JP2005026119A - Self-organization proton conductor film - Google Patents

Self-organization proton conductor film Download PDF

Info

Publication number
JP2005026119A
JP2005026119A JP2003191390A JP2003191390A JP2005026119A JP 2005026119 A JP2005026119 A JP 2005026119A JP 2003191390 A JP2003191390 A JP 2003191390A JP 2003191390 A JP2003191390 A JP 2003191390A JP 2005026119 A JP2005026119 A JP 2005026119A
Authority
JP
Japan
Prior art keywords
proton
solution
fullerene
film
proton conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003191390A
Other languages
Japanese (ja)
Inventor
Hironori Ishikawa
広典 石川
Masayoshi Mikami
昌義 三上
Shinya Katayama
慎也 片山
Itaru Kamiya
格 神谷
Shinichiro Nakamura
振一郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003191390A priority Critical patent/JP2005026119A/en
Publication of JP2005026119A publication Critical patent/JP2005026119A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a proton conductor film high in proton conductivity, having little restriction to an atmosphere; and to provide a device using it. <P>SOLUTION: This proton conductor film high in proton conductivity, and having little restriction to an atmosphere, and manufacturable in a short time can be provided by controlling a moving route of protons at a molecule level by an alternately stacking method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電気化学デバイスに関する。特に、電気化学デバイスのための製造方法及びこれを形成するプロトン伝導体膜に関するものである。
【0002】
【従来の技術】
燃料電池は、化学エネルギーを直接電気エネルギーに変換するため、効率が良く環境負荷の少ない次世代の発電用燃焼エンジンや自動車の動力源として注目されている。特に、電気化学デバイスを形成する上でのプロセスの容易さやデバイスの小型軽量化などから、心臓部にプロトン伝導体として、高分子電解質膜や固体酸電解質などの固体電解質を用いた燃料電池が非常に期待されている。また、プロトン伝導性を有する固体電解質は、低温作動で高エネルギー密度を保持した高分子固体電解質型燃料電池や、エレクトロクロミック表示デバイス、センサーなどの機器部品においてもキーマテリアルとして開発が進められている。
【0003】
高分子電解質膜は、ナフィオン(デュポン社製、商品名)に代表されるパーフルオロアルキルスルホン酸樹脂膜、すなわちフッ素系電解質膜がよく知られている。パーフルオロスルホン酸樹脂は、C−F結合を有しているために化学的安定性が非常に優れており、高分子マトリックス中のスルホン酸基から電離したプロトンが水分と水素結合してオキソニウムイオンを生成することにより、プロトンがオキソニウムイオンの状態で高分子マトリックス内をスムーズに移動できるため、常温でもプロトン伝導率が高い。
【0004】
固体酸電解質膜として用いられる固体酸は、CsHSOやRbH(SeOに代表される、固体で酸性の無機化合物である。固体酸は、水分を移動媒体としなくても、プロトン伝導性を有するという報告があり、例えば、CsHSOは、一定温度に達すると、オキシアニオン(SO 2−)が回転し、酸素イオン上にあるプロトンを隣接した酸素イオンへと移動させるという特異な相転移挙動を起こすことによりプロトン伝導性が高くなるといわれている(非特許文献1参照。)。そこで、CsHSOを燃料電池に適用する場合、無水プロトン輸送で且つ高温(250℃まで)安定性を有することが期待できる。
【0005】
しかしながら、高分子電解質膜や固体酸電解質膜を使用したプロトン伝導体膜は、温度や湿度などの雰囲気の影響が大きく、成型が難しい。例えば、高分子電解質膜の場合、パーフルオロスルホン酸樹脂などの樹脂のプロトン伝導性維持には、使用中、継続的に充分な湿潤状態におく必要があり、作動温度を水の沸点(100℃)以上にできない。また、メタノールや水素の透過性があるため、燃料効率の低下が生じてしまう。このため、燃料電池等のシステム構成には加湿装置や各種付随装置を要し、装置規模が大型化して、システム構築コストが高価になってしまう。一方、固体酸電解質膜の場合は、有意なプロトン伝導が行われるためには、各固体酸に固有の相転移温度(100〜600℃)以上に維持する必要があるが、温度を上げる(約125℃以上)とプロトン伝導体膜の延性が増大してしまう上に、固体酸は水に溶けやすく、プロトン伝導体が溶出してしまいやすい。更に、薄膜化が難しく、燃料電池用に大面積化することも困難である。
【0006】
これらの問題点に対し、近年、フラーレン誘導体で形成されたプロトン伝導体膜を高圧成型で作る技術が報告されている(特許文献1参照)。特許文献1には、フラーレンに水酸基を導入した水酸化フラーレンを高圧成型した膜が、乾燥状態で水の凝固点や沸点を含む広い温度範囲(少なくとも−40〜160℃)で高いプロトン伝導性を示すこと、及び水酸基よりプロトン解離性の高い硫化水素エステル基(スルフォン酸基)を導入すると更にプロトン伝導性が向上することが記載されている。なお、水酸化フラーレンは1992年(非特許文献2参照)に、硫酸水素エステル化フラーレンは1994年(非特許文献3参照)に、最初の合成例が報告されている。
【0007】
水酸化フラーレンで形成されたプロトン伝導体膜のプロトン伝導メカニズムは、加圧により水酸化フラーレン密度が高くなった膜中で近接した水酸基同士が相互作用することにより、水酸化フラーレンの凝集体がマクロな集合体として高いプロトン伝導性(換言すれば、水酸化フラーレンのフェノール性水酸基からのプロトン解離性)を発現し、且つ、水素などのガス透過防止能が向上することを見出したものである。即ち、膜中に大量に含まれる水酸基由来のプロトンが移動に直接関わるため、水蒸気由来の水素やプロトンを外気中の水分から補給する必要等が無く、雰囲気に対する制約がない。これは、フラーレンの有している求電子性が、水酸基におけるプロトンの解離促進に大きな影響を及ぼしている上に、1つのフラーレン誘導体分子中にかなり多くの水酸基を導入することができるため、プロトン伝導体の単位体積あたりの数密度が非常に高くなり、プロトンチャンネルが繋がる率が高くなることで、プロトン伝導性が向上するわけである。しかしながら、特許文献1に記載のフラーレン誘導体で形成されたプロトン伝導体膜は、プロトン伝導率が10−6S/cm程度と不十分である上、プロトンの移動方向が等方的であるために膜面積の大きい方向でしかプロトン伝導体膜として使えない。また、圧縮成型のため大面積の薄膜作製も難しい。
【0008】
【非特許文献1】
Sossina M.Haile,Dane A.Boysen,CalumR.I.Chisholm and Ryan B.Merle,Nature,410巻、910頁、2001年
【非特許文献2】
Chiang,L.Y.;Swirczewski,J.W.;Hsu,C.S.;Chowdhury,S.K.;Cameron,S.;Creegan,K.,J.Chem.Soc,Chem.Commun.,1791頁、1992年
【非特許文献3】
Chiang.L.Y.;Wang,L.Y.;Swirczewski.J.W.;Soled,S.;Cameron,S.,J.Org.Chem.59巻, 3960頁、1994年
【特許文献1】
WO−2001−06519−A1
【0009】
【発明が解決しようとする課題】
これらの問題点に対し、プロトン伝導率が高く、雰囲気に対する制約の少ないプロトン伝導体膜で短時間に作成可能なものの開発が待望されているが、このような性能を兼ね備えたプロトン伝導体膜はこれまでに知られていない。
本発明は、以上のような課題を克服するためになされたものであり、プロトンの移動経路を分子レベルで制御することにより、プロトン伝導体の性能を制御して、プロトン伝導率が高く、且つ簡便で安価に製造できる電気化学デバイスおよびプロトン伝導体膜を提供することを目的としている。
【0010】
【課題を解決するための手段】
本発明者は、以上の実績を鑑み、鋭意研究を行った。その結果、自己組織化を利用した交互積層技術を用いることで、非常に短時間に作製できるプロトン伝導体膜により、本発明の目的が達成することを見出し、本発明を完成した。
即ち、本発明の要旨は、自己組織化による交互積層法を利用して作製したプロトン伝導体膜及びその製造方法に存する。また、本発明の別の要旨は、自己組織化による交互積層法によりプロトン伝導体膜を作製する方法に存する。
【0011】
【発明の実施の形態】
以下に本発明を詳細に説明する。
本発明の第一の特徴である、自己組織化交互吸着法(Layer−by−Layer Electrostatic Self−assembly)について説明する。これは、1992年にG.デッカーらによって発表された、交互吸着現象を利用して複合薄膜を作製する方法で、正電荷を有する溶液と負電荷を有する溶液を調整し、これらの溶液に基板を交互に浸すことにより、基板上に多層構造を有する複合薄膜(交互吸着膜)を得る方法である(Decher.G,Hong.J.D.and J.Schmit:Thin Solid Films,210/211巻, 8311頁、1992年参照)。本発明では、この方法を利用して、電荷及びプロトン伝導率が異なる2種類以上の層を交互に積層することにより、プロトン伝導チャンネルが制御されたプロトン伝導体膜を得ることができる。
【0012】
例えば、高分子イオン層とフラーレン誘導体イオン層を積層した場合について詳述する。先ず、表面に電荷を有する担体を、該担体と反対の電荷を有する高分子イオン溶液に浸漬し、担体上に高分子イオン薄膜を作製する。この際、高分子イオンは、担体表面の電荷を中和するのみならず過剰に吸着するため、担体表面は浸漬前と反対の電荷を帯びる。続いて、今度は、これを先の高分子イオン溶液と反対の電荷を有するフラーレン誘導体イオン溶液に浸漬させると、電荷の中和および過剰吸着により、担体表面は更に反対の電荷を帯びる。この2つの浸漬工程の繰り返しにより、フラーレン誘導体が実質的に挟持された多層薄膜を得ることができる。各工程における過剰吸着量は、電荷の飽和により制限されるため、各回一定量の高分子イオンが固定化され、高分子プラスイオンからなる薄膜層と高分子マイナスイオンからなる薄膜層とが交互に成膜された複合薄膜を形成することができる。ここで、ポイントは、反対の電荷を有する2つのイオン溶液に交互に浸漬することにより、高分子イオン膜とフラーレン誘導体膜が交互に積層されることにあり、先にフラーレン誘導体イオン溶液の方に浸漬させても構わない。電荷が反対であるとは、例えば、2種類の高分子イオン溶液の電荷が同一であっても、トータルとしての電荷量がこの2種類の溶液で異なっていれば構わない。
【0013】
交互吸着法に用いる担体は、表面に電荷を導入することができるものであれば構わない。例えば、表面アニオン性のもの(銀、ガラス、石英など)、表面カチオン性のもの(スチレンなどの疎水性材料、ジメチルアミノメタクリレートなど親水性材料の共重合物など)、表面に電荷のあるもの(表面電荷を持つポリマーフィルムなど)、表面に電荷を導入することができるもの(メルカプトプロピオン酸を吸着させた金など)及び種々の金属電極などが例として挙げられる。固定化原理が単純な吸着に基づいているため、必ずしも表面が平滑な必要はなく、平滑な固体基板の他、フィルターなどの多孔性物質、シリカゲルなどの粉末、樹脂などの固体担体のような様々な形状ものを選択することができる。また、水溶液を積層する場合は、予め表面に親水化処理を施しても構わない。この方法は、任意の担体に積層する物質を含有した溶液を浸漬するという極めて簡便な方法で短時間に行うことができ、殆ど特別な設備を要しないため、担体の選択肢が広く、任意の機能を有するものをシステムに採用することができる。
【0014】
溶液への浸漬により担体表面に電荷を導入させる場合、浸漬させる溶液は、電荷及びプロトン解離性が異なる2種類以上の溶液を用いる。溶液は、基本的に水溶液をいうが、溶質の溶解性に応じて、水溶液と有機溶媒が混合した溶液、又は有機溶媒溶液でも構わない。好ましくは、メタノールやエタノールなどのアルコール類などが挙げられるがこれに限るわけでは無い。
【0015】
浸漬させる溶液のうち、プロトン解離性が高い方の溶液は、プロトン伝導を担う層(プロトン伝導層)を形成する。プロトン解離性の指標には、酸解離定数(pKa)があるが、pKaが1以上、特に−7以上が好ましい。例えば、電子吸引性の点で優れている炭素を主成分とするもので、プロトン解離性の官能基を有するものなどが用いられる。プロトン解離性の官能基を有する炭素材料としては、電子吸引性の理由から、プロトン解離性の置換基を導入後のプロトン伝導性が電子伝導性より大きい必要があるため、フラーレン、フラーレン構造を一部有するチューブ状炭素(いわゆるカーボンナノチューブ)のような炭素クラスター(複数の原子・分子が集まってできる集合体)等が好ましい。
【0016】
フラーレンとは、Krotoらによって発見されたC60を代表とするカーボンクラスター化合物(Nature,318巻,162頁,1985年参照)であり、C60以外にも、C70、C76、C78、C82、C84、C90、C95、及び更に高次なフラーレン等が挙げられる(Chem.Lett.,1607頁,1991年、Science,252巻,548頁,1991年、化学,46巻,831頁,1991年参照)。本発明に用いるフラーレンは、球状炭素クラスターであれば良く、単体の他、2種類以上の単体の混合物でも良い。さらには、フラーレンの球状構造が壊れたものやフラーレン抽出時の残渣でも良い。フラーレンの製造法については、特にこだわらないが、例えば、C60については、100Torr程度のHe雰囲気下で、黒鉛棒を通電加熱または2本の黒鉛棒間でアーク放電させ、生成する煤からベンゼンや二硫化炭素等を溶媒抽出して分離されるもの、燃焼法により連続的に生産されるものなどが使用される。カーボンナノチューブは、炭素を主原料とし、黒鉛構造を有する小径の炭素繊維をいい、化学的気体堆積法(CVD)、抵抗加熱・ア−ク放電法、レーザ蒸発法などの手法で、ニッケル、コバルト,鉄等あるいはこれらの物質を他の物質と組み合わせた触媒を用いることにより合成されるナノチュ−ブなどが使用される。以下、代表的な炭素材料であるフラーレンを例として説明するが、これに限らず、プロトン解離性の置換基を導入した炭素材料をプロトン伝導層に用いる場合については、導入後のイオン伝導性が電子伝導性よりも大きいものであれば良い。
【0017】
プロトン伝導層が有しているプロトン解離性の官能基としては、OH基、SOH基、COOH基、OSOH基、OPO(OH)などが好ましい例として挙げられる。官能基の数は、多すぎるとフラーレンの電子吸引性が損なわれてプロトン解離能が低下するため、少ない方が良い。1〜24の任意の数値が好ましく、1〜12が特に好ましい。プロトン解離性の置換基を導入したフラーレン誘導体は、1種類でも、フラーレンの炭素数や置換基の種類が異なるものなどの2種類以上の混合物でもよい。具体例を挙げると、C60(OH)12、C60(OH)(xは1〜24の任意の数値で、2つ以上のxを含む混合体でもよい。以下、同様。)、C60(SOH)12、C60(SOH)、C60(COOH)、C60(OSOH)、C60+x((COOH)、C60(OPO(OH)など。同様に、以上のC60をC70、C76などに置き換えた化合物、例えば、C70(OH)12、C70(OH)、C70(SOH)12、C70(SOH)、C70(COOH)、C70(OSOH)、C70+x((COOH)、C70(OPO(OH)、C76(OH)12、C76(OH)、C76(SOH)12、C76(SOH)、C76(COOH)、C76(OSOH)、C76+x((COOH)、及びC76(OPO(OH)などの化合物、及びこれらの混合物でもよい。これらのフラーレン誘導体の合成は、実施例で後述する通り、フラーレンに対し、酸処理や加水分解等の処理を単独または組み合わせて施すことにより、フラーレン骨格の炭素原子に所望のプロトン解離性の基を導入して行えばよい。
【0018】
浸漬させる溶液のうち、プロトン解離性が低い方の溶液は、電荷を有し層間の吸着を担う層(電荷層)を形成する。該溶液は、プロトン解離性が高い方の溶液と電荷が異なっており、自己組織化による交互積層膜が形成される溶液であれば良いが、電荷を有する官能基を主鎖または側鎖に有する高分子の溶液、すなわち有機又は無機の高分子イオン溶液が用いられることが多く、特に、有機高分子イオン溶液が好ましく用いられる。以下、高分子イオンを用いた場合について詳述する。アニオン性高分子イオン(ポリアニオン)は、スルフォン酸、カルボン酸などの負電荷を帯びた官能基を有する高分子のことをいい、具体的には、ポリスチレンスルフォン酸(PSS)、ポリビニル硫酸(PVS)、デキストラン硫酸、コンドロイチン硫酸、ポリアクリル酸(PAA)、ポリメタクリル酸(PMA)、ポリマレイン酸、ポリフマル酸、モンモリロナイト(Mont)などが挙げられる。一方、カチオン性高分子イオン(ポリカチオン)は、4級アンモニウム基、アミノ基などの正電荷を帯びた官能基を有するものをいい、具体的には、ポリエチレンイミン(PEI)、ポリアリルアミン塩酸塩(PAH)、ポリジアリルジメチルアンモニウムクロリド(PDDA)、ポリビニルピリジン(PVP)、ポリリジンなどが挙げられる。これらの高分子イオンは、何れも水溶性、又は、水と有機溶媒との混合溶液あるいは有機溶媒に可溶であればよい。この他、導電性高分子、ポリ(アニリン−N−プロパンスルホン酸)(PAN)などの機能性高分子イオン、種々のデオキシリボ核酸(DNA)やリボ核酸(RNA)、ペクチンのような電荷を有する多糖類のように電荷を有する生体高分子を用いることもできる。ポリチオフェン、ポリアニリン、ポリフェニレンビニレンなどの誘導体のように剛直(リジット)な有機高分子イオンを用いることもできる。また、光化学反応を利用したジアゾ化による重合反応可能なジアゾレジン類などを用いることもできる(Shuguang Cao,Chao Zhan and Weixiao Cao,Polymer International 45巻、142−146頁、1998年参照。) 高分子イオンが更に光化学重合する性質を有していれば、形成された多層構造をもった複合薄膜に光を照射して共有結合を形成し、膜強度が非常に強く、ガス透過防止能に優れたプロトン伝導体にすることもできる。
【0019】
溶液への浸漬は、自己組織化が起こる条件で行う。自己組織化法は、基板を正帯電溶液と負帯電溶液に交互に浸すことで、静電相互作用により薄膜層を交互に積層する方法である。静電相互作用による吸着初期速度は非常に速く、浸漬直後に積層量が飽和に近い状態に達すると推定されるため、モノレイヤー又はそれに近い状態に積層されることを期待して、高濃度溶液に短時間だけ浸漬させ、表面の吸着残りを洗い流すのが好ましい。水酸化フラーレンなどのフラーレン誘導体は昇華性が無いため、ウェットプロセスによる製膜も工業的に行われてはいるが、従来、交互積層法は、溶液中で溶質を十分に拡散させるべく低濃度で行われていたため、製膜に非常に時間が掛かり実用化にはほど遠いと考えられていた。これに対し、以上の好ましい製膜条件で行えば、積層時間を大幅に短縮させることが可能である。例えば、プロトン伝導体膜とは全く関係の無い、単に、交互積層法を水酸化フラーレンに適応しただけの例がYanjing Liu,Youxiong Wang,Hongxia Lu and Richard O. Claus The Journal of Physical Chemistry B,103巻、2035頁、1999年に記載されているが、この方法で積層に掛かる時間を試算してみると、正電荷を持つ高分子電解質としてPolydiallydimethylammonium chlorideの1%水溶液(pH9)、負帯電溶液として水酸化フラーレン(C60(OH)12)の1×10−4モル/L水溶液(pH13.5)を調液(両溶液のpHの調整は0.1%水酸化ナトリウム水溶液で行った)し、基板を一方の溶液に3分間浸漬後、純水でリンスして、他方の溶液に5分間浸す作業を1セットとして膜を作るだけで、最低10分程度の時間を要する。また、数回程度の交互積層では分からないためかこの文献には記載が無かったが、本発明者が検討したところ、文献に記載の方法では、例えば1000Å程度積層すると、膜の平坦性及び均一性が損なわれてしまっていた。これに対し、本発明の自己組織化を利用する方法では、プロトン伝導経路を分子レベルの厚さでコントロール出来る平滑で均質なプロトン伝導率が高いプロトン伝導体膜を短時間で作製することができた。
【0020】
溶液の濃度は、自己組織化が起こる条件であれば良いが、製膜時間短縮の観点からは、高濃度な方が好ましく、1wt%以上あると特に好ましい。自己組織化が起こる溶液の濃度は、所望の膜厚、溶質の溶解性、pHなどの条件に依存するため、特に厳密な濃度設定は必要としない。また、吸着が電荷の中和および再飽和に基づいているため、自己組織化を妨げない限り、溶液中に他の物質が含まれていても良い。具体的に好ましい濃度範囲を例示すると、高分子イオン溶液の場合、上限は、好ましくは40wt%以下、更に好ましくは20wt%以下、特に好ましくは10wt%以下、下限は、好ましくは0.001wt%以上、更に好ましくは0.01wt%以上、特に好ましくは0.1wt%以上に、飽和溶液を希釈又はそのまま使用して調製しても良い。フラーレン誘導体溶液の場合、上限は、好ましくは1×10−1mol/L以下、更に好ましくは1×10−2mol/L以下、特に好ましくは1×10−3mol/L以下、下限は、好ましくは1×10−7mol/L以上、更に好ましくは1×10−6mol/L以上、特に好ましくは1×10−5mol/L以上が良いが、この濃度範囲に限定されるものではない。
【0021】
本発明における溶液のpHは、溶液が充分に電荷を有する状態であれば良く、必要に応じてHCl、HSOなどの無機酸、CHCOOHなどの有機酸、NaOH、KOHなどの無機塩基、又は有機塩基などで調製してもいい。もちろん、複数の酸や塩基を混合して所望のpHに調製してもよい。両溶液のpHは、1以上、特に3以上異なっているのが好ましい。
【0022】
本発明における溶液の温度、浸漬及びリンス時間は、特に制限はないが、実用上、溶液が凍らない温度以上、沸騰しない温度以下、1秒〜1時間程度が好ましい。必要に応じて攪拌を行っても良く、1〜1000rpm程度が好ましい。また、乾燥操作も必要に応じて行って良い。
膜1層の厚み、膜面積及び電極間の距離は、特に制限は無いが、実用上、膜1層の厚みの下限は2nm以上、特に100nm以上、上限は10μm以下、特に5μm以下のものが、膜面積は、機械的に問題が無ければ、下限2nm以上、特に1μm以上、上限100m以下、特に10cm以下のものが、電極間の距離は、下限2nm以上、特に100nm以上、上限10cm以下、特に10μm以下のものが好ましく作製される。積層回数は理論上無限に行うことができるが、実用上、積層膜厚が、5μm以下、特に1μm以下のものが好ましく、電極の形状は、くし型、帯型、円形型、四角型電極など任意の形状のものが利用できる。製膜速度は、後述の実施例では、交互積層1セットで約30Å/40秒であったが、溶液濃度や攪拌方法などの条件により、例えば、この10倍以上、100倍以上、又は、1/10以下、1/100以下などに調製可能である。
【0023】
次に、本発明の第二の特徴である、本発明のデバイス構成について、説明する。本発明のデバイスは、既に良く知られている、プロトンが膜の厚み方向に伝導される構成(図1)など、本発明のプロトン伝導体膜の機能を妨げるものでなければ何れの構造でも構わないが、例えば、図2のように、プロトンが、プロトン伝導体膜を構成する各層の面内方向に伝導される構成の方が、積層間に挟まれたプロトン伝導体を有益に利用出来るので好ましい。図2は、(1)は基板を、(2)及び(3)は電極を、この間に挟持された(4)は、電荷層(5)とプロトン伝導層(6)の交互積層膜から成っているプロトン伝導体膜を各々示している。
【0024】
プロトン伝導のメカニズムを、図2の好ましいデバイス構成の場合を例として、図3で説明する。図3は、プロトン伝導体膜の積層構造の一部の断面図を示す。図2同様、(5)は電荷層、(6)はプロトン伝導層を示し、(7)は、プロトン伝導層から生じたプロトンを示す。電極は図中には示されていないが、図3の左右にあり、プロトン伝導体膜はこれに挟持されているものとする。ここで、例えば、左側の電極が水素極、右側の電極が酸素極とすると、フラーレン誘導体から解離したプロトン(7)は、水素極から酸素極(図中、左から右方向)にプロトン伝導層に沿って移動する。すなわち、従来のフラーレン誘導体の圧縮成型膜が、プロトン伝導性官能基の密度増加でプロトンチャンネルが偶然繋がったとはいえ、隙間が残り、非効率であったのに対し、本発明は、ナノ層が複数積層されて形成された3次元構造により、プロトンの移動方向が制御されたといえる。また、本発明の方法は、フラーレン誘導体溶液に浸漬させるだけであるため、フラーレン誘導体の分解や変性を避けることができるという点でも、圧縮成型に対し優れている。
【0025】
本発明のプロトン伝導体膜のプロトン伝導率は、製膜条件やデバイス構成などにより異なるが、好ましい条件で作製すれば、2×10−5S/cm以上、更に好ましい条件では5×10−5S/cm以上、特に好ましい条件では1×10−4S/cm以上のもの等が作製される。また、後述の実施例は、水酸化フラーレンを用いているので、成型性があり、−40〜160℃の温度範囲での使用が期待されるが、用途に応じた加工性を有するや環境に応じた耐性を有する材料を選択することにより、所望の性能の膜を作製できる。更に、本発明の方法は、複数の層を所望の順序で積層できるため、ガス透過防止能、薄膜成型性、耐酸性、耐熱性などの各種機能を有する電荷層とプロトン伝導層を交互積層させることにより、電荷層が適切に制御された機能を有し、これらの機能が非常に効率良く発現する燃料電池のような複合機能素子を作製することもできる。
【0026】
本発明のプロトン伝導体膜は、例えば、燃料電池、センサーのような様々な用途に適した電気化学デバイスとして使用可能である。例を挙げると、電極がガス電極である電気化学デバイス、電極に活物質性電極を用いる電気化学デバイスなどに対して、本発明のプロトン伝導体を好ましく適用することが可能である。燃料電池への適用について、更に詳しく述べると、図1において、燃料電極と酸素電極間に本発明のプロトン伝導体を挟持させて電気化学デバイスとして用いることにより、ナノレベル(分子レベル)でプロトン導電体の性能を制御できる電気化学デバイスを短時間で得ることができる。
【0027】
本発明のプロトン伝導体膜の形成は、適当な分析手法を用いて容易に確認することができる。好ましいのは、水晶発振子を用いた極微小吸着量測定法である。水晶発振子は、マイクロバランスとして知られ、振動数の変化から表面に吸着された物質の重量を約10−9gの精度で測定できる装置である。また、該膜にフラーレン誘導体が取り込まれていることは、分光学的手法、例えば紫外線可視(UV−Vis)スペクトル、赤外線吸収(IR)スペクトル及びラマンスペクトルなどの測定法によって確認できる。製膜された膜厚は、UVスペクトルで簡便に、正確には、膜厚計やエリプソメーターなどの装置を用いて測定可能である。
【0028】
本発明のプロトン伝導体膜において各膜が均一に交互積層されていることは、積層回数と上述の方法で求めた膜厚、例えば、膜厚計の膜厚や紫外可視吸収スペクトル強度がほぼLambert−Berrの法則に従っていることなどから確認できる。
以上詳述した通り、本発明者は、交互積層法によりプロトン伝導体の高密度膜を形成し、近接し合ったプロトン解離性官能基が相互作用するようにした結果、この分子レベルで制御された膜がマクロな集合体として、非常に高いプロトン伝導率(水酸化フラーレンのフェノール性水酸基からのプロトン解離性)を発現するという知見を初めて得た。すなわち、従来の圧縮成型しただけの膜は、偶然つながったプロトンチャンネルによりプロトン伝導をなしている事は推察できるが、本発明者らが提案する以上の方法により、分子レベルで配列された個々の分子集団がマクロなプロトン伝導率を飛躍的に向上させることとなる。
【0029】
【実施例】
次に、本発明を実施例により更に詳細に説明するが、本発明はその要旨を越えない限り以下の実施例に限定されるものではない。
(水酸化フラーレンの合成法) 文献(Chiang,L.Y.,Wang.L.Y.,Swirczewski.J.W.,Soled S.and Cameron,S.,J.Org.Chem.,59巻,3960頁、1994年)を参考にして合成を行った。C60/C70フラーレン混合物(フロンティアカーボン社製)2gを発煙硫酸30mL中に入れ、窒素雰囲気下で60℃に保ちながら3日間攪拌した。得られた反応物を、氷浴内で冷やした無水ジエチルエーテル中に少しずつ投下し、生じた沈殿物を遠心分離で分離して、ジエチルエーテルで3回、およびジエチルエーテルとアセトニトリルの2:1混合液で2回洗浄した後、40℃で減圧乾燥させた。更に、この乾燥物を60mLのイオン交換水中に入れ、85℃で窒素バブリングを行いながら10時間攪拌した。反応生成物から遠心分離によって沈殿物を分離し、この沈殿物を純水で数回洗浄し、遠心分離を繰り返した後に、40℃で減圧乾燥した。このようにして得られた茶色の粉末のフーリエ変換赤外線吸収スペクトル(FT−IR)測定、核磁気共鳴スペクトル(NMR)測定を行ったところ、文献に示されているC60(OH)12のIR及びH、13C−NMRスペクトルとほぼ一致したことから、得られた粉末が目的物質である水酸化フラーレンと確認された。
【0030】
(実施例1) 水酸化フラーレン交互積層膜の作製
石英ガラス基板(5cm×5cmの正方形、フルウチ化学社製S0−5050)の両端に、電極蒸着部分として幅1cmの帯状のマスクを施した。基板表面を水酸化カリウム水溶液で親水化処理することにより、表面をヒドロキシル基化した。水酸化ナトリウムでpH9にしたPolydiallydimethylammonium chloride(アルドリッチ社製PDDA、正電荷を持つ高分子電解質)の7wt%水溶液(溶液1)、及び、0.1wt%水酸化ナトリウム水溶液でpH13.5にした水酸化フラーレンの5X10−3モル/L水溶液(溶液2)を調製した。溶液1に10秒間浸漬後に5秒間水洗し、溶液2に10秒間浸漬後に5秒間水洗するのを1サイクルとして、石英基板上に2層を交互積層させた。なお、ここで用いた水は、全て超純水であった。膜厚計による膜厚測定とUV測定を行い、成膜状況をモニターした。図4に、10サイクル毎のUV測定結果を示す。図中、横軸は波長、縦軸は吸収度を各々示し、6本の線は、下から順に10〜60サイクル積層後の結果を示す。サイクル数の増加に伴い、波長235nm付近に水酸化フラーレン由来の吸光度の増加が認められた。また、図5に、サイクル数(横軸)と波長235nmにおける吸光度の関係(縦軸)を示すと、各膜が均一に交互積層されていることが、サイクル数とUV強度がLambert−Beerの法則に従っていたことから確認された。各膜が均一に交互積層されていたことは、サイクル数(横軸)と膜厚計で測定した膜厚(縦軸)の関係を示す図6において、膜厚がサイクル数に比例することからも確認された。図6で、60サイクル積層した膜厚が約2000Åであったことから、1サイクル当たりの膜厚は平均33Åと見積られた。Yanjing Liu,Youxiong Wang,Hongxia Lu and Richard 0.Claus The Journal of Physical Chemistry B,103巻、2035頁、1999年において、エリプソメトリー法によるPDDAの膜厚は6Åと記載があるため、フラーレン1分子の直径が約10Åであることを考慮すれば、本発明の方法により、超高速ウェットプロセスで、各層がモノレイヤーに近い状態でフラーレンのフラーレン含有膜を積層できたといえる。
【0031】
次に、該基板を窒素ガス雰囲気下で乾燥させ、電極蒸着個所をマスクしていたテープを剥がし、今度は電極部分を蒸着する為、逆に、膜部分をアルミホイルでマスクしてから、端面に金を真空蒸着した。真空蒸着は、通常の装置を用い、ボートに0.6gの金線(フルウチ化学社製、純度99.99%)をのせ、真空度4X10−5Torrで5分間成膜を行った。金電極部の蒸着厚みは、膜厚計による膜厚測定から、先に作製した交互積層膜より約1000Å厚い、3000Åであった。以上のようにして、図1に示すようなデバイスを作製した。なお、ここで、5cmの基板の両端1cmずつが電極となったので、電極間の距離は3cmになった。
【0032】
(比較例1) 水酸化フラーレン圧縮成型膜の製造
特許文献1に記載のある電解質膜を再現したものを作製した。水酸化フラーレン粉末を60mgとり、IR測定用の打錠成型器により、直径1cm、厚み0.25mmの円形ペレットを作製した。プレス圧は5t・cm−2であった。
(インピーダンス測定) 平滑な銅電極が装備された電気伝導度測定用コネクターを作製し、実施例1の両端の金電極部に密着させて、室温、空気開放系で、HIOKI社製のインピーダンスアナライザー3522−50、3532−50により交流インピーダンス法でプロトン伝導率を求めた。また、比較例1のペレットの両面に、直径10mm、厚み0.1mmの白金電極を圧接し、電気伝導度測定用の電気化学セルを用いて、実施例1のデバイスと同様にプロトン伝導率を求めた。図7及び図8に、実施例1及び比較例1におけるインピーダンス測定結果を示す。各々、横軸は実部抵抗値を、縦軸は虚部抵抗値を示す。各測定結果について、高周波数側に見られる円弧のX軸切片より、プロトン伝導率を求めた。結果を表1にまとめる。実施例1の水酸化フラーレンを用いた交互積層プロトン伝導膜を用いて作製されたデバイスの導伝率は、3X10−4S・cm−であった。これは、同じ水酸化フラーレンを圧縮成型した比較例の1.2X10−5S・cm−に対して1桁、特許文献1に記載(350μmの厚さ方向に導伝率を測定)の7X10−6S・cm−1に対し2桁も向上した値であった。また、本発明のデバイスでは、比較例の厚み0.25mmだったのに対し、3 cmも離れた距離でも伝導することが分かった。
【0033】
【表1】

Figure 2005026119
【0034】
【発明の効果】
本発明は、交互積層法によりプロトンの移動経路を分子レベルで制御することにより、プロトン伝導率が高く、雰囲気に対する制約が少なく、短時間に作製可能なプロトン伝導体膜を提供する。このプロトン伝導体膜は、燃料電池、エレクトロクロミック表示センサーなどの機器部品、等に供することができる。
【図面の簡単な説明】
【図1】従来のデバイス構成図
【図2】実施例2のデバイス構成図
【図3】プロトン伝導メカニズムを示す模式図
【図4】実施例1のUVスペクトル測定結果
【図5】実施例1のサイクル数とUV吸光強度との相関図
【図6】実施例1のサイクル数と膜厚との相関図
【図7】実施例1の複素インピーダンスの測定結果
【図8】比較例の複素インピーダンスの測定結果
【符号の説明】
1 基板
2 電極
3 電極
4 プロトン伝導体膜
5 電荷層
6 プロトン伝導層
7 プロトン[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrochemical device. In particular, it relates to a manufacturing method for an electrochemical device and a proton conductor membrane forming the same.
[0002]
[Prior art]
Since fuel cells directly convert chemical energy into electrical energy, fuel cells are attracting attention as power sources for next-generation power generation combustion engines and automobiles with high efficiency and low environmental impact. In particular, fuel cells using a solid electrolyte such as a polymer electrolyte membrane or a solid acid electrolyte as a proton conductor at the heart are extremely popular because of the ease of the process for forming an electrochemical device and the reduction in size and weight of the device. Is expected. Proton-conducting solid electrolytes are also being developed as key materials in polymer solid electrolyte fuel cells that maintain high energy density at low temperatures, as well as in equipment parts such as electrochromic display devices and sensors. .
[0003]
As the polymer electrolyte membrane, a perfluoroalkylsulfonic acid resin membrane represented by Nafion (manufactured by DuPont, trade name), that is, a fluorine-based electrolyte membrane is well known. The perfluorosulfonic acid resin has a C—F bond and thus has very good chemical stability, and protons ionized from the sulfonic acid group in the polymer matrix form hydrogen bonds with moisture to form oxonium. By generating ions, protons can move smoothly in the polymer matrix in the state of oxonium ions, so that proton conductivity is high even at room temperature.
[0004]
The solid acid used as the solid acid electrolyte membrane is CsHSO.4And Rb3H (SeO4)2It is a solid and acidic inorganic compound represented by There is a report that a solid acid has proton conductivity without using moisture as a transfer medium. For example, CsHSO4When a certain temperature is reached, the oxyanion (SO4 2-) Rotates, and it is said that proton conductivity increases by causing a unique phase transition behavior in which protons on oxygen ions move to adjacent oxygen ions (see Non-Patent Document 1). So CsHSO4Can be expected to have anhydrous proton transport and high temperature (up to 250 ° C.) stability.
[0005]
However, proton conductor membranes using polymer electrolyte membranes or solid acid electrolyte membranes are greatly affected by the atmosphere such as temperature and humidity, and are difficult to mold. For example, in the case of a polymer electrolyte membrane, in order to maintain proton conductivity of a resin such as perfluorosulfonic acid resin, it is necessary to keep it sufficiently wet during use, and the operating temperature is set to the boiling point of water (100 ° C. ) Can't do more. In addition, fuel efficiency is reduced due to the permeability of methanol and hydrogen. For this reason, a humidifier and various accompanying devices are required for the system configuration of the fuel cell or the like, which increases the scale of the device and increases the system construction cost. On the other hand, in the case of a solid acid electrolyte membrane, in order for significant proton conduction to be performed, it is necessary to maintain the phase transition temperature (100 to 600 ° C.) or higher specific to each solid acid. 125 ° C. or higher) and the ductility of the proton conductor film is increased, and the solid acid is easily dissolved in water and the proton conductor is easily eluted. Furthermore, it is difficult to reduce the film thickness, and it is also difficult to increase the area for a fuel cell.
[0006]
In recent years, a technique for producing a proton conductor film formed of a fullerene derivative by high-pressure molding has been reported (see Patent Document 1). In Patent Document 1, a membrane formed by high-pressure fullerene hydroxide in which a hydroxyl group is introduced into fullerene exhibits high proton conductivity in a wide temperature range (at least −40 to 160 ° C.) including the freezing point and boiling point of water in a dry state. In addition, it is described that proton conductivity is further improved by introducing a hydrogen sulfide ester group (sulfonic acid group) having a higher proton dissociation property than a hydroxyl group. The first synthesis example was reported in 1992 (see Non-Patent Document 2) for fullerene hydroxide and in 1994 (see Non-Patent Document 3) for hydrogen sulfate esterified fullerene.
[0007]
The proton conduction mechanism of proton conductor membranes formed with fullerene hydroxide is based on the interaction between adjacent hydroxyl groups in the membrane where the density of fullerene hydroxide is increased by pressurization. The present invention has been found to exhibit high proton conductivity (in other words, proton dissociation property from the phenolic hydroxyl group of fullerene hydroxide) as an aggregate, and to improve the permeation preventing ability of hydrogen or the like. In other words, since protons derived from hydroxyl groups contained in a large amount in the film are directly involved in the movement, there is no need to replenish hydrogen or protons derived from water vapor from moisture in the outside air, and there is no restriction on the atmosphere. This is because the electrophilicity of fullerene has a great influence on the promotion of proton dissociation at the hydroxyl group, and a considerable number of hydroxyl groups can be introduced into one fullerene derivative molecule. The number density per unit volume of the conductor becomes very high, and the rate at which proton channels are connected increases, so that proton conductivity is improved. However, the proton conductor film formed of the fullerene derivative described in Patent Document 1 has a proton conductivity of 10-6In addition, it is insufficient as about S / cm, and since the proton moving direction is isotropic, it can be used as a proton conductor membrane only in the direction of large membrane area. Moreover, it is difficult to produce a large-area thin film because of compression molding.
[0008]
[Non-Patent Document 1]
Sossina M. et al. Haile, Dane A. et al. Boysen, CalumR. I. Chisholm and Ryan B. Merle, Nature, 410, 910, 2001
[Non-Patent Document 2]
Chiang, L.A. Y. Swirczewski, J .; W. Hsu, C .; S. Chowdhury, S .; K. Cameron, S .; Creegan, K .; , J .; Chem. Soc, Chem. Commun. 1791, 1992
[Non-Patent Document 3]
Chiang. L. Y. Wang, L .; Y. Swirczewski. J. et al. W. Soled, S .; Cameron, S .; , J .; Org. Chem. 59, 3960, 1994
[Patent Document 1]
WO-2001-06519-A1
[0009]
[Problems to be solved by the invention]
To solve these problems, the development of proton conductor membranes that have high proton conductivity and less restrictions on the atmosphere that can be produced in a short time is awaited. Not known so far.
The present invention has been made to overcome the above-described problems. By controlling the proton transfer path at the molecular level, the performance of the proton conductor is controlled, and the proton conductivity is high. It is an object of the present invention to provide an electrochemical device and a proton conductor membrane that can be easily and inexpensively manufactured.
[0010]
[Means for Solving the Problems]
The present inventor conducted intensive research in view of the above results. As a result, the inventors have found that the object of the present invention can be achieved by using a proton conductor film that can be produced in a very short time by using an alternate lamination technique using self-organization, and completed the present invention.
That is, the gist of the present invention resides in a proton conductor membrane produced by using an alternate lamination method by self-assembly and a method for producing the same. Another gist of the present invention resides in a method for producing a proton conductor film by an alternating lamination method by self-assembly.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The self-assembled alternating adsorption method (Layer-by-Layer Electrostatic Self-assembling), which is the first feature of the present invention, will be described. This was confirmed in 1992 by G.G. A method for producing a composite thin film using the alternate adsorption phenomenon announced by Decker et al., Adjusting a solution having a positive charge and a solution having a negative charge, and immersing the substrate alternately in these solutions This is a method for obtaining a composite thin film (alternate adsorption film) having a multilayer structure on top (Decher. G, Hong. JD and J. Schmit: Thin Solid Films, 210/211, 8311, 1992) . In the present invention, a proton conductor membrane in which the proton conduction channel is controlled can be obtained by alternately laminating two or more kinds of layers having different charges and proton conductivities using this method.
[0012]
For example, the case where a polymer ion layer and a fullerene derivative ion layer are laminated will be described in detail. First, a carrier having a charge on the surface is immersed in a polymer ion solution having a charge opposite to that of the carrier to produce a polymer ion thin film on the carrier. At this time, since the polymer ions not only neutralize the charge on the surface of the carrier but also adsorb excessively, the surface of the carrier has a charge opposite to that before immersion. Subsequently, when this is immersed in a fullerene derivative ion solution having a charge opposite to that of the polymer ion solution, the support surface is further charged with the opposite charge due to charge neutralization and excessive adsorption. By repeating these two immersion steps, a multilayer thin film in which the fullerene derivative is substantially sandwiched can be obtained. Since the amount of excess adsorption in each process is limited by charge saturation, a fixed amount of polymer ions is immobilized each time, and a thin film layer consisting of polymer positive ions and a thin film layer consisting of polymer negative ions alternately A formed composite thin film can be formed. Here, the point is that the polymer ion film and the fullerene derivative film are alternately laminated by immersing them alternately in two ion solutions having opposite charges. It may be immersed. For example, even if the two types of polymer ion solutions have the same charge, the total amount of charges may be different between the two types of solutions.
[0013]
Any carrier can be used for the alternate adsorption method as long as it can introduce a charge onto the surface. For example, surface anionic materials (silver, glass, quartz, etc.), surface cationic materials (hydrophobic materials such as styrene, copolymers of hydrophilic materials such as dimethylamino methacrylate, etc.) Examples thereof include polymer films having surface charges), those capable of introducing charges on the surface (such as gold adsorbed with mercaptopropionic acid), and various metal electrodes. Since the immobilization principle is based on simple adsorption, the surface does not necessarily have to be smooth. In addition to a smooth solid substrate, various materials such as porous substances such as filters, powders such as silica gel, and solid carriers such as resins Can be selected. Moreover, when laminating aqueous solutions, the surface may be subjected to a hydrophilic treatment in advance. This method can be carried out in a very short time by immersing a solution containing a substance to be laminated on an arbitrary carrier, and requires almost no special equipment. Can be used in the system.
[0014]
When the charge is introduced into the surface of the carrier by immersion in the solution, two or more types of solutions having different charges and proton dissociation properties are used as the solution to be immersed. The solution basically refers to an aqueous solution, but may be a mixed solution of an aqueous solution and an organic solvent or an organic solvent solution depending on the solubility of the solute. Preferable examples include alcohols such as methanol and ethanol, but are not limited thereto.
[0015]
Among the solutions to be immersed, the solution having higher proton dissociation property forms a layer responsible for proton conduction (proton conduction layer). An index of proton dissociation includes an acid dissociation constant (pKa), and pKa is preferably 1 or more, particularly preferably −7 or more. For example, a material mainly composed of carbon which is excellent in electron withdrawing property and having a proton dissociative functional group is used. As a carbon material having a proton dissociative functional group, the proton conductivity after introduction of a proton dissociative substituent needs to be larger than the electron conductivity for the purpose of electron withdrawing. A carbon cluster such as a tubular carbon (so-called carbon nanotube) having a part (an aggregate formed by a plurality of atoms / molecules) is preferable.
[0016]
Fullerene is a C discovered by Kroto et al.60Is a carbon cluster compound (Nature, 318, 162, 1985), and C60Besides, C70, C76, C78, C82, C84, C90, C95And higher order fullerenes (see Chem. Lett., 1607, 1991, Science, 252, 548, 1991, Chemistry, 46, 831, 1991). The fullerene used in the present invention may be a spherical carbon cluster, and may be a mixture of two or more simple substances in addition to a simple substance. Furthermore, the fullerene spherical structure may be broken, or a residue obtained when fullerene is extracted. The production method of fullerene is not particularly particular, but for example, C60In the He atmosphere of about 100 Torr, the graphite rod is heated by electric current or arced between two graphite rods, and benzene, carbon disulfide, etc. are separated from the generated soot by solvent extraction, combustion method Those that are produced continuously are used. Carbon nanotubes are small-sized carbon fibers with carbon as the main raw material and a graphite structure. Nickel, cobalt, etc. can be obtained by chemical gas deposition (CVD), resistance heating / arc discharge, laser evaporation, etc. , Iron or the like, or a nano tube synthesized by using a catalyst obtained by combining these substances with other substances is used. Hereinafter, fullerene, which is a representative carbon material, will be described as an example. However, the present invention is not limited to this, and in the case where a carbon material into which a proton dissociative substituent is introduced is used for the proton conductive layer, ion conductivity after introduction is Any material larger than the electron conductivity may be used.
[0017]
Proton dissociative functional groups possessed by the proton conducting layer include OH groups, SO3H group, COOH group, OSO3H group, OPO (OH)3And the like. If the number of functional groups is too large, the electron withdrawing property of fullerene is impaired and the proton dissociation ability is lowered. Any numerical value of 1 to 24 is preferable, and 1 to 12 is particularly preferable. The fullerene derivative into which a proton dissociative substituent is introduced may be one kind or a mixture of two or more kinds such as those having different carbon numbers or different kinds of substituents. For example, C60(OH)12, C60(OH)x(X is an arbitrary numerical value of 1 to 24 and may be a mixture containing two or more x. The same applies hereinafter), C60(SO3H)12, C60(SO3H)x, C60(COOH)x, C60(OSO3H)x, C60 + x((COOH)2)X, C60(OPO (OH)3)xSuch. Similarly, the above C60C70, C76For example, C70(OH)12, C70(OH)x, C70(SO3H)12, C70(SO3H)x, C70(COOH)x, C70(OSO3H)x, C70 + x((COOH)2)x, C70(OPO (OH)3)x, C76(OH)12, C76(OH)x, C76(SO3H)12, C76(SO3H)x, C76(COOH)x, C76(OSO3H)x, C76 + x((COOH)2)xAnd C76(OPO (OH)3)xOr a mixture thereof. The synthesis of these fullerene derivatives is carried out as described later in the Examples by applying a treatment such as acid treatment or hydrolysis to the fullerene alone or in combination to form a desired proton-dissociable group on the carbon atom of the fullerene skeleton. Just introduce it.
[0018]
Among the solutions to be immersed, the solution having a lower proton dissociation property forms a layer (charge layer) having charge and responsible for adsorption between layers. The solution is different from the solution having higher proton dissociation property and may be any solution in which an alternating laminated film is formed by self-assembly, but has a functional group having a charge in the main chain or side chain. A polymer solution, that is, an organic or inorganic polymer ion solution is often used, and an organic polymer ion solution is particularly preferably used. Hereinafter, the case where polymer ions are used will be described in detail. The anionic polymer ion (polyanion) is a polymer having a negatively charged functional group such as sulfonic acid or carboxylic acid, and specifically, polystyrene sulfonic acid (PSS), polyvinyl sulfate (PVS). Dextran sulfate, chondroitin sulfate, polyacrylic acid (PAA), polymethacrylic acid (PMA), polymaleic acid, polyfumaric acid, montmorillonite (Mont) and the like. On the other hand, the cationic polymer ion (polycation) has a positively charged functional group such as a quaternary ammonium group or an amino group. Specifically, polyethyleneimine (PEI), polyallylamine hydrochloride (PAH), polydiallyldimethylammonium chloride (PDDA), polyvinylpyridine (PVP), polylysine and the like. Any of these polymer ions may be water-soluble or soluble in a mixed solution of water and an organic solvent or an organic solvent. In addition, it has electric charges such as conductive polymers, functional polymer ions such as poly (aniline-N-propanesulfonic acid) (PAN), various deoxyribonucleic acids (DNA), ribonucleic acids (RNA), and pectin. A biopolymer having a charge such as a polysaccharide can also be used. Rigid organic polymer ions such as polythiophene, polyaniline, polyphenylene vinylene and other derivatives can also be used. In addition, diazoresins that can be polymerized by diazotization utilizing a photochemical reaction can be used (see Shuguang Cao, Chao Zhan and Weixiao Cao, Polymer International 45, 142-146, 1998). If it has the property of further photochemical polymerization, the composite thin film having a multilayer structure formed is irradiated with light to form a covalent bond, and the proton strength is extremely strong and has excellent gas permeation preventing ability. It can also be a conductor.
[0019]
Immersion in the solution is performed under conditions where self-assembly occurs. The self-assembly method is a method of alternately laminating thin film layers by electrostatic interaction by alternately immersing a substrate in a positively charged solution and a negatively charged solution. The initial rate of adsorption due to electrostatic interaction is very fast, and it is estimated that the amount of lamination will reach a state close to saturation immediately after immersion. It is preferable that the surface is immersed for a short time to wash away the adsorption residue on the surface. Since fullerene derivatives such as fullerene hydroxide have no sublimation property, film formation by wet process is also carried out industrially. Conventionally, the alternate lamination method has been used at a low concentration to sufficiently diffuse the solute in the solution. Since it was performed, it took a very long time to form a film, and it was thought that it was far from practical use. On the other hand, if it carries out on the above preferable film forming conditions, it is possible to reduce a lamination time significantly. For example, an example in which the alternating lamination method is simply applied to fullerene hydroxide, which has nothing to do with the proton conductor membrane, is described in Yanjing Liu, Yuxing Wang, Hongxia Lu and Richard O., et al. Although it is described in Claus The Journal of Physical Chemistry B, 103, 2035, 1999, when the time required for lamination by this method is estimated, 1% of Polydimethylammonium Chloride is used as a polymer electrolyte having a positive charge. Aqueous solution (pH 9), fullerene hydroxide (C60(OH)121 × 10-4Prepare a mol / L aqueous solution (pH 13.5) (the pH of both solutions was adjusted with a 0.1% aqueous sodium hydroxide solution), immerse the substrate in one solution for 3 minutes, and then rinse with pure water. Thus, it takes a time of at least about 10 minutes only to form a film by immersing the other solution in 5 minutes as one set. In addition, although this document did not describe it because it was not understood by several times of alternate lamination, the present inventor examined, and in the method described in the literature, for example, when about 1000 mm is laminated, the flatness and uniformity of the film Sex has been impaired. In contrast, in the method using self-organization of the present invention, a proton conductor membrane having a smooth and homogeneous proton conductivity that can control the proton conduction path with a molecular thickness can be produced in a short time. It was.
[0020]
The concentration of the solution may be any condition that causes self-assembly, but from the viewpoint of shortening the film formation time, a higher concentration is preferable, and 1 wt% or more is particularly preferable. The concentration of the solution at which self-organization occurs depends on conditions such as the desired film thickness, solute solubility, pH, and the like, and therefore no strict concentration setting is required. Further, since adsorption is based on charge neutralization and re-saturation, other substances may be included in the solution as long as self-assembly is not hindered. Specifically, in the case of a polymer ion solution, the upper limit is preferably 40 wt% or less, more preferably 20 wt% or less, particularly preferably 10 wt% or less, and the lower limit is preferably 0.001 wt% or more. The saturated solution may be diluted or used as it is, more preferably 0.01 wt% or more, particularly preferably 0.1 wt% or more. In the case of a fullerene derivative solution, the upper limit is preferably 1 × 10-1mol / L or less, more preferably 1 × 10-2mol / L or less, particularly preferably 1 × 10-3mol / L or less, preferably the lower limit is 1 × 10-7mol / L or more, more preferably 1 × 10-6mol / L or more, particularly preferably 1 × 10-5Although mol / L or more is good, it is not limited to this concentration range.
[0021]
The pH of the solution in the present invention is not limited as long as the solution is sufficiently charged, and HCl, H, and2SO4Inorganic acids such as CH3You may prepare with organic acids, such as COOH, inorganic bases, such as NaOH and KOH, or an organic base. Of course, a plurality of acids and bases may be mixed and adjusted to a desired pH. The pH of the two solutions is preferably different by 1 or more, particularly 3 or more.
[0022]
The temperature, immersion and rinsing time of the solution in the present invention are not particularly limited, but practically, it is preferably not less than the temperature at which the solution does not freeze and not more than 1 second to 1 hour. Stirring may be performed as necessary, and about 1 to 1000 rpm is preferable. Moreover, you may perform drying operation as needed.
The thickness of the film 1 layer, the film area, and the distance between the electrodes are not particularly limited, but practically, the lower limit of the thickness of the film 1 layer is 2 nm or more, particularly 100 nm or more, and the upper limit is 10 μm or less, particularly 5 μm or less. The film area has a lower limit of 2 nm if there is no mechanical problem.2Above, especially 1μm2Above, upper limit 100m2Below, especially 10cm2In the following, the distance between the electrodes is preferably prepared such that the lower limit is 2 nm or more, particularly 100 nm or more, and the upper limit is 10 cm or less, particularly 10 μm or less. The number of laminations can theoretically be infinite, but practically, the lamination film thickness is preferably 5 μm or less, particularly 1 μm or less, and the shape of the electrode is a comb, band, circle, square electrode, etc. Any shape can be used. In the examples described later, the film forming speed was about 30 kg / 40 seconds for one set of alternately laminated layers. However, depending on the conditions such as the solution concentration and the stirring method, the film forming speed is, for example, 10 times or more, 100 times or more, or 1 / 10 or less, 1/100 or less, and the like.
[0023]
Next, the device configuration of the present invention, which is the second feature of the present invention, will be described. The device of the present invention may have any structure as long as it does not impede the function of the proton conductor film of the present invention, such as a well-known configuration in which protons are conducted in the thickness direction of the membrane (FIG. 1). However, for example, as shown in FIG. 2, the structure in which protons are conducted in the in-plane direction of each layer constituting the proton conductor membrane can more effectively use the proton conductor sandwiched between the layers. preferable. FIG. 2 shows that (1) is a substrate, (2) and (3) are electrodes, and (4) sandwiched between them is an alternating layered film of a charge layer (5) and a proton conducting layer (6). Each proton conductor membrane is shown.
[0024]
The mechanism of proton conduction will be described with reference to FIG. 3, taking the preferred device configuration of FIG. 2 as an example. FIG. 3 shows a cross-sectional view of a part of the laminated structure of proton conductor membranes. As in FIG. 2, (5) shows a charge layer, (6) shows a proton conducting layer, and (7) shows protons generated from the proton conducting layer. Although the electrodes are not shown in the figure, it is assumed that they are on the left and right in FIG. 3 and the proton conductor membrane is sandwiched between them. Here, for example, when the left electrode is a hydrogen electrode and the right electrode is an oxygen electrode, the proton (7) dissociated from the fullerene derivative is a proton conducting layer from the hydrogen electrode to the oxygen electrode (from left to right in the figure). Move along. That is, although the conventional fullerene derivative compression-molded membrane was accidentally connected to the proton channel due to an increase in the density of the proton conductive functional group, the gap remained and was inefficient. It can be said that the direction of proton movement is controlled by a three-dimensional structure formed by stacking a plurality of layers. Moreover, since the method of the present invention is only immersed in the fullerene derivative solution, it is superior to compression molding in that decomposition and modification of the fullerene derivative can be avoided.
[0025]
The proton conductivity of the proton conductor membrane of the present invention varies depending on the film forming conditions, device configuration, and the like.-5S / cm or more, more preferably 5 × 10 5-5S / cm or more, especially 1 × 10 under particularly preferable conditions-4Those having S / cm or more are produced. Moreover, since the below-mentioned Example uses the fullerene hydroxide, it has moldability and is expected to be used in a temperature range of -40 to 160 ° C. A film having a desired performance can be produced by selecting a material having appropriate resistance. Furthermore, since the method of the present invention allows a plurality of layers to be stacked in a desired order, a charge layer and a proton conductive layer having various functions such as gas permeation prevention ability, thin film moldability, acid resistance, and heat resistance are alternately stacked. As a result, it is possible to produce a composite functional element such as a fuel cell in which the charge layer has appropriately controlled functions and these functions are expressed very efficiently.
[0026]
The proton conductor membrane of the present invention can be used as an electrochemical device suitable for various applications such as fuel cells and sensors. For example, the proton conductor of the present invention can be preferably applied to an electrochemical device in which the electrode is a gas electrode, an electrochemical device using an active material electrode as the electrode, and the like. The application to the fuel cell will be described in more detail. In FIG. 1, the proton conductor of the present invention is sandwiched between the fuel electrode and the oxygen electrode, and used as an electrochemical device, so that proton conduction at the nano level (molecular level). An electrochemical device capable of controlling body performance can be obtained in a short time.
[0027]
Formation of the proton conductor membrane of the present invention can be easily confirmed using an appropriate analysis technique. Preference is given to a method for measuring the amount of minute adsorption using a crystal oscillator. Quartz oscillators, known as microbalances, reduce the weight of a substance adsorbed on the surface by a change in frequency to about 10%.-9It is a device that can measure with accuracy of g. The incorporation of fullerene derivatives into the film can be confirmed by spectroscopic techniques, for example, measurement methods such as ultraviolet-visible (UV-Vis) spectrum, infrared absorption (IR) spectrum, and Raman spectrum. The formed film thickness can be measured with a UV spectrum simply and accurately using an apparatus such as a film thickness meter or an ellipsometer.
[0028]
In the proton conductor membrane of the present invention, the membranes are alternately and alternately laminated because the number of laminations and the film thickness obtained by the above method, for example, the film thickness of the film thickness meter and the UV-visible absorption spectrum intensity are almost Lambert. -It can be confirmed by following the rules of Berr.
As described in detail above, the present inventor has formed a proton conductor high-density membrane by the alternating lamination method, and as a result of the close interaction of proton dissociative functional groups, this molecular level is controlled. For the first time, we have found that these membranes exhibit very high proton conductivity (proton dissociation from the phenolic hydroxyl group of fullerene hydroxide) as a macro aggregate. In other words, it can be inferred that the conventional compression-molded membrane has proton conduction due to a proton channel that is accidentally connected, but by the above method proposed by the present inventors, individual molecules arranged at the molecular level can be estimated. The molecular group will dramatically improve macro proton conductivity.
[0029]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded.
(Synthesis Method of Fullerene Hydroxide) Literature (Chiang, L.Y., Wang.L.Y., Sirczewski.J.W., Soled S. and Cameron, S., J. Org. Chem., Vol. 59) 3960, 1994), and was synthesized. C60/ C702 g of the fullerene mixture (manufactured by Frontier Carbon Co., Ltd.) was placed in 30 mL of fuming sulfuric acid and stirred for 3 days while maintaining the temperature at 60 ° C. in a nitrogen atmosphere. The obtained reaction product was dropped little by little into anhydrous diethyl ether cooled in an ice bath, and the resulting precipitate was separated by centrifugation, 3 times with diethyl ether, and 2: 1 of diethyl ether and acetonitrile. After washing twice with the mixed solution, it was dried under reduced pressure at 40 ° C. Further, this dried product was put into 60 mL of ion exchange water and stirred for 10 hours while performing nitrogen bubbling at 85 ° C. A precipitate was separated from the reaction product by centrifugation, this precipitate was washed several times with pure water, centrifuged repeatedly, and then dried at 40 ° C. under reduced pressure. The brown powder thus obtained was subjected to Fourier transform infrared absorption spectrum (FT-IR) measurement and nuclear magnetic resonance spectrum (NMR) measurement.60(OH)12IR and1H,13Since it almost coincided with the C-NMR spectrum, the obtained powder was confirmed to be the fullerene hydroxide as the target substance.
[0030]
(Example 1) Production of fullerene hydroxide alternate laminated film
A band-shaped mask having a width of 1 cm was applied to both ends of a quartz glass substrate (5 cm × 5 cm square, S0-5050, manufactured by Furuuchi Chemical Co., Ltd.) as an electrode deposition portion. The surface of the substrate was hydroxylated by hydrophilizing with a potassium hydroxide aqueous solution. 7 wt% aqueous solution (solution 1) of Polydimethyldimethylammonium chloride (Aldrich PDDA, polymer electrolyte having positive charge) adjusted to pH 9 with sodium hydroxide, and hydroxylated to pH 13.5 with 0.1 wt% sodium hydroxide aqueous solution Fullerene 5X10-3A mol / L aqueous solution (Solution 2) was prepared. Two cycles were alternately laminated on a quartz substrate by immersing the solution 1 for 10 seconds and then washing with water for 5 seconds, and dipping the solution 2 for 10 seconds and then washing with water for 5 seconds as one cycle. All the water used here was ultrapure water. Film thickness measurement with a film thickness meter and UV measurement were performed to monitor the film formation status. FIG. 4 shows the UV measurement results every 10 cycles. In the figure, the horizontal axis indicates the wavelength, the vertical axis indicates the absorbance, and the six lines indicate the results after 10 to 60 cycles in order from the bottom. As the number of cycles increased, an increase in absorbance derived from fullerene hydroxide was observed in the vicinity of a wavelength of 235 nm. FIG. 5 shows the relationship between the number of cycles (horizontal axis) and the absorbance at a wavelength of 235 nm (vertical axis). It can be seen that the films are uniformly and alternately laminated, and that the cycle number and UV intensity are Lambert-Beer. It was confirmed by following the law. The fact that the films were alternately and alternately laminated is that in FIG. 6 showing the relationship between the number of cycles (horizontal axis) and the film thickness (vertical axis) measured with a film thickness meter, the film thickness is proportional to the number of cycles. Was also confirmed. In FIG. 6, since the film thickness obtained by laminating 60 cycles was about 2000 mm, the average film thickness per cycle was estimated to be 33 mm. Yanjing Liu, Yuxion Wang, Hongxia Lu and Richard 0. According to Claus The Journal of Physical Chemistry B, 103, 2035, 1999, the film thickness of PDDA by ellipsometry is described as 6 mm. Therefore, considering that the diameter of one fullerene molecule is about 10 mm, According to the method of the present invention, it can be said that fullerene-containing films of fullerenes can be laminated in a state where each layer is close to a monolayer by an ultra-high-speed wet process.
[0031]
Next, the substrate is dried under a nitrogen gas atmosphere, and the tape that masks the electrode deposition location is peeled off. This time, the electrode portion is deposited. Gold was vacuum deposited. For vacuum deposition, a normal apparatus is used, and a 0.6 g gold wire (manufactured by Furuuchi Chemical Co., Ltd., purity 99.99%) is placed on the boat, and the degree of vacuum is 4 × 10.-5Film formation was performed at Torr for 5 minutes. The deposition thickness of the gold electrode portion was 3000 mm, which was about 1000 mm thicker than the previously produced alternate laminated film from the film thickness measurement by the film thickness meter. The device as shown in FIG. 1 was produced as described above. Here, since 1 cm of both ends of the 5 cm substrate became the electrodes, the distance between the electrodes was 3 cm.
[0032]
(Comparative Example 1) Production of fullerene hydroxide compression molded membrane
A reproduction of the electrolyte membrane described in Patent Document 1 was produced. A round pellet having a diameter of 1 cm and a thickness of 0.25 mm was produced using 60 mg of fullerene hydroxide powder using a tableting molding machine for IR measurement. Press pressure is 5t · cm-2Met.
(Impedance measurement) An electrical conductivity measurement connector equipped with a smooth copper electrode was prepared and brought into close contact with the gold electrode portions at both ends of Example 1, and an impedance analyzer 3522 made by HIOKI at room temperature and in an open air system. The proton conductivity was determined by the AC impedance method using -50 and 3532-50. In addition, a platinum electrode having a diameter of 10 mm and a thickness of 0.1 mm was pressed onto both surfaces of the pellet of Comparative Example 1, and the proton conductivity was measured in the same manner as the device of Example 1 using an electrochemical cell for measuring electrical conductivity. Asked. 7 and 8 show the impedance measurement results in Example 1 and Comparative Example 1. FIG. In each case, the horizontal axis represents the real part resistance value, and the vertical axis represents the imaginary part resistance value. About each measurement result, proton conductivity was calculated | required from the X-axis intercept of the circular arc seen by the high frequency side. The results are summarized in Table 1. The conductivity of the device fabricated using the alternately laminated proton conductive membrane using the fullerene hydroxide of Example 1 is 3 × 10-4S · cm-1Met. This is 1.2X10 of a comparative example in which the same fullerene hydroxide is compression molded.-5S · cm-17 × 10 described in Patent Document 1 (conductivity measured in the thickness direction of 350 μm)-6S · cm-1However, the value was improved by 2 digits. Further, it was found that the device of the present invention conducts at a distance as far as 3 cm as compared with the thickness of the comparative example of 0.25 mm.
[0033]
[Table 1]
Figure 2005026119
[0034]
【The invention's effect】
The present invention provides a proton conductor membrane that has a high proton conductivity, has few restrictions on the atmosphere, and can be fabricated in a short time by controlling the proton transfer path at the molecular level by an alternate lamination method. This proton conductor membrane can be used for equipment parts such as fuel cells and electrochromic display sensors.
[Brief description of the drawings]
FIG. 1 is a conventional device configuration diagram.
FIG. 2 is a device configuration diagram of the second embodiment.
FIG. 3 is a schematic diagram showing a proton conduction mechanism.
4 is a UV spectrum measurement result of Example 1. FIG.
FIG. 5 is a correlation diagram between the number of cycles and UV absorption intensity in Example 1.
6 is a correlation diagram between the number of cycles and film thickness in Example 1. FIG.
7 is a measurement result of complex impedance in Example 1. FIG.
FIG. 8 shows measurement results of complex impedance of a comparative example.
[Explanation of symbols]
1 Substrate
2 electrodes
3 electrodes
4 Proton conductor membrane
5 Charge layer
6 Proton conduction layer
7 Proton

Claims (5)

自己組織化による交互積層法を利用して作製したプロトン伝導体膜。Proton conductor membrane fabricated using self-organized alternating lamination method. 電荷及びプロトン伝導率が異なる2種類以上の層から成る請求項1に記載の膜。The membrane according to claim 1, comprising two or more types of layers having different charge and proton conductivity. 高分子イオン層と炭素材料層とからなる請求項1乃至2の何れかに記載の膜。The film according to claim 1, comprising a polymer ion layer and a carbon material layer. プロトンが、プロトン伝導体膜を構成する各層の面内方向に伝導されることを特徴とするデバイス構成における請求項1乃至3の何れかに記載の膜。The membrane according to any one of claims 1 to 3, wherein protons are conducted in an in-plane direction of each layer constituting the proton conductor membrane. 自己組織化による交互積層法によりプロトン伝導体膜を作製する方法。A method of producing a proton conductor film by an alternating lamination method by self-assembly.
JP2003191390A 2003-07-03 2003-07-03 Self-organization proton conductor film Pending JP2005026119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003191390A JP2005026119A (en) 2003-07-03 2003-07-03 Self-organization proton conductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003191390A JP2005026119A (en) 2003-07-03 2003-07-03 Self-organization proton conductor film

Publications (1)

Publication Number Publication Date
JP2005026119A true JP2005026119A (en) 2005-01-27

Family

ID=34189017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003191390A Pending JP2005026119A (en) 2003-07-03 2003-07-03 Self-organization proton conductor film

Country Status (1)

Country Link
JP (1) JP2005026119A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260797A (en) * 2005-03-15 2006-09-28 Samsung Sdi Co Ltd Proton conductive electrolyte film for fuel cell, its manufacturing method as well as device, and fuel cell
WO2009157420A1 (en) * 2008-06-23 2009-12-30 国立大学法人豊橋技術科学大学 Thin film fuel cell and method for manufacturing thin film fuel cell
JP2014527691A (en) * 2011-08-04 2014-10-16 シバラジャン,ラメッシュ Improved proton exchange membrane layer for fuel cells and related applications
KR20170052501A (en) * 2015-11-02 2017-05-12 세종대학교산학협력단 Separator for redox-flow battery and redox-flow battery including the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260797A (en) * 2005-03-15 2006-09-28 Samsung Sdi Co Ltd Proton conductive electrolyte film for fuel cell, its manufacturing method as well as device, and fuel cell
WO2009157420A1 (en) * 2008-06-23 2009-12-30 国立大学法人豊橋技術科学大学 Thin film fuel cell and method for manufacturing thin film fuel cell
JP2014527691A (en) * 2011-08-04 2014-10-16 シバラジャン,ラメッシュ Improved proton exchange membrane layer for fuel cells and related applications
US9637831B2 (en) 2011-08-04 2017-05-02 Ramesh Sivarajan Proton exchange membrane layers for fuel cells and related applications
US9725813B2 (en) 2011-08-04 2017-08-08 Ramesh Sivarajan Proton exchange membrane layers for fuel cells and related applications
KR20170052501A (en) * 2015-11-02 2017-05-12 세종대학교산학협력단 Separator for redox-flow battery and redox-flow battery including the same
KR101877634B1 (en) * 2015-11-02 2018-07-16 세종대학교산학협력단 Separator for redox-flow battery and redox-flow battery including the same

Similar Documents

Publication Publication Date Title
Wang et al. Covalent organic framework-based materials for energy applications
Zhao et al. Multifunctional nanostructured conductive polymer gels: synthesis, properties, and applications
Wang et al. Constructing amino-functionalized flower-like metal–organic framework nanofibers in sulfonated poly (ether sulfone) proton exchange membrane for simultaneously enhancing interface compatibility and proton conduction
Xiang et al. Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors
Inzelt et al. Electron and proton conducting polymers: recent developments and prospects
Naji et al. Fabrication of SGO/Nafion-based IPMC soft actuators with sea anemone-like Pt electrodes and enhanced actuation performance
Hu et al. Ion/Molecule-selective transport nanochannels of membranes for redox flow batteries
Zhao et al. Layer-by-layer self-assembly of polyaniline on sulfonated poly (arylene ether ketone) membrane with high proton conductivity and low methanol crossover
Bora et al. Flexible asymmetric supercapacitor based on functionalized reduced graphene oxide aerogels with wide working potential window
Li et al. Engineering conformal nanoporous polyaniline via oxidative chemical vapor deposition and its potential application in supercapacitors
Mahmood et al. Fused aromatic network structures as a platform for efficient electrocatalysis
KR20090025229A (en) High fidelity nano-structures and arrays for photovoltaics and methods of making the same
Wang et al. All‐in‐one hollow flower‐like covalent organic frameworks for flexible transparent devices
AU2011279530A1 (en) Material and applications therefor
Wang et al. Two‐dimensional metal‐organic frameworks and covalent organic frameworks
Lin et al. Layer-by-layer self-assembly of in situ polymerized polypyrrole on sulfonated poly (arylene ether ketone) membrane with extremely low methanol crossover
Xue et al. Layer-by-layer self-assembly of CHI/PVS–Nafion composite membrane for reduced methanol crossover and enhanced DMFC performance
Pagidi et al. Synthesis of highly stable PTFE-ZrP-PVA composite membrane for high-temperature direct methanol fuel cell
Li et al. Highly stable β-ketoenamine-based covalent organic frameworks (COFs): synthesis and optoelectrical applications
Liu et al. One‐Pot Synthesis of Fully‐Conjugated Chemically Stable Two‐Dimensional Covalent Organic Framework
Kim et al. Proton exchange membranes with high cell performance based on Nafion/poly (p-phenylene vinylene) composite polymer electrolyte
Xu et al. Space-partitioning and metal coordination in free-standing covalent organic framework nano-films: over 230 mWh/cm3 energy density for flexible in-plane micro-supercapacitors
Shang et al. Preparation and characterization of organic-inorganic hybrid anion exchange membrane based on crown ether functionalized mesoporous SBA-NH2
Nam et al. Sulfur-doped hierarchically porous open cellular polymer/acid complex electrolyte membranes for efficient water-free proton transport
Singh et al. High-temperature proton conduction in covalent organic frameworks interconnected with nanochannels for reverse electrodialysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091013