JP2005028312A - Fluorine adsorbent and its manufacturing method - Google Patents

Fluorine adsorbent and its manufacturing method Download PDF

Info

Publication number
JP2005028312A
JP2005028312A JP2003271850A JP2003271850A JP2005028312A JP 2005028312 A JP2005028312 A JP 2005028312A JP 2003271850 A JP2003271850 A JP 2003271850A JP 2003271850 A JP2003271850 A JP 2003271850A JP 2005028312 A JP2005028312 A JP 2005028312A
Authority
JP
Japan
Prior art keywords
fluorine
resin
rare earth
earth element
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003271850A
Other languages
Japanese (ja)
Inventor
Toshio Yotsumoto
利夫 四元
Haruhiko Ito
晴彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIN NIHON SALT CO Ltd
Original Assignee
SHIN NIHON SALT CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIN NIHON SALT CO Ltd filed Critical SHIN NIHON SALT CO Ltd
Priority to JP2003271850A priority Critical patent/JP2005028312A/en
Priority to KR1020057017919A priority patent/KR100698672B1/en
Priority to PCT/JP2004/006091 priority patent/WO2004096433A1/en
Priority to CN200480011614.4A priority patent/CN1780692B/en
Publication of JP2005028312A publication Critical patent/JP2005028312A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorine adsorbent which has excellent acid resistance, hardly causes the elution of an absorbent and a deterioration in resin, then, has prolonged life, effectively performs its function on even the object to be treated of low fluorine concentration (20-50 mg/L) and realizes fluorine adsorption, the adsorption using the fluorine adsorbent, being easily operated, dispensing with subsidiary material and being easily maintained since sludge or scale is hardly generated inside equipment. <P>SOLUTION: This fluorine adsorbent consists of a polymer resin and a rare-earth element-containing hydroxide having 50-200 Å crystallite diameter and 0.1-5 wt.% thermal reduction in weight. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、排水、工業用水など水中のフッ素を吸着する希土類元素含水酸化物と高分子樹脂とのフッ素吸着剤及びその製法に関する。   The present invention relates to a fluorine adsorbent of a rare earth element-containing oxide that adsorbs fluorine in water such as waste water and industrial water and a polymer resin, and a method for producing the same.

最近は社会的要請から有害、汚染物質に対する排水処理基準が厳しくなり、半導体製造工程からの排水、ゴミ焼却場等で生じる廃水、火力発電所プラントから排出される灰汚水、床洗浄排水やゴミ焼却処理工場等から排出される洗煙排水等の排水には多くの場合、フッ素、およびその他有害、汚染物質が含まれている。
これに対するフッ素の排出基準は、現在8ppmであるが最も厳しい自治体の規制値に0.8ppmがあるなど更に規制が強化されつつある。
Recently, wastewater treatment standards for harmful and pollutants have become strict due to social demands, wastewater from semiconductor manufacturing processes, wastewater generated at garbage incinerators, ash sewage discharged from thermal power plant, floor washing wastewater and garbage incineration Wastewater such as smoke effluent discharged from treatment plants and the like often contains fluorine and other harmful and pollutants.
In response, the emission standard for fluorine is currently 8 ppm, but regulations are being tightened, such as 0.8 ppm being the most stringent local government regulation value.

当然、これら排水中の有害物質等は分離し除去する必要がある。廃水中のフッ素化合物の分離除去には、カルシウム化合物を添加し難溶性化合物にして中和凝集・沈殿させる方法や鉄化合物を用いた凝集沈殿法、あるいは塩基性陰イオン交換樹脂を用いる方法やアルミニウム塩型キレート樹脂を用いるイオン交換樹脂方法(特許文献1(特開昭57-107287))あるいはジルコニウム担持型陽イオン交換樹脂を用いるイオン交換樹脂方法(非特許文献1(日本化学会誌、379号、1981))、活性アルミナ難溶性物質に吸着させ分離する方法(特許文献2(特開2002−86160))、希土類元素の水和酸化物を用いる方法(特許文献3(特開昭61-187931))や希土類金属担持樹脂を用いる方法(特許文献4(特開昭61-192340))等の吸着分離処理等の吸着法など、いくつかの分離処理方法が提案され実施されている。   Of course, it is necessary to separate and remove these harmful substances in the waste water. For separation and removal of fluorine compounds in wastewater, a method of adding calcium compound to make it a poorly soluble compound to neutralize aggregation and precipitation, a coagulation precipitation method using an iron compound, a method using a basic anion exchange resin, or aluminum An ion exchange resin method using a salt-type chelate resin (Patent Document 1 (Japanese Patent Laid-Open No. 57-107287)) or an ion exchange resin method using a zirconium-supporting cation exchange resin (Non-Patent Document 1 (Journal of Chemical Society of Japan, 379) 1981)), a method of adsorbing and separating on a hardly soluble alumina material (Patent Document 2 (Japanese Patent Laid-Open No. 2002-86160)), a method using a rare earth element hydrated oxide (Patent Document 3 (Japanese Patent Laid-Open No. 61-187931)). ) And a method using a rare earth metal-supported resin (Patent Document 4 (Japanese Patent Laid-Open No. 61-192340)), etc. Separation methods have been proposed embodiment.

