JP2005026003A - 有機el素子の製造方法 - Google Patents

有機el素子の製造方法 Download PDF

Info

Publication number
JP2005026003A
JP2005026003A JP2003188323A JP2003188323A JP2005026003A JP 2005026003 A JP2005026003 A JP 2005026003A JP 2003188323 A JP2003188323 A JP 2003188323A JP 2003188323 A JP2003188323 A JP 2003188323A JP 2005026003 A JP2005026003 A JP 2005026003A
Authority
JP
Japan
Prior art keywords
organic
layer
manufacturing
coating
organic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003188323A
Other languages
English (en)
Inventor
Emiko Kanbe
江美子 神戸
Masahiro Shinkai
正博 新海
Akira Ebisawa
晃 海老沢
Tomoji Shirai
智士 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2003188323A priority Critical patent/JP2005026003A/ja
Publication of JP2005026003A publication Critical patent/JP2005026003A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

【課題】有機EL素子の長寿命化及び高輝度化を実現できる製造方法を提供する。
【解決手段】まず、ITOから成る電極層11を形成した基板10上にホール注入層塗布溶液を塗布して塗膜を形成し、引き続き、その塗膜上に発光層塗布溶液を塗布して塗膜を形成する。次に、この基板10を加熱槽に収容し、一定の加圧・加熱条件でそれらの塗膜を乾燥・固化させて第1有機層12及び第2有機層13を一括形成する。これにより、両有機層12,13の界面に混合層20が形成される。その後、その上にLiF及びAlを蒸着し電極層15を形成して有機EL素子1を得る。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、有機EL(電界発光:Electro Luminescence)素子の製造方法に関する。
【0002】
【従来の技術】
コダック社による真空蒸着法を用いた積層型有機EL素子の発表以来、有機ELディスプレイの開発が盛んに行われ現在実用化されつつある。このような積層型有機EL素子の形成は、低分子系色素を真空蒸著することによって行われる。しかし、かかる真空蒸着法を用いた場合、均質で欠陥を殆ど有さない薄膜を得ることは極めて困難であると共に、複数の有機層を形成するには長時間を要するため素子製造のスループットが低下してしまうという問題がある。
【0003】
これに対し、生産性をより高めるべく、有機層を構成する有機材料を適宜の溶媒(溶剤)に溶解させた溶液を塗布した後、その溶媒を除去する湿式法が盛んに研究されている。このような湿式法を用いた塗布型有機EL素子の形成方法としては、ガラス基板上に陽極としての透明電極層、ホール注入層、発光層、及び陰極としての電極層を順次形成させる方法を例示できる。この構成の素子においては、ホール注入層として、水系溶媒への溶解性又は分散性に優れるPEDOT/PSS(ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸)等の有機材料が多用されている。また、ホール注入層形成用の塗布液としては有機溶媒(非水系溶媒)を用いる方法も一般に行われている。
【0004】
このような湿式法を用いた場合、通常は、透明電極層上に成膜されたホール注入層用の塗膜の乾燥処理が行われ、その後、発光層を形成するための塗膜形成及び乾燥が引き続き実施される。特に、有機EL素子は水分の存在により素子機能の劣化が激しいことから、ホール注入層の形成にPEDOT/PSS等の水溶液を使用した場合には、発光層の形成前に乾燥処理が必須とされる傾向にある。また、有機溶媒の溶液を用いた場合でも、有機溶媒が残存すると有機層の一部欠落を招きやすいことがあり、こうなると有機EL素子の発光時にダークスポットが発生するといった不都合があることから、有機層の形成毎に乾燥処理が行われていた。
【0005】
このような溶媒乾燥の方法としては、除去効率を高めるべく溶液が塗布された基板を減圧環境下において溶媒を蒸発させる減圧乾燥方式(例えば、特許文献1参照)が挙げられる。また、溶剤の乾燥を促進しつつ、有機層とその被着層の界面の凹凸を増やしてその界面における発光面積を増大すべく、加熱乾燥方式が提案されている(例えば、特許文献2参照)。
【0006】
【特許文献1】
特開1997−97679号公報
【特許文献2】
特開2002−313567号公報
【0007】
【発明が解決しようとする課題】
しかし、これまでのところ、如何なる塗布乾燥方式を用いても、湿式法で形成された有機層を備える有機EL素子は、その寿命(一般に、一定電流で連続駆動した場合に輝度が半分になる時間)が、蒸着法によって形成された同構造の有機EL素子に比して短いという問題があった。その程度は発光材料や輝度によって異なるものの、湿式法で形成されたものは蒸着法で形成されたものに比して寿命が概ね桁違いに短い傾向にある。特に青色発光材料を用いたもののなかには、蒸着法の1/100程度の寿命しか有さないものも挙げられる。また、従来の塗布型有機EL素子のなかには、その発光輝度が未だ不十分なものがあり、更なる輝度の向上による実用的な面発光ディスプレイへの適用が熱望されている。
【0008】
