JP2005026539A - Method for improving stability of characteristic of laminated gel electrolyte electric double layer capacitor unit - Google Patents

Method for improving stability of characteristic of laminated gel electrolyte electric double layer capacitor unit Download PDF

Info

Publication number
JP2005026539A
JP2005026539A JP2003191738A JP2003191738A JP2005026539A JP 2005026539 A JP2005026539 A JP 2005026539A JP 2003191738 A JP2003191738 A JP 2003191738A JP 2003191738 A JP2003191738 A JP 2003191738A JP 2005026539 A JP2005026539 A JP 2005026539A
Authority
JP
Japan
Prior art keywords
gel electrolyte
double layer
electric double
layer capacitor
capacitor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003191738A
Other languages
Japanese (ja)
Inventor
Ron Horikoshi
論 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2003191738A priority Critical patent/JP2005026539A/en
Publication of JP2005026539A publication Critical patent/JP2005026539A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stabilize electric double layer capacitor characteristics. <P>SOLUTION: In this laminated gel electrolyte electric double layer capacitor in which the several sets of a gel electrolyte film 4 and electrodes 2 and 5 are laminated, a clearance between the electrodes 2 and 5 and the gel electrolyte electric double layer 4 is pressurized with a strong force so that the creep of the gel electrolyte film 4 can be initially promoted. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、積層型ゲル電解質電気二重層キャパシタユニットの特性安定性向上方法に関する。詳しくは、ゲル電解質膜を用いた積層型電気二重層キャパシタユニットにおいて、特性安定性を向上させる方法である。
【0002】
【従来の技術】
現在パソコンやオフコンのバックアップ電源に用いられている電気二重層キャパシタは、更なる大容量化、長寿命化が求められている。
電気二重層キャパシタは、分極性電極に電解質中のアニオン、カチオンを正極、陰極表面に物理吸着させて電気を蓄えることを原理としている。
現在の電気二重層キャパシタは、平板状の活性炭電極、集電極を用意し、四フッ化ホウ素(BF)系ゲル状電解質を挟んだ「 積層型」 である。
【0003】
活性炭電極、集電極の外周部には内部の電解質が漏れ出さないように、シールを行うためのパッキンを挟んでいる。
このパッキンは同時に積層間での絶縁も兼ねている。
電気二重層キャパシタの組立を行う際には、必要な耐電圧分のセルをパッキンと交互に積み重ね(単セル耐電圧2.5V程度)、最後にエンドプレートで締め付けることにより密閉構造を保っている(図3参照)。
【0004】
積層型電気二重層キャパシタユニットは、金属電極端面の集電極にリード線を取り付ければ、ユニット内で直列接続となり、(単セル耐電圧)×(積層数)だけの耐電圧を持つことになる。
この積層型電気二重層キャパシタユニットは、一般的な巻き取り方式を用いた同一容量の電気二重層キャパシタと比較してケーブル等を必要とせず、コンパクトに耐電圧が高く設計できるため設置面積を小さくすることができる。
【0005】
【発明が解決しようとする課題】
現在のゲル電解質を用いた積層型電気二重層キャパシタユニットの構成を図3に示す。
図3に示すように、活性炭繊維布を両面に接着したパイポーラ中間電極15とゲル電解質膜(セパレータ)14とを枠状のゴムパッキン13を介在させて重ね合わせて、その両側に更に、集電極板12、エンドプレート11を配置したものである。
積層型電気二重層キャパシタは、活性炭繊維布を電極材として、ゲル電解質膜14をセパレータとして用いており、これらを必要な耐電圧分重ねている。
【0006】
