JP2005026663A - Oxidation-resistant rare-earth magnet powder and manufacturing method therefor - Google Patents

Oxidation-resistant rare-earth magnet powder and manufacturing method therefor Download PDF

Info

Publication number
JP2005026663A
JP2005026663A JP2004003884A JP2004003884A JP2005026663A JP 2005026663 A JP2005026663 A JP 2005026663A JP 2004003884 A JP2004003884 A JP 2004003884A JP 2004003884 A JP2004003884 A JP 2004003884A JP 2005026663 A JP2005026663 A JP 2005026663A
Authority
JP
Japan
Prior art keywords
magnet powder
rare earth
oxidation
pigment
earth magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004003884A
Other languages
Japanese (ja)
Other versions
JP4433801B2 (en
Inventor
Masayuki Yoshimura
吉村  公志
Kazuhide Oshima
一英 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co Ltd filed Critical Neomax Co Ltd
Priority to JP2004003884A priority Critical patent/JP4433801B2/en
Publication of JP2005026663A publication Critical patent/JP2005026663A/en
Application granted granted Critical
Publication of JP4433801B2 publication Critical patent/JP4433801B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide oxidation-resistant rare-earth magnet powder that is useful for producing a rare-earth bond magnet which is excellent in oxidation resistance and exhibits a high magnetic characteristics, and to provide a manufacturing method for the magnet powder. <P>SOLUTION: This oxidation-resistant rare-earth magnet powder has a deposited layer consisting mainly of a pigment on the outermost surface of at least one coating on the surface of the rare-earth magnet powder. To manufacture the oxidation-resistant rare-earth magnet powder, rare-earth magnet powder having at least one coating on its surface and a pigment-containing processing liquid are mixed so that the pigment-containing processing liquid is attached on the outermost surface of the rare-earth magnet powder, and then the rare-earth magnet powder is dried. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、耐酸化性に優れるとともに高い磁気特性を示す希土類系ボンド磁石を製造するために有用な、耐酸化性希土類系磁石粉末およびその製造方法に関する。   The present invention relates to an oxidation-resistant rare earth magnet powder useful for producing a rare earth-based bonded magnet having excellent oxidation resistance and high magnetic properties, and a method for producing the same.

Nd−Fe−B系磁石粉末に代表されるR−Fe−B系磁石粉末(R:希土類元素)などの希土類系磁石粉末を、バインダとして熱可塑性樹脂や熱硬化性樹脂などを用いて所定形状に成形することで製造される希土類系ボンド磁石は、樹脂バインダを含有しているために希土類系焼結磁石に比較すれば磁気特性が低くなるものの、フェライト磁石などに比べればなお十分に高い磁気特性を有しており、また、複雑形状や薄肉形状の磁石やラジアル異方性磁石を容易に得ることができるといった希土類系焼結磁石にはない特徴を持っている。従って、希土類系ボンド磁石は、特にスピンドルモータやステッピングモータなどの小型モータに多く用いられ、近年、その需要が増加している。
希土類系磁石粉末は高い磁気特性を有するが、RやFeが組成の大半を占めることから腐食や酸化を起しやすいという問題がある。そのため、希土類系ボンド磁石の製造においては、まず、希土類系磁石粉末を、溶解もしくは溶融(軟化)させた樹脂バインダと混合して磁石粉末の表面が樹脂バインダで被覆されたコンパウンドと呼ばれる粉末顆粒状原料を調製した後、このコンパウンドを射出成形や圧縮成形や押出成形し、用いる樹脂バインダが熱硬化性樹脂である場合にはさらに加熱して樹脂バインダを硬化させることで所定形状に成形して製品化される。しかしながら、このようにして製品化された希土類系ボンド磁石であっても、その表面に希土類系磁石粉末が露出していると、わずかな酸やアルカリや水分などの存在によって磁石粉末が腐食して錆が発生したり、100℃程度の大気中でも酸化が進行したりするので、例えば部品組み込み後に磁気特性の劣化やばらつきを招くことがある。また、樹脂バインダとして汎用されているエポキシ樹脂やナイロン樹脂などは水分や酸素の透過性を有する。従って、これらの樹脂を樹脂バインダに用いた希土類系ボンド磁石においては、樹脂を透過した水分や酸素で希土類系磁石粉末が腐食したり酸化したりする可能性があることを否定できない。さらに、希土類系磁石粉末が腐食や酸化を起しやすいことに鑑みれば、射出成形を行う場合には混練成形時の温度条件に配慮する必要があるし、圧縮成形を行う場合には成形後の硬化処理を不活性ガス雰囲気中や真空中で行う必要がある。
A rare earth magnet powder such as an R—Fe—B magnet powder (R: rare earth element) typified by an Nd—Fe—B magnet powder is used as a binder with a thermoplastic resin or a thermosetting resin as a predetermined shape. Rare-earth bonded magnets produced by molding into a magnet have a resin binder and thus have lower magnetic properties than rare earth sintered magnets, but still have sufficiently high magnetic properties compared to ferrite magnets. In addition, it has characteristics not found in rare earth-based sintered magnets, such as complex and thin-walled magnets and radial anisotropic magnets. Therefore, rare earth-based bonded magnets are often used particularly for small motors such as spindle motors and stepping motors, and the demand for them is increasing in recent years.
Rare earth magnet powders have high magnetic properties, but R and Fe occupy most of the composition, so that there is a problem that corrosion and oxidation are likely to occur. Therefore, in the production of rare-earth bonded magnets, first, a rare-earth magnet powder is mixed with a melted or melted (softened) resin binder, and the surface of the magnet powder is a powder granule called a compound coated with a resin binder. After preparing the raw material, this compound is injection-molded, compression-molded or extruded, and if the resin binder used is a thermosetting resin, it is further heated to cure the resin binder and molded into a predetermined shape. It becomes. However, even in the rare-earth bonded magnets manufactured in this way, if the rare-earth magnet powder is exposed on the surface, the magnet powder corrodes due to the presence of slight acid, alkali, moisture, etc. Since rust is generated or oxidation proceeds even in the atmosphere of about 100 ° C., for example, deterioration or variation in magnetic characteristics may be caused after assembly of the parts. In addition, epoxy resins and nylon resins that are widely used as resin binders have moisture and oxygen permeability. Therefore, in rare earth bond magnets using these resins as resin binders, it cannot be denied that the rare earth magnet powder may be corroded or oxidized by moisture or oxygen permeated through the resin. Furthermore, in view of the fact that rare earth magnet powders are susceptible to corrosion and oxidation, it is necessary to consider the temperature conditions during kneading when performing injection molding, and after molding when performing compression molding. It is necessary to perform the curing process in an inert gas atmosphere or in a vacuum.

以上のような問題を解消すべく、例えば、下記の特許文献1において、希土類系磁石粉末の表面に、無機燐酸化合物被膜(燐を構成成分とする被膜)を形成する方法が提案されている。この方法は、比較的低コストで高効率に希土類系磁石粉末に耐酸化性を付与することができることから、耐酸化性に優れるとともに高い磁気特性を示す希土類系ボンド磁石を製造することができる方法として期待されるものである。しかしながら、その効果は満足できるに足るものではない。
特開平7−278602号公報
In order to solve the above problems, for example, Patent Document 1 below proposes a method of forming an inorganic phosphate compound coating (a coating containing phosphorus as a constituent) on the surface of a rare earth magnet powder. Since this method can impart oxidation resistance to the rare earth magnet powder at a relatively low cost and high efficiency, it is possible to produce a rare earth bond magnet having excellent oxidation resistance and high magnetic properties. As expected. However, the effect is not satisfactory.
JP 7-278602 A

そこで本発明は、耐酸化性に優れるとともに高い磁気特性を示す希土類系ボンド磁石を製造するために有用な、耐酸化性希土類系磁石粉末およびその製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide an oxidation-resistant rare earth magnet powder and a method for producing the same, which are useful for producing a rare earth bonded magnet having excellent oxidation resistance and high magnetic properties.