上記のカルシウム化合物の生石灰や消石灰などの化合物による凝集・沈殿させるフッ素含有排水の処理方法は、排水から高濃度の溶存フッ素や重金属類を分離する場合、その濃度によっては前記の凝集剤を加えての2段凝集沈殿分離が好ましく用いられているが、その2段操作の複雑さを避けられず、さらに、フッ素など有害、汚染物質に対する排水を低濃度(例えば、水質基準の8mg/L)まで除去することになると、アルミニウムや鉄塩等の副資材を添加したり、フッ化カルシウムの種循環を実施して低濃度の処理を実施しているが、副資材を必要とする欠点とその分離操作の結果生じる多量の汚泥スラッジの処理が欠点となっている。また、フッ素化合物の除去に最も多用されるカルシウム系化合物や鉄化合物を使用するためにスケールの発生が多く分離装置のメンテナンス操作の負担が増加する欠点があった。このスラッジ脱水ケーキを低減する方法に水酸化マグネシウムを使う方法も(特許文献5(特開2003−47972号公報))に記載されているが、さらに操作の複雑さが増す欠点があった。   The treatment method of fluorine-containing wastewater that coagulates and precipitates with the above calcium compounds such as quick lime and slaked lime, when separating high concentrations of dissolved fluorine and heavy metals from wastewater, depending on the concentration, add the above flocculant The two-stage coagulation sedimentation separation is preferably used, but the complexity of the two-stage operation is unavoidable, and furthermore, the wastewater for harmful and pollutants such as fluorine is reduced to a low concentration (for example, 8 mg / L of water quality standard). When it comes to removal, secondary materials such as aluminum and iron salts are added, and seeding of calcium fluoride is carried out to carry out low-concentration treatment. Treatment of large amounts of sludge sludge resulting from the operation is a disadvantage. In addition, since the calcium compound and the iron compound that are most frequently used for removing the fluorine compound are used, there is a drawback that the scale is often generated and the maintenance operation of the separation apparatus increases. A method of using magnesium hydroxide as a method for reducing the sludge dehydrated cake is also described in (Patent Document 5 (Japanese Patent Laid-Open No. 2003-47972)), but there is a drawback that the operation complexity is further increased.

また、上記イオン交換樹脂方法は、例えばユニチカ社製商標のユニセレックUR3700やオルガノ社製のジルコニアを含有する商標オルライトF等、が市販されているがどの吸着剤も酸性領域で吸着体の元素ジルコニアが溶出し樹脂が細かく潰れる欠点があり、樹脂劣化消耗による樹脂の補充が大量に必要になる欠点があったし、また特定装置を必要とする欠点や吸着能を維持する為には吸着剤の交換頻度が高くなる欠点と樹脂の性質上樹脂劣化、耐酸性に弱い欠点があった。   In addition, the ion exchange resin method is commercially available, for example, Unicelec UR3700 (trademark made by Unitika Co., Ltd.) or trademark Orlite F containing zirconia (Organo Corp.). However, any adsorbent has an elemental zirconia in the acidic region. There is a defect that the resin elutes and the resin is finely crushed, and there is a defect that a large amount of resin needs to be replenished due to resin deterioration and consumption. There was a defect that the frequency increased and a defect that was weak in resin deterioration and acid resistance due to the properties of the resin.

上記活性アルミナ方法もゲル状水酸化アルミニウムにしての低濃度フッ素(20〜50mg/L濃度)の場合に充分にフッ素を吸着しない低吸着能に欠点があり吸着した後は凝集剤でスラッジ化しての処理回収操作が複雑という欠点があった。
上記方法で希土類金属担持樹脂を用いる方法は中でも有望視されているが、樹脂中の吸着剤希土類元素が排水処理液に溶出するため樹脂だけの抜け殻になってしまいフッ素を吸着しなくなる欠点があった。
この他、特許文献6(特開平2−2612)の吸着剤も酸性領域で大量のセリウムが溶出するため、フッ素吸着性能はあるものの、劣化による樹脂の補充が大量に必要である欠点があった。
In the case of the above-mentioned activated alumina method, low concentration fluorine (concentration of 20 to 50 mg / L) in the form of gelled aluminum hydroxide has a defect in low adsorption ability that does not sufficiently adsorb fluorine. There was a disadvantage that the processing and recovery operation of the above was complicated.
Although the method using a rare earth metal-supported resin in the above method is considered promising, there is a defect that the rare earth element in the resin elutes into the wastewater treatment solution, so that it becomes a shell of resin only and does not adsorb fluorine. It was.
In addition, since the adsorbent of Patent Document 6 (Japanese Patent Laid-Open No. 2-2612) has a fluorine adsorption performance because a large amount of cerium is eluted in the acidic region, there is a drawback that a large amount of resin needs to be replenished due to deterioration. .

また、従来の吸着剤を使用して半導体等の排水を処理する場合、排水中に酸化還元物質が混入することがある。このため、次亜塩素酸ソーダ等を使用して酸化還元物質を中和沈殿分離処理をするが、分離処理後の排水には微量の次亜塩素酸ソーダが残留してしまう。この残留した次亜塩素酸ソーダが先のイオン交換樹脂の高分子樹脂を劣化させるため、樹脂の劣化と共に吸着剤が劣化して溶出してしまい吸着能が低下する欠点がある。
フッ素を含む排水処理の合理化については、種類、大小を問わず、あらゆる角度から技術的に検討されているが、上記の諸欠点を抑えきれていない。
Further, when wastewater such as semiconductors is treated using a conventional adsorbent, a redox substance may be mixed in the wastewater. For this reason, sodium hypochlorite or the like is used to neutralize and precipitate the redox material, but a small amount of sodium hypochlorite remains in the waste water after the separation treatment. Since the remaining sodium hypochlorite deteriorates the polymer resin of the previous ion exchange resin, the adsorbent deteriorates and elutes with the deterioration of the resin, resulting in a disadvantage that the adsorbing ability is lowered.
The rationalization of wastewater treatment containing fluorine has been technically studied from all angles, regardless of type and size, but the above-mentioned drawbacks have not been suppressed.