しかし、ただ単に電極12,15とゲル電解質膜14を重ねただけでは、気泡などが残り、有効な二重層が形成されず、内部抵抗、静電容量共に十分な特性が得られない。
よって、加圧板とエンドプレートの変形による反力で、電極12,15とゲル電解質膜が密着するように押しつける力が働くようにしている。
電極12,15とゲル電解質膜14に圧縮力を加え密着性が向上すると、電極面全体で有効な二重層が形成され、特性が向上するが、同時に圧縮力でゲル電解質膜14にクリープが起き、次第に潰れてゆく。
【0007】
ゲル電解質膜14が潰れて薄くなると電極間距離が小さくなり、内部抵抗が低くなってゆく。
更に、ゲル電解質膜14が活性炭繊維布の目に深く食い込み、接触面積が向上することで静電容量も増加する。
また、ゲル電解質膜14のクリープは、加圧力を加え続けても急激には起こらず、徐々に進行して安定する。
しかも、電極12,15とゲル電解質膜14間に残留している微細な気泡も押しつけるだけではすぐには抜けない。
【0008】
よって、ユニットを製造した直後は、特性が安定せず、ばらつきが大きく、数ヶ月間放置すると、性能が向上し特性が安定する現象が起きる。
初期特性の変化が大きいと、ユニットを組み合わせて内部抵抗、静電容量を揃えて出荷する際、特が安定するまで製造後数ヶ月待たなければならず、工程管理上問題である。
また、本来の電気二重層キャパシタ特性が掴めず、電気二重層キャパシタを用いたシステムを設計をする上でも問題がある。
【0009】
【課題を解決するための手段】
上記課題を解決する本発明の請求項1に係る積層型ゲル電解質電気二重層キャパシタユニットの特性安定性向上方法は、ゲル電解質膜と極板を交互に複数積層してなる積層型ゲル電解質電気二重層キャパシタにおいて、前記ゲル電解質膜のクリープを初期に促進させるために、前記電極と前記ゲル電解質膜間とを強い力で加圧して、電気二重層キャパシタ特性を安定させることを特徴とする。
【0010】
上記課題を解決する本発明の請求項2に係る積層型ゲル電解質電気二重層キャパシタユニットの特性安定性向上方法は、ゲル電解質膜と極板を交互に複数積層してなる積層型ゲル電解質電気二重層キャパシタにおいて、前記電極と前記ゲル電解質膜とを押さえつけながら、加熱及び減圧を行い密着性を向上させて、電気二重層キャパシタ特性を向上させることを特徴とする。
【0011】
上記課題を解決する本発明の請求項3に係る積層型ゲル電解質電気二重層キャパシタユニットの特性安定性向上方法は、ゲル電解質膜と極板を交互に複数積層してなる積層型ゲル電解質電気二重層キャパシタにおいて、電気二重層キャパシタユニットを組んだ状態で加熱する事により、ドライアップさせずにゲル電解質膜の分子状態を安定化させ、電極との密着性を向上させることを特徴とする。
【0012】
【発明の実施の形態】
〔実施例1〕
本実施例は、製造直後のゲル電解質膜のクリープを促進させ、電気二重層キャパシタユニットの内部抵抗を向上、安定化させるものである。
キャパシタユニットの組立を行う際、エンドプレートで締め付ける前に、図1に示すように、集電極板2の両端面からプレス機等を用いて、ゲル電解質膜4とバイポーラ中間電極5との間に高い加圧力を予め加える。
【0013】
このときの加圧方法として、電極面に対して初期に約2kgf/cmの力が加わるように潰してホールドする。
高い加圧力が加わることで、ゲル電解質膜4のクリープが促進され、加圧力が減少してゆくが、そのままの状態で約10分保つ。
その後、図示しない加圧板とエンドプレートで締め付けを行い、キャパシタユニットの組み立てを行う。
【0014】
このように説明したように本実施例では、電極2,5とゲル電解質膜4の間に予め高い圧力を加えることで、密着性が増し、内部抵抗、静電容量が向上する利点がある。
即ち、ユニット製造初期のゲル電解質膜4のクリープが大幅に減少し、内部抵抗変化がほとんどなくなる利点がある。
更に、締め付けエンドプレートによる加圧力が必要なくなり、剛性が小さい薄いエンドプレートを用いることができ軽量化できる。
【0015】
〔実施例2〕
本実施例は、活性炭繊維布を両面に付着した中間電極とゲル電解質膜の密着性を向上させ、内部抵抗、静電容量を短時間で向上、安定化させるものである。
即ち、キャパシタユニットの組立が完了した時点で、図2に示すガス抜き弁9のキャップ9aを取り外し、ユニットを恒温槽に入れ加熱する。
ゲル電解質膜4が加熱されると、軟化、膨張が起こり、電極2,5とゲル電解質膜4の間に残留している気泡が抜けやすくなり、電極2,5との密着性が増す。
【0016】
また、一度加熱されることで、ゲル電解質膜4のクリープが促進され、分子状態も安定する。
このときの、加熱条件としては65℃で4時間が適当である。
尚、ゲル電解質膜4の加熱は、ほぼ密閉状態(ユニットを組んだ状態)で行わないと、溶媒成分が揮発(ドライアップ)してしまう。
加熱終了後、締め付けボルト7を再び規定値まで締め付け、ガス抜き弁9のキャップaを取り付ける。
【0017】
このように説明したように、本実施例では、キャパシタユニットを組み立てた状態で加熱することで、ゲル電解質膜4が軟化し、電極2,5とゲル電解質膜4の密着性が向上して、電気二重層キャパシタ特性も向上する利点がある。
また、ゲル電解質膜4に熱が加わることで、ゲルの架橋状態が安定し、初期クリープ、収縮が減少し初期特性が安定する。
【0018】
〔実施例3〕
本実施例は、活性炭繊維布を両面に付着した中間電極とゲル電解質膜間に残留している微細な気泡を抜くことで、密着性を向上させ、内部抵抗、静電容量を短時間で向上、安定化させるものである。