上記の技術背景に基づいてなされた本発明の耐酸化性希土類系磁石粉末は、請求項1記載の通り、希土類系磁石粉末の表面に形成された1層以上の被膜を介して最表面に顔料を主たる構成成分とする被着層を有してなることを特徴とする。
また、請求項2記載の耐酸化性希土類系磁石粉末は、請求項1記載の耐酸化性希土類系磁石粉末において、顔料が有機顔料であることを特徴とする。
また、請求項3記載の耐酸化性希土類系磁石粉末は、請求項2記載の耐酸化性希土類系磁石粉末において、有機顔料がインダンスレン系顔料またはフタロシアニン系顔料であることを特徴とする。
また、請求項4記載の耐酸化性希土類系磁石粉末は、請求項1乃至3のいずれかに記載の耐酸化性希土類系磁石粉末において、顔料の平均粒径(長径)が0.01μm〜0.5μmであることを特徴とする。
また、請求項5記載の耐酸化性希土類系磁石粉末は、請求項1乃至4のいずれかに記載の耐酸化性希土類系磁石粉末において、希土類系磁石粉末の表面に形成された被膜が無機燐酸化合物被膜であることを特徴とする。
また、請求項6記載の耐酸化性希土類系磁石粉末は、請求項1乃至4のいずれかに記載の耐酸化性希土類系磁石粉末において、希土類系磁石粉末の表面に形成された被膜が金属被膜であることを特徴とする。
また、請求項7記載の耐酸化性希土類系磁石粉末は、請求項1乃至6のいずれかに記載の耐酸化性希土類系磁石粉末において、希土類系磁石粉末の平均粒径(長径)が200μm以下であることを特徴とする。
また、請求項8記載の耐酸化性希土類系磁石粉末は、請求項7記載の耐酸化性希土類系磁石粉末において、希土類系磁石粉末がHDDR磁石粉末であることを特徴とする。
また、本発明の請求項1記載の耐酸化性希土類系磁石粉末の製造方法は、請求項9記載の通り、表面に1層以上の被膜を形成した希土類系磁石粉末と顔料含有処理液を混合した後、顔料含有処理液が最表面に付着した希土類系磁石粉末を乾燥することを特徴とする。
また、請求項10記載の製造方法は、請求項9記載の製造方法において、表面に1層以上の被膜を形成した希土類系磁石粉末と顔料含有処理液を混合した後、濾過を行って顔料含有処理液が最表面に付着した希土類系磁石粉末を取得することを特徴とする。
また、請求項11記載の製造方法は、請求項9または10記載の製造方法において、顔料含有処理液中における顔料の含有量が5重量%〜33重量%であることを特徴とする。
また、請求項12記載の製造方法は、請求項9乃至11のいずれかに記載の製造方法において、顔料含有処理液が有機分散媒を含有してなることを特徴とする。
また、本発明の希土類系ボンド磁石用コンパウンドは、請求項13記載の通り、請求項1記載の耐酸化性希土類系磁石粉末と樹脂バインダとからなることを特徴とする。
また、本発明の希土類系ボンド磁石は、請求項14記載の通り、請求項13記載の希土類系ボンド磁石用コンパウンドを用いて所定形状に成形されてなることを特徴とする。
The oxidation-resistant rare earth magnet powder of the present invention made on the basis of the above technical background is a pigment on the outermost surface through one or more coatings formed on the surface of the rare earth magnet powder as claimed in claim 1. It is characterized by having an adhesion layer which has as a main component.
The oxidation-resistant rare earth magnet powder according to claim 2 is characterized in that in the oxidation-resistant rare earth magnet powder according to claim 1, the pigment is an organic pigment.
The oxidation-resistant rare earth magnet powder according to claim 3 is characterized in that, in the oxidation-resistant rare earth magnet powder according to claim 2, the organic pigment is an indanthrene pigment or a phthalocyanine pigment.
The oxidation-resistant rare earth magnet powder according to claim 4 is the oxidation-resistant rare earth magnet powder according to any one of claims 1 to 3, wherein the average particle size (major axis) of the pigment is 0.01 μm to 0. .5 μm.
The oxidation-resistant rare earth magnet powder according to claim 5 is the oxidation-resistant rare earth magnet powder according to any one of claims 1 to 4, wherein the coating formed on the surface of the rare earth magnet powder is inorganic phosphoric acid. It is a compound film.
The oxidation-resistant rare earth magnet powder according to claim 6 is the oxidation-resistant rare earth magnet powder according to any one of claims 1 to 4, wherein the coating formed on the surface of the rare earth magnet powder is a metal coating. It is characterized by being.
The oxidation-resistant rare earth magnet powder according to claim 7 is the oxidation-resistant rare earth magnet powder according to any one of claims 1 to 6, wherein the rare earth magnet powder has an average particle diameter (major axis) of 200 μm or less. It is characterized by being.
The oxidation-resistant rare earth magnet powder according to claim 8 is the oxidation-resistant rare earth magnet powder according to claim 7, wherein the rare earth magnet powder is HDDR magnet powder.
The method for producing an oxidation-resistant rare earth magnet powder according to claim 1 of the present invention, as described in claim 9, comprises mixing a rare earth magnet powder having a surface of one or more layers and a pigment-containing treatment liquid. After that, the rare earth magnet powder having the pigment-containing treatment liquid adhered to the outermost surface is dried.
Further, the manufacturing method according to claim 10 is the manufacturing method according to claim 9, wherein the rare earth magnet powder having one or more layers formed on the surface and the pigment-containing treatment liquid are mixed and then filtered to contain the pigment. A rare earth magnet powder having a treatment liquid attached to the outermost surface is obtained.
The manufacturing method according to claim 11 is characterized in that, in the manufacturing method according to claim 9 or 10, the content of the pigment in the pigment-containing treatment liquid is 5 wt% to 33 wt%.
The manufacturing method according to claim 12 is characterized in that, in the manufacturing method according to any of claims 9 to 11, the pigment-containing treatment liquid contains an organic dispersion medium.
Moreover, the compound for rare earth-based bonded magnets of the present invention comprises the oxidation-resistant rare earth-based magnet powder according to claim 1 and a resin binder as described in claim 13.
In addition, the rare earth bond magnet of the present invention is characterized in that, as described in claim 14, it is formed into a predetermined shape using the rare earth bond magnet compound according to claim 13.

本発明によれば、耐酸化性に優れるとともに高い磁気特性を示す希土類系ボンド磁石を製造するために有用な、耐酸化性希土類系磁石粉末およびその製造方法が提供される。   According to the present invention, there are provided an oxidation-resistant rare earth-based magnet powder and a method for producing the same, which are useful for producing a rare-earth bonded magnet having excellent oxidation resistance and high magnetic properties.

本発明の耐酸化性希土類系磁石粉末は、例えば、表面に1層以上の被膜を形成した希土類系磁石粉末と顔料含有処理液を混合した後、顔料含有処理液が最表面に付着した希土類系磁石粉末を乾燥することにより製造することができる。   The oxidation-resistant rare earth magnet powder of the present invention is, for example, a rare earth system in which a pigment-containing treatment liquid adheres to the outermost surface after mixing a rare-earth magnet powder having one or more layers formed on the surface and a pigment-containing treatment liquid. It can be produced by drying the magnet powder.

表面に1層以上の被膜を形成した希土類系磁石粉末としては、表面に耐酸化性被膜である無機燐酸化合物被膜を形成した希土類系磁石粉末などが挙げられる。このような磁石粉末は、上記の特許文献1に記載の方法の他、自体公知の燐酸処理や燐酸塩処理などによっても製造することができる。なお、希土類系磁石粉末の表面に形成する被膜は、無機燐酸化合物被膜に限定されるものではなく、アルミニウム被膜や亜鉛被膜などの金属被膜、ポリイミド被膜などの樹脂被膜といった自体公知の耐酸化性被膜であってもよい。また、複数の被膜からなる積層被膜であってもよい。   Examples of the rare earth magnet powder having one or more layers formed on the surface include rare earth based magnet powder having an inorganic phosphate compound coating that is an oxidation resistant coating on the surface. Such a magnet powder can be produced not only by the method described in Patent Document 1 but also by a phosphoric acid treatment or a phosphate treatment known per se. The film formed on the surface of the rare earth magnet powder is not limited to the inorganic phosphoric acid compound film, but a per se known oxidation-resistant film such as a metal film such as an aluminum film or a zinc film, or a resin film such as a polyimide film. It may be. Moreover, the laminated film which consists of a some film may be sufficient.

顔料含有処理液の調製方法としては、例えば、アンモニアなどでpHを6.5〜9.0に調整した弱アルカリ性水に顔料を分散させる方法が挙げられる。処理液のpHを6.5〜9.0に調整するのは、処理液による希土類系磁石粉末の腐食を防止するためである。処理液の粘度は、良好な取扱性を確保するといった観点から、2cP〜50cPが望ましい。なお、顔料含有処理液は、エチルアルコールやイソプロピルアルコールなどの有機溶媒に顔料を分散させたものであってもよい。   Examples of the method for preparing the pigment-containing treatment liquid include a method of dispersing the pigment in weakly alkaline water whose pH is adjusted to 6.5 to 9.0 with ammonia or the like. The reason why the pH of the treatment liquid is adjusted to 6.5 to 9.0 is to prevent corrosion of the rare earth magnet powder by the treatment liquid. The viscosity of the treatment liquid is preferably 2 cP to 50 cP from the viewpoint of ensuring good handleability. Note that the pigment-containing treatment liquid may be obtained by dispersing a pigment in an organic solvent such as ethyl alcohol or isopropyl alcohol.

顔料としては、有機顔料と無機顔料のいずれの顔料も用いることができる。有機顔料としては、インダンスレン系顔料やフタロシアニン系顔料の他、アゾ系、キナクリドン系、アントラキノン系、ジオキサンジン系、インジゴ系、チオインジゴ系、ペリノン系、ペリレン系、イソインドレン系、アゾメチンアゾ系、ジケトピロロピロール系の顔料などが挙げられる。顔料として有機顔料を用いた場合、有機顔料を主たる構成成分とする被着層を最表面に有してなる希土類系磁石粉末は、樹脂バインダとからなる希土類系ボンド磁石用コンパウンドに適度の粘弾性と優れた流動性を付与するとともに、被着層を構成する有機顔料が圧縮成形時に受ける応力を吸収して緩和するので磁石粉末の破砕が起こって新生破面が生成するといったことが起きにくくなる点において都合がよい。また、有機顔料の種類によっては、ボンド磁石に高抵抗性を付与することができることが期待される。中でも、インダンスレン系顔料やフタロシアニン系顔料は、耐食性や耐熱性に優れるので、これらは好適な有機顔料であるといえる。
無機顔料としては、カーボンブラック、二酸化チタン、酸化鉄、酸化クロム、酸化亜鉛、アルミナ、硫化亜鉛、タルク、マイカ、炭酸カルシウムなどが挙げられる。顔料として無機顔料を用いた場合、希土類系磁石粉末の最表面に形成された無機顔料を主たる構成成分とする被着層は、酸素や水蒸気などの非透過性に優れることから、磁石粉末にとりわけ優れた耐酸化性を付与することができる点において都合がよい。好適な無機顔料としては、カーボンブラックが挙げられる。
As the pigment, any of an organic pigment and an inorganic pigment can be used. Organic pigments include indanthrene pigments and phthalocyanine pigments, as well as azo, quinacridone, anthraquinone, dioxazine, indigo, thioindigo, perinone, perylene, isoindylene, azomethine azo, diketo Examples include pyrrolopyrrole pigments. When an organic pigment is used as the pigment, the rare earth magnet powder having an outermost surface with an organic pigment as a main component is suitable for a rare earth bond magnet compound composed of a resin binder. In addition to providing excellent fluidity, the organic pigment constituting the adherent layer absorbs and relaxes the stress applied during compression molding, so that it is difficult for the magnetic powder to break up and generate a new fracture surface. Convenient in terms. In addition, depending on the type of organic pigment, it is expected that high resistance can be imparted to the bonded magnet. Among them, indanthrene pigments and phthalocyanine pigments are excellent organic pigments because they are excellent in corrosion resistance and heat resistance.
Examples of the inorganic pigment include carbon black, titanium dioxide, iron oxide, chromium oxide, zinc oxide, alumina, zinc sulfide, talc, mica and calcium carbonate. When an inorganic pigment is used as the pigment, the adherent layer mainly composed of the inorganic pigment formed on the outermost surface of the rare earth magnet powder has excellent non-permeability such as oxygen and water vapor. This is advantageous in that excellent oxidation resistance can be imparted. A suitable inorganic pigment includes carbon black.

