JP2005024138A - Combustion system and boiler using the same - Google Patents

Combustion system and boiler using the same Download PDF

Info

Publication number
JP2005024138A
JP2005024138A JP2003188208A JP2003188208A JP2005024138A JP 2005024138 A JP2005024138 A JP 2005024138A JP 2003188208 A JP2003188208 A JP 2003188208A JP 2003188208 A JP2003188208 A JP 2003188208A JP 2005024138 A JP2005024138 A JP 2005024138A
Authority
JP
Japan
Prior art keywords
burner
solid fuel
particle size
furnace
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003188208A
Other languages
Japanese (ja)
Inventor
Kenji Kiyama
研滋 木山
芳孝 ▲高▼橋
Yoshitaka Takahashi
Hiroshi Yuasa
博司 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2003188208A priority Critical patent/JP2005024138A/en
Publication of JP2005024138A publication Critical patent/JP2005024138A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the falling of a fuel to the bottom of a furnace and control the grain size of the solid fuel. <P>SOLUTION: In this combustion system for burning by supplying the solid fuel to a burner installed in the wall of a combustion furnace, the solid fuel is supplied to the burner after being crushed to variably control its grain size and the crushed grain size of the solid fuel is varied according to a load on the combustion furnace. Also, the burner is formed of burners 2a to 2d in multiple stages having different furnace wall arrangement heights, and the crushed grain size of the solid fuel is varied according to the arrangement height of each burner. In addition, the grain size of the solid fuel is varied according to the load on the combustion furnace and the arrangement height of each burner. The crushed grain size is increased when the load on the combustion furnace is large or the arrangement height of the burner is high. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は固体燃料を燃焼するボイラシステムに係り、特に揮発分が高く燃焼性の高い固体燃料を用いる燃焼システムに関する。
【0002】
【従来の技術】
褐炭などの炭化が進んでいない固体燃料は、日本国内の事業用ボイラで一般的に使用される瀝青炭に比べ、揮発分が高いという特徴を有している。このような燃料を粉砕燃焼させるためには、瀝青炭に比べて低い粒度でも高い燃焼性が維持されるため、粉砕設備は低い粉砕粒度で計画される。
【0003】
しかしながら、固体燃料粉砕粒度が燃焼炉の炉内ガス気流中の浮遊限界粒径を上回ると、固体燃料粒子は炉底に落下するため、炉底で適正に燃焼させる手段を有さない設備においては、炉底への落下分の燃焼効率が低下する。また、炉底への落下を常時防止できる小さな粉砕粒度の粉砕設備にすると、粉砕動力と粉砕機寿命の面で課題を生じるため、粉砕粒度は炉底への落下を前提に計画され、炉底にストーカ方式の燃焼装置を別途設けるように構成されている。
【0004】
図7は従来技術に関する褐炭焚きボイラの構成例を示す図である。図7によると、燃焼炉1に燃料を供給するバーナ2に加え、炉底燃焼装置3を備えた構成となっている。
【0005】
また、石炭焚きボイラの燃焼装置の従来技術として、バーナを縦に並べて配置し、ボイラの負荷が多いときには全てのバーナに微粉炭の燃料を供給し、ボイラ負荷が少ないときには上側配置のバーナに微粉炭燃料を供給することが開示されている(例えば、特許文献1を参照)。