即ち、キャパシタユニットの組立が完了した時点で、図2に示すガス抜き弁9のキャップ9aを取り外し、キャパシタユニットを真空容器に入れ、約0.3気圧まで5分程度の時間をかけて徐々に減圧を行う。
圧力が下がると、電極2,5とゲル電解質膜4の間に残留している微細な気泡が膨張して抜けやすくなる。
【0019】
30分間減圧状態で放置した後、圧力を大気圧まで急速に戻す。
急速に外気圧が上昇することで,電極2,5とゲル電解質膜4の間に加圧力が働き密着性が向上する。
減圧を行う際、これ以上減圧状態を長くすると、電解液の気化が起こり、特性に悪影響を及ぼすことになる。
工程終了後、締め付けボルト7を再び規定値まで締め付け、ガス抜き弁9のキャップ9aを取り付ける。
【0020】
このように説明したように、本実施例では、ユニットを減圧することで、加圧しても出てこない微細な気泡を押し出す事ができ、内部抵抗、静電容量が向上する。
また、減圧状態から一気に大気圧に戻すことで電極〜ゲル電解質膜間の密着性が向上し特性が向上する。
【0021】
〔実施例4〕
本実施例は、上記実施例を複合して、製造直後のゲル電解質膜のクリープを促進させ、同時に活性炭繊維布電極とゲル電解質膜を強固に密着させて、内部抵抗、静電容量を短時間で向上、安定化させるものである。
即ち、エンドプレートで締め付ける前に、セル間〜電極面を2kgf/cmの圧力で加圧し10分間ホールドする。
【0022】
その後、エンドプレートとボルトで締め付け、ガス抜き弁のキャップを外した状態で真空高温槽に入れ65℃で4時間加熱する。
加熱を終了する前に0.3気圧まで5分間かけて減圧し、30分間保持した後に、急速に大気圧に戻す。
加熱終了後、締め付けボルトを再び規疋値まで締め付けガス抜き弁のキャップを取り付ける。
このように説明したように、本実施例では、上記各実施例を総括する効果が得られる。
【0023】
【発明の効果】
以上、実施例に基づいて詳細に説明したように、本発明の請求項1に係る方法によれば、電極とゲル電解質膜の間に高い圧力を加えることで、ユニット製造初期のゲル電解質膜4のクリープが大幅に減少すると共に、密着性が増し、内部抵抗、静電容量が向上する。
また、本発明の請求項2に係る方法によれば、ユニットを組み立てた状態で加熱することで、ゲル電解質膜が軟化し、電極とゲル電解質膜の密着性が向上して、電気二重層キャパシタ特性も向上する。
また、本発明の請求項3に係る方法によれば、ユニットを減圧することで、加圧しても出てこない微細な気泡を押し出す事ができ、内部抵抗、静電容量が向上する。
【図面の簡単な説明】
【図1】本発明の第1の実施例に係る積層型ゲル電解質電気二重層キャパシタの特性安定性向上方法の説明図である。
【図2】本発明の第2及び第3の実施例に係る積層型ゲル電解質電気二重層キャパシタの特性安定性向上方法の説明図である。
【図3】従来の積層型ゲル電解質電気二重層キャパシタの組立図である。
【符号の説明】
1,11 エンドプレート
2,12 集電電極
3,13 ゴムパッキン
4,14 ゲル電解質(セパレータ)
5,15 バイポーラ中間電極
7,17 締付けボルト
9 ガス抜き弁
9a キャップ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for improving characteristic stability of a multilayer gel electrolyte electric double layer capacitor unit. Specifically, it is a method for improving the characteristic stability in a multilayer electric double layer capacitor unit using a gel electrolyte membrane.
[0002]
[Prior art]
Electric double layer capacitors currently used for personal computers and office computer backup power supplies are required to have larger capacities and longer lifetimes.
An electric double layer capacitor is based on the principle that an anion and a cation in an electrolyte are physically adsorbed on a polarizable electrode on the cathode and cathode surfaces to store electricity.
The current electric double layer capacitor is a “stacked type” in which a flat activated carbon electrode and a collecting electrode are prepared and a boron tetrafluoride (BF 4 ) gel electrolyte is sandwiched between them.
[0003]
A packing for sealing is sandwiched between the outer periphery of the activated carbon electrode and the collecting electrode so that the internal electrolyte does not leak out.