そこで、本発明はかかる事情に鑑みてなされたものであり、有機層の形成に湿式法を用いた場合にも、製造される有機EL素子の長寿命化を実現できると共に、発光効率を向上できる有機EL素子の製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明による有機EL素子の製造方法は、電極間に複数の有機層を備える有機EL素子を製造する方法であって、複数の有機層のうち少なくとも二つの有機層を構成するそれぞれの材料が溶媒に溶解又は分散されて成るそれぞれの溶液(塗布溶液)を基板上に連続して塗布する塗布工程と、そのような塗布により形成された少なくとも二つの塗膜を同時に加熱してそれら少なくとも二つの有機層を形成せしめる加熱工程とを備えることを特徴とする。
【0010】
このような製造方法では、塗布工程において複数の塗布溶液の塗布による塗膜の形成が連続して実施された後、加熱工程において、それらの塗膜が一括して加熱処理され、複数の有機層が形成される。具体的に例示すると、複数の有機層が、少なくとも例えば発光層と電子注入層である場合、基板上に発光層用の塗膜を形成した後、それを乾燥せずに更にその上に電子注入層用の塗膜を連続的に形成する。そして、それらの塗膜を同時に加熱して発光層と電子注入層を一括して形成せしめる。
【0011】
こうすることにより、乾燥前の状態で隣接する塗膜の一部が接触し、それらの流動性により、塗膜同士の界面領域において言わば混合層が形成される。通常、有機EL素子を構成する有機層ひいてはそれを形成するための塗膜は極めて薄い(例えば数百〜数千Åオーダー)ものの、連続塗布によって積極的な攪拌混合が生じて両者の大部分が混合されることはなく、界面の極めて狭小な領域で一方が他方に染み込むような状態が生起されるものと推定される。ただし、作用はこれに限定されない。よって、それぞれの有機層はその機能を十分に発揮しつつ、そのような混合層の形成によって密着性が格段に高められる。
【0012】
その結果、界面近傍の接触面積が増大され、両層成分の両電極に対する連続的な組成変化が生じる。そして、有機EL素子の発光は有機層の界面近傍での電子/ホールの結合効率に依存する傾向にあるので、その部位での層同士の接触面積が増大し、連続的な組成変化が生じることで、効果的なキャリアの閉じこめ効果により、発光効率が高められる。また、有機層同士の密着性が改善されるので、層間剥離が十分に抑止され、そのような剥離の発生に起因する素子劣化が抑えられる。
【0013】
またさらに、隣接する有機層を形成するための塗膜によって先に形成された膜が侵されることを十分に防止するため、連続して形成される少なくとも二つの有機層を構成するそれぞれの材料が溶解される溶媒としてそれぞれ異なるものを用いると好適である。
【0014】
また、加圧工程が有機層を加熱する加熱ステップを有すると好適である。このように加圧と共に加熱処理を行うと、より短時間で同等の密着性向上効果を得易くなる。
【0015】
具体的には、加熱ステップにおいては、有機層を構成する材料のガラス転移点よりも高い温度に加熱するとより好ましい。特に他の有機層が既に形成されている場合には、それらの有機層のなかで最も低いガラス転移点(Tg)よりも高い温度に加熱すると更に好適であり、この場合、そのTg+200℃以下の温度に加熱することが望ましい。
【0016】
また、原則として、加熱温度は有機層を構成する材料の量に依存し、主成分である材料のTgよりも高い温度で加熱すればよく、Tg+200℃以下であることが望ましい。より具体的には、例えば、ドーパントを5%以下含み残部95%がホスト材料から成る場合には、ドーパントの方がホスト材料よりも高いTgを有していたとしても、主成分であるホスト材料のTg以上の温度で加熱すればよく、高い方のTg(この場合ドーパントのTg)よりも高い温度で加熱する必要はない。
【0017】
さらに、ホスト材料は複数の成分で構成されていてもよく、そのような場合であっても、主成分のTgよりも高い温度で熱処理すればよく、最も低いTg+200℃以下の温度で加熱すればよい。ただし、その有機層を構成する材料の分解温度よりも低い温度での加熱を要する点に注意が必要である。ドーパント及びホスト材料のうちいずれか一方の分解温度以上で加熱処理すると、有機層の分解によって有機EL素子としての機能が全く果たせず発光が生じないものとなってしまう。したがって、製造時には有機層の分解を生じない温度で熱処理するような制御が重要となる。
【0018】
より具体的には、有機層を構成する上述した材料の諸特性に鑑みると、通常、200±100℃で加熱処理を行うことが好ましく、200±50℃で加熱処理を行うことがより望ましい。
【0019】
このようにすれば、加圧工程での有機層の流動性が高められ、アニール処理による改質効果と同等の効果が奏されることにより、その有機層と他の層との密着性が一層高められる。また、有機層の加熱温度がそのTg+200℃を超えると、有機層の熱分解が生じ易い傾向にある。
【0020】
また、本発明者らは、当初、湿式法における溶媒の乾燥・除去を促進させる観点から研究を続けていたところ、加熱温度の効果とその温度での成膜処理で形成された有機EL素子の寿命とが予期し得ない関係を有することを見出した。すなわち、当然のことながら、溶剤の沸点に比して加熱温度をより高め且つ周囲を減圧すればする程、溶剤の乾燥は促進される。しかし、上述したように、これでは素子寿命の改善にはつながらない。これに対し、本発明者らは、加熱条件の圧力依存性を広く探求すべく、種々の溶剤を用い、減圧条件のみならず加圧条件下での乾燥処理を実施し有機EL素子を製造した。
【0021】
このときの有機EL素子の具体的な製造手順は以下の通りである。まず、ガラス基板上にITO電極層(陽極)を形成し、その上にホール注入層としてPEDOT/PSS(ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸)を形成し、更にその上に発光層材料としてMEH−PPV(ポリ(2−メトキシ−5−エチルヘキシルオキシ−p−フェニレンビニレン)を各種の溶媒に溶解せしめて成る塗料溶液をスピンコートにより塗布した。次いで、その塗膜が形成された基板を加圧槽内に収容し、窒素雰囲気中、30kPaの加圧条件下、種々の加熱温度で溶剤を乾燥除去して発光層を形成した。それから、その電子注入層上にLiF/Al電極層(陰極)を形成し、有機EL素子を得た。