【0006】
【特許文献1】
特開2002−243111
【0007】
【発明が解決しようとする課題】
しかしながら、従来技術における炉底の燃焼装置には、未燃固体燃料とともに燃焼炉内のクリンカが落下して来るため、燃料と空気の接触が阻害され、高い燃焼効率は期待できない場合がある。また、炉底燃焼装置の設備費の面で経済性が劣る。
【0008】
また、常に炉底に落下しない粉砕粒度を提供できる粉砕機を設置するとなると、粉砕動力の高い粉砕機が必要とされ、また、粉砕機寿命が短くなるという課題を生じる。
【0009】
このように、揮発分の高い固体燃料は、燃焼性が高く固体燃料粉砕粒度を高めなくとも高い燃焼効率が維持される。しかしながら、固体燃料の粉砕粒度が炉内ガス気流中の浮遊限界粒径を上回ると炉底に落下するため、炉底で適正に燃焼させる手段を有さない設備においては燃焼効率が低下する。あらゆる条件において固体燃料の粉砕粒度が炉内ガス気流中の浮遊限界粒径を下回る粒径に粉砕する場合、条件によっては過剰粉砕となり、粉砕エネルギーの増大と粉砕機の寿命低下を引き起こす。
【0010】
また、特許文献1によれば、ボイラ負荷と石炭燃料の供給との関係を開示しているが、石炭燃料の炉底に落下したときの燃焼効率についての不都合性や、石炭燃料の粒度に関する観点については何等言及していない。
【0011】
本発明の目的は、燃焼炉負荷及びバーナの配置高さ等によって固体燃料の粉砕粒度を変化させ、燃料の炉底への落下を最小限に留めるとともに過剰粉砕を避けて、最適な固体燃料の粉砕粒度を調整する燃焼システムを提供することにある。
【0012】
【課題を解決するための手段】
前記課題を解決するために、本発明は主として次のような構成を採用する。
固体燃料を燃焼炉炉壁に設けたバーナに供給して燃焼させる燃焼システムであって、
前記固体燃料は、粉砕されその粒度が可変調整されて前記バーナに供給され、
前記燃焼炉の負荷に応じて前記固体燃料の粉砕粒度を変化させる構成とする。
【0013】
また、固体燃料を燃焼炉炉壁に設けたバーナに供給して燃焼させる燃焼システムであって、
前記固体燃料は、粉砕されその粒度が可変調整されて前記バーナに供給され、
前記バーナは、前記燃焼炉炉壁の配置高さを異にする多段のバーナで構成され、
前記各バーナの配置高さに応じて各バーナへ供給する前記固体燃料の粉砕粒度を変化させる構成とする。
【0014】
また、固体燃料を燃焼炉炉壁に設けたバーナに供給して燃焼させる燃焼システムであって、
前記固体燃料は、粉砕されその粒度が可変調整されて前記バーナに供給され、
前記バーナは、前記燃焼炉炉壁の配置高さを異にする多段のバーナで構成され、
前記燃焼炉の負荷及び前記各バーナの配置高さに応じて前記固体燃料の粉砕粒度を変化させる構成とする。
【0015】
また、前記燃焼システムにおいて、前記燃焼炉負荷が大きいときに又は前記バーナ配置高さが高いときに、前記粉砕粒度を大きくする構成とする。
【0016】
このような構成を採用することにより、個体燃料の炉底への落下を最小限に留めるとともに過剰粉砕を避けて、最適な固体燃料の粉砕粒度を調整することができる。
【0017】
【発明の実施の形態】
本発明の実施形態に係る燃焼システムについて、図1〜図6を参照しながら以下詳細に説明する。図1は本発明の実施形態に係る燃焼システムにおける燃焼炉とバーナの配置を示す構成図であり、図2は燃焼炉負荷と、炉内ガス上昇流速、粉砕最大粒径、粉砕動力との関係を示す図であり、図3は燃焼炉負荷と複数バーナ段の粉砕最大粒径との関係を示す図である。また、図4は本発明の他の実施形態に係る燃焼システムにおける多段バーナへの固体燃料供給例を示す図であり、図5は本発明の他の実施形態における燃焼炉負荷と複数バーナ段の粉砕最大粒径との関係を示す図である。また、図6は本発明の更に他の実施形態に係る燃焼システムにおける多段バーナへの固体燃料供給例を示す図である。
【0018】
図1において、燃焼炉へ燃料を供給するバーナは4段からなり、それぞれ上から2a,2b,2c,2dとなっている。また、図2において、燃焼炉負荷が高いほど燃焼炉内ガスの上昇流速は上昇するため(図2の(1)参照)、炉底に落下しないようにするために(炉底への落下を抑制するに)必要な最大粉砕粒径は大きくなる(図2の(2)参照)。粒径を大きくて済ませることにより粉砕に要する動力は低減できる(図2の(3)参照)。
【0019】
ここで、不図示ではあるが、バーナ2への固体燃料供給経路には、固体燃料を粉砕する粉砕機を備え、この固体燃料粉砕機は粉砕粒度を可変する粒度調整機能を有している。また、この粒度調整機能を奏するものは粉砕機とは別の装置として粉砕機出口に設けても良い。なお、粉砕粒度可変調整機能として気体流が粒子に及ぼす抗力を利用した分級方法を用いてもよい。
【0020】
このように、燃焼炉負荷と必要最大粉砕粒径並びに粉砕動力との関係は、図2の(2)、(3)に示すとおりである。また、バーナ段が上側に行くほど、即ち、最上段のバーナ段2aに近づくほど、燃焼炉内ガスの上昇流速は上昇する。したがって、図3に示すように、炉底への落下を抑制するに必要な固体燃料の最大粉砕粒径は大きくなる。
【0021】
換言すると、図3では、図1に示す各バーナ段2a〜2dにおける粉砕最大粒径と燃焼炉負荷との関係を示し、上側のバーナ段ほど粉砕最大粒径を大きく、かつ燃焼炉負荷が高いほど粉砕最大粒径を大きくする設定とし、トータルとして、高効率燃焼の維持と粉砕動力の最小化を可能としている。
【0022】