This packing also serves as insulation between the layers.
When assembling an electric double layer capacitor, cells with the required withstand voltage are stacked alternately with packing (single cell withstand voltage of about 2.5V), and finally tightened with an end plate to maintain a sealed structure. (See FIG. 3).
[0004]
When a lead wire is attached to the collector electrode on the end face of the metal electrode, the multilayer electric double layer capacitor unit is connected in series in the unit and has a withstand voltage of (single cell withstand voltage) × (number of laminates).
This multilayer electric double layer capacitor unit does not require cables, etc., compared to an electric double layer capacitor of the same capacity using a general winding method, and can be designed to be compact and have a high withstand voltage. can do.
[0005]
[Problems to be solved by the invention]
FIG. 3 shows the configuration of a multilayer electric double layer capacitor unit using a current gel electrolyte.
As shown in FIG. 3, a bipolar intermediate electrode 15 having an activated carbon fiber cloth bonded to both surfaces and a gel electrolyte membrane (separator) 14 are overlapped with a frame-shaped rubber packing 13 interposed therebetween, and a collector electrode is further provided on both sides thereof. A plate 12 and an end plate 11 are arranged.
The multilayer electric double layer capacitor uses activated carbon fiber cloth as an electrode material and gel electrolyte membrane 14 as a separator, and these are stacked for a necessary withstand voltage.
[0006]
However, if the electrodes 12 and 15 and the gel electrolyte membrane 14 are simply overlapped, bubbles and the like remain, an effective double layer is not formed, and sufficient characteristics such as internal resistance and capacitance cannot be obtained.
Therefore, a reaction force caused by the deformation of the pressure plate and the end plate causes a force to press the electrodes 12 and 15 and the gel electrolyte membrane so as to be in close contact with each other.
When the compressive force is applied to the electrodes 12 and 15 and the gel electrolyte membrane 14 to improve the adhesion, an effective double layer is formed on the entire electrode surface and the characteristics are improved, but at the same time, the gel electrolyte membrane 14 is creeped by the compressive force. , Gradually crushing.