【0022】
得られた種々の有機EL素子について、それらの寿命特性を評価した。表1に、その結果の概要をまとめて示す。なお、表中に記載の時間は、有機EL素子の初期輝度を100cd/mとし、駆動開始から輝度が初期の半値となるまでの時間、すなわち「半減寿命」を示す。
【0023】
【表1】
Figure 2005026003
【0024】
このように溶液の乾燥温度を180℃以上とした場合には、用いた溶剤の沸点に拘わらず素子寿命の飛躍的な改善が認められた。ここで、もし素子寿命が溶剤の乾燥除去効率に依存すると仮定すると、表1において沸点110℃のトルエンを用い且つ乾燥温度が140℃の場合、及び、沸点138℃のm−キシレンを用い且つ乾燥温度が140℃の場合にも、半減寿命が1000hrを超えることが予想されるが、結果はそれに反する。また、m−キシレンとのアナロジーから推定すれば、溶媒沸点と乾燥温度が略同じであるp−シメンを用い且つ乾燥温度が180℃の場合には、大きな寿命改善効果は期待できないはずであるが、この予想に反する結果が得られた。
【0025】
また、この実験は上述したように加圧条件で実施したものであるが、減圧条件としたこと以外は同様にして(つまり従来の方法で)有機EL素子を製造し、その寿命評価を行ったところ、表1に示すような十分な寿命改善効果は得られなかった。
【0026】
すなわち、加熱工程における溶媒の乾燥除去効率を高めるべく、塗膜の周囲を減圧してももちろん構わないものの、逆に加圧することがより好適である。つまり、加熱工程が、少なくとも二つの塗膜の周囲を大気圧よりも大きな圧力となるように加圧する加圧ステップを有すると有用である。
【0027】
この場合、塗膜同士が互いに加圧されて両者の界面における密着性がより高められると考えられる。ただし、作用はこれに限定されない。よって、層同士の密着性が更に向上されるので、層間剥離の発生及びそれに起因し得る素子劣化が一層抑制され得る。
【0028】
具体的には、加圧ステップでは、圧力が好ましくは0.98〜1960kPa(0.01〜20kgf/cm)、より好ましくは4.9〜1960kPa(0.05〜20kgf/cm)、特に好ましくは196〜1960kPa(2〜20kgf/cm)の範囲内の値となるように加圧することが望ましい。
【0029】
この圧力が0.98kPa未満であると、加圧による密着性向上効果が十分に奏されない傾向にある。一方、この圧力が1960kPaを超えると、加圧による効果が飽和してしまい、印加圧力に応じた密着性の向上が認められない傾向にある。
【0030】
【発明の実施の形態】
以下、本発明の実施形態について詳細に説明する。なお、図示の便宜上、図面の寸法比率は図示の値に限定されず、また説明のものと必ずしも一致しない。さらに、上下左右等の位置関係については、特に明示しない限り、図面における位置関係に基づくものとする。
【0031】
図1は、本発明の製造方法により製造される有機EL素子の一例を示す模式断面図である。有機EL素子1は、透明ガラス等の透光性材料から成る基板10上に、電極層11(電極)、第1有機層12、第2有機層13、第3有機層14、及び電極層15(電極)が順次形成されたものである。
【0032】
本形態の有機EL素子1において、電極層11,15は、それぞれホール注入電極(陽極)及び電子注入電極(陰極)として機能する。また、第1有機層12、第2有機層13、及び第3有機層14は、それぞれホール注入層、発光層、及び電子注入層として機能するものである。
【0033】
基板10、電極層11、第1有機層12、第2有機層13、第3有機層14、及び電極層15を構成する材料としては、例えば、本出願人による特開2003−142268号公報に記載されている各種材料を用いることができる。
【0034】
ここで、各有機層12,13,14の構成材料をより具体的に例示すると、ホール注入層としてはPVK(ポリ(N−ビニルカルバゾール):Tg=224℃)、PEDOT(ポリ(3,4−エチレンジオキシチオフェン):Tg=190℃)、Cuフタロシアニン等が挙げられ、発光層としてはMEH−PPV(ポリ(2−メトキシ−5−エチルヘキシルオキシ−p−フェニレンビニレン)Tg=80℃)、その他ホストポリマーにドーパントを混合した分子分散型ポリマー発光材料が挙げられ、電子注入層としては下記式(1)で表されるオキサジアゾール誘導体(Tg=137℃)、Alq3(トリス(8−キノリノラト)アルミニウム:Tg=160℃)、Bphen(バソフェナントロリン:Tg=86℃)等が挙げられる。
【0035】
【化1】
Figure 2005026003
【0036】
なお、有機EL素子1においては、図示の如く、第1有機層12及び第2有機層13との間の界面領域に両者の混合層20が形成されている。この混合層20については、後述する有機EL素子1の製造手順についての説明で詳しく言及する。
【0037】
また、各有機層12,13,14に用いる有機材料の種類やその塗布溶媒等に応じて電極層11をホール注入用電極(陽極)とし、且つ電極層15を電子注入用電極(陰極)として用いてもよい。さらに、ホール注入層としての第1有機層12及び電子注入層としての第3有機層14は必ずしも必要ではなく、また、有機層12,13,14の三層構造に限られず、後述するように、例えば第1有機層12及び第2有機層13(ホール注入層と発光層)、又は、第2有機層13及び第3有機層14(発光層と電子注入層)から成る二層構造としてもよい。前者の場合には発光層が電子輸送性を有すると好ましく、後者の場合には発光層がホール輸送性を有することが好ましい。
【0038】
またさらに、必要に応じてその他の有機層として、ホール輸送層、電子輸送層等を更に設けた積層構造としてもよい。さらにまた、各有機層12,13,14は単層でも複層でもよく、複層の場合、各有機層12,13,14を構成する複数の層を異なる機能層としてもよいし、同種の機能層としても構わない。また、電極層11と第1有機層12との界面を改質したり、電荷注入性を改善するためのバッファ層(緩衝層)を更に設けたりしてもよい。