顔料の平均粒径(長径)は、顔料含有処理液中における顔料の均一分散性を確保するといった観点から、0.01μm〜0.5μmが望ましい。平均粒径が0.01μm未満であると、その製造が困難であるとともに処理液中で凝集しやすくなって取扱性に劣る一方、平均粒径が0.5μmを超えると、処理液中における比重が大きくなってしまって沈降してしまう恐れがある。   The average particle diameter (major diameter) of the pigment is preferably 0.01 μm to 0.5 μm from the viewpoint of ensuring uniform dispersibility of the pigment in the pigment-containing treatment liquid. If the average particle size is less than 0.01 μm, it is difficult to produce and is easy to agglomerate in the treatment liquid, resulting in poor handling. On the other hand, if the average particle size exceeds 0.5 μm, the specific gravity in the treatment liquid May become large and settle.

処理液中における顔料の含有量は、5重量%〜33重量%が望ましい。含有量が5重量%未満であると、十分な量の顔料からなる被着層が希土類系磁石粉末の最表面に形成されず、優れた耐酸化性を磁石粉末に付与することができなくなる恐れがある一方、含有量が33重量%を超えると、処理液中で顔料が凝集や沈降してしまい、その分散性が悪化する恐れがあるからである。なお、処理液中における顔料の含有量は、より望ましくは10重量%〜30重量%である。   The content of the pigment in the treatment liquid is desirably 5% by weight to 33% by weight. If the content is less than 5% by weight, there is a risk that an adhesion layer composed of a sufficient amount of pigment will not be formed on the outermost surface of the rare earth magnet powder, and it will not be possible to impart excellent oxidation resistance to the magnet powder. On the other hand, if the content exceeds 33% by weight, the pigment aggregates or settles in the processing liquid, and the dispersibility may be deteriorated. In addition, content of the pigment in a process liquid is 10 to 30 weight% more desirably.

顔料含有処理液には有機分散媒を添加することが望ましい。有機分散媒は、処理液中での顔料の凝集や沈降を抑制する目的で使用されるものである。有機分散媒としては、アニオン性分散媒(脂肪族系多価カルボン酸、ポリエーテルポリエステルカルボン酸塩、高分子ポリエステル酸ポリアミン塩、高分子量ポリカルボン酸長鎖アミン塩など)、非イオン性分散媒(ポリオキシエチレンアルキルエーテルやソルビタンエステルなどのカルボン酸塩やスルフォン酸塩やアンモニウム塩など)、高分子分散媒(水溶性エポキシのカルボン酸塩やスルフォン酸塩やアンモニウム塩など、スチレン−アクリル酸共重合物、ニカワなど)が、上記の目的の観点から、また、顔料との親和性やコストの観点などから好適に用いられる。   It is desirable to add an organic dispersion medium to the pigment-containing treatment liquid. The organic dispersion medium is used for the purpose of suppressing aggregation and sedimentation of the pigment in the treatment liquid. Examples of organic dispersion media include anionic dispersion media (aliphatic polycarboxylic acids, polyether polyester carboxylates, polymer polyester acid polyamine salts, high molecular weight polycarboxylic acid long chain amine salts, etc.), nonionic dispersion media (Carboxylic acid salts such as polyoxyethylene alkyl ethers and sorbitan esters, sulfonic acid salts and ammonium salts), polymer dispersion media (such as water-soluble epoxy carboxylates, sulfonic acid salts and ammonium salts). Polymers, glues, etc.) are preferably used from the viewpoints of the above-mentioned purpose and from the viewpoints of affinity with the pigment and cost.

処理液中への有機分散媒の添加量は、9重量%〜24重量%が望ましい。添加量が9重量%未満であると、顔料の分散性が低下する恐れがある一方、24重量%を超えると、処理液の粘性が高くなりすぎて取扱性に劣る恐れがあるからである。   The amount of the organic dispersion medium added to the treatment liquid is desirably 9% by weight to 24% by weight. If the added amount is less than 9% by weight, the dispersibility of the pigment may be lowered. On the other hand, if the added amount exceeds 24% by weight, the viscosity of the treatment liquid becomes too high and the handleability may be deteriorated.

本発明の耐酸化性希土類系磁石粉末は、例えば、以上のようにして調製された顔料含有処理液に、表面に1層以上の被膜を形成した希土類系磁石粉末を浸漬して混合攪拌した後、顔料含有処理液が最表面に付着した希土類系磁石粉末を濾取してからこれを乾燥して製造することができる。表面に1層以上の被膜を形成した希土類系磁石粉末を顔料含有処理液に浸漬して混合攪拌する時間は、磁石粉末量などにも依存するが、概ね1分〜20分である。顔料含有処理液が最表面に付着した希土類系磁石粉末を濾取する際、減圧濾過や加圧濾過を行えば、被膜の表面に顔料をより強固に吸着せしめることができる。磁気特性の劣化を招くことなく希土類系磁石粉末に耐酸化性を付与するためには、乾燥は、自然乾燥または不活性ガス(窒素ガスやアルゴンガスなど)雰囲気中や真空中80℃〜120℃加熱乾燥が望ましい。加熱乾燥を採用する場合の乾燥時間は、磁石粉末量などにも依存するが、概ね20分〜2時間である。濾取した顔料含有処理液が最表面に付着した希土類系磁石粉末が凝集塊となっている場合には予め解砕してから乾燥することが望ましい。なお、顔料含有処理液が最表面に付着した希土類系磁石粉末の取得は、表面に1層以上の被膜を形成した希土類系磁石粉末に顔料含有処理液を噴霧することで行ってもよい。   The oxidation-resistant rare earth magnet powder of the present invention is obtained by, for example, immersing and stirring the rare earth magnet powder having one or more layers formed on the surface in the pigment-containing treatment liquid prepared as described above. The rare earth magnet powder with the pigment-containing treatment liquid adhering to the outermost surface is collected by filtration and then dried. The time for which the rare earth magnet powder having one or more layers formed on the surface is immersed in the pigment-containing treatment liquid and mixed and stirred is generally 1 minute to 20 minutes, although it depends on the amount of the magnet powder. When the rare earth-based magnet powder having the pigment-containing treatment liquid attached to the outermost surface is filtered, the pigment can be more firmly adsorbed to the surface of the coating by performing vacuum filtration or pressure filtration. In order to impart oxidation resistance to the rare earth magnet powder without deteriorating the magnetic properties, the drying is performed in a natural dry or inert gas (nitrogen gas, argon gas, etc.) atmosphere or in a vacuum of 80 ° C. to 120 ° C. Heat drying is desirable. The drying time when heat drying is employed depends on the amount of magnet powder and the like, but is generally 20 minutes to 2 hours. In the case where the rare earth magnet powder with the pigment-containing treatment liquid collected by filtration attached to the outermost surface is agglomerated, it is desirable to crush in advance and then dry. The rare earth magnet powder having the pigment-containing treatment liquid adhered to the outermost surface may be obtained by spraying the pigment-containing treatment liquid onto the rare earth magnet powder having one or more layers formed on the surface.

