したことを特徴とするベアリング。A bearing manufactured by a cold forging method using the high corrosion resistant steel for cold forging according to claim 1 as a material steel. mass%で、C:0.35〜0.65%、Cr:7.0〜10.0%、N:0.050〜0.20%、Si:2.0%以下、Mn:1.5%以下、C+N≦0.70%である中炭素鋼の内から、変形抵抗式の変形抵抗定数k:1000〜1060MPa、加工硬化指数n:0.12〜0.18である鋼材を選定して、それを素材鋼とすることを特徴とする冷間鍛造方法。In mass%, C: 0.35 to 0.65%, Cr: 7.0 to 10.0%, N: 0.050 to 0.20%, Si: 2.0% or less, Mn: 1.5 %, C + N ≦ 0.70% of medium carbon steel, a deformation resistance constant deformation resistance k: 1000 to 1060 MPa, work hardening index n: 0.12 to 0.18 steel material is selected A cold forging method characterized in that it is made of steel. 請求項3に記載した冷間鍛造方法を使用したことを特徴とするベアリングの製造方法。A method for manufacturing a bearing, wherein the cold forging method according to claim 3 is used.
JP2003192820A 2003-07-07 2003-07-07 High-corrosion-resistant steel material for cold forging, and cold forging method using it Pending JP2005029811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003192820A JP2005029811A (en) 2003-07-07 2003-07-07 High-corrosion-resistant steel material for cold forging, and cold forging method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003192820A JP2005029811A (en) 2003-07-07 2003-07-07 High-corrosion-resistant steel material for cold forging, and cold forging method using it

Publications (1)

Publication Number Publication Date
JP2005029811A true JP2005029811A (en) 2005-02-03

Family

ID=34204501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003192820A Pending JP2005029811A (en) 2003-07-07 2003-07-07 High-corrosion-resistant steel material for cold forging, and cold forging method using it

Country Status (1)

Country Link
JP (1) JP2005029811A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041406A1 (en) * 2006-10-03 2008-04-10 Seiko Instruments Inc. Blank of bearing ring member, process for manufacturing the same, process for manufacturing bearing ring member, and bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041406A1 (en) * 2006-10-03 2008-04-10 Seiko Instruments Inc. Blank of bearing ring member, process for manufacturing the same, process for manufacturing bearing ring member, and bearing

Similar Documents

Publication Publication Date Title
KR100216877B1 (en) Rolling bearing
CN100355927C (en) Steel excellent in machinability
JP5163241B2 (en) Case-hardened steel
JP4632931B2 (en) Induction hardening steel excellent in cold workability and its manufacturing method
JP6073167B2 (en) Case-hardening steel with excellent surface fatigue strength and cold forgeability
JP5886119B2 (en) Case-hardened steel
JP2009249685A (en) Case hardening steel
JP2006150445A (en) Continuous cold forging method of knuckle spindle
JP2011174506A (en) Method for manufacturing thrust race of needle thrust bearing
JP2001026836A (en) Steel for induction hardening and parts for machine structure excellent in cold workability, rolling fatigue strength and twisting fatigue strength
JP2005042188A (en) Carbonitrided bearing steel with excellent rolling fatigue life under debris-contaminated environment
JP2841468B2 (en) Bearing steel for cold working
WO2017170540A1 (en) Carbonitrided component having excellent surface fatigue strength and bending fatigue strength, and method for manufacturing same
JP2009242918A (en) Component for machine structure having excellent rolling fatigue property, and method for producing the same
JP2019218584A (en) bolt
JP6488945B2 (en) Case-hardened steel for high-strength cold forging
JP2018165403A (en) Steel for carburizing having excellent low cycle fatigue strength and machinability, and carburized component
JP2005029811A (en) High-corrosion-resistant steel material for cold forging, and cold forging method using it
JP2018199838A (en) Carburized part
JP6265048B2 (en) Case-hardened steel
JP2022170056A (en) steel
JP2021006659A (en) Steel component and method for producing the same
JP2021028414A (en) Steel for carburized gear, carburized gear, and manufacturing method of carburized gear
Olaniran et al. Separation of forged steel connecting rods and caps by fracture splitting
JP6172378B2 (en) Case-hardened steel wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060201

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080226

A131 Notification of reasons for refusal

Effective date: 20080304

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701