[0007]
When the gel electrolyte membrane 14 is crushed and thinned, the distance between the electrodes decreases, and the internal resistance decreases.
Further, the gel electrolyte membrane 14 penetrates deeply into the activated carbon fiber cloth and the contact area is improved, so that the capacitance is also increased.
Further, the creep of the gel electrolyte membrane 14 does not occur abruptly even if pressure is continuously applied, and gradually proceeds and stabilizes.
Moreover, the fine bubbles remaining between the electrodes 12 and 15 and the gel electrolyte membrane 14 cannot be removed immediately by simply pressing them.
[0008]
Therefore, immediately after the unit is manufactured, the characteristics are not stable, the variation is large, and if left for several months, the performance is improved and the characteristics are stabilized.
If the change in the initial characteristics is large, when the units are combined and shipped with the same internal resistance and capacitance, it is necessary to wait several months after the manufacture until the characteristics become stable, which is a problem in process control.
In addition, the original electric double layer capacitor characteristics cannot be grasped, and there is a problem in designing a system using the electric double layer capacitor.
[0009]
[Means for Solving the Problems]
A method for improving the characteristic stability of a multilayer gel electrolyte electric double layer capacitor unit according to claim 1 of the present invention that solves the above-described problem is a multilayer gel electrolyte electric double layer in which a plurality of gel electrolyte films and electrode plates are alternately stacked. In the multilayer capacitor, in order to promote the creep of the gel electrolyte membrane at an early stage, the electric double layer capacitor characteristic is stabilized by applying a strong force between the electrode and the gel electrolyte membrane.
[0010]
The method for improving the characteristic stability of a multilayer gel electrolyte electric double layer capacitor unit according to claim 2 of the present invention that solves the above-described problem is a multilayer gel electrolyte electric circuit comprising a plurality of alternately stacked gel electrolyte membranes and electrode plates. The multilayer capacitor is characterized in that the electric double layer capacitor characteristics are improved by improving the adhesion by heating and decompressing while pressing the electrode and the gel electrolyte membrane.
[0011]
A method for improving the characteristic stability of a multilayer gel electrolyte electric double layer capacitor unit according to claim 3 of the present invention that solves the above-mentioned problems is a multilayer gel electrolyte electric double layer in which a plurality of gel electrolyte films and electrode plates are alternately stacked. The multilayer capacitor is characterized in that by heating in a state where the electric double layer capacitor unit is assembled, the molecular state of the gel electrolyte membrane is stabilized without being dried up, and the adhesion with the electrode is improved.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
[Example 1]
In this embodiment, the creep of the gel electrolyte membrane immediately after manufacture is promoted, and the internal resistance of the electric double layer capacitor unit is improved and stabilized.
When assembling the capacitor unit, before tightening with the end plate, as shown in FIG. 1, between the gel electrolyte membrane 4 and the bipolar intermediate electrode 5 by using a press machine or the like from both end faces of the collector electrode plate 2. Apply high pressure in advance.
[0013]
As a pressurizing method at this time, it is crushed and held so that a force of about 2 kgf / cm 2 is initially applied to the electrode surface.
By applying a high applied pressure, the creep of the gel electrolyte membrane 4 is promoted and the applied pressure decreases, but is maintained for about 10 minutes as it is.
Thereafter, the capacitor unit is assembled by tightening with a pressure plate and an end plate (not shown).
[0014]
As described above, in this embodiment, by applying a high pressure between the electrodes 2 and 5 and the gel electrolyte membrane 4 in advance, there is an advantage that adhesion is increased and internal resistance and capacitance are improved.
That is, there is an advantage that the creep of the gel electrolyte membrane 4 at the initial stage of the unit production is greatly reduced and the internal resistance change is almost eliminated.
Further, the pressure applied by the tightening end plate is not necessary, and a thin end plate with low rigidity can be used, and the weight can be reduced.