図4には本発明の他の実施形態に係る燃焼システムを示し、バーナ段2aには揮発分の高い固体燃料を使用し、バーナ段2b〜2dには揮発分が低い固体燃料を使用するものである。図5には、本発明の他の実施形態に係る燃焼システムおける適正な粉砕最大粒径の設定例を示している。バーナ段2aの高揮発分固体燃料に対しては、図3に示す概念に基づく粒度設定を行い、バーナ段2b〜2dの低揮発分固体燃料に対しては、炉底への落下には関係ない(炉底に落下しないような)微粉砕であって且つ燃料性状から求められる燃焼効率維持のための微粉砕の設定を行っている。なお、図4と図5の実施形態では、燃焼炉負荷を検出しこの検出出力に応じてバーナ段2aのみの粉砕粒径を変化させているが、これに限らず、上方側の複数のバーナ段に対して粒径を変化させても良い。
【0023】
図6には本発明の更に他の実施形態に係る燃焼システムを示し、バーナ段2aには揮発分の高い固体燃料を使用し、バーナ段2b〜2dには気体燃料もしくは液体燃料を使用するものである。バーナ段2aに対して、図3に示す概念に基づく粒度設定を行っている。
【0024】
以上説明したように、従来技術では、粉砕粒度を常時炉底に落下しない設備を設けていたが、ボイラ負荷が高くなると燃焼炉内の上昇ガス流速は上昇するため、炉底に落下しない必要最大粒径は大きくなり、また、多段バーナの炉壁配置高さが上にいくほど炉内上昇ガス流速は高くなるため、炉底に落下しない必要最大粒径は大きくなることに鑑みて、本発明の実施形態は、炉内ガス流速の変化に着目して燃焼炉負荷に応じて(燃焼炉負荷を検出して)粒度を可変とすること、並びに多段バーナの炉壁配置高さによって粒度を可変とすることに発明の特徴を有するものである。
【0025】
この特徴によれば、高い(大きい)粒度が必要とされる燃焼炉低負荷や下側のバーナ段に限定して粒度を高めることが可能となるため、常に炉底に落下せず過剰粉砕ともならない最適粒度での運用が可能となるため、高効率で長寿命の経済的な設備とすることができる。
【0026】
【発明の効果】
本発明によれば、炉底への燃料落下を抑制し、かつ過剰粉砕を行うことのない固体燃料の粒度調整が可能となるため、高効率で経済性の高い運用が可能となる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る燃焼システムにおける燃焼炉とバーナの配置を示す構成図である。
【図2】燃焼炉負荷と、炉内ガス上昇流速、粉砕最大粒径、粉砕動力との関係を示す図である。
【図3】燃焼炉負荷と複数バーナ段の粉砕最大粒径との関係を示す図である。
【図4】本発明の他の実施形態に係る燃焼システムにおける多段バーナへの固体燃料供給例を示す図である。
【図5】本発明の他の実施形態における燃焼炉負荷と複数バーナ段の粉砕最大粒径との関係を示す図である。
【図6】本発明の更に他の実施形態に係る燃焼システムにおける多段バーナへの固体燃料供給例を示す図である。
【図7】従来技術に関する褐炭焚きボイラの構成例を示す図である。
【符号の説明】
1 燃焼炉
2 バーナ
3 炉底燃焼装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a boiler system that burns solid fuel, and more particularly to a combustion system that uses a solid fuel having a high volatile content and high combustibility.
[0002]
[Prior art]
Solid fuel, such as lignite, that has not been carbonized is characterized by a higher volatile content than bituminous coal that is commonly used in commercial boilers in Japan. In order to pulverize and burn such fuel, pulverization equipment is planned with a low pulverization particle size because high combustibility is maintained even at a low particle size compared to bituminous coal.
[0003]
However, if the solid fuel pulverized particle size exceeds the floating limit particle size in the gas flow in the furnace of the combustion furnace, the solid fuel particles will fall to the furnace bottom, so in facilities that do not have a means to properly burn at the furnace bottom The combustion efficiency of the drop to the furnace bottom is reduced. In addition, if a pulverization facility with a small pulverization particle size that can always be prevented from falling to the furnace bottom causes problems in terms of pulverization power and pulverizer life, the pulverization particle size is planned on the assumption that it falls to the furnace bottom. A stoker-type combustion apparatus is separately provided.