【0039】
このような構成を有する有機EL素子1を作製する方法について以下に説明する。図2は、本発明の製造方法により有機EL素子1を製造する手順の一例を示すフロー図である。ここでは、ホール注入層としての第1有機層12及び発光層としての第2有機層13から成る二層構造を有する有機EL素子1を製造する際の手順について述べる。
【0040】
まず、透明ガラス等の基板10を用意すると共に、PEDOT/PSS(ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸)を塗布溶媒としての水に1.0wt%濃度となるように溶解してホール注入層塗布溶液を調製する。また、MEH−PPVを塗布溶媒としてのm−キシレンに1.5wt%濃度となるように溶解して発光層塗布溶液を調製する。
【0041】
次に、基板10上に電極層11としてのITO電極をスパッタ法等により形成した(ステップS1)後、その上に、ホール注入層塗布溶液をスピンコート法によって所定の膜厚(例えば500Å)となるように一定回転数(例えば2000rpm)で成膜し、第1有機層12用の塗膜を形成する(ステップS2)。ひき続き、その塗膜上に発光層塗布溶液をスピンコート法によって所定の膜厚(例えば800Å)となるように一定回転数(例えば2000rpm)で成膜し、第2有機層13用の塗膜を形成する(ステップS3)。これにより、第1有機層12用の塗膜と第2有機層13用の塗膜との間に、両者が混合されて成り且つ最終的に混合層20とされる領域が形成される。
【0042】
それから、それらの塗膜が形成された基板10を、ヒーター等の加熱手段を備える加熱槽内に載置し、槽内を窒素ガス等の不活性ガス環境とし、一定圧力に保持した状態で且つ一定温度で加熱し、二層の塗膜を同時に乾燥・固化させ、第1有機層12及び第2有機層13を一括して形成せしめる(ステップS4;加熱工程、加圧ステップ)。このとき、両有機層12,13の界面領域に混合層20が形成されるものと考えられる。
【0043】
このとき、槽内の圧力が大気圧よりも大きな圧力、好ましくは0.98〜1960kPa(0.01〜20kgf/cm)、より好ましくは4.9〜1960kPa(0.05〜20kgf/cm)、特に好ましくは196〜1960kPa(2〜20kgf/cm)の範囲内の値となるように圧力調整を行う。また、加熱温度が好ましくはMEH−PPVのガラス転移点(Tg)よりも高い温度、より好ましくはそのTgよりも高く且つそのTg+200℃以下となるように、ヒーター等の出力調整を行う。
【0044】
この例では、具体的には加熱温度が80℃より高い温度、より好ましくは80℃より高く且つ280℃(80℃+200℃)以下であることが望ましい。ただし、MEH−PPVの熱分解が十分に抑制される加熱時間であれば、PEDOT/PSSのTg(190℃)より高い温度で加熱してもよい。
【0045】
ここで、MEH−PPVを溶解させる溶媒としては、他の有機溶媒、例えばトルエン等を用いてもよい。また、ホール注入層としての第1有機層12を形成させる材料として下記式(2)で表されるPTPDPESを用いる場合には、その溶媒としてはモノクロロベンゼン等を例示できる。この場合、第2有機層13用の構成材料であるMEH−PPVの溶媒としてモノクロロベンゼンを使用することも不可能ではないが、PTPDPES溶液とMEH−PPV溶液との過度の混合を避ける観点から、MEH−PPVの溶媒としては、モノクロロベンゼンと異なる例えば上記のトルエンを用いることが好ましい。
【0046】
【化2】
Figure 2005026003
【0047】
次に、その基板10を加熱槽から取り出し、第2有機層13上に、Ca及びAlを所定厚さ(例えば、Ca:60Å、Al:2500Å)で順次真空蒸着等して電極層15を形成させて有機EL素子1を得る(ステップS5)。なお、各有機層や電極層の劣化を防止すべく、有機EL素子1上を封止板等により封止することが好ましい。
【0048】
図3は、本発明の製造方法により有機EL素子1を製造する手順の他の例を示すフロー図である。この手順は、発光層としての第2有機層13及び電子注入層としての第3有機層14から成る二層構造を有する有機EL素子1を製造する際のものであり、ホール注入層塗布溶液に代えて電子注入層塗布溶液を調製し、且つ、ステップS2〜S4の代わりにそれぞれステップS6〜S8を実施すること以外は、図2に示す手順と同様である。電子注入層塗布溶液は、上記式(1)で表されるオキサジアゾール誘導体を塗布溶媒としての2−エトキシエタノールに0.5wt%濃度となるように溶解して調製する。
【0049】
ステップS6においては、基板10に設けられた電極層11の上に、発光層塗布溶液をスピンコート法によって所定の膜厚(例えば500Å)となるように一定回転数(例えば3500rpm)で成膜し、第2有機層13用の塗膜を形成する。また、ステップS7においては、その塗膜上に、電子注入層塗布溶液をスピンコート法によって所定の膜厚(例えば50〜100Å)となるように一定回転数(例えば1500rpm)で成膜する。これにより、両塗膜の界面領域に混合層20と同様の混合領域が形成される。
【0050】
さらに、ステップS8(加熱工程、加圧ステップ)においては、それらの塗膜が形成された基板10を、ヒーター等の加熱手段を備える加熱槽内に載置し、槽内を窒素ガス等の不活性ガス環境とし、一定圧力に保持した状態で且つ一定温度で加熱し、二層の塗膜を同時に乾燥・固化させ、第2有機層13及び第3有機層14を一括して形成せしめる。この際、両有機層13,14の界面領域に混合層が形成され得る。
【0051】
このステップS8における加熱条件及び圧力条件は、前述したステップS4におけるのと同様である。ただし、ただし、MEH−PPVの熱分解が十分に抑制される加熱時間であれば、好ましくは上記式(1)で表されるオキサジアゾール誘導体のTgである137℃より高い温度、より好ましくは137℃より高く且つ280℃(80℃+200℃)の温度で加熱してもよい。