以上のようにして希土類系磁石粉末の最表面に形成された顔料を主たる構成成分とする被着層は、ナノメートルオーダーの顔料微粒子が分子間力で被膜の表面に吸着して形成されたものであり、その下層に形成された被膜の耐酸化性作用が十分でない場合であっても、その耐酸化性作用を効果的に補填や増強する。従って、本発明の耐酸化性希土類系磁石粉末を用いれば、耐酸化性に優れるとともに高い磁気特性を示す希土類系ボンド磁石を製造することができる。
さらに、本発明の耐酸化性希土類系磁石粉末を用いて製造された希土類系ボンド磁石が耐酸化性に優れるのは、磁石粉末が耐酸化性に優れることによるだけでなく、通常、ボンド磁石の成形時においては、磁石粉末の流れ性不足に起因して成形圧力により磁石粉末が割れて酸化しやすい粒子破面が生じたりすることがあるが、本発明の耐酸化性希土類系磁石粉末を用いた場合には、磁石粉末の最表面に形成された被着層を構成する顔料粒子が、ボンド磁石の成形時における磁石粉末の流れ性を改善する潤滑作用を発揮することで、成形圧力により磁石粉末が割れて酸化しやすい粒子破面が生じたりすることが抑制されていることにもよると推測される。
As described above, the deposited layer mainly composed of the pigment formed on the outermost surface of the rare earth magnet powder is formed by adsorbing nanometer-order pigment fine particles on the surface of the coating film by intermolecular force. Even if the oxidation resistance action of the film formed in the lower layer is not sufficient, the oxidation resistance action is effectively compensated or enhanced. Therefore, if the oxidation-resistant rare earth magnet powder of the present invention is used, a rare earth bond magnet having excellent oxidation resistance and high magnetic properties can be produced.
Furthermore, the reason why the rare earth-based bonded magnet manufactured using the oxidation-resistant rare earth magnet powder of the present invention is excellent in oxidation resistance is not only due to the fact that the magnet powder is excellent in oxidation resistance. At the time of molding, the magnet powder may be cracked by the molding pressure due to insufficient flowability of the magnet powder, resulting in a particle fracture surface that is likely to be oxidized. The oxidation-resistant rare earth magnet powder of the present invention is used. In this case, the pigment particles constituting the adherent layer formed on the outermost surface of the magnet powder exert a lubricating action to improve the flowability of the magnet powder during the molding of the bonded magnet, so that the magnet is formed by the molding pressure. It is presumed that it is also due to the suppression of the occurrence of a particle fracture surface that easily breaks and oxidizes the powder.

本発明の耐酸化性希土類系磁石粉末は、自体公知の方法によって樹脂バインダとともに希土類系ボンド磁石用コンパウンドとされる。樹脂バインダとしては、エポキシ樹脂、フェノール樹脂、メラミン樹脂などの熱硬化性樹脂、ポリアミド(ナイロン66やナイロン6やナイロン12など)、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリエステル、ポリフェニレンサルファイドなどの熱可塑性樹脂、ゴムやエストラマ、これらの変性体や共重合体や混合物(例えば、熱硬化性樹脂(エポキシ樹脂など)に熱可塑性樹脂の粉末を分散させたもの:F.Yamashita, Applications of Rare-Earth Magnets to the Small motor industry, pp.100-111, Proceedings of the seventeenth international workshop, Rare Earth Magnets and Their Applications, August 18-22, 2002, Newark, Delaware, USA, Edited by G.C. Hadjipanayis and M.J.Bonder, Rinton Pressを参照)などを用いることができる。コンパウンドにおける耐酸化性希土類系磁石粉末に対する樹脂バインダの配合割合は、3重量%を上限とすることが望ましい。コンパウンドを得る際には、カップリング剤や潤滑剤や硬化剤などの添加剤を通常用いられる添加量にて添加してもよい。   The oxidation-resistant rare earth magnet powder of the present invention is made into a compound for a rare earth bond magnet together with a resin binder by a method known per se. Resin binders include thermosetting resins such as epoxy resins, phenolic resins, melamine resins, thermoplastic resins such as polyamide (nylon 66, nylon 6, nylon 12, etc.), polyethylene, polypropylene, polyvinyl chloride, polyester, polyphenylene sulfide, etc. , Rubber and elastomers, modified products, copolymers and mixtures of these materials (for example, thermoplastic resin powder dispersed in thermosetting resin (epoxy resin, etc.): F. Yamashita, Applications of Rare-Earth Magnets to See the Small motor industry, pp. 100-111, Proceedings of the seventeenth international workshop, Rare Earth Magnets and Their Applications, August 18-22, 2002, Newark, Delaware, USA, Edited by GC Hadjipanayis and MJBonder, Rinton Press ) Etc. can be used. The blending ratio of the resin binder to the oxidation-resistant rare earth magnet powder in the compound is desirably 3% by weight. When obtaining a compound, additives such as a coupling agent, a lubricant, and a curing agent may be added in an amount usually used.

本発明の耐酸化性希土類系磁石粉末を用いた希土類系ボンド磁石は、以上のようにして調製された希土類系ボンド磁石用コンパウンドを圧縮成形や射出成形や押出成形などにより所定形状に成形して製品化される。例えば、圧縮成形を行う場合、圧縮成形方法は、一般的に行われる圧縮成形方法の他、圧縮成形と圧延成形を組み合わせた成形方法(例えば、前出のF.Yamashita, Applications of Rare-Earth Magnets to the Small motor industry, pp.100-111, Proceedings of the seventeenth international workshop, Rare Earth Magnets and Their Applications, August 18-22, 2002, Newark, Delaware, USA, Edited by G.C. Hadjipanayis and M.J.Bonder, Rinton Pressを参照)などを含む。   The rare earth bond magnet using the oxidation-resistant rare earth magnet powder of the present invention is formed by molding the rare earth bond magnet compound prepared as described above into a predetermined shape by compression molding, injection molding, extrusion molding, or the like. It is commercialized. For example, when performing compression molding, the compression molding method is not limited to the compression molding method that is generally performed, but also a molding method that combines compression molding and rolling molding (for example, the above-mentioned F. Yamashita, Applications of Rare-Earth Magnets to the Small motor industry, pp.100-111, Proceedings of the seventeenth international workshop, Rare Earth Magnets and Their Applications, August 18-22, 2002, Newark, Delaware, USA, Edited by GC Hadjipanayis and MJBonder, Rinton Press Reference) etc.

希土類系ボンド磁石用コンパウンドを圧縮成形することにより、磁石粉末の最表面に形成された被着層を構成する顔料が磁石粉末の粒子と粒子の間に押しやられて充填されることで、ボンド磁石の表面や内部における空孔部の発生を軽減することができる。コンパウンドの圧縮成形は、0.1GPa〜1GPaの圧力で加圧して行うことが望ましく、0.3GPa〜0.6GPaの圧力で加圧して行うことがより望ましい。圧力が0.1GPa未満であると、圧力が小さすぎてボンド磁石の高密度化を十分に図ることができないことに起因して空孔部の発生を効果的に軽減することができない恐れがある一方、圧力が1GPaを越えると、圧力が大きすぎて磁石粉末の破砕が起って新生破面が生成したりする恐れがあるからである。成形温度は、樹脂バインダの種類にも依存するが、通常、室温(20℃)〜120℃である。磁石粉末の粒子相互間や磁石粉末の粒子と樹脂バインダとの間の摩擦を低減させて高密度なボンド磁石とするため、また、磁石粉末の最表面に形成された被着層を構成する顔料の流動性を高めて顔料が磁石粉末の粒子と粒子の間に円滑に押しやられて充填されやすくするためには、成形温度は80℃〜100℃とすることが望ましい。   By compression molding a compound for rare earth bond magnets, the pigment constituting the adherend layer formed on the outermost surface of the magnet powder is filled and pushed between the particles of the magnet powder. It is possible to reduce the generation of holes on the surface and inside of the substrate. The compression molding of the compound is desirably performed by pressurizing at a pressure of 0.1 GPa to 1 GPa, and more desirably performed by pressurizing at a pressure of 0.3 GPa to 0.6 GPa. If the pressure is less than 0.1 GPa, the pressure may be too small to sufficiently increase the density of the bonded magnet, which may not effectively reduce the generation of holes. On the other hand, if the pressure exceeds 1 GPa, the pressure is too high and the magnet powder may be crushed and a new fracture surface may be generated. The molding temperature is usually room temperature (20 ° C.) to 120 ° C., although it depends on the type of resin binder. In order to reduce the friction between the magnet powder particles and between the magnet powder particles and the resin binder to form a high-density bonded magnet, and also the pigment constituting the adherend layer formed on the outermost surface of the magnet powder In order to improve the fluidity of the powder and to make it easy for the pigment to be smoothly pushed and filled between the particles of the magnet powder, the molding temperature is desirably 80 ° C. to 100 ° C.

樹脂バインダとして熱硬化性樹脂を用いた場合、最後に、得られた成形体を加熱硬化することで希土類系ボンド磁石とする。成形体の加熱硬化は常法に従って行えばよく、例えば、不活性ガス(窒素ガスやアルゴンガスなど)雰囲気中や真空中140℃〜200℃にて1時間〜5時間の条件で行えばよい。   When a thermosetting resin is used as the resin binder, the obtained molded body is finally heat-cured to obtain a rare earth bond magnet. What is necessary is just to perform the heat-hardening of a molded object in accordance with a conventional method, for example, in inert gas (nitrogen gas, argon gas, etc.) atmosphere or in a vacuum at 140-200 degreeC for 1 hour-5 hours.

本発明によれば、平均粒径(長径)が小さい希土類系磁石粉末、例えば、平均粒径が80μm〜100μm程度の、希土類系磁石合金を水素中で加熱して水素を吸蔵させた後、脱水素処理し、次いで冷却することによって得られる磁気的異方性のHDDR(Hydrogenation-Disproportionation-Desorption-Recombination)磁石粉末(特公平6−82575号公報参照)などに対しても、磁気特性の劣化を引き起すことなく優れた耐酸化性を付与することができる。なお、希土類系磁石粉末は、予め、自体公知の方法によって酸洗や脱脂や洗浄などの前処理が施されたものであってもよい。   According to the present invention, a rare earth magnet powder having a small average particle diameter (major diameter), for example, a rare earth magnet alloy having an average particle diameter of about 80 μm to 100 μm is heated in hydrogen to occlude hydrogen, and then dehydrated. Magnetic properties are deteriorated even for magnetically anisotropic HDDR (Hydrogenation-Disproportionation-Desorption-Recombination) magnet powder (see Japanese Examined Patent Publication No. 6-82575) obtained by subjecting it to raw treatment and then cooling. Excellent oxidation resistance can be imparted without causing it. The rare earth magnet powder may have been subjected to pretreatment such as pickling, degreasing and washing in advance by a method known per se.

