JP2005026846A - Structure of piezoelectric oscillator - Google Patents

Structure of piezoelectric oscillator Download PDF

Info

Publication number
JP2005026846A
JP2005026846A JP2003188195A JP2003188195A JP2005026846A JP 2005026846 A JP2005026846 A JP 2005026846A JP 2003188195 A JP2003188195 A JP 2003188195A JP 2003188195 A JP2003188195 A JP 2003188195A JP 2005026846 A JP2005026846 A JP 2005026846A
Authority
JP
Japan
Prior art keywords
electrode
resistor
vibration
crystal resonator
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003188195A
Other languages
Japanese (ja)
Inventor
Jun Watanabe
潤 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2003188195A priority Critical patent/JP2005026846A/en
Publication of JP2005026846A publication Critical patent/JP2005026846A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crystal oscillator structure which reduces the stray capacitance applied to the electrodes of the crystal oscillator, thereby reducing the capacitance ratio γ. <P>SOLUTION: One main surface of a crystal substrate 11 is etched to form a recess 12a having a very thin-walled oscillating part 12b with a thick-walled annular surrounding part 12c for supporting the entire periphery of the oscillating part 12b. Exciting electrodes are formed on both sides of the oscillating part 12b, and a resistor 3 and a varicap 4 are mounted on the annular surrounding part 12c. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、水晶振動子に関し、特に可変周波数範囲を広く取ることができる構造を有する水晶振動子に関する。
【0002】
【従来の技術】
近年、各種伝送通信機器あるいはOA機器の高速処理化、高性能化に伴い、その周波数制御デバイスである圧電振動子、例えば周波数安定度の高い水晶振動子を使用した発振器の高周波化、小型化、高信頼性化が強く要求されている。 図3は、従来の電圧制御水晶発振器の一例を示す電気回路図である。同図に示すように、本電圧制御水晶発振器(以下、VCXOという)は、抵抗rと水晶振動子21と可変容量ダイオード(以下、バリキャップという)Dと発振回路22とで構成される。
【0003】
同図において、前記VCXOは、抵抗rを介して制御電圧Vcを水晶振動子21に直列接続されたバリキャップDに印加し、該バリキャップDの容量を所定の値に変化させることによって、該バリキャップDと水晶振動子21と発振回路22とで構成される水晶発振器の発振ループの負荷容量を変化させて発振器出力(OUT)の周波数を制御するものである。
【0004】
図4は、前記水晶振動子21の構造例を示す外形図で、(a)は縦断面図、(b)は上蓋を開放した平面図である。同図に示すように、本水晶振動子21は、両主面に励振電極23a、23bを備えた水晶振動素子24を、内底面にパッド電極25a、25bを備え、外底面に外部接続電極26a、26bを備えたセラミック容器27の前記パッド電極25a、25bに導電性接着剤28a、28bで固着し、外蓋29で蓋して密封した構造を有している。