特開昭57−107287号公報JP-A-57-107287 日本化学会会誌、379号、1981Journal of the Chemical Society of Japan, No. 379, 1981 特開2002−86160号公報JP 2002-86160 A 特開昭61−187931号公報JP-A 61-187931 特開昭61−192340号公報JP 61-192340 A 特開2003−47972号公報JP 2003-47972 A 特開平02−2612号公報Japanese Patent Laid-Open No. 02-2612

本発明は、このような実情の下に、前記の欠点を解消したフッ素吸着剤を提供することを目的とするものである。すなわち、本発明は、耐酸性にすぐれ、吸着剤の溶出、樹脂の劣化も抑制され、使用寿命が長く、かつ低濃度フッ素(20〜50mg/L濃度)の被処理物にも有効に機能するフッ素吸着剤を提供し、また、これを利用して、操作が簡易で、副資材を必要とせず、汚泥スラッジや、機器内部にスケールを発生することがないためメンテナンスも容易なフッ素吸着処理を可能とすることを目的とするものである。   An object of the present invention is to provide a fluorine adsorbent that solves the above-mentioned drawbacks under such circumstances. In other words, the present invention has excellent acid resistance, elution of the adsorbent, and resin deterioration are suppressed, the service life is long, and it functions effectively also on an object to be treated with low concentration fluorine (20 to 50 mg / L concentration). Fluorine adsorbent is provided and used for fluorine adsorption treatment that is easy to operate, requires no auxiliary materials, and does not generate sludge sludge or scale inside the equipment, making maintenance easy. The purpose is to make it possible.

本発明者等は上記課題を鋭意研究した結果、希土類元素含水酸化物、特にセリウム含水酸化物を特定温度で加熱熟成することにより、結晶性の良いその含水酸化物をつくりその吸着元素化合物と樹脂との組成物から構成した吸着剤が上記課題解決に有用であることを見出し本発明に到達した。   As a result of diligent research on the above-mentioned problems, the inventors of the present invention produced a hydrous oxide having good crystallinity by heating and aging a rare earth element hydrous oxide, particularly a cerium hydrous oxide, at a specific temperature. The present inventors have found that an adsorbent composed of the above composition is useful for solving the above problems, and have reached the present invention.

すなわち、本発明は、下記(1)〜(5)に係わる。
(1) 高分子樹脂と高温焼成された希土類元素含水酸化物とからなるフッ素吸着剤。
(2) 希土類元素含水酸化物が耐酸性を持つ上記(1)のフッ素吸着剤。
(3) 該希土類元素含水酸化物の熱減量が0.1〜5重量%であることを特徴とする上記(1)または(2)のフッ素吸着剤。
(4) 高分子樹脂がフッ化ビニリデン系樹脂及びビニルアルコール共重合体からなる樹脂であることを特徴とする上記(1)〜(3)のフッ素吸着剤。
(5) 含水率が1から40重量%の希土類元素含水酸化物を300℃から600℃で1時間から10時間加熱熟成して、結晶子径を50から200Åにした希土類含水酸化物と、高分子樹脂とを混合するフッ素吸着剤の製法。
That is, the present invention relates to the following (1) to (5).
(1) A fluorine adsorbent comprising a polymer resin and a high-temperature fired rare earth element-containing oxide.
(2) The fluorine adsorbent according to (1) above, wherein the rare earth element-containing oxide has acid resistance.
(3) The fluorine adsorbent according to (1) or (2) above, wherein the heat loss of the rare earth element-containing oxide is 0.1 to 5% by weight.
(4) The fluorine adsorbent according to any one of (1) to (3) above, wherein the polymer resin is a resin comprising a vinylidene fluoride resin and a vinyl alcohol copolymer.
(5) A rare earth hydrated oxide having a moisture content of 1 to 40% by weight is heated and aged at 300 to 600 ° C. for 1 to 10 hours to obtain a crystallite size of 50 to 200%; Fluorine adsorbent manufacturing method that mixes with molecular resin.

本発明の吸着剤は、以下に説明するように、耐酸性に優れ、吸着剤の溶出が少なく、したがって、長寿命であり、しかも含有フッ素の低濃度フッ素(20〜50mg/L濃度)の被処理液にも有効に機能することができる。
そして、この吸着剤を利用して、操作が容易で、かつ、汚泥スラッジの発生や機器内部にスケールの発生のないメンテナンスの容易なフッ素吸着処理システムが可能となる。
As will be described below, the adsorbent of the present invention is excellent in acid resistance, has little elution of the adsorbent, has a long life, and has a low concentration of contained fluorine (concentration of 20 to 50 mg / L). It can function effectively also in the treatment liquid.
By using this adsorbent, it is possible to provide a fluorine adsorption treatment system that is easy to operate and easy to maintain without generating sludge sludge or scale inside the equipment.