以下、本発明を実施例によってさらに詳細に説明するが、本発明はこれに限定して解釈されるものではない。なお、以下の実施例は、高周波溶解によって組成:Nd12.8原子%,Dy1.0原子%,B6.3原子%,Co14.8原子%,Ga0.5原子%,Zr0.09原子%,残部Feの鋳隗を作製し、アルゴンガス雰囲気中で1100℃×24時間焼鈍したものを酸素濃度0.5%以下のアルゴンガス雰囲気中で粉砕して平均粒径100μmの粉砕粉としてからこれを0.15MPaの水素ガス加圧雰囲気中で870℃×3時間の水素化熱処理を行い、その後、減圧(1kPa)アルゴンガス流気中で850℃×1時間の脱水素処理を行ってから冷却して製造したHDDR磁石粉末(平均結晶粒径0.4μm)を用いて行った。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is limited to this and is not interpreted. In the following examples, the composition was obtained by high-frequency melting: Nd 12.8 atomic%, Dy 1.0 atomic%, B 6.3 atomic%, Co 14.8 atomic%, Ga 0.5 atomic%, Zr 0.09 atomic%, the balance An iron cast iron was prepared and annealed at 1100 ° C. for 24 hours in an argon gas atmosphere and pulverized in an argon gas atmosphere with an oxygen concentration of 0.5% or less to obtain a pulverized powder having an average particle size of 100 μm. The hydrogenation heat treatment is performed at 870 ° C. for 3 hours in a hydrogen gas pressurized atmosphere of 15 MPa, and then the dehydrogenation treatment is performed at 850 ° C. for 1 hour in a reduced pressure (1 kPa) argon gas stream, followed by cooling. This was carried out using the produced HDDR magnet powder (average crystal grain size 0.4 μm).

実施例A:
実験1:耐酸化性HDDR磁石粉末の製造
燐酸濃度が0.09mol/Lのエチルアルコール溶液300mLにHDDR磁石粉末100gを室温で3分間浸漬して混合攪拌した後、処理済磁石粉末を水流アスピレータを用いて30秒間減圧濾過を行って濾取し、その後、真空中120℃で30分間加熱乾燥することでHDDR磁石粉末の表面に無機燐酸化合物被膜を形成した。
顔料として有機顔料である銅フタロシアニン(平均粒径0.06μm)を17重量%と有機分散媒として水溶性エポキシのカルボン酸塩を15重量%含み、アンモニアでpHを7.2に調整して水性処理液(粘度17cP)を調製した。
表面に無機燐酸化合物被膜を形成したHDDR磁石粉末50gを50mlの処理液に室温で3分間浸漬して混合攪拌した後、処理済磁石粉末を水流アスピレータを用いて30秒間減圧濾過を行って濾取し、その後、真空中100℃で1時間加熱乾燥した。得られた凝集塊を乳鉢で解砕することで、無機燐酸化合物被膜を介して銅フタロシアニンを主たる構成成分とする被着層を最表面に有してなる藍色の耐酸化性HDDR磁石粉末を製造した。
このようにして製造された耐酸化性HDDR磁石粉末1gに対し、大気中150℃で100時間加熱する加熱試験を行い、試験前に対する試験後における酸化による重量増加率を測定した。結果を表1に示す。
Example A:
Experiment 1: Production of oxidation-resistant HDDR magnet powder 100 g of HDDR magnet powder was immersed in 300 mL of ethyl alcohol solution with a phosphoric acid concentration of 0.09 mol / L for 3 minutes at room temperature, mixed and stirred, and then the treated magnet powder was washed with a water aspirator. Then, the solution was filtered under reduced pressure for 30 seconds, and then filtered and dried by heating at 120 ° C. for 30 minutes in a vacuum to form an inorganic phosphate compound coating on the surface of the HDDR magnet powder.
It contains 17% by weight of copper phthalocyanine (average particle size 0.06 μm) as an organic pigment as a pigment and 15% by weight of a water-soluble epoxy carboxylate as an organic dispersion medium, and is adjusted to pH 7.2 with ammonia. A treatment liquid (viscosity 17 cP) was prepared.
After 50 g of HDDR magnet powder having an inorganic phosphate compound coating formed on the surface was immersed in 50 ml of processing solution for 3 minutes at room temperature and mixed and stirred, the processed magnet powder was filtered under reduced pressure using a water aspirator for 30 seconds. Then, it was dried by heating at 100 ° C. for 1 hour in vacuum. By crushing the obtained agglomerates in a mortar, an indigo-colored oxidation-resistant HDDR magnet powder having an adherent layer containing copper phthalocyanine as a main constituent via an inorganic phosphate compound coating on the outermost surface. Manufactured.
A heating test of heating at 150 ° C. in the atmosphere for 100 hours was performed on 1 g of the oxidation-resistant HDDR magnet powder thus produced, and the weight increase rate due to oxidation after the test before the test was measured. The results are shown in Table 1.

実験2:ボンド磁石の製造とその特性
エポキシ樹脂とフェノール系硬化剤を重量比率で100:3の割合でメチルエチルケトンに溶解して樹脂液を調製した。実験1で製造した耐酸化性HDDR磁石粉末と樹脂液を、耐酸化性HDDR磁石粉末と樹脂液の合計重量に対する樹脂液の重量の比率が3%となるように均一混合した後、メチルエチルケトンを常温で蒸発させて粉末顆粒状の希土類系ボンド磁石用コンパウンドを得た。得られた希土類系ボンド磁石用コンパウンドを、圧縮成形(100℃温間磁場中成形、Hex=0.96MA/m、0.6GPa)し、得られた成形体を150℃のアルゴンガス雰囲気中で1時間加熱してエポキシ樹脂を硬化させて、寸法が縦12.0mm×横7.6mm×高さ7.4mmで密度が5.9g/cm3のボンド磁石を製造した。
こうして製造されたボンド磁石に対し、大気中150℃で100時間加熱する加熱試験を行い、試験前に対する試験後における酸化による重量増加率を測定した。また、ボンド磁石に対して着磁を行った後、大気中100℃で500時間加熱する加熱試験と大気中150℃で100時間加熱する加熱試験を行い、それぞれの加熱試験について、試験前に対する試験後における磁束劣化率(不可逆減磁率)を測定した。さらに、大気中150℃で100時間加熱する加熱試験を行ったボンド磁石については再着磁を行い、加熱試験前に対する再着磁後における磁束劣化率(永久減磁率)を測定した。これらの結果を図1と図2と表2に示す。
Experiment 2: Production of bonded magnet and its characteristics An epoxy resin and a phenolic curing agent were dissolved in methyl ethyl ketone at a weight ratio of 100: 3 to prepare a resin solution. After uniformly mixing the oxidation-resistant HDDR magnet powder and the resin liquid produced in Experiment 1 so that the ratio of the weight of the resin liquid to the total weight of the oxidation-resistant HDDR magnet powder and the resin liquid is 3%, methyl ethyl ketone is added at room temperature. To obtain a powdery granule-based compound for rare earth bonded magnets. The obtained compound for rare earth-based bonded magnet was compression-molded (molded in a warm magnetic field at 100 ° C., Hex = 0.96 MA / m, 0.6 GPa), and the resulting molded product was placed in an argon gas atmosphere at 150 ° C. The epoxy resin was cured by heating for 1 hour to produce a bonded magnet having dimensions of 12.0 mm in length, 7.6 mm in width, 7.4 mm in height, and a density of 5.9 g / cm 3 .
The thus-produced bonded magnet was subjected to a heating test in which it was heated at 150 ° C. in the atmosphere for 100 hours, and the weight increase rate due to oxidation after the test before the test was measured. In addition, after magnetizing the bonded magnet, a heating test in which heating is performed at 100 ° C. in air for 500 hours and a heating test in which heating is performed at 150 ° C. in air for 100 hours are performed. The magnetic flux deterioration rate (irreversible demagnetization factor) was measured later. Furthermore, rebonding was performed on the bonded magnet that was subjected to a heating test at 150 ° C. for 100 hours in the atmosphere, and the magnetic flux deterioration rate (permanent demagnetization factor) after remagnetization before the heating test was measured. These results are shown in FIGS.

実施例B:
実験1:耐酸化性HDDR磁石粉末の製造
顔料として有機顔料であるインダンスレン(平均粒径0.06μm)を17重量%と有機分散媒としてアクリル重合物系高分子分散媒を15重量%含んだエチルアルコール処理液(粘度30cP)を調製した。
この処理液を用いて実施例Aの実験1と同様にして無機燐酸化合物被膜を介してインダンスレンを主たる構成成分とする被着層を最表面に有してなる藍色の耐酸化性HDDR磁石粉末を製造した。こうして製造された耐酸化性HDDR磁石粉末に対し、実施例Aの実験1と同様の加熱試験を行い、試験前に対する試験後における酸化による重量増加率を測定した。結果を表1に示す。
Example B:
Experiment 1: Production of oxidation-resistant HDDR magnet powder 17% by weight of indanthrene (average particle size 0.06 μm) as an organic pigment as a pigment and 15% by weight of an acrylic polymer polymer dispersion medium as an organic dispersion medium An ethyl alcohol treatment solution (viscosity 30 cP) was prepared.
Using this treatment solution, in the same manner as in Experiment 1 of Example A, an indigo oxidation-resistant HDDR having an adherent layer containing indanthrene as a main component via an inorganic phosphate compound coating on the outermost surface Magnet powder was produced. The oxidation resistance HDDR magnet powder thus produced was subjected to the same heating test as in Experiment 1 of Example A, and the weight increase rate due to oxidation after the test before the test was measured. The results are shown in Table 1.