[0004]
FIG. 7 is a diagram showing a configuration example of a lignite-fired boiler related to the prior art. According to FIG. 7, in addition to the burner 2 for supplying fuel to the combustion furnace 1, a furnace bottom combustion device 3 is provided.
[0005]
In addition, as a conventional technique of a combustion apparatus for a coal-fired boiler, burners are arranged vertically, and when the load on the boiler is high, pulverized coal fuel is supplied to all burners, and when the boiler load is low, the fine powder is supplied to the upper burner. Supplying charcoal fuel is disclosed (for example, refer to Patent Document 1).
[0006]
[Patent Document 1]
JP-A-2002-243111
[0007]
[Problems to be solved by the invention]
However, since the clinker in the combustion furnace falls together with the unburned solid fuel in the conventional combustion apparatus at the bottom of the furnace, the contact between the fuel and the air is obstructed, and high combustion efficiency may not be expected. Moreover, the economical efficiency is poor in terms of the equipment cost of the furnace bottom combustion apparatus.
[0008]
Further, if a pulverizer capable of providing a pulverized particle size that does not always fall to the furnace bottom is installed, a pulverizer having a high pulverization power is required, and the problem of shortening the pulverizer life occurs.
[0009]
Thus, a solid fuel with a high volatile content has high combustibility and maintains high combustion efficiency without increasing the solid fuel pulverization particle size. However, if the pulverized particle size of the solid fuel exceeds the floating limit particle size in the gas flow in the furnace, it falls to the furnace bottom, so that the combustion efficiency is lowered in equipment that does not have means for properly burning at the furnace bottom. When the pulverization particle size of the solid fuel is pulverized to a particle size that is smaller than the floating limit particle size in the gas flow in the furnace under all conditions, excessive pulverization is caused depending on the conditions, causing an increase in pulverization energy and a decrease in the life of the pulverizer.