【0052】
ここで、電子注入層としての第3有機層14を形成させる材料として上述したAlq3やBphenを用いる場合、その溶媒としては、上記式(1)で表されるオキサジアゾール誘導体と同様に2−エトキシエタノール等を用いることができる。
【0053】
図4は、本発明の製造方法により有機EL素子1を製造する手順の更に他の例を示すフロー図である。この手順は、図1に示す三つの有機層12,13,14を有する有機EL素子1を製造する際のものであり、ステップS2,S3を実施した後にステップS7を実施し、且つ、その後のステップS4に代えてステップS9を実施すること以外は、図2に示す手順と同様である。
【0054】
ステップS9においては、各有機層12,13,14用の各塗膜が形成され且つ隣接する塗膜間に混合領域が形成された基板10を上述した加熱槽内に載置し、槽内を窒素ガス等の不活性ガス環境とし、一定圧力に保持した状態で且つ一定温度で加熱し、三層の塗膜を同時に乾燥・固化させ、第1有機層12、第2有機層13及び第3有機層14を一括して形成せしめる。この際、各有機層12,13,14の各界面領域に混合層が形成され得る。このステップS9における加熱条件及び圧力条件は、前述したステップS4におけるのと同様である。
【0055】
このようにして製造された有機EL素子1及び本発明によるその製造方法によれば、各有機層12,13,14用の塗膜を連続して形成し、各塗膜間に混合領域を生成させたものを、ステップS4,S8,S9において同時に加熱・加圧処理して混合層20等を形成せしめるので、各有機層12,13,14同士の密着性が高められる。よって、各有機層12,13,14間の界面における被着面積が増大し、その結果、発光効率が高められて有機EL素子1の輝度を格段に向上できる。
【0056】
また、隣接する有機層12,13,14同士の密着性が高まるので、経時劣化による界面剥離の発生を十分に抑止できる。よって、素子劣化が抑えられ、素子寿命を延長させることが可能となる。したがって、塗布形成された有機層を備える有機EL素子1の動作安定性及び信頼性を格別に向上させることができる。
【0057】
ここで、図5は、有機EL素子1における混合層20近傍の要部を模式的に示す断面図である。本発明の製造方法によれば、同図に示す如く、下層である第1有機層12の表層に、上層である第2有機層13を構成する有機物質13aが言わば「染み込んだ」状態で存在する混合層20が形成されるものと推定される。このような形態が生起されることにより、前述した有機層12,13間の密着性が格段に高められる。また、図3及び図4に示す手順で作製される有機EL素子1においても、これと同様にして混合層が形成され各有機層12,13,14間の密着性が向上される。
【0058】
これに対し、図6は、従来の湿式法により製造される有機EL素子の有機層境界部の要部を模式的に示す断面図であり、参考のために図5と対比して示す。同図に示すように、各有機層を個別に塗布・乾燥して得られる従来の素子では、有機層52の最上部に不活性ガス下での加熱を行っても 微量の酸素により酸化皮膜52aを生じる。このような有機層52の表面改質により、下層である有機層52と上層である有機層を構成する有機物質53aとは、全体として単に接している程度に積層されているものと推定される。このような形態により界面剥離が比較的生じ易くなることが、素子の信頼性及び寿命の低下を来たし易くする要因の一つと想定される。ただし、各作用は上記のものに限定されない。
【0059】
また、各有機層12,13,14を形成する際に、加熱乾燥に加えて加圧処理を施して塗膜を乾燥・固化させるので、形成される各層間の密着性、及び、電極層11が形成された基板10と各有機層12,13,14との密着性が更に高められる。これにより、各有機層12,13,14の界面剥離を更に有効に防止して素子劣化が抑制され、素子寿命を一層延長させることができる。
【0060】
また、各有機層12,13,14間に混合層が形成される結果、層間のエネルギー障壁が見かけ上連続的に変化する状態が生起され、もって電子及びキャリアの注入効率が高まってエネルギー効率が向上されることによっても素子寿命が延長され得る。さらに、各有機層12,13,14を個別に乾燥する工程を省略できるので、有機EL素子1の製造プロセスが簡略化され、生産効率を向上でき、且つ、製造コストを低減できる利点がある。
【0061】
なお、本発明は上述した実施形態に限定されるものではなく、その要旨を変更しない限度において様々な変形が可能である。例えば、各有機層12,13,14を形成する際の溶液塗布法としては、スピンコート法以外に、キャスト法、ディップコート法、スプレーコート法等を用いてもよい。
【0062】
さらに、各有機層12,13,14を全て加熱又は加熱・加圧処理する必要はなく、これらのうち少なくともいずれか二層をそのように処理してもよい。またさらに、加圧処理を行わなくてもよい。なお、有機EL素子1への入熱を軽減してサーマルバジェットを改善する観点からは、加熱又は加熱・加圧処理する層数は二層以上で極力少ない方が望ましい。一方、各層間の密着性、及び電極層11が形成された基板10と各有機層12,13,14との密着性をより高めて寿命延長を図る観点からは、加熱又は加熱・加圧処理する層数は多い方が望ましい。
【0063】
【実施例】
以下、実施例により本発明の内容をより具体的に説明するが、本発明はそれらの実施例に限定されるものではない。
【0064】
〈実施例1〉
まず、透明ガラス製の基板10を用意すると共に、1wt%濃度のPEDOT/PSSを用い、ホール注入層塗布溶液を調製した。また、MEH−PPVを塗布溶媒としてのm−キシレンに3wt%濃度となるように溶解して発光層塗布溶液を調製した。またAlq3を塗布溶媒としてのジメチルアセトアミドに1.0wt%濃度となるように溶解して電子注入層塗布溶液を調製した。
【0065】