【0005】
図5は、前記水晶振動素子24の細部構造を示す外形斜視図で、(a)は凹陥部を有する一方の主面、(b)は他方の主面である。
前記水晶振動素子24は、ATカットの水晶基板の厚みすべり振動を利用した振動子であって、その共振周波数は振動部の板厚に反比例することから、機械的強度を保ちつつ高周波化を図るために、同図(a)に示すように、水晶基板30の一方の主面をエッチングによって凹陥せしめ、該凹陥部31aの底面を超薄肉の振動部31bとすると共に、該振動部31bの外周を全周にわたって支持する肉厚の環状囲繞部31cを形成して前記振動部31bと一体化したものである。
更に、前記一方の主面(凹面)の振動部31bに前記励振電極23aと該励振電極23aより延出するリード電極32aとパッド電極33aとが、電極材の蒸着によって形成される。
【0006】
また、同図(b)に示すように、本水晶振動素子24は、他方の主面、即ち前記一方の主面(凹面)の裏面(平坦面)の振動部31bに、前記励振電極23bと該励振電極23bより延出するリード電極32bとパッド電極33bとが、電極材の蒸着によって形成される。
上記構造の水晶振動素子24は、前記パッド電極33a、33bとそれぞれに対応するセラミック容器27の内底面に設けられた前記パッド電極25a、25bとが固着接続される。
【0007】
前述のようにセラミック容器27に密封された水晶振動子21と、チップ化された抵抗rとバリキャップDと、ICチップの発振回路22とは、例えばプリント配線基板にはんだ付けされ、さらに前記プリント配線基板をケースに収容してVCXOとして構成される。
【0008】
【発明が解決しようとする課題】
一般に、水晶振動子の電気的等価回路を、図6ように等価直列インダクタンスL、等価直列容量C、等価直列抵抗R、電極間の誘電体としての静電容量C、両電極に加わる浮遊容量Cで表わしたとき、この水晶振動子を用いて発振器を構成ときの発振周波数の可変範囲は、容量比γ=(C+C)/Cに逆比例することは周知のとおりである。
そして、水晶振動子の設計において、発振周波数の可変範囲を大きくするためには、励振電極の面積を小さくすることによって容量比を小さくする手法が取られるのが一般的である。
しかしながら、発振器の発振周波数が高周波化(例えば、基本波300〜600MHz)して、使用される水晶振動子の電極面積が小さくなってCが小さくなったとしても、浮遊容量C、即ち図3の水晶振動子の端子a、bに接続される抵抗r、バリキャップD、発振回路22等によって生ずる浮遊容量によって、容量比γ=(C+C)/Cを小さくして周波数の可変範囲を大きくするには限界があるという問題があった。
本発明は、上記課題を解決するためになされたものであって、水晶振動子の電極に加わる浮遊容量を低くして容量比γを小さくできる水晶振動子の構造を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するため、請求項1の発明においては、一方の主面を凹陥せしめ、該凹陥部の底面を振動部として、該振動部の外周を全周にわたって肉厚の環状囲繞部を形成して前記振動部を支持した圧電基板の前記振動部の両面に励振電極を形成した圧電振動素子の出力を、外部接続電極を有する容器の前記外部接続電極から取出す構造の圧電振動子であって、
前記環状囲繞部上にチップ化された抵抗体及び可変容量素子をそれぞれ端子電極を設けて固着し、前記抵抗体の一方の端子電極と前記可変容量素子の一方の端子電極との接続点と前記凹陥部の底面の振動部に形成された励振電極から延出するリード電極とを接続するとともに、
前記振動部の他の面に設けられた励振電極から延出するリード電極と前記抵抗体及び前記可変容量素子のそれぞれの他方の端子電極から延出するリード電極とを前記外部接続電極に接続したことを特徴とする。
また、請求項2の発明においては、請求項1の発明のであって、前記圧電基板が水晶基板であることを特徴とする。
【0010】
【発明の実施の形態】
以下、本発明を図面に示した実施の形態に基づいて説明する。
図1は、本発明に係わるの圧電振動子としての水晶振動子の実施の一形態例を示す外形図で、(a)は縦断面図、(b)は上蓋を開放した平面図である。
同図に示すように、本水晶振動子1は、励振電極2a、2bと抵抗3とバリキャップ4とを備えた水晶振動素子5を、内底面にパッド電極6a、6b、6cを備え、外底面に外部接続電極7a、7b、7cを備えたセラミック容器8の前記パッド電極6a、6b、6cに導電性接着剤9a、9b、9cで固着し、外蓋10で密封した構造を有している。
【0011】
図2は、前記水晶振動素子5の細部構造を示す外形斜視図で、(a)は凹陥部を有する一方の主面、(b)は他方の主面である。