本発明の高分子樹脂とは、親水性樹脂のアニオン交換樹脂やキレート系樹脂よりも耐熱性があって水に溶出しない耐水性を持つ有機高分子重合体樹脂またはこれら樹脂の誘導体である。その数平均分子量は5,000以上好ましくは20,000以上500,000以下あれば良い。これらの樹脂の混合物も有用である。やや水溶性で親水性樹脂は溶出する点で好ましくなく、高温度(70°C)では溶出が更に大きくなり耐熱性が無いといえる。   The polymer resin of the present invention is a water-resistant organic polymer resin or a derivative of these resins that is more heat resistant than a hydrophilic anion exchange resin or chelate resin and does not elute into water. The number average molecular weight may be 5,000 or more, preferably 20,000 or more and 500,000 or less. Mixtures of these resins are also useful. Slightly water-soluble and hydrophilic resins are not preferable in terms of elution, and at a high temperature (70 ° C.), elution is further increased and it can be said that there is no heat resistance.

好ましい樹脂として、フッ素樹脂、フッ化ビニリデン樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、ポリスチレン、ビニルアルコール共重合体樹脂、ポリスルホン、ポリアクリロニトリル等及び上記の共重合体を挙げることができる。例えばポリフッ化ビニリデン樹脂、ポリフッ化ビニリデン−6フッ化プロピレン共重合樹脂は、希土類元素含水酸化物を高濃度に含有させ易く、耐水性、耐薬品性に優れ好ましい樹脂といえる。またポリテトラフルオロエチレン樹脂やその重合体も同様でこれら樹脂の混合物も有用である。その他、耐水性に優れた有機高分子や天然高分子及びその誘導体も、本発明の目的に合った有用な樹脂といえる。中でもフッ化ビニリデン系樹脂、エチレンビニルアルコール共重合体が好ましい。   Preferred resins include fluororesin, vinylidene fluoride resin, vinyl chloride resin, vinylidene chloride resin, polystyrene, vinyl alcohol copolymer resin, polysulfone, polyacrylonitrile, and the above copolymers. For example, polyvinylidene fluoride resin and polyvinylidene fluoride-6-fluoropropylene copolymer resin can be said to be preferable resins because they easily contain a rare earth element-containing hydroxide in a high concentration and are excellent in water resistance and chemical resistance. The same applies to polytetrafluoroethylene resins and polymers thereof, and mixtures of these resins are also useful. In addition, organic polymers having excellent water resistance, natural polymers, and derivatives thereof can be said to be useful resins that meet the object of the present invention. Of these, vinylidene fluoride resins and ethylene vinyl alcohol copolymers are preferred.

本発明の耐酸性とは、フッ素イオンを50mg/Lを含有した水溶液1Lを予めpH 3.2に調整しておき、希土類元素含水酸化物を100mg添加してpH3.0で4時間攪拌後、液中のセリウム濃度をICPを用いて測定することで表現される。本発明において耐酸性は、セリウム濃度7.5mg/L以下を良好とする。   The acid resistance of the present invention means that 1 L of an aqueous solution containing 50 mg / L of fluorine ions is adjusted to pH 3.2 in advance, 100 mg of rare earth element-containing hydroxide is added and stirred at pH 3.0 for 4 hours, It is expressed by measuring the cerium concentration in the liquid using ICP. In the present invention, the acid resistance is good when the cerium concentration is 7.5 mg / L or less.

本発明の希土類元素含水酸化物とは、1991年元素の周期表による3(3A)族の希土類元素であって、スカンジウムSc、イットリウムY、ランタノイド元素、ランタンLa、セリウムCe、プラセオジムPr、ネオジムNd、プロメチウムPm、サマリウムSm、ユウロピウムEu、カドリニウムGd、テルビウムTb、ジスプロシウムDy、ホルミウムHo、エルビウムEr、ツリウムTm、イッテルビウムYb、ルテチウムLuの含水酸化物である。これら希土類元素含水酸化物の混合体も有用である。中でも本発明の高温熟成を考慮すれば耐酸性でCeが最も好ましい。   The rare earth element hydrous oxide of the present invention is a 3 (3A) group rare earth element according to the periodic table of elements of 1991, and is scandium Sc, yttrium Y, lanthanoid element, lanthanum La, cerium Ce, praseodymium Pr, neodymium Nd. , Promethium Pm, Samarium Sm, Europium Eu, Cadolinium Gd, Terbium Tb, Dysprosium Dy, Holmium Ho, Erbium Er, Thulium Tm, Ytterbium Yb, Lutetium Lu. Mixtures of these rare earth element hydrated oxides are also useful. Of these, Ce is most preferable because of its acid resistance in consideration of the high temperature aging of the present invention.