[0015]
[Example 2]
In this example, the adhesion between the intermediate electrode having the activated carbon fiber cloth adhered to both surfaces and the gel electrolyte membrane is improved, and the internal resistance and capacitance are improved and stabilized in a short time.
That is, when the assembly of the capacitor unit is completed, the cap 9a of the gas vent valve 9 shown in FIG. 2 is removed, and the unit is placed in a thermostat and heated.
When the gel electrolyte membrane 4 is heated, softening and expansion occur, and bubbles remaining between the electrodes 2 and 5 and the gel electrolyte membrane 4 are easily removed, and adhesion with the electrodes 2 and 5 is increased.
[0016]
Further, once heated, the creep of the gel electrolyte membrane 4 is promoted and the molecular state is stabilized.
As heating conditions at this time, 4 hours at 65 ° C. is appropriate.
If the gel electrolyte membrane 4 is not heated in a substantially sealed state (unit assembled state), the solvent component volatilizes (drys up).
After the heating is finished, the tightening bolt 7 is tightened again to the specified value, and the cap a of the gas vent valve 9 is attached.
[0017]
As described above, in this example, heating the capacitor unit in an assembled state softens the gel electrolyte membrane 4 and improves the adhesion between the electrodes 2, 5 and the gel electrolyte membrane 4, The electric double layer capacitor characteristics are also improved.
Further, when heat is applied to the gel electrolyte membrane 4, the cross-linked state of the gel is stabilized, initial creep and shrinkage are reduced, and the initial characteristics are stabilized.
[0018]
Example 3
This example improves adhesion and improves internal resistance and capacitance in a short time by removing fine bubbles remaining between the intermediate electrode with the activated carbon fiber cloth attached on both sides and the gel electrolyte membrane. , To stabilize.
That is, when the assembly of the capacitor unit is completed, the cap 9a of the gas vent valve 9 shown in FIG. 2 is removed, and the capacitor unit is put into a vacuum container, and gradually takes about 5 minutes to about 0.3 atm. Depressurize.
When the pressure decreases, the fine bubbles remaining between the electrodes 2 and 5 and the gel electrolyte membrane 4 are expanded and easily removed.
[0019]
After leaving it under reduced pressure for 30 minutes, the pressure is rapidly returned to atmospheric pressure.
By rapidly increasing the external air pressure, a pressure is applied between the electrodes 2 and 5 and the gel electrolyte membrane 4 to improve adhesion.
When the pressure is reduced, if the pressure reduction state is further prolonged, the electrolyte solution is vaporized, which adversely affects the characteristics.
After completion of the process, the tightening bolt 7 is tightened again to the specified value, and the cap 9a of the gas vent valve 9 is attached.
[0020]
As described above, in this embodiment, by reducing the pressure of the unit, it is possible to push out fine bubbles that do not come out even if the pressure is applied, and the internal resistance and capacitance are improved.
Moreover, the adhesiveness between an electrode and a gel electrolyte membrane improves by returning to atmospheric pressure at a stretch from a pressure-reduced state, and a characteristic improves.
[0021]
Example 4
In this example, the above example is combined to promote the creep of the gel electrolyte membrane immediately after production, and at the same time, the activated carbon fiber cloth electrode and the gel electrolyte membrane are firmly adhered, and the internal resistance and capacitance are reduced for a short time. To improve and stabilize.
That is, before clamping with the end plate, the space between the cells to the electrode surface is pressurized with a pressure of 2 kgf / cm 2 and held for 10 minutes.
[0022]
Then, it is tightened with an end plate and a bolt, put in a vacuum high temperature bath with the cap of the gas vent valve removed, and heated at 65 ° C. for 4 hours.
Before finishing the heating, the pressure is reduced to 0.3 atm for 5 minutes, and after maintaining for 30 minutes, the pressure is rapidly returned to atmospheric pressure.
After heating, tighten the tightening bolt again to the specified value and install the gas vent valve cap.
As described above, in this embodiment, the effects of summarizing the above embodiments can be obtained.