実験2:ボンド磁石の製造とその特性
実験1で製造した耐酸化性HDDR磁石粉末を用いて実施例Aの実験2と同様にしてボンド磁石を製造した。こうして製造されたボンド磁石に対し、実施例Aの実験2と同様の各種試験を行った。これらの結果を図1と図2と表2に示す。
Experiment 2: Manufacture of Bond Magnet and Its Characteristics A bond magnet was manufactured in the same manner as in Experiment 2 of Example A using the oxidation-resistant HDDR magnet powder manufactured in Experiment 1. Various tests similar to Experiment 2 of Example A were performed on the manufactured bonded magnet. These results are shown in FIGS.

実施例C:
実験1:耐酸化性HDDR磁石粉末の製造
燐酸二水素ナトリウム濃度が0.14mol/Lの水溶液300mLにHDDR磁石粉末100gを室温で3分間浸漬して混合攪拌した後、処理済磁石粉末を水流アスピレータを用いて30秒間減圧濾過を行って濾取し、その後、真空中120℃で30分間加熱乾燥することでHDDR磁石粉末の表面に無機燐酸化合物被膜を形成した。
実施例Aの実験1で用いた処理液と同様の処理液を用いて実施例Aの実験1と同様にして無機燐酸化合物被膜を介して銅フタロシアニンを主たる構成成分とする被着層を最表面に有してなる藍色の耐酸化性HDDR磁石粉末を製造した。こうして製造された耐酸化性HDDR磁石粉末に対し、実施例Aの実験1と同様の加熱試験を行い、試験前に対する試験後における酸化による重量増加率を測定した。結果を表1に示す。
Example C:
Experiment 1: Production of oxidation-resistant HDDR magnet powder 100 g of HDDR magnet powder was immersed in 300 mL of an aqueous solution having a sodium dihydrogen phosphate concentration of 0.14 mol / L for 3 minutes at room temperature and mixed and stirred. The solution was collected by filtration under reduced pressure for 30 seconds, and then heated and dried in vacuum at 120 ° C. for 30 minutes to form an inorganic phosphate compound coating on the surface of the HDDR magnet powder.
Using the same treatment liquid as that used in Experiment 1 of Example A, the outermost surface of the deposited layer containing copper phthalocyanine as a main component through an inorganic phosphoric acid compound film in the same manner as in Experiment 1 of Example A An indigo-colored oxidation-resistant HDDR magnet powder was produced. The oxidation resistance HDDR magnet powder thus produced was subjected to the same heating test as in Experiment 1 of Example A, and the weight increase rate due to oxidation after the test before the test was measured. The results are shown in Table 1.

実験2:ボンド磁石の製造とその特性
実験1で製造した耐酸化性HDDR磁石粉末を用いて実施例Aの実験2と同様にしてボンド磁石を製造した。こうして製造されたボンド磁石に対し、実施例Aの実験2と同様の各種試験を行った。これらの結果を図1と図2と表2に示す。
Experiment 2: Manufacture of Bond Magnet and Its Characteristics A bond magnet was manufactured in the same manner as in Experiment 2 of Example A using the oxidation-resistant HDDR magnet powder manufactured in Experiment 1. Various tests similar to Experiment 2 of Example A were performed on the manufactured bonded magnet. These results are shown in FIGS.

実施例D:
実験1:耐酸化性HDDR磁石粉末の製造
実施例Bの実験1で用いた処理液と同様の処理液を用いて実施例Cの実験1と同様にして無機燐酸化合物被膜を介してインダンスレンを主たる構成成分とする被着層を最表面に有してなる藍色の耐酸化性HDDR磁石粉末を製造した。こうして製造された耐酸化性HDDR磁石粉末に対し、実施例Aの実験1と同様の加熱試験を行い、試験前に対する試験後における酸化による重量増加率を測定した。結果を表1に示す。
Example D:
Experiment 1: Production of oxidation-resistant HDDR magnet powder Indanthrene through an inorganic phosphate compound coating in the same manner as in Experiment 1 of Example C using the same treatment liquid as that used in Experiment 1 of Example B An indigo-colored oxidation-resistant HDDR magnet powder having an outermost surface with an adherent layer containing as a main constituent was produced. The oxidation resistance HDDR magnet powder thus produced was subjected to the same heating test as in Experiment 1 of Example A, and the weight increase rate due to oxidation after the test before the test was measured. The results are shown in Table 1.

実験2:ボンド磁石の製造とその特性
実験1で製造した耐酸化性HDDR磁石粉末を用いて実施例Aの実験2と同様にしてボンド磁石を製造した。こうして製造されたボンド磁石に対し、実施例Aの実験2と同様の各種試験を行った。これらの結果を図1と図2と表2に示す。
Experiment 2: Manufacture of Bond Magnet and Its Characteristics A bond magnet was manufactured in the same manner as in Experiment 2 of Example A using the oxidation-resistant HDDR magnet powder manufactured in Experiment 1. Various tests similar to Experiment 2 of Example A were performed on the manufactured bonded magnet. These results are shown in FIGS.

実施例E:
実験1:耐酸化性HDDR磁石粉末の製造
自体公知の真空蒸着法によってHDDR磁石粉末の表面に膜厚0.3μmのAl被膜を形成した。
実施例Aの実験1で用いた処理液と同様の処理液を用いて実施例Aの実験1と同様にしてAl被膜を介して銅フタロシアニンを主たる構成成分とする被着層を最表面に有してなる藍色の耐酸化性HDDR磁石粉末を製造した。こうして製造された耐酸化性HDDR磁石粉末に対し、実施例Aの実験1と同様の加熱試験を行い、試験前に対する試験後における酸化による重量増加率を測定した。結果を表1に示す。
Example E:
Experiment 1: Production of oxidation-resistant HDDR magnet powder An Al coating having a film thickness of 0.3 μm was formed on the surface of HDDR magnet powder by a vacuum deposition method known per se.
Using the same treatment solution as that used in Experiment 1 of Example A, the outermost layer has a coating layer containing copper phthalocyanine as a main constituent through an Al film in the same manner as in Experiment 1 of Example A. An indigo-colored oxidation-resistant HDDR magnet powder was produced. The oxidation resistance HDDR magnet powder thus produced was subjected to the same heating test as in Experiment 1 of Example A, and the weight increase rate due to oxidation after the test before the test was measured. The results are shown in Table 1.

実験2:ボンド磁石の製造とその特性
実験1で製造した耐酸化性HDDR磁石粉末を用いて実施例Aの実験2と同様にしてボンド磁石を製造した。こうして製造されたボンド磁石に対し、実施例Aの実験2と同様の各種試験を行った。これらの結果を図1と図2と表2に示す。
Experiment 2: Manufacture of Bond Magnet and Its Characteristics A bond magnet was manufactured in the same manner as in Experiment 2 of Example A using the oxidation-resistant HDDR magnet powder manufactured in Experiment 1. Various tests similar to Experiment 2 of Example A were performed on the manufactured bonded magnet. These results are shown in FIGS.

比較例1:
何らの表面処理も行っていないHDDR磁石粉末に対し、実施例Aの実験1と同様の加熱試験を行い、試験前に対する試験後における酸化による重量増加率を測定した。結果を表1に示す。また、何らの表面処理も行っていないHDDR磁石粉末を用いて実施例Aの実験2と同様にしてボンド磁石を製造した。こうして製造されたボンド磁石に対し、実施例Aの実験2と同様の各種試験を行った。これらの結果を図1と図2と表2に示す。
Comparative Example 1:
A heating test similar to Experiment 1 of Example A was performed on the HDDR magnet powder that had not been subjected to any surface treatment, and the rate of weight increase due to oxidation after the test before the test was measured. The results are shown in Table 1. Moreover, the bonded magnet was manufactured like the experiment 2 of Example A using the HDDR magnet powder which has not performed any surface treatment. Various tests similar to Experiment 2 of Example A were performed on the manufactured bonded magnet. These results are shown in FIGS.

比較例2:
実施例Aの実験1で製造した表面に無機燐酸化合物被膜を形成したHDDR磁石粉末に対し、実施例Aの実験1と同様の加熱試験を行い、試験前に対する試験後における酸化による重量増加率を測定した。結果を表1に示す。また、このHDDR磁石粉末を用いて実施例Aの実験2と同様にしてボンド磁石を製造した。こうして製造されたボンド磁石に対し、実施例Aの実験2と同様の各種試験を行った。これらの結果を図1と図2と表2に示す。
Comparative Example 2:
The HDDR magnet powder having an inorganic phosphoric acid compound film formed on the surface produced in Experiment 1 of Example A was subjected to the same heating test as in Experiment 1 of Example A, and the weight increase rate due to oxidation after the test before the test was determined. It was measured. The results are shown in Table 1. Further, a bonded magnet was produced using this HDDR magnet powder in the same manner as in Experiment 2 of Example A. Various tests similar to Experiment 2 of Example A were performed on the manufactured bonded magnet. These results are shown in FIGS.

比較例3:
実施例Cの実験1で製造した表面に無機燐酸化合物被膜を形成したHDDR磁石粉末に対し、実施例Aの実験1と同様の加熱試験を行い、試験前に対する試験後における酸化による重量増加率を測定した。結果を表1に示す。また、このHDDR磁石粉末を用いて実施例Aの実験2と同様にしてボンド磁石を製造した。こうして製造されたボンド磁石に対し、実施例Aの実験2と同様の各種試験を行った。これらの結果を図1と図2と表2に示す。
Comparative Example 3:
The HDDR magnet powder having an inorganic phosphate compound coating formed on the surface manufactured in Experiment 1 of Example C was subjected to the same heating test as in Experiment 1 of Example A, and the weight increase rate due to oxidation after the test before the test was determined. It was measured. The results are shown in Table 1. Further, a bonded magnet was produced using this HDDR magnet powder in the same manner as in Experiment 2 of Example A. Various tests similar to Experiment 2 of Example A were performed on the manufactured bonded magnet. These results are shown in FIGS.