本発明の結晶子径が50〜200Åの希土類元素含水酸化物は、下記に定義される含水率が1から40重量%の希土類元素含水酸化物を高温加熱熟成300℃から600℃で1時間から10時間加熱熟成して作られる。この際、作業性を考慮して短時間で大結晶子径の希土類元素含水酸化物を得ようとすれば、大気中で350℃から420℃の条件下で2〜10時間加熱熟成して希土類元素含水酸化物を得れば良い。300℃未満では希土類元素含水酸化物の結晶子径が本発明の要件を満足できず、耐酸性に劣り、希土類元素の溶出が多くなる。また、600℃を超えると一部酸化物となりフッ素処理能力が低下する。   The rare earth element-containing hydrated oxide having a crystallite size of 50 to 200 mm of the present invention is obtained by aging a rare earth element-containing hydrated oxide having a moisture content of 1 to 40% by weight as defined below from 300 ° C. to 600 ° C. for 1 hour. Made by aging for 10 hours. At this time, in order to obtain a rare earth element-containing hydrated oxide having a large crystallite size in a short time in consideration of workability, it is heated and aged in the atmosphere at 350 to 420 ° C. for 2 to 10 hours. What is necessary is just to obtain an elemental hydrous oxide. If it is less than 300 ° C., the crystallite size of the rare earth element-containing oxide cannot satisfy the requirements of the present invention, the acid resistance is inferior, and the rare earth element is eluted. Moreover, when it exceeds 600 degreeC, it will become a part oxide and fluorine processing capability will fall.

この高温熟成により驚くべきことに本発明の吸着剤は、希土類元素化合物の水中への溶出量が従来のフッ素吸着剤の半分以下の量で抑制されることが分かった。このように溶出量を抑制したフッ素吸着用の希土類元素化合物は、従来知られていなかったものである。例えば、本発明の特定の結晶子径を有する含水酸化物ではなく、特公平2−17220号公報に記載の熱減量5〜30重量%にした希土類元素酸化物では知られていなかったことであり驚くべきことである。希土類元素含水酸化物と希土類元素酸化物は熱的性質も違い、赤外分析でも違う吸収帯を示す。   Surprisingly, it has been found that the amount of elution of rare earth element compounds into water is suppressed by an amount less than half that of conventional fluorine adsorbents. Thus, the rare earth element compound for fluorine adsorption which suppressed the elution amount was not conventionally known. For example, it was not known in the rare earth element oxide having a heat loss of 5 to 30% by weight described in JP-B-2-17220, rather than the hydrous oxide having a specific crystallite diameter of the present invention. It's amazing. Rare earth element hydrous oxides and rare earth element oxides have different thermal properties and show different absorption bands in infrared analysis.

尚本発明の高温熟成された希土類元素含水酸化物は、熱減量で示される含水率が0.1〜20重量%が好ましく、より好ましくは0.1から5.0重量%である。含水率が20重量%を超えると、本発明の効果の1つである希土類元素の溶出が大きくなり易い。この含水率を測定する方法は800℃の高温に1時間放置してその蒸発分を含水希土類元素含水酸化物で除した値(熱減量)を含水率で表現する。   In addition, the rare earth element hydrated oxide aging at high temperature of the present invention preferably has a moisture content of 0.1 to 20% by weight, more preferably 0.1 to 5.0% by weight, as indicated by heat loss. If the water content exceeds 20% by weight, the elution of rare earth elements, which is one of the effects of the present invention, tends to increase. In this method of measuring the moisture content, a value (heat loss) obtained by leaving it at a high temperature of 800 ° C. for 1 hour and dividing the evaporated content by the hydrous rare earth element hydrous oxide is expressed by the moisture content.

従来技術の希土類元素系フッ素吸着剤では含水率が高く結晶子径も20〜40Åと小さくて、高分子樹脂との混合状態も良くなく、希土類元素水酸化物の溶出を起こし易い欠点があったが、本発明の希土類元素含水酸化物の結晶形態は、この高温加熱熟成により、含水率が低くなるが結晶化が進んでいて結晶子径の大きい50〜200Å、好ましくは60から200Åの結晶性良い希土類元素含水酸化物となる。結果として水溶液に溶出することが少なくてフッ素吸着性を維持して優れたフッ素吸着剤が得られる。
その希土類元素含水酸化物の結晶2次粒子は、1次粒子の凝集体であり、該2次粒子の平均粒径は0.1〜25ミクロンmが良く0.5〜10.0ミクロンmが好ましい。0.1ミクロンm以下では樹脂混合で包まれて希土類元素化合物がフッ素含有水との接触が不足することがあり、15ミクロンm以上では樹脂との混合が良くないことがある。
The rare earth element fluorine adsorbents of the prior art have the disadvantages that the water content is high, the crystallite diameter is as small as 20 to 40 mm, the mixing state with the polymer resin is not good, and the rare earth element hydroxide is likely to be eluted. However, the crystal form of the rare earth element hydrous oxide of the present invention has a crystallinity of 50 to 200Å, preferably 60 to 200Å with a large crystallite size because the moisture content is lowered by this high temperature heat aging but the crystallization is advanced. It becomes a good rare earth element hydrous oxide. As a result, it is less likely to elute in an aqueous solution, and an excellent fluorine adsorbent is obtained while maintaining the fluorine adsorbability.
The crystal secondary particles of the rare earth element hydrated oxide are aggregates of primary particles, and the average particle size of the secondary particles is preferably 0.1 to 25 microns, and preferably 0.5 to 10.0 microns. preferable. When the thickness is 0.1 μm or less, the rare earth element compound may be insufficiently brought into contact with the fluorine-containing water by being mixed with the resin, and when the thickness is 15 μm or more, the mixing with the resin may be poor.