前記水晶振動素子5は、 同図(a)に示すように、水晶基板11の一方の主面をエッチングによって凹陥せしめ、該凹陥部12aの底面を超薄肉の振動部12bとすると共に、該振動部12bの外周を全周にわたって支持する肉厚の環状囲繞部12cを形成して前記振動部12bと一体化したものである。
更に、前記一方の主面の振動部12bには前記励振電極2aと該励振電極2aより延出するリード電極13aとが、電極材の蒸着によって形成される。
【0012】
また、前記環状囲繞部12c上の一辺にはエッチングによって凹部14が形成され、該凹部14に前記リード電極13aと同時にパッド電極15a、15b、15cが形成される。そして、前記パッド電極15a、15b間に抵抗3、前記パッド電極15b、15c間にバリキャップ4とが、それぞれ導電性接着剤(図示しない)によって固着される。
なお、前記パッド電極15bには前記励振電極2aより延出するリード電極13aが接続される。
水晶基板11縁端に向けて伸びた前記パッド電極15aの電極端部及びパッド電極15cの電極端部は、前述のようにそれぞれセラミック容器8内底面のパッド電極6a、6bに導電性接着剤9a、9bで固着接続される。
【0013】
また、本水晶振動素子5の他方の主面、即ち前記一方の主面の裏面の振動部12bには、前記励振電極2bと該励振電極2bより延出するリード電極13bとパッド電極16とが、電極材の蒸着によって形成される。
そして、前記パッド電極16とセラミック容器8内底面のパッド電極6cとが導電性接着剤9cで固着接続される。
上述のように、励振電極部と可変容量素子と抵抗とを一つの水晶基板上に構成した水晶振動素子5をセラミック容器8に収容した水晶振動子1を用いることによって、図3に示されるVCXOの水晶振動子21のa端に加わる浮遊容量は大幅に低減することが出きる。
【0014】
【発明の効果】
以上説明したように、本発明によれば、1枚の水晶基板の上にVCXOの発振ループを構成する水晶振動子の励振電極とバリキャップと、更に前記バリキャップに制御電圧を印加する抵抗とを装着するようにしたので、水晶振動子に付加される浮遊容量( C )を大幅に低減することができる。このため、高い共振周波数の水晶振動子において、容量比γ=(C+C)/Cを小さくして周波数の可変範囲を大きく広げることができる。
さらに、従来、印刷配線基板等に水晶振動子、抵抗、バリキャップをそれぞれ別個に装着していたために周囲のノイズを拾いやすかったものが、抵抗、バリキャップを水晶振動子の容器に収容するようにしたため、そのシールド効果で回路のC/Nが改善されるという効果も得られる。
したがって、本発明によれば、優れた性能を有するVCXOを提供することができる。
【図面の簡単な説明】
【図1】本発明に係わるの圧電振動子としての水晶振動子の実施の一形態例を示す外形図で、(a)は縦断面図、(b)は上蓋を開放した平面図。
【図2】水晶振動素子5の細部構造を示す外形斜視図で、(a)は凹陥部を有する一方の主面、(b)は他方の主面。
【図3】従来の電圧制御水晶発振器の一例を示す電気回路図。
【図4】水晶振動子21の構造例を示す外形図で、(a)は縦断面図、(b)は上蓋を開放した平面図。
【図5】水晶振動素子22の細部構造を示す外形斜視図で、(a)は凹陥部を有する一方の主面、(b)は他方の主面。
【図6】水晶振動子の電気的等価回路。
【符号の説明】
1・・水晶振動子、 2a、2b、、励振電極、 3・・抵抗、
4・・バリキャップ、 5・・水晶振動素子、
6a、6b、6c・・パッド電極、 7a、7b、7c・・外部接続電極、
8・・セラミック容器、 9a、9b、9c・・導電性接着剤、
10・・外蓋、11・・水晶基板、12a・・凹陥部、12b・・振動部、
12c・・環状囲繞部、13a、13b・・リード電極、14・・凹部
15a、15b、15c・・パッド電極、16・・パッド電極、
21・・水晶振動子、22・・発振回路、23a、23b・・励振電極、
24・・水晶振動素子、 25a、25b・・パッド電極、
26a、26b・・外部接続電極、 27・・セラミック容器、
28・・導電性接着剤、 29・・外蓋、 30・・水晶基板、
31a・・凹陥部、 31b・・振動部、 31c・・環状囲繞部、
32a、32b・・リード電極、 33a、33b・・パッド電極、
・・静電容量、 C・・等価直列容量、 C・・浮遊容量、
D・・可変容量ダイオード(バリキャップ)、
・・等価直列インダクタンス、 R・・等価直列抵抗、 r・・抵抗
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a crystal resonator, and more particularly to a crystal resonator having a structure capable of widening a variable frequency range.