[0023]
【The invention's effect】
As described above in detail based on the embodiments, according to the method according to claim 1 of the present invention, the gel electrolyte membrane 4 in the initial stage of the unit manufacture can be obtained by applying a high pressure between the electrode and the gel electrolyte membrane. Creeping is greatly reduced, adhesion is increased, and internal resistance and capacitance are improved.
Further, according to the method of claim 2 of the present invention, the gel electrolyte membrane is softened by heating in the assembled state, the adhesion between the electrode and the gel electrolyte membrane is improved, and the electric double layer capacitor The characteristics are also improved.
Further, according to the method of the third aspect of the present invention, by reducing the pressure of the unit, it is possible to push out fine bubbles that do not come out even if the pressure is applied, and the internal resistance and the capacitance are improved.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a method for improving the characteristic stability of a multilayer gel electrolyte electric double layer capacitor according to a first embodiment of the present invention.
FIG. 2 is an explanatory diagram of a method for improving the characteristic stability of multilayer gel electrolyte electric double layer capacitors according to second and third embodiments of the present invention.
FIG. 3 is an assembly diagram of a conventional multilayer gel electrolyte electric double layer capacitor.
[Explanation of symbols]
1,11 End plate 2,12 Current collecting electrode 3,13 Rubber packing 4,14 Gel electrolyte (separator)
5, 15 Bipolar intermediate electrodes 7, 17 Clamping bolt 9 Gas vent valve 9a Cap

Claims (3)

ゲル電解質膜と極板を交互に複数積層してなる積層型ゲル電解質電気二重層キャパシタユニットにおいて、前記ゲル電解質膜のクリープを初期に促進させるために、前記電極と前記ゲル電解質膜間とを強い力で加圧して、電気二重層キャパシタ特性を安定させることを特徴とする積層型ゲル電解質電気二重層キャパシタユニットの特性安定性向上方法。In a multilayer gel electrolyte electric double layer capacitor unit in which a plurality of gel electrolyte membranes and electrode plates are alternately laminated, in order to promote the creep of the gel electrolyte membrane at an early stage, the electrode and the gel electrolyte membrane are strongly A method for improving the characteristic stability of a multilayer gel electrolyte electric double layer capacitor unit, characterized in that the electric double layer capacitor characteristic is stabilized by applying pressure with force. ゲル電解質膜と極板を交互に複数積層してなる積層型ゲル電解質電気二重層キャパシタユニットにおいて、前記電極と前記ゲル電解質膜とを押さえつけながら、加熱及び減圧を行い密着性を向上させて、電気二重層キャパシタ特性を向上させることを特徴とする積層型ゲル電解質電気二重層キャパシタユニットの特性安定性向上方法。In a multilayer gel electrolyte electric double layer capacitor unit in which a plurality of gel electrolyte membranes and electrode plates are alternately laminated, heating and decompression are performed while pressing the electrode and the gel electrolyte membrane, thereby improving adhesion. A method for improving the characteristic stability of a multilayer gel electrolyte electric double layer capacitor unit, characterized by improving the characteristics of a double layer capacitor. ゲル電解質膜と極板を交互に複数積層してなる積層型ゲル電解質電気二重層キャパシタユニットにおいて、電気二重層キャパシタユニットを組んだ状態で加熱する事により、ドライアップさせずに前記ゲル電解質膜の分子状態を安定化させ、前記電極との密着性を向上させることを特徴とする積層型ゲル電解質電気二重層キャパシタユニットの特性安定性向上方法。In the multilayer gel electrolyte electric double layer capacitor unit in which a plurality of gel electrolyte membranes and electrode plates are alternately laminated, heating the gel electrolyte membrane in an assembled state with the electric double layer capacitor unit without drying up the gel electrolyte membrane. A method for improving characteristic stability of a multilayer gel electrolyte electric double layer capacitor unit, characterized by stabilizing a molecular state and improving adhesion with the electrode.