この希土類元素水酸化化合物は、上記高分子樹脂と混合され平均粒径0.5〜2.5mm程度に粒状化される。樹脂中の希土類元素含水酸化物の割合は、樹脂重量の1〜30倍量で良い。本発明のフッ素吸着剤は、前記粒状化物を適宜形状に成形して供されるが、その形態は、繊維状、球状、あるいは不織布のような網状体でもよく、嵩密度0.4〜2.0g/cm3の空隙のある連続気泡構造体であればより良い。 The rare earth element hydroxide compound is mixed with the polymer resin and granulated to an average particle size of about 0.5 to 2.5 mm. The ratio of the rare earth element-containing hydroxide in the resin may be 1 to 30 times the resin weight. The fluorine adsorbent of the present invention is provided by appropriately shaping the granulated product into a shape, and the form may be a fibrous, spherical, or net-like body such as a non-woven fabric, and a bulk density of 0.4-2. An open cell structure having a void of 0 g / cm 3 is better.

本発明の粒状フッ素吸着剤を所定の容器内に充填し、所定の濃度のフッ素含有水を該吸着剤重量に対して1〜400倍重量を通水(通水倍率と言う)すると通過した該含有水のフッ素濃度は低濃度(例えば2mg/L以下)に維持される。尚この場合通水に用いられるフッ素含有水のPHは3〜6に調整することにより該吸着剤の吸着能を活性化維持させることができ好ましい。このPHは、塩酸または苛性ソーダなどにより調整することができる。
本発明について、以下具体的に説明する。
The granular fluorine adsorbent of the present invention is filled in a predetermined container, and the fluorine-containing water having a predetermined concentration is passed through when passing 1 to 400 times the weight of the adsorbent weight (referred to as a water flow rate). The fluorine concentration of the contained water is maintained at a low concentration (for example, 2 mg / L or less). In this case, the pH of the fluorine-containing water used for water passage is preferably adjusted to 3 to 6, so that the adsorption ability of the adsorbent can be activated and maintained. This PH can be adjusted with hydrochloric acid or caustic soda.
The present invention will be specifically described below.

排水の替わりに純水にNaF(試薬特級)を溶解して、初期フッ素濃度50mg/Lにした液を作製し、塩酸を添加してpH3.0に調整した水溶液を得た。
含水率50重量%の水酸化セリウムを電気炉で表1に示す条件で大気中で熟成して、表1の大結晶子径の含水酸化セリウム粉末を得た。この含水酸化セリウムの熱減量重量%(電気炉で800℃1時間処理した時の熱減量(%);含水分率)を測定したところ、水分率重量%は表1の値であった。
Instead of drainage, NaF (special reagent grade) was dissolved in pure water to prepare a liquid having an initial fluorine concentration of 50 mg / L, and an aqueous solution adjusted to pH 3.0 by adding hydrochloric acid was obtained.
Cerium hydroxide having a water content of 50% by weight was aged in the air under the conditions shown in Table 1 in an electric furnace to obtain a hydrous cerium hydroxide powder having a large crystallite size shown in Table 1. When the weight loss by weight of hydrous cerium oxide was measured (heat loss (%) when treated at 800 ° C. for 1 hour in an electric furnace; moisture content), the moisture percentage by weight was the value shown in Table 1.

この含水酸化セリウム100重量部に、ポリフッ化ビニリデン樹脂12重量部を溶媒N−メチル−2−ピロリドンに溶解した溶液を混合してスラリーを形成し、このスラリーを水浴中に分散することにより、空隙のあるかさ密度2.0g/cm3、平均粒径0.7mmの粉末粒状体を得た。
比較例として加熱温度を70〜300℃で1〜4時間処理して、表1の結晶子径の熱減量重量%(水分率%;Ig−loss)にした他は、実施例と同様に操作して同様の粉末粒状体を得た。
A solution in which 12 parts by weight of polyvinylidene fluoride resin is dissolved in a solvent N-methyl-2-pyrrolidone is mixed with 100 parts by weight of hydrous cerium hydroxide to form a slurry, and the slurry is dispersed in a water bath to thereby form voids. A powder granule having a bulk density of 2.0 g / cm 3 and an average particle size of 0.7 mm was obtained.
As a comparative example, the same operation as in the examples except that the heating temperature was treated at 70 to 300 ° C. for 1 to 4 hours to obtain the weight loss% (water content%; Ig-loss) of the crystallite diameter in Table 1. Thus, a similar powder granule was obtained.

先の作製したフッ素含有水溶液1Lに上記粉末粒状体をCeO2として100mg添加して液pHを3.2に調整しながら4時間攪拌処理した。該処理液のフッ素濃度とセリウム濃度を測定した。 フッ素濃度の測定は堀場製作所製F−23型装置を使用し、セリウム濃度は誘導結合高周波プラズマ(ICP)装置で行われ、その装置はリガク製CIROS・120EOP型装置を使用した。 その結果を表2に示す。耐酸性はこのセリウム濃度7.5mg/L以下を良好とする。 100 mg of the above powder granular material as CeO 2 was added to 1 L of the previously prepared fluorine-containing aqueous solution, and the mixture was stirred for 4 hours while adjusting the liquid pH to 3.2. The fluorine concentration and cerium concentration of the treatment liquid were measured. The fluorine concentration was measured using an F-23 type apparatus manufactured by Horiba, Ltd., and the cerium concentration was measured using an inductively coupled high-frequency plasma (ICP) apparatus. The apparatus used was a Rigaku CIROS 120EOP type apparatus. The results are shown in Table 2. Acid resistance is good when the cerium concentration is 7.5 mg / L or less.