[0002]
[Prior art]
In recent years, with higher speed processing and higher performance of various transmission communication equipment or OA equipment, the frequency control device piezoelectric vibrator, for example, an oscillator using a crystal vibrator with high frequency stability, higher frequency, smaller size, High reliability is strongly demanded. FIG. 3 is an electric circuit diagram showing an example of a conventional voltage controlled crystal oscillator. As shown in the figure, the voltage controlled crystal oscillator (hereinafter referred to as VCXO) includes a resistor r, a crystal resonator 21, a variable capacitance diode (hereinafter referred to as a varicap) D, and an oscillation circuit 22.
[0003]
In the figure, the VCXO applies a control voltage Vc to a varicap D connected in series to the crystal resonator 21 through a resistor r, and changes the capacitance of the varicap D to a predetermined value, thereby The frequency of the oscillator output (OUT) is controlled by changing the load capacity of the oscillation loop of the crystal oscillator composed of the varicap D, the crystal resonator 21 and the oscillation circuit 22.
[0004]
4A and 4B are outline views showing an example of the structure of the crystal unit 21. FIG. 4A is a longitudinal sectional view, and FIG. 4B is a plan view with an upper lid opened. As shown in the figure, this crystal resonator 21 includes a crystal resonator element 24 having excitation electrodes 23a and 23b on both main surfaces, pad electrodes 25a and 25b on the inner bottom surface, and external connection electrodes 26a on the outer bottom surface. , 26b is fixed to the pad electrodes 25a, 25b of the ceramic container 27 with conductive adhesives 28a, 28b and covered with an outer lid 29 for sealing.
[0005]
5A and 5B are external perspective views showing the detailed structure of the crystal resonator element 24. FIG. 5A shows one main surface having a recessed portion, and FIG. 5B shows the other main surface.
The quartz crystal resonator element 24 is a vibrator using the thickness-shear vibration of an AT-cut quartz crystal substrate, and the resonance frequency is inversely proportional to the plate thickness of the vibrating portion, so that the frequency is increased while maintaining the mechanical strength. For this purpose, as shown in FIG. 5A, one main surface of the quartz substrate 30 is recessed by etching, and the bottom surface of the recessed portion 31a is formed as an ultrathin vibrating portion 31b. A thick annular surrounding portion 31c that supports the outer periphery over the entire circumference is formed and integrated with the vibrating portion 31b.
Further, the excitation electrode 23a, the lead electrode 32a extending from the excitation electrode 23a, and the pad electrode 33a are formed on the vibration portion 31b of the one main surface (concave surface) by vapor deposition of an electrode material.
[0006]
Further, as shown in FIG. 4B, the crystal resonator element 24 has the excitation electrode 23b and a vibrating portion 31b on the other main surface, that is, the back surface (flat surface) of the one main surface (concave surface). A lead electrode 32b and a pad electrode 33b extending from the excitation electrode 23b are formed by vapor deposition of an electrode material.
In the crystal resonator element 24 having the above structure, the pad electrodes 33a and 33b and the pad electrodes 25a and 25b provided on the inner bottom surface of the corresponding ceramic container 27 are fixedly connected.
[0007]
As described above, the crystal resonator 21 sealed in the ceramic container 27, the chip-formed resistor r, the varicap D, and the oscillation circuit 22 of the IC chip are soldered to, for example, a printed wiring board, and the printed circuit board is further printed. The wiring board is housed in a case and configured as a VCXO.
[0008]
[Problems to be solved by the invention]
In general, an electrical equivalent circuit of a crystal resonator is obtained by applying an equivalent series inductance L 1 , an equivalent series capacitance C 1 , an equivalent series resistance R 1 , an electrostatic capacitance C 0 as a dielectric between electrodes, and both electrodes as shown in FIG. It is well known that the variable range of the oscillation frequency when an oscillator is configured using this quartz crystal resonator is inversely proportional to the capacitance ratio γ = (C 0 + C t ) / C 1 when expressed by the added stray capacitance C t . It is as follows.
In designing a crystal resonator, in order to increase the variable range of the oscillation frequency, a method of reducing the capacitance ratio by reducing the area of the excitation electrode is generally used.
However, even if the oscillation frequency of the oscillator is increased (for example, the fundamental wave is 300 to 600 MHz) and the electrode area of the crystal resonator used is reduced and C 0 is reduced, the stray capacitance C t , that is, The capacitance ratio γ = (C 0 + C t ) / C 1 is reduced by the stray capacitance generated by the resistor r, the varicap D, the oscillation circuit 22 and the like connected to the terminals a and b of the crystal unit 3. There is a problem that there is a limit to increasing the variable range.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a crystal resonator structure capable of reducing the capacitance ratio γ by reducing the stray capacitance applied to the electrodes of the crystal resonator. .