JP2003191738A 2003-07-04 2003-07-04 Method for improving stability of characteristic of laminated gel electrolyte electric double layer capacitor unit Withdrawn JP2005026539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003191738A JP2005026539A (en) 2003-07-04 2003-07-04 Method for improving stability of characteristic of laminated gel electrolyte electric double layer capacitor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003191738A JP2005026539A (en) 2003-07-04 2003-07-04 Method for improving stability of characteristic of laminated gel electrolyte electric double layer capacitor unit

Publications (1)

Publication Number Publication Date
JP2005026539A true JP2005026539A (en) 2005-01-27

Family

ID=34189213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003191738A Withdrawn JP2005026539A (en) 2003-07-04 2003-07-04 Method for improving stability of characteristic of laminated gel electrolyte electric double layer capacitor unit

Country Status (1)

Country Link
JP (1) JP2005026539A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7859171B2 (en) * 2006-10-10 2010-12-28 Micallef Joseph A Piezoelectric ultracapacitor
JP2015520506A (en) * 2012-04-18 2015-07-16 ジ アリゾナ ボード オブ リージェンツ ア ボディ コーポレイト アクティング フォー アンド オン ビハーフ オブ ノーザン アリゾナ ユニバーシティThe Arizona Board Of Regents,A Body Corporate Acting For And On Behalf Of Northernarizona University Structural supercapacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7859171B2 (en) * 2006-10-10 2010-12-28 Micallef Joseph A Piezoelectric ultracapacitor
JP2015520506A (en) * 2012-04-18 2015-07-16 ジ アリゾナ ボード オブ リージェンツ ア ボディ コーポレイト アクティング フォー アンド オン ビハーフ オブ ノーザン アリゾナ ユニバーシティThe Arizona Board Of Regents,A Body Corporate Acting For And On Behalf Of Northernarizona University Structural supercapacitor
US10147555B2 (en) 2012-04-18 2018-12-04 The Arizona Board Of Regents, A Body Corporate Act For And On Behalf Of Structural supercapacitors

Similar Documents

Publication Publication Date Title
US6426865B2 (en) Electric double layer capacitor
JP3941917B2 (en) Electric double layer capacitor manufacturing method and electric double layer capacitor
JP2947215B2 (en) Electric double layer capacitor and method of manufacturing the same
JP3497448B2 (en) Electric double layer capacitors and batteries
KR100524103B1 (en) Electric double-layer capacitor and method for preparing the same
WO1993016497A1 (en) Method of producing thin cell
TW569257B (en) Electric double layer capacitor of low ESR value and a method of fabricating same with low percent defective
CN1551261A (en) Electric two-layer capacitor and electric two_layer capacitor stacking body
JP2000223373A (en) Polarizing electrode, manufacture thereof, electric double layer capacitor using the same and manufacture thereof
JP2004319153A (en) Solid polyelectrolyte fuel cell and its manufacturing method
JP2005026539A (en) Method for improving stability of characteristic of laminated gel electrolyte electric double layer capacitor unit
KR100455318B1 (en) Electric double layer capacitor
TW535180B (en) Electric double layer capacitor and method of forming the same
JPH0878028A (en) Solid polymer electrolyte fuel cell and its manufacture
JP2000286165A (en) Electric double-layer capacitor and manufacture thereof
JP3956670B2 (en) Manufacturing method of multilayer electric double layer capacitor
JP2001068384A (en) Electric double layer capacitor, basic cell thereof, and manufacture thereof
JP7456373B2 (en) Fuel cell and its manufacturing method
JPH11251194A (en) Preparation of thin type gel electrolyte and electric double layer capacitor
JP4329197B2 (en) Gel electrolyte type multilayer electric double layer capacitor
JP2002190428A (en) Capacitor element and its manufacturing method, and solid electrolytic capacitor provided with the same
JPH11288852A (en) Electric double-layered type capacitor
JP2561973B2 (en) Bonding method of metal current collector and conductive film in electric double layer capacitor
JPH05135785A (en) Manufacture of polymer electrolyte fuel cell
WO2022064541A1 (en) Secondary battery and method for manufacturing same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905