表1,2から本発明の含水酸化セリウム吸着体は、比較例1,2,4との比較でも明らかなようにフッ素の処理は問題なく、水中へのセリウムの溶出を防止でき耐久性に関係する比較例の耐酸性の悪さを解決している。   As shown in Tables 1 and 2, the hydrous cerium-containing adsorbent of the present invention has no problem with the treatment of fluorine, as is clear from comparison with Comparative Examples 1, 2, and 4. It can prevent elution of cerium into water and is related to durability. This solves the poor acid resistance of the comparative example.



Figure 2005028312
Figure 2005028312

結晶子径は、下記のScherrerの式を使って、回折パターン中、任意の1本のピークの試料要因半価幅FW(S)から結晶子の平均サイズを求めた。
結晶子サイズ(Å)=K×波長/FW(S)×COS(θ)
θはピークの位置、Kは平均的な結晶子の形状因子
For the crystallite size, the average size of the crystallite was obtained from the sample factor half-value width FW (S) of any one peak in the diffraction pattern using the following Scherrer equation.
Crystallite size (Å) = K × wavelength / FW (S) × COS (θ)
θ is the peak position, K is the average crystallite form factor

Figure 2005028312
Figure 2005028312

Ce溶出率の計算は、未使用の含水酸化セリウム中のセリウム量を下記式により算出する
採取量×(セリウム原子量/酸化セリウム分子量)
採取セリウム量:100×(140/172)=81.38mg
Ce溶出率は、未使用含水酸化セリウム中のセリウム量と処理液中のセリウム濃度から下記式にて求めることができる。
溶出率(%)=セリウム濃度測定値/採取セリウム量×100
なお、上記実施例は、本発明のフッ素吸着剤が耐酸性でセリウムの溶出率が著しく抑制されていることを説示する主旨で記載したものである。特にフッ素濃度をさらに低下させるには、吸着剤の量を増加すればよい。
For the calculation of Ce elution rate, the amount of cerium in unused hydrated cerium hydroxide is calculated by the following formula: Sample amount x (cerium atomic weight / cerium oxide molecular weight)
Collected cerium content: 100 × (140/172) = 81.38 mg
The Ce elution rate can be determined by the following formula from the amount of cerium in the unused hydrous cerium oxide and the cerium concentration in the treatment liquid.
Dissolution rate (%) = Measured value of cerium concentration / Amount of collected cerium × 100
In addition, the said Example was described with the main point explaining that the fluorine adsorption agent of this invention is acid resistance and the elution rate of cerium was suppressed remarkably. In particular, the amount of adsorbent can be increased to further reduce the fluorine concentration.

Claims (5)

高分子樹脂と結晶子径が50〜200Åの希土類元素含水酸化物とからなるフッ素吸着剤。 A fluorine adsorbent comprising a polymer resin and a rare earth element hydrous oxide having a crystallite diameter of 50 to 200 mm. 希土類元素含水酸化物が耐酸性を持つ請求項1のフッ素吸着剤。 The fluorine adsorbent according to claim 1, wherein the rare earth element-containing oxide has acid resistance. 該希土類元素含水酸化物の熱減量が0.1〜5重量%であることを特徴とする請求項1または2記載のフッ素吸着剤。 The fluorine adsorbent according to claim 1 or 2, wherein the rare earth element hydrous oxide has a heat loss of 0.1 to 5% by weight. 高分子樹脂がフッ化ビニリデン系樹脂及びビニルアルコール共重合体からなる樹脂であることを特徴とする請求項1〜3いずれか1項に記載のフッ素吸着剤。 The fluorine adsorbent according to any one of claims 1 to 3, wherein the polymer resin is a resin comprising a vinylidene fluoride resin and a vinyl alcohol copolymer. 含水率が1から40重量%の希土類元素含水酸化物を300℃から600℃で1時間から10時間加熱熟成して、結晶子径を50から200Åにした希土類含水酸化物と、高分子樹脂とを混合するフッ素吸着剤の製法。 A rare earth hydrated oxide having a moisture content of 1 to 40% by weight, heated and aged at 300 ° C. to 600 ° C. for 1 to 10 hours, and having a crystallite size of 50 to 200%, a polymer resin, Fluorine adsorbent manufacturing method.
JP2003271850A 2003-05-01 2003-07-08 Fluorine adsorbent and its manufacturing method Pending JP2005028312A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003271850A JP2005028312A (en) 2003-07-08 2003-07-08 Fluorine adsorbent and its manufacturing method
KR1020057017919A KR100698672B1 (en) 2003-05-01 2004-04-27 Adsorbent and process for producing the same
PCT/JP2004/006091 WO2004096433A1 (en) 2003-05-01 2004-04-27 Adsorbent and process for producing the same
CN200480011614.4A CN1780692B (en) 2003-05-01 2004-04-27 Adsorbent and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003271850A JP2005028312A (en) 2003-07-08 2003-07-08 Fluorine adsorbent and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005028312A true JP2005028312A (en) 2005-02-03