比較例4:
実施例Eの実験1で製造した表面にAl被膜を形成したHDDR磁石粉末に対し、実施例Aの実験1と同様の加熱試験を行い、試験前に対する試験後における酸化による重量増加率を測定した。結果を表1に示す。また、このHDDR磁石粉末を用いて実施例Aの実験2と同様にしてボンド磁石を製造した。こうして製造されたボンド磁石に対し、実施例Aの実験2と同様の各種試験を行った。これらの結果を図1と図2と表2に示す。
Comparative Example 4:
The HDDR magnet powder having an Al film formed on the surface produced in Experiment 1 of Example E was subjected to the same heating test as in Experiment 1 of Example A, and the rate of weight increase due to oxidation after the test before the test was measured. . The results are shown in Table 1. Further, a bonded magnet was produced using this HDDR magnet powder in the same manner as in Experiment 2 of Example A. Various tests similar to Experiment 2 of Example A were performed on the manufactured bonded magnet. These results are shown in FIGS.

Figure 2005026663
Figure 2005026663

Figure 2005026663
Figure 2005026663

表1から明らかなように、実施例A〜実施例Eにおいて製造された耐酸化性HDDR磁石粉末、比較例2〜比較例4において製造された表面被覆HDDR磁石粉末は、比較例1の何らの表面処理も行っていないHDDR磁石粉末よりも酸化による重量増加率が遥かに少なく、これらの磁石粉末は耐酸化性に優れることがわかった。   As is clear from Table 1, the oxidation-resistant HDDR magnet powders produced in Examples A to E and the surface-coated HDDR magnet powders produced in Comparative Examples 2 to 4 are the same as those in Comparative Example 1. It was found that the rate of weight increase due to oxidation was much smaller than that of HDDR magnet powders that were not subjected to surface treatment, and these magnet powders were excellent in oxidation resistance.

しかしながら、図1と図2と表2から明らかなように、比較例2〜比較例4におけるボンド磁石は、比較例1におけるボンド磁石と同程度に酸化による重量増加率と磁束劣化率が顕著であった。一方、実施例A〜実施例Eにおけるボンド磁石は、比較例1におけるボンド磁石よりも酸化による重量増加率も磁束劣化率も少なかった。実施例A〜実施例Eにおけるボンド磁石がこのような優れた特性を示すのは、優れた耐酸化性が付与されたHDDR磁石粉末を用いて所定形状に成形されていることに基づくものであるとともに、比較例2〜比較例4におけるボンド磁石と異なり、コンパウンド作製時や所定形状に成形する際の圧縮成形時や成形後においても、磁石粉末の割れなどによる表面損傷が抑制されていることで酸化が効果的に阻止されていることに基づくものである。また、実施例A〜実施例Eにおけるボンド磁石の表面を走査型電子顕微鏡にて観察すれば、その空孔部がボンド磁石の樹脂バインダで固着した顔料粒子で封孔されていることを確認することができる。このような効果もこれらのボンド磁石が耐酸化性に優れることに寄与していると考えられる。   However, as is clear from FIGS. 1, 2, and Table 2, the bonded magnets in Comparative Examples 2 to 4 have a remarkable weight increase rate and magnetic flux deterioration rate due to oxidation to the same extent as the bonded magnets in Comparative Example 1. there were. On the other hand, the bond magnets in Examples A to E had lower weight increase rates due to oxidation and magnetic flux deterioration rates than the bond magnets in Comparative Example 1. The reason why the bonded magnets in Examples A to E exhibit such excellent characteristics is based on being formed into a predetermined shape using HDDR magnet powder with excellent oxidation resistance. In addition, unlike the bonded magnets in Comparative Examples 2 to 4, surface damage due to cracking of the magnet powder and the like is suppressed even at the time of molding and after compression molding when molding into a predetermined shape. This is based on the fact that oxidation is effectively prevented. Moreover, if the surface of the bond magnet in Examples A to E is observed with a scanning electron microscope, it is confirmed that the pores are sealed with pigment particles fixed with a resin binder of the bond magnet. be able to. It is considered that such an effect also contributes to the excellent resistance of these bonded magnets to oxidation.

本発明は、耐酸化性に優れるとともに高い磁気特性を示す希土類系ボンド磁石を製造するために有用な、耐酸化性希土類系磁石粉末およびその製造方法を提供することができる点において産業上の利用可能性を有する。   INDUSTRIAL APPLICABILITY The present invention is industrially applicable in that it can provide an oxidation-resistant rare earth magnet powder and a method for producing the same, which are useful for producing a rare earth bonded magnet having excellent oxidation resistance and high magnetic properties. Have potential.

実施例における、大気中100℃で500時間加熱する加熱試験による磁束劣化率(不可逆減磁率)の測定結果を示すグラフ。The graph which shows the measurement result of the magnetic flux deterioration rate (irreversible demagnetization factor) by the heating test heated at 100 degreeC in air | atmosphere for 500 hours in an Example. 同、大気中150℃で100時間加熱する加熱試験における測定結果を示すグラフ。The graph which shows the measurement result in the heating test which heats at 150 degreeC in air | atmosphere for 100 hours.

Claims (14)

希土類系磁石粉末の表面に形成された1層以上の被膜を介して最表面に顔料を主たる構成成分とする被着層を有してなることを特徴とする耐酸化性希土類系磁石粉末。   An oxidation-resistant rare earth magnet powder comprising an adherent layer containing pigment as a main constituent component on the outermost surface through one or more coatings formed on the surface of the rare earth magnet powder. 顔料が有機顔料であることを特徴とする請求項1記載の耐酸化性希土類系磁石粉末。   2. The oxidation-resistant rare earth magnet powder according to claim 1, wherein the pigment is an organic pigment. 有機顔料がインダンスレン系顔料またはフタロシアニン系顔料であることを特徴とする請求項2記載の耐酸化性希土類系磁石粉末。   3. The oxidation-resistant rare earth magnet powder according to claim 2, wherein the organic pigment is an indanthrene pigment or a phthalocyanine pigment. 顔料の平均粒径(長径)が0.01μm〜0.5μmであることを特徴とする請求項1乃至3のいずれかに記載の耐酸化性希土類系磁石粉末。   The oxidation-resistant rare earth magnet powder according to any one of claims 1 to 3, wherein the pigment has an average particle diameter (major diameter) of 0.01 µm to 0.5 µm. 希土類系磁石粉末の表面に形成された被膜が無機燐酸化合物被膜であることを特徴とする請求項1乃至4のいずれかに記載の耐酸化性希土類系磁石粉末。   The oxidation-resistant rare earth magnet powder according to any one of claims 1 to 4, wherein the coating formed on the surface of the rare earth magnet powder is an inorganic phosphate compound coating. 希土類系磁石粉末の表面に形成された被膜が金属被膜であることを特徴とする請求項1乃至4のいずれかに記載の耐酸化性希土類系磁石粉末。   The oxidation-resistant rare earth magnet powder according to any one of claims 1 to 4, wherein the coating formed on the surface of the rare earth magnet powder is a metal coating. 希土類系磁石粉末の平均粒径(長径)が200μm以下であることを特徴とする請求項1乃至6のいずれかに記載の耐酸化性希土類系磁石粉末。   7. The oxidation-resistant rare earth magnet powder according to claim 1, wherein the rare earth magnet powder has an average particle size (major axis) of 200 μm or less. 希土類系磁石粉末がHDDR磁石粉末であることを特徴とする請求項7記載の耐酸化性希土類系磁石粉末。   8. The oxidation-resistant rare earth magnet powder according to claim 7, wherein the rare earth magnet powder is an HDDR magnet powder. 表面に1層以上の被膜を形成した希土類系磁石粉末と顔料含有処理液を混合した後、顔料含有処理液が最表面に付着した希土類系磁石粉末を乾燥することを特徴とする請求項1記載の耐酸化性希土類系磁石粉末の製造方法。   2. The rare earth magnet powder having the pigment-containing treatment liquid adhered to the outermost surface is dried after the rare earth magnet powder having a surface of one or more layers formed on the surface is mixed with the pigment-containing treatment liquid. Method for producing an oxidation-resistant rare earth magnet powder. 表面に1層以上の被膜を形成した希土類系磁石粉末と顔料含有処理液を混合した後、濾過を行って顔料含有処理液が最表面に付着した希土類系磁石粉末を取得することを特徴とする請求項9記載の製造方法。   A rare earth magnet powder having a surface on which one or more layers are formed and a pigment-containing treatment liquid are mixed and then filtered to obtain a rare earth magnet powder having the pigment-containing treatment liquid attached to the outermost surface. The manufacturing method of Claim 9. 顔料含有処理液中における顔料の含有量が5重量%〜33重量%であることを特徴とする請求項9または10記載の製造方法。   The production method according to claim 9 or 10, wherein the pigment content in the pigment-containing treatment liquid is 5 wt% to 33 wt%. 顔料含有処理液が有機分散媒を含有してなることを特徴とする請求項9乃至11のいずれかに記載の製造方法。   The production method according to claim 9, wherein the pigment-containing treatment liquid contains an organic dispersion medium. 請求項1記載の耐酸化性希土類系磁石粉末と樹脂バインダとからなることを特徴とする希土類系ボンド磁石用コンパウンド。   A compound for a rare earth-based bonded magnet comprising the oxidation-resistant rare earth based magnet powder according to claim 1 and a resin binder. 請求項13記載の希土類系ボンド磁石用コンパウンドを用いて所定形状に成形されてなることを特徴とする希土類系ボンド磁石。   A rare earth-based bonded magnet formed by using the compound for rare earth-based bonded magnet according to claim 13 into a predetermined shape.
JP2004003884A 2003-06-11 2004-01-09 Oxidation-resistant rare earth magnet powder and method for producing the same Expired - Lifetime JP4433801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004003884A JP4433801B2 (en) 2003-06-11 2004-01-09 Oxidation-resistant rare earth magnet powder and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003166056 2003-06-11
JP2004003884A JP4433801B2 (en) 2003-06-11 2004-01-09 Oxidation-resistant rare earth magnet powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005026663A true JP2005026663A (en) 2005-01-27
JP4433801B2 JP4433801B2 (en) 2010-03-17