[0010]
Moreover, according to Patent Document 1, the relationship between boiler load and supply of coal fuel is disclosed. However, inconvenience regarding combustion efficiency when falling to the furnace bottom of coal fuel, and viewpoint regarding the granularity of coal fuel There is no mention about.
[0011]
The object of the present invention is to change the pulverization particle size of the solid fuel according to the combustion furnace load and the arrangement height of the burner, etc., to minimize the fall of the fuel to the furnace bottom and to avoid excessive pulverization. It is to provide a combustion system that adjusts the pulverization particle size.
[0012]
[Means for Solving the Problems]
In order to solve the above problems, the present invention mainly adopts the following configuration.
A combustion system for supplying solid fuel to a burner provided on a furnace wall and burning it,
The solid fuel is pulverized and its particle size is variably adjusted and supplied to the burner,
The pulverized particle size of the solid fuel is changed according to the load of the combustion furnace.
[0013]
Also, a combustion system for supplying and burning solid fuel to a burner provided on the furnace furnace wall,
The solid fuel is pulverized and its particle size is variably adjusted and supplied to the burner,
The burner is composed of a multi-stage burner having different arrangement heights of the combustion furnace furnace wall,
The pulverization particle size of the solid fuel supplied to each burner is changed according to the arrangement height of each burner.
[0014]
Also, a combustion system for supplying and burning solid fuel to a burner provided on the furnace furnace wall,
The solid fuel is pulverized and its particle size is variably adjusted and supplied to the burner,
The burner is composed of a multi-stage burner having different arrangement heights of the combustion furnace furnace wall,
The pulverized particle size of the solid fuel is changed according to the load of the combustion furnace and the arrangement height of each burner.
[0015]
In the combustion system, the pulverization particle size is increased when the combustion furnace load is large or the burner arrangement height is high.
[0016]
By adopting such a configuration, it is possible to adjust the optimum pulverization particle size of the solid fuel while minimizing the fall of the solid fuel to the furnace bottom and avoiding excessive pulverization.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
A combustion system according to an embodiment of the present invention will be described in detail below with reference to FIGS. FIG. 1 is a configuration diagram showing the arrangement of a combustion furnace and a burner in a combustion system according to an embodiment of the present invention, and FIG. FIG. 3 is a diagram showing the relationship between the combustion furnace load and the pulverized maximum particle size of a plurality of burner stages. FIG. 4 is a view showing an example of solid fuel supply to a multistage burner in a combustion system according to another embodiment of the present invention, and FIG. It is a figure which shows the relationship with a grinding | pulverization largest particle size. FIG. 6 is a view showing an example of supplying solid fuel to a multistage burner in a combustion system according to still another embodiment of the present invention.
[0018]
In FIG. 1, the burner for supplying fuel to the combustion furnace consists of four stages, which are 2a, 2b, 2c and 2d from the top, respectively. Further, in FIG. 2, the higher the combustion furnace load, the higher the rising flow rate of the gas in the combustion furnace (see (1) in FIG. 2), so that it does not fall to the furnace bottom. The maximum pulverized particle size required for suppression becomes large (see (2) in FIG. 2). By increasing the particle size, the power required for pulverization can be reduced (see (3) in FIG. 2).
[0019]
Here, although not shown, the solid fuel supply path to the burner 2 includes a pulverizer for pulverizing the solid fuel, and the solid fuel pulverizer has a particle size adjusting function for changing the pulverized particle size. In addition, a device that performs this particle size adjusting function may be provided at the pulverizer outlet as a separate device from the pulverizer. In addition, as a pulverized particle size variable adjustment function, a classification method using a drag force exerted on particles by a gas flow may be used.