Family

ID=34209582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003271850A Pending JP2005028312A (en) 2003-05-01 2003-07-08 Fluorine adsorbent and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005028312A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7686976B2 (en) 2003-01-29 2010-03-30 Molycorp Minerals, Llc Composition for removing arsenic from aqueous streams
KR100960363B1 (en) * 2009-04-07 2010-05-28 세이브기술 (주) Method for treating wastewater containing fluorine
US8066874B2 (en) 2006-12-28 2011-11-29 Molycorp Minerals, Llc Apparatus for treating a flow of an aqueous solution containing arsenic
US8252087B2 (en) 2007-10-31 2012-08-28 Molycorp Minerals, Llc Process and apparatus for treating a gas containing a contaminant
US8349764B2 (en) 2007-10-31 2013-01-08 Molycorp Minerals, Llc Composition for treating a fluid
US9233863B2 (en) 2011-04-13 2016-01-12 Molycorp Minerals, Llc Rare earth removal of hydrated and hydroxyl species
US9975787B2 (en) 2014-03-07 2018-05-22 Secure Natural Resources Llc Removal of arsenic from aqueous streams with cerium (IV) oxide compositions
WO2020085438A1 (en) * 2018-10-24 2020-04-30 三井金属鉱業株式会社 Adsorbent and method for producing same and adsorption molded article
CN111994931A (en) * 2020-08-22 2020-11-27 长沙环境保护职业技术学院 Method for recycling desorption liquid of aluminum-loaded fluorine-removing chelating resin
WO2022071243A1 (en) * 2020-09-30 2022-04-07 東レ株式会社 Adsorbent

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8475658B2 (en) 2003-01-29 2013-07-02 Molycorp Minerals, Llc Water purification device for arsenic removal
US7686976B2 (en) 2003-01-29 2010-03-30 Molycorp Minerals, Llc Composition for removing arsenic from aqueous streams
US8066874B2 (en) 2006-12-28 2011-11-29 Molycorp Minerals, Llc Apparatus for treating a flow of an aqueous solution containing arsenic
US8557730B2 (en) 2007-10-31 2013-10-15 Molycorp Minerals, Llc Composition and process for making the composition
US8349764B2 (en) 2007-10-31 2013-01-08 Molycorp Minerals, Llc Composition for treating a fluid
US8252087B2 (en) 2007-10-31 2012-08-28 Molycorp Minerals, Llc Process and apparatus for treating a gas containing a contaminant
KR100960363B1 (en) * 2009-04-07 2010-05-28 세이브기술 (주) Method for treating wastewater containing fluorine
US9233863B2 (en) 2011-04-13 2016-01-12 Molycorp Minerals, Llc Rare earth removal of hydrated and hydroxyl species
US9975787B2 (en) 2014-03-07 2018-05-22 Secure Natural Resources Llc Removal of arsenic from aqueous streams with cerium (IV) oxide compositions
US10577259B2 (en) 2014-03-07 2020-03-03 Secure Natural Resources Llc Removal of arsenic from aqueous streams with cerium (IV) oxide compositions
WO2020085438A1 (en) * 2018-10-24 2020-04-30 三井金属鉱業株式会社 Adsorbent and method for producing same and adsorption molded article
CN111994931A (en) * 2020-08-22 2020-11-27 长沙环境保护职业技术学院 Method for recycling desorption liquid of aluminum-loaded fluorine-removing chelating resin
WO2022071243A1 (en) * 2020-09-30 2022-04-07 東レ株式会社 Adsorbent

Similar Documents

Publication Publication Date Title
US11466191B2 (en) Treated geothermal brine compositions with reduced concentration of silica, iron and lithium
JP5482979B2 (en) Adsorbent
CA2680402C (en) Arsenic adsorbing composition and methods of use
Wang et al. High-efficiency adsorption for acid dyes over CeO2· xH2O synthesized by a facile method
JP2008080223A (en) Fluoride ion capturing material and its using method
JP4428582B1 (en) Method and apparatus for producing acid and alkali from leachate
JP2008018312A (en) Manganese dioxide heavy metal adsorbent and treatment method using the same
Zhang et al. Acceleration of CO2 mineralisation of alkaline brines with nickel nanoparticles catalysts in continuous tubular reactor
JP2005028312A (en) Fluorine adsorbent and its manufacturing method
CN1780692B (en) Adsorbent and process for producing the same
JP2005288363A (en) Arsenic adsorbent and production method therefor
JP4854999B2 (en) Fluorine adsorbent and process for producing the same
JP2005193167A (en) Drainage purification method and purification method
KR100698672B1 (en) Adsorbent and process for producing the same
JP5137232B2 (en) Method for producing porous iron oxide and method for treating water to be treated
JP4631425B2 (en) Method and apparatus for treating fluorine-containing wastewater containing phosphoric acid
JP4936559B2 (en) Arsenic remover
JP2006036995A (en) Soil conditioner and use thereof
JP2008029985A (en) Apparatus for regenerating anion adsorbent and method of regenerating anion adsorbent using the same
JPH0256958B2 (en)
CN107913665B (en) Metal-doped boehmite as well as preparation method and application thereof
JP4637737B2 (en) Regeneration method of boron adsorbent
WO2006080467A1 (en) Hydrotalcite-like compound, bromide ion exchanger, and utilization thereof
US20240132388A1 (en) Method for removing polyvinylpyrrolidone from water using salts and using the removed composition for further water treatment
KR101117650B1 (en) Calcium based monosulfate arsenic absorbent and the method for preparing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051013

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090312