Family

ID=34196959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004003884A Expired - Lifetime JP4433801B2 (en) 2003-06-11 2004-01-09 Oxidation-resistant rare earth magnet powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP4433801B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010037838A1 (en) 2009-09-29 2011-03-31 Minebea Co., Ltd. Anisotropic resin bonded magnet based on rare earth iron

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60242604A (en) * 1984-05-16 1985-12-02 Shin Etsu Chem Co Ltd Plastic magnet composition
JPS61104601A (en) * 1984-10-29 1986-05-22 Dainippon Ink & Chem Inc Coated magnetic powder and manufacture thereof
JPS6332903A (en) * 1986-07-25 1988-02-12 Kanegafuchi Chem Ind Co Ltd Flame-retardant bonded magnet
JPS63262802A (en) * 1987-04-21 1988-10-31 Nippon Steel Chem Co Ltd Fe-nd-b plastic magnet
JPH01270205A (en) * 1988-04-21 1989-10-27 Nippon Steel Corp High corrosion resistance rare earth permanent magnet, material powder and manufacture thereof
JPH03225804A (en) * 1990-01-30 1991-10-04 Yuken Kogyo Kk Resin-bonded magnet
JPH0442517A (en) * 1990-06-08 1992-02-13 Shin Etsu Chem Co Ltd Manufacture of anticorrosive permanent magnet comprizing rare earth element
JPH05179587A (en) * 1991-12-27 1993-07-20 Nippon Steel Corp Color coating composition for galvanized steel wire and colored galvanized steel wire for cable coated with the composition
JPH05304013A (en) * 1992-04-24 1993-11-16 Kanebo Ltd Plastic magnet composition
JPH0892427A (en) * 1994-09-27 1996-04-09 Nippon Paper Ind Co Ltd Water-based resin composition
JPH0938569A (en) * 1995-07-28 1997-02-10 Nippon Steel Corp Zinc-resin type surface treated steel sheet with excellent scratch resistance and corrosion resistance
JPH09153404A (en) * 1995-11-29 1997-06-10 Pentel Kk Coloring magnetic powder for bonded magnet, and magnetic material
JP2000232026A (en) * 1998-08-31 2000-08-22 Sumitomo Special Metals Co Ltd MANUFACTURE OF Fe-B-R PERMANENT MAGNET HAVING CORROSION-RESISTING COATING
WO2001020620A1 (en) * 1999-09-09 2001-03-22 Sumitomo Special Metals Co., Ltd. CORROSION-RESISTANT R-Fe-B BONDED MAGNET AND POWDER FOR FORMING R-Fe-B BONDED MAGNET AND METHOD FOR PREPARATION THEREOF
JP2002359107A (en) * 2001-03-28 2002-12-13 Sumitomo Metal Mining Co Ltd High weatherability magnet powder composition and its manufacturing method, and product manufactured thereby
JP2002356614A (en) * 2001-05-31 2002-12-13 Nichia Chem Ind Ltd Resin magnet
JP4127077B2 (en) * 2003-01-10 2008-07-30 日立金属株式会社 Rare earth bonded magnet manufacturing method

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60242604A (en) * 1984-05-16 1985-12-02 Shin Etsu Chem Co Ltd Plastic magnet composition
JPS61104601A (en) * 1984-10-29 1986-05-22 Dainippon Ink & Chem Inc Coated magnetic powder and manufacture thereof
JPS6332903A (en) * 1986-07-25 1988-02-12 Kanegafuchi Chem Ind Co Ltd Flame-retardant bonded magnet
JPS63262802A (en) * 1987-04-21 1988-10-31 Nippon Steel Chem Co Ltd Fe-nd-b plastic magnet
JPH01270205A (en) * 1988-04-21 1989-10-27 Nippon Steel Corp High corrosion resistance rare earth permanent magnet, material powder and manufacture thereof
JPH03225804A (en) * 1990-01-30 1991-10-04 Yuken Kogyo Kk Resin-bonded magnet
JPH0442517A (en) * 1990-06-08 1992-02-13 Shin Etsu Chem Co Ltd Manufacture of anticorrosive permanent magnet comprizing rare earth element
JPH05179587A (en) * 1991-12-27 1993-07-20 Nippon Steel Corp Color coating composition for galvanized steel wire and colored galvanized steel wire for cable coated with the composition
JPH05304013A (en) * 1992-04-24 1993-11-16 Kanebo Ltd Plastic magnet composition
JPH0892427A (en) * 1994-09-27 1996-04-09 Nippon Paper Ind Co Ltd Water-based resin composition
JPH0938569A (en) * 1995-07-28 1997-02-10 Nippon Steel Corp Zinc-resin type surface treated steel sheet with excellent scratch resistance and corrosion resistance
JPH09153404A (en) * 1995-11-29 1997-06-10 Pentel Kk Coloring magnetic powder for bonded magnet, and magnetic material
JP2000232026A (en) * 1998-08-31 2000-08-22 Sumitomo Special Metals Co Ltd MANUFACTURE OF Fe-B-R PERMANENT MAGNET HAVING CORROSION-RESISTING COATING
WO2001020620A1 (en) * 1999-09-09 2001-03-22 Sumitomo Special Metals Co., Ltd. CORROSION-RESISTANT R-Fe-B BONDED MAGNET AND POWDER FOR FORMING R-Fe-B BONDED MAGNET AND METHOD FOR PREPARATION THEREOF
JP2002359107A (en) * 2001-03-28 2002-12-13 Sumitomo Metal Mining Co Ltd High weatherability magnet powder composition and its manufacturing method, and product manufactured thereby
JP2002356614A (en) * 2001-05-31 2002-12-13 Nichia Chem Ind Ltd Resin magnet
JP4127077B2 (en) * 2003-01-10 2008-07-30 日立金属株式会社 Rare earth bonded magnet manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010037838A1 (en) 2009-09-29 2011-03-31 Minebea Co., Ltd. Anisotropic resin bonded magnet based on rare earth iron
US8329056B2 (en) 2009-09-29 2012-12-11 Minebea Co., Ltd. Anisotropic rare earth-iron based resin bonded magnet

Also Published As

Publication number Publication date
JP4433801B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
US20150187494A1 (en) Process for preparing rare earth magnets
EP1695359B1 (en) Coating formulation and application of organic passivation layer onto iron-based rare earth powders
EP1583111B1 (en) Oxidation-resistant rare earth containing magnet powder and method for production thereof, compound for rare earth containing bonded magnet, rare earth containing bonded magnet and method for production thereof
JP4127077B2 (en) Rare earth bonded magnet manufacturing method
JP4433801B2 (en) Oxidation-resistant rare earth magnet powder and method for producing the same
JPS6338216A (en) Manufacture of corrosion-resistant rare-earth magnetic powder and magnetic unit made of the powder
JP2006286903A (en) Method of manufacturing rare-earth bond magnet
JP4433800B2 (en) Oxidation-resistant rare earth magnet powder and method for producing the same
JP2016194140A (en) Rare earth magnetic powder and production method therefor, and resin composition for bond magnet, bond magnet
JP3028337B2 (en) Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same
CN100416720C (en) Oxidation-resistant rare earth based magnet powder and method for production thereof, compound for rare earth based bonded magnet, rare earth based bonded magnet and method for production thereof
JP2012199462A (en) Rare earth bond magnet, rare earth magnet powder and manufacturing method therefor, and compound for rare earth bond magnet
WO1999023676A1 (en) METHOD OF MANUFACTURING R-Fe-B BOND MAGNETS OF HIGH CORROSION RESISTANCE
JP3236813B2 (en) High corrosion resistance R-Fe-B bonded magnet and method for producing the same
JPH1167514A (en) Manufacture of bonded permanent magnet and its raw material powder
JPH1012472A (en) Manufacture of rare-earth bond magnet
JP2006100560A (en) Rare earth based bond magnet and its manufacturing method
JPH0480901A (en) Bonded magnet and manufacture thereof
JP2002329629A (en) Method of manufacturing magnet
JP3236815B2 (en) High corrosion resistance R-Fe-B bonded magnet and method for producing the same
JP2014120492A (en) High heat resistant bond magnet, process of manufacturing the same, and motor
JPH08170105A (en) Molding of resin bonded magnet
JP4806983B2 (en) Rare earth bonded magnet manufacturing method
JP3941134B2 (en) Raw material powder for manufacturing bond type permanent magnet and manufacturing method
WO2015122271A1 (en) Rare-earth-based magnetic powder and method for producing same, resin composition for bonded magnets, and bonded magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091221

R150 Certificate of patent or registration of utility model

Ref document number: 4433801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4