[0020]
As described above, the relationship between the combustion furnace load, the required maximum pulverized particle size and the pulverization power is as shown in (2) and (3) of FIG. Moreover, the higher the burner stage is, that is, the closer the burner stage is to the uppermost burner stage 2a, the higher the rising velocity of the combustion furnace gas. Therefore, as shown in FIG. 3, the maximum pulverized particle size of the solid fuel necessary for suppressing the fall to the furnace bottom increases.
[0021]
In other words, FIG. 3 shows the relationship between the maximum pulverized particle size and the combustion furnace load in each of the burner stages 2a to 2d shown in FIG. 1, and the upper burner stage has a larger pulverized maximum particle diameter and a higher combustion furnace load. The maximum pulverization particle size is set so as to increase, and as a total, high-efficiency combustion can be maintained and pulverization power can be minimized.
[0022]
FIG. 4 shows a combustion system according to another embodiment of the present invention, in which a solid fuel having a high volatile content is used for the burner stage 2a and a solid fuel having a low volatile content is used for the burner stages 2b to 2d. It is. FIG. 5 shows a setting example of an appropriate pulverized maximum particle size in a combustion system according to another embodiment of the present invention. The particle size is set based on the concept shown in FIG. 3 for the high volatile solid fuel in the burner stage 2a, and the low volatile solid fuel in the burner stages 2b to 2d is related to the fall to the furnace bottom. There is no fine pulverization (not falling to the furnace bottom) and fine pulverization is set to maintain the combustion efficiency required from the fuel properties. In the embodiment of FIGS. 4 and 5, the combustion furnace load is detected, and the pulverized particle size of only the burner stage 2a is changed according to this detection output. The particle size may be varied with respect to the stage.
[0023]
FIG. 6 shows a combustion system according to still another embodiment of the present invention, in which a solid fuel having a high volatile content is used for the burner stage 2a and a gaseous fuel or a liquid fuel is used for the burner stages 2b to 2d. It is. The granularity setting based on the concept shown in FIG. 3 is performed for the burner stage 2a.
[0024]
As described above, in the prior art, the equipment that does not always drop the pulverized particle size to the furnace bottom is provided. However, as the boiler load increases, the rising gas flow rate in the combustion furnace increases, so the maximum necessary amount that does not fall to the furnace bottom is required. In view of the fact that the required particle size that does not fall to the bottom of the furnace increases because the particle diameter increases and the flow rate of the rising gas in the furnace increases as the furnace wall arrangement height of the multistage burner increases. In this embodiment, focusing on the change in the gas flow velocity in the furnace, the particle size is made variable according to the combustion furnace load (detecting the combustion furnace load), and the particle size is made variable depending on the furnace wall arrangement height of the multistage burner. It has the characteristics of the invention.
[0025]
According to this feature, it is possible to increase the particle size by limiting to a low load of the combustion furnace where a high (large) particle size is required and the lower burner stage. Since it is possible to operate at an optimal granularity, it is possible to provide an economical facility with high efficiency and long life.
[0026]
【The invention's effect】
According to the present invention, it is possible to adjust the particle size of the solid fuel that suppresses fuel falling to the furnace bottom and does not excessively pulverize, so that highly efficient and economical operation is possible.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing the arrangement of a combustion furnace and a burner in a combustion system according to an embodiment of the present invention.
FIG. 2 is a diagram showing the relationship between the combustion furnace load, the in-furnace gas rising velocity, the maximum pulverization particle size, and the pulverization power.
FIG. 3 is a diagram showing a relationship between a combustion furnace load and a maximum pulverized particle size of a plurality of burner stages.
FIG. 4 is a diagram showing an example of supplying solid fuel to a multistage burner in a combustion system according to another embodiment of the present invention.
FIG. 5 is a graph showing the relationship between the combustion furnace load and the maximum pulverized particle size of a plurality of burner stages in another embodiment of the present invention.
FIG. 6 is a view showing an example of supplying solid fuel to a multistage burner in a combustion system according to still another embodiment of the present invention.
FIG. 7 is a