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the invention of claim 1, one main surface is recessed, and the bottom surface of the recessed portion is used as a vibrating portion, and the outer periphery of the vibrating portion is formed over the entire circumference to form a thick annular surrounding portion. A piezoelectric vibrator having a structure in which the output of a piezoelectric vibration element in which excitation electrodes are formed on both surfaces of the vibration part of the piezoelectric substrate supporting the vibration part is taken out from the external connection electrode of a container having an external connection electrode. ,
The resistor and the variable capacitance element formed as chips on the annular surrounding portion are fixed by providing terminal electrodes, respectively, and a connection point between one terminal electrode of the resistor and one terminal electrode of the variable capacitance element, and While connecting the lead electrode extending from the excitation electrode formed on the vibration part of the bottom surface of the recess,
A lead electrode extending from an excitation electrode provided on the other surface of the vibrating portion and a lead electrode extending from the other terminal electrode of each of the resistor and the variable capacitance element are connected to the external connection electrode. It is characterized by that.
The invention of claim 2 is the invention of claim 1, characterized in that the piezoelectric substrate is a quartz substrate.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on embodiments shown in the drawings.
1A and 1B are outline views showing an embodiment of a crystal resonator as a piezoelectric resonator according to the present invention, in which FIG. 1A is a longitudinal sectional view and FIG. 1B is a plan view with an upper lid opened.
As shown in the figure, this crystal resonator 1 includes a crystal resonator element 5 including excitation electrodes 2a and 2b, a resistor 3, and a varicap 4, and pad electrodes 6a, 6b, and 6c on the inner bottom surface. The ceramic container 8 having external connection electrodes 7a, 7b, 7c on the bottom surface is fixed to the pad electrodes 6a, 6b, 6c with conductive adhesives 9a, 9b, 9c and sealed with an outer lid 10. Yes.
[0011]
2A and 2B are external perspective views showing the detailed structure of the crystal resonator element 5. FIG. 2A shows one main surface having a recessed portion, and FIG. 2B shows the other main surface.
As shown in FIG. 5A, the quartz resonator element 5 has one main surface of the quartz substrate 11 recessed by etching, and the bottom surface of the recess 12a is formed as an ultra-thin vibrating portion 12b. A thick annular surrounding portion 12c that supports the outer periphery of the vibrating portion 12b over the entire circumference is formed and integrated with the vibrating portion 12b.
Further, the excitation electrode 2a and a lead electrode 13a extending from the excitation electrode 2a are formed on the vibration portion 12b of the one main surface by vapor deposition of an electrode material.
[0012]
A recess 14 is formed on one side of the annular surrounding portion 12c by etching, and pad electrodes 15a, 15b, and 15c are formed in the recess 14 simultaneously with the lead electrode 13a. Then, the resistor 3 is fixed between the pad electrodes 15a and 15b, and the varicap 4 is fixed between the pad electrodes 15b and 15c by a conductive adhesive (not shown).
A lead electrode 13a extending from the excitation electrode 2a is connected to the pad electrode 15b.
As described above, the electrode end of the pad electrode 15a and the electrode end of the pad electrode 15c extending toward the edge of the quartz substrate 11 are electrically connected to the pad electrodes 6a and 6b on the inner bottom surface of the ceramic container 8, respectively. , 9b.
[0013]
Further, the excitation electrode 2b, a lead electrode 13b extending from the excitation electrode 2b, and a pad electrode 16 are provided on the other main surface of the crystal resonator element 5, that is, the vibration portion 12b on the back surface of the one main surface. The electrode material is formed by vapor deposition.
The pad electrode 16 and the pad electrode 6c on the inner bottom surface of the ceramic container 8 are fixedly connected by a conductive adhesive 9c.
As described above, by using the crystal resonator 1 in which the crystal resonator element 5 in which the excitation electrode portion, the variable capacitance element, and the resistor are configured on one crystal substrate is accommodated in the ceramic container 8, the VCXO shown in FIG. It can be seen that the stray capacitance applied to the “a” end of the quartz crystal resonator 21 is greatly reduced.