次に、基板10上にITO電極を蒸着法により形成した後、その上に、ホール注入層塗布溶液をスピンコート法によって膜厚500Åとなるように回転数2000rpmで成膜し、続けて、発光層塗布溶液をスピンコート法によって膜厚800Åとなるように回転数2000rpmで成膜し、更にその塗膜上に電子注入層塗布溶液をスピンコート法によって膜厚が100Åとなるように回転数1000rpmで成膜した。
【0066】
次いで、これらの膜が形成されたガラス基板を加圧槽内に収容し、180℃及び30kPaで一定時間加熱・加圧処理を施し、発光層及び電子注入層を一括して形成した。その後、そのガラス基板を加熱層から取り出し、電子注入層上にLiFを5Å、陰極としてAlも2500Åの厚さとなるように真空蒸着して、有機EL素子を得た。この有機EL素子の特性を測定評価したところ、電流効率5cd/A(@100cd/m)、輝度半減寿命2000時間(100cd/m駆動時)であることが確認された。
【0067】
〈実施例2〉
180℃、大気圧で一定時間加熱処理を施した以外は実施例1と同様にして有機EL素子を作製した。この有機EL素子の特性を測定評価したところ、電流効率5cd/A(@100cd/m)、輝度半減寿命1500時間(100cd/m駆動時)であることが確認された。
【0068】
〈比較例1〉
ホール注入層をスピンコート法によって形成した後、乾燥処理を200℃で5分行い、次いで、その塗膜上に発光層を乾燥処理180℃で1時間にて形成した後、電子注入層を180℃で1時間にて形成したこと以外は、実施例1と同様にして有機EL素子を作製した。この有機EL素子の特性を測定評価したところ、電流効率1cd/A(@100cd/m)、輝度半減寿命100時間(100cd/m駆動時)であることが確認された。
【0069】
〈比較例2〉
ホール注入層をスピンコート法によって形成した後、乾燥処理を200℃で5分行い、次いで、その塗膜上に発光層を乾燥処理180℃で1時間にて形成した後、Alq3層を真空蒸着により形成したこと以外は、実施例1と同様にして有機EL素子を作製した。この有機EL素子の特性を測定評価したところ、電流効率1cd/A(@100cd/m)、輝度半減寿命300時間(100cd/m駆動時)であった。
【0070】
〈物性評価〉
まず、参考として実施例1と同様の塗布溶液を用いその溶液をSiウェハー上に塗布及び加熱乾燥して形成した発光層の表面形態を原子間力顕微鏡(AFM)により観察した。図7は、ノンコンタクトモードで測定されたその発光層表面の形状を示す三次元スペクトルである。図7より、発光層表面は、高さ(深さ)が数nm〜数十nm程度の微小凹凸が多数形成されていることが確認された。
【0071】
さらに、実施例1と同様の塗布溶液を用いその溶液をSiウェハー上に塗布し、次いでAlq3層を塗布形成した後、加熱処理を行い、本発明によるサンプルを作製した。図8は、その本発明によるサンプルについてDFMモード(ダイナミクフォースモード)で測定された表面形状を示す二次元スペクトルである。同図において白く視認される部分が凸部を示す。また、図8では、図7に近似した表面形状が認められ、発光層上にAlq3層の痕跡が認められない表面形状が観測された。これより、Alq3層は内部に染み込み発光層と混合層を形成しているものと考えられる。
【0072】
また、図9は、図8と同じサンプルをオージェ電子分光法により観察した発光層表面上のAl分布を示すものである。これより、発光層の窪み部分にAlが多く分布していることが判明した。
【0073】
一方、比較例2と同様の塗布溶液を用いその溶液をSiウェハー上に塗布し加熱処理を施し、次いでAlq3層の蒸着を行い、従来方法によるサンプルを作製した。図10は、その従来方法によるサンプルについてDFMモード(ダイナミクフォースモード)で測定された表面形状を示す二次元スペクトルである。同図において、白く視認される部分が凸部を示す。図10では、図7及び図8とは異なる表面形状が認められ、発光層上にAlq3層として認識される表面形状が観測された。これより、Alq3層は内部に染み込むことなく、別層としてのAlq3層が発光層上に形成されたものと考えられる。
【0074】
さらに、図11は、図10と同じサンプルをオージェ電子分光法により観察した発光層表面上のAl分布を示すものである。これより、Alq3層の均一な分布が観測された。
【0075】
【発明の効果】
以上説明したように、本発明の有機EL素子の製造方法によれば、有機層の形成に湿式法を用いた場合にも、製造される有機EL素子の寿命を格段に改善でき、これにより、素子の動作安定性及び信頼性を向上できる。また、有機層間の密着性を高めることができるので、有機EL素子の発光効率ひいては輝度を向上させることが可能となる。
【図面の簡単な説明】
【図1】本発明の製造方法により製造される有機EL素子の一例を示す模式断面図である。
【図2】本発明の製造方法により有機EL素子1を製造する手順の一例を示すフロー図である。
【図3】本発明の製造方法により有機EL素子1を製造する手順の他の例を示すフロー図である。
【図4】本発明の製造方法により有機EL素子1を製造する手順の更に他の例を示すフロー図である。
【図5】有機EL素子1における混合層20近傍の要部を模式的に示す断面図である。
【図6】従来の湿式法により製造される有機EL素子の有機層境界部の要部を模式的に示す断面図である。
【図7】ノンコンタクトモードで測定されたその発光層表面の形状を示す三次元スペクトルである。
【図8】本発明によるサンプルについてDFMモード(ダイナミクフォースモード)で測定された表面形状を示す二次元スペクトルである。
【図9】図8と同じサンプルをオージェ電子分光法により観察した発光層表面上のAl分布を示すものである。
【図10】従来方法によるサンプルについてDFMモード(ダイナミクフォースモード)で測定された表面形状を示す二次元スペクトルである。
【図11】図10と同じサンプルをオージェ電子分光法により観察した発光層表面上のAl分布を示すものである。
【符号の説明】
1…有機EL素子、10…基板、11,15…電極層、12…第1有機層、13…第2有機層、13a…有機物質、14…第3有機層、20…混合層、S1〜S9…ステップ。

Claims (6)

  1. 電極間に複数の有機層を備える有機EL素子を製造する方法であって、
    前記複数の有機層のうち少なくとも二つの有機層を構成するそれぞれの材料が溶媒に溶解又は分散されて成るそれぞれの溶液を基板上に連続して塗布する塗布工程と、
    前記塗布により形成された少なくとも二つの塗膜を同時に加熱して前記少なくとも二つの有機層を形成せしめる加熱工程と、
    を備える有機EL素子の製造方法。
  2. 前記加熱工程においては、前記少なくとも二つの有機層を構成する材料のうち最も低いガラス転移点よりも高い温度に加熱する、
    請求項1記載の有機EL素子の製造方法。
  3. 前記加熱工程においては、前記少なくとも二つの有機層を構成する材料のうち最も低いガラス転移点+200℃以下の温度に加熱する、
    請求項1又は2に記載の有機EL素子の製造方法。
  4. 前記加熱工程は、前記少なくとも二つの塗膜の周囲を大気圧よりも大きな圧力となるように加圧する加圧ステップを有する、
    請求項1〜3のいずれか一項に記載の有機EL素子の製造方法。
  5. 前記加圧ステップにおいては、前記圧力が0.98〜1960kPaの範囲内の値となるように加圧する、
    請求項4記載の有機EL素子の製造方法。
  6. 連続して形成される前記少なくとも二つの有機層を構成するそれぞれの材料が溶解される溶媒としてそれぞれ異なるものを用いる、
    請求項1〜4のいずれか一項に記載の有機EL素子の製造方法。
JP2003188323A 2003-06-30 2003-06-30 有機el素子の製造方法 Withdrawn JP2005026003A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003188323A JP2005026003A (ja) 2003-06-30 2003-06-30 有機el素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003188323A JP2005026003A (ja) 2003-06-30 2003-06-30 有機el素子の製造方法