[0014]
【The invention's effect】
As described above, according to the present invention, the excitation electrode and the varicap of the crystal resonator constituting the VCXO oscillation loop on one crystal substrate, and the resistor for applying the control voltage to the varicap are further provided. Since the capacitor is mounted, the stray capacitance (C t ) added to the crystal resonator can be greatly reduced. For this reason, in a quartz resonator having a high resonance frequency, the capacitance ratio γ = (C 0 + C t ) / C 1 can be reduced to greatly widen the frequency variable range.
In addition, since the quartz oscillator, resistor, and varicap have been separately mounted on a printed wiring board, etc., it is easy to pick up surrounding noise. Therefore, the effect that the C / N of the circuit is improved by the shielding effect is also obtained.
Therefore, according to the present invention, a VCXO having excellent performance can be provided.
[Brief description of the drawings]
1A and 1B are external views showing an embodiment of a crystal resonator as a piezoelectric resonator according to the present invention, in which FIG. 1A is a longitudinal sectional view, and FIG.
2A and 2B are external perspective views showing a detailed structure of the crystal resonator element 5, in which FIG. 2A shows one main surface having a recessed portion, and FIG. 2B shows the other main surface.
FIG. 3 is an electric circuit diagram showing an example of a conventional voltage controlled crystal oscillator.
4A and 4B are external views showing a structural example of the crystal unit 21. FIG. 4A is a longitudinal sectional view, and FIG. 4B is a plan view with an upper lid opened.
5A and 5B are external perspective views showing a detailed structure of the crystal resonator element 22, in which FIG. 5A shows one main surface having a recessed portion, and FIG. 5B shows the other main surface.
FIG. 6 is an electrical equivalent circuit of a crystal unit.
[Explanation of symbols]
1 ・ ・ Crystal oscillator, 2a, 2b, Excitation electrode, 3 ・ ・ Resistance
4 .... Varicap, 5 .... Crystal vibrating element,
6a, 6b, 6c .. pad electrodes, 7a, 7b, 7c .. external connection electrodes,
8 .. Ceramic container, 9a, 9b, 9c .. Conductive adhesive,
10 .. Outer lid, 11 .. Quartz substrate, 12 a.. Recessed part, 12 b.
12c ··· Ring surrounding portion, 13a, 13b · · Lead electrode, · · · Recesses 15a and 15b, 15c · · Pad electrode, 16 · · Pad electrode,
21..Quartz crystal, 22..Oscillator circuit, 23a, 23b..Excitation electrode,
24..Crystal vibrating element, 25a, 25b..Pad electrode,
26a, 26b, external connection electrodes, 27, ceramic container,
28 ... Conductive adhesive 29 ... Outer lid 30 ... Quartz substrate
31a ... concave part 31b vibration part 31c ring surrounding part,
32a, 32b ... lead electrode, 33a, 33b ... pad electrode,
C 0 ·· Capacitance, C 1 ·· Equivalent series capacitance, C t ·· Stray capacitance,
D ... Variable capacitance diode (varicap),
L 1 ·· Equivalent series inductance, R 1 ·· Equivalent series resistance, r ·· Resistance

Claims (2)

一方の主面を凹陥せしめ、該凹陥部の底面を振動部として、該振動部の外周を全周にわたって肉厚の環状囲繞部を形成して前記振動部を支持した圧電基板の前記振動部の両面に励振電極を形成した圧電振動素子の出力を、外部接続電極を有する容器の前記外部接続電極から取出す構造の圧電振動子であって、
前記環状囲繞部上にチップ化された抵抗体及び可変容量素子のそれぞれ端子電極を設けて固着し、前記抵抗体の一方の端子電極と前記可変容量素子の一方の端子電極との接続点と前記凹陥部の底面の振動部に形成された励振電極から延出するリード電極とを接続するとともに、前記振動部の他の面に設けられた励振電極から延出するリード電極と前記抵抗体及び前記可変容量素子のそれぞれの他方の端子電極から延出するリード電極とを前記外部接続電極に接続したことを特徴とする圧電振動子の構造。
One of the main surfaces is recessed, the bottom surface of the recessed portion is used as a vibration portion, and the outer periphery of the vibration portion is formed over the entire circumference to form a thick annular surrounding portion to support the vibration portion. A piezoelectric vibrator having a structure in which an output of a piezoelectric vibration element having excitation electrodes formed on both surfaces is taken out from the external connection electrode of a container having an external connection electrode,
Provided and fixed to each terminal electrode of the resistor and the variable capacitance element formed as a chip on the annular surrounding portion, a connection point between one terminal electrode of the resistor and one terminal electrode of the variable capacitance element, and the The lead electrode extending from the excitation electrode formed on the vibration part on the bottom surface of the recessed part is connected, and the lead electrode extending from the excitation electrode provided on the other surface of the vibration part, the resistor, and the resistor A structure of a piezoelectric vibrator, wherein a lead electrode extending from the other terminal electrode of each variable capacitance element is connected to the external connection electrode.
前記圧電基板が水晶基板であることを特徴とする請求項1記載の圧電振動子の構造。The structure of the piezoelectric vibrator according to claim 1, wherein the piezoelectric substrate is a quartz substrate.
JP2003188195A 2003-06-30 2003-06-30 Structure of piezoelectric oscillator Pending JP2005026846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003188195A JP2005026846A (en) 2003-06-30 2003-06-30 Structure of piezoelectric oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003188195A JP2005026846A (en) 2003-06-30 2003-06-30 Structure of piezoelectric oscillator

Publications (1)

Publication Number Publication Date
JP2005026846A true JP2005026846A (en) 2005-01-27

Family

ID=34186808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003188195A Pending JP2005026846A (en) 2003-06-30 2003-06-30 Structure of piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JP2005026846A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8081492B2 (en) 2007-10-29 2011-12-20 Tdk Corporation Switching power supply with smoothing circuitry for more stable output
CN108496307A (en) * 2016-01-21 2018-09-04 株式会社村田制作所 Quartz crystal and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8081492B2 (en) 2007-10-29 2011-12-20 Tdk Corporation Switching power supply with smoothing circuitry for more stable output
CN108496307A (en) * 2016-01-21 2018-09-04 株式会社村田制作所 Quartz crystal and its manufacturing method
CN108496307B (en) * 2016-01-21 2021-07-23 株式会社村田制作所 Crystal oscillator and method for manufacturing same

Similar Documents

Publication Publication Date Title
US5925968A (en) Piezoelectric vibrator, piezoelectric vibrator device having the same and circuit device having the piezoelectric vibrator device
JP3881503B2 (en) Piezoelectric vibrator and piezoelectric device equipped with the same
US20050040735A1 (en) Surface mount crystal oscillator
JP2007208771A (en) Piezoelectric vibration element, piezoelectric vibrator, and piezoelectric oscillator
JP2011147053A (en) Piezoelectric vibrating piece, and piezoelectric oscillator
JP2002057544A (en) Piezoelectric oscillator
JP2005033293A (en) Piezoelectric device
JP2013042410A (en) Piezoelectric vibrating element, piezoelectric vibrator, electronic device and electronic apparatus
JPH10200364A (en) Confined energy thickness-shearing resonator and electronic component using the same
JP2004320417A (en) Temperature compensated piezoelectric oscillator
US7157981B2 (en) Surface-mounted oscillator
JP2005026846A (en) Structure of piezoelectric oscillator
JP4758210B2 (en) Piezoelectric oscillator
JP2013026761A (en) Crystal oscillator
JP2004120481A (en) Piezoelectric device and its package structure
JP4587726B2 (en) Piezoelectric vibrator storage package and piezoelectric device
JP2001257558A (en) Piezoelectric vibrator
JP2001257560A (en) Electrode structure for ultra-thin board piezoelectric vibration element
JP4178902B2 (en) Surface mount type piezoelectric oscillator
JP2007235481A (en) Piezoelectric oscillator container
JP2023003011A (en) Vibration element, vibrator, and electronic device
JP4071889B2 (en) Crystal oscillator
JP3317219B2 (en) Piezoelectric resonance components with built-in capacitance
JPH04115707A (en) Electrode lead structure for ultra thin plate piezoelectric resonator
JP2001320258A (en) Piezoelectric vibrator and piezoelectric oscillator using the same