Publications (1)

Publication Number Publication Date
JP2005026003A true JP2005026003A (ja) 2005-01-27

Family

ID=34186905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003188323A Withdrawn JP2005026003A (ja) 2003-06-30 2003-06-30 有機el素子の製造方法

Country Status (1)

Country Link
JP (1) JP2005026003A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269161A (ja) * 2005-03-23 2006-10-05 Seiko Epson Corp 発光装置及びその製造方法、並びに電子機器
JP2007042314A (ja) * 2005-08-01 2007-02-15 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007063489A (ja) * 2005-09-02 2007-03-15 Nippon Light Metal Co Ltd 湿式製膜可能な有機el素子製造用材料及び有機el素子
WO2008117691A1 (ja) 2007-03-26 2008-10-02 Ulvac, Inc. 有機el素子、有機el素子製造方法
JP2011049028A (ja) * 2009-08-27 2011-03-10 Seiko Epson Corp 有機el装置の製造方法、及びカラーフィルターの製造方法
WO2011058888A1 (ja) * 2009-11-11 2011-05-19 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンスパネルの製造方法とこれを用いて製造された有機エレクトロルミネッセンスパネル
JP2011216455A (ja) * 2010-03-15 2011-10-27 Fujifilm Corp 有機電界発光素子の製造方法
JP2012186412A (ja) * 2011-03-08 2012-09-27 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子および有機エレクトロルミネッセンス素子の製造方法
US9515277B2 (en) 2008-08-13 2016-12-06 Mitsubishi Chemical Corporation Organic electroluminescent element, organic EL display device and organic EL illumination

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269161A (ja) * 2005-03-23 2006-10-05 Seiko Epson Corp 発光装置及びその製造方法、並びに電子機器
JP4617951B2 (ja) * 2005-03-23 2011-01-26 セイコーエプソン株式会社 発光装置及びその製造方法、並びに電子機器
JP2007042314A (ja) * 2005-08-01 2007-02-15 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007063489A (ja) * 2005-09-02 2007-03-15 Nippon Light Metal Co Ltd 湿式製膜可能な有機el素子製造用材料及び有機el素子
WO2008117691A1 (ja) 2007-03-26 2008-10-02 Ulvac, Inc. 有機el素子、有機el素子製造方法
US8334647B2 (en) 2007-03-26 2012-12-18 Ulvac, Inc. Organic EL device and an organic EL device producing method
US9515277B2 (en) 2008-08-13 2016-12-06 Mitsubishi Chemical Corporation Organic electroluminescent element, organic EL display device and organic EL illumination
JP2011049028A (ja) * 2009-08-27 2011-03-10 Seiko Epson Corp 有機el装置の製造方法、及びカラーフィルターの製造方法
WO2011058888A1 (ja) * 2009-11-11 2011-05-19 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンスパネルの製造方法とこれを用いて製造された有機エレクトロルミネッセンスパネル
JP5578180B2 (ja) * 2009-11-11 2014-08-27 コニカミノルタ株式会社 有機エレクトロルミネッセンスパネルの製造方法とこれを用いて製造された有機エレクトロルミネッセンスパネル
JP2011216455A (ja) * 2010-03-15 2011-10-27 Fujifilm Corp 有機電界発光素子の製造方法
JP2012186412A (ja) * 2011-03-08 2012-09-27 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子および有機エレクトロルミネッセンス素子の製造方法

Similar Documents

Publication Publication Date Title
Dong et al. 20.2: ultra‐bright, highly efficient, low roll‐off inverted quantum‐dot light emitting devices (QLEDs)
JP5682877B2 (ja) 有機電子デバイス及びその製造方法
TWI538187B (zh) 有機發光二極體顯示器及製造其之方法
CA2969050A1 (en) Electroluminescent device
CN109244256B (zh) 高效非掺杂超薄发光层热活化延迟荧光有机发光二极管及其制备方法
KR20150099517A (ko) 표면상에 전도성 코팅층을 침착시키는 방법
JP2014505323A (ja) 正孔注入層
KR100570978B1 (ko) 표면이 개질된 유기막층을 사용하는 유기 전계 발광디스플레이 디바이스 및 이의 제조 방법
KR100875329B1 (ko) 유기 일렉트로루미네센스 소자 및 그 제조 방법
US20090220705A1 (en) Method for manufacturing organic el display device
KR20070036835A (ko) 무기물 완충층을 포함하는 유기발광소자의 제조방법
JP2005026003A (ja) 有機el素子の製造方法
CN101222027B (zh) 一种有机发光器件及其制备方法
Samaeifar et al. The Root Causes of the Limited Electroluminescence Stability of Solution-Coated Versus Vacuum-Deposited Small-Molecule OLEDs: A Mini-Review
JP4782550B2 (ja) 有機電界発光素子の製造方法
CN111384247B (zh) 量子点发光二极管及其制备方法
JP2002313567A (ja) 有機電界発光素子及びその製造方法
WO2020134204A1 (zh) 量子点发光二极管的制备方法
JP2005026000A (ja) 有機el素子の製造方法
TWI513079B (zh) 含混合主體之有機發光二極體及其製作方法
US20040195966A1 (en) Method of providing a layer including a metal or silicon or germanium and oxygen on a surface
TW588572B (en) Organic light-emitting diode containing fullerene as a hole-injection modification layer or hole-transporting layer
JP4746875B2 (ja) 光学装置
US20050175770A1 (en) Fabricating an electrode for use in organic electronic devices
JPH11307254A (ja) 有機el素子およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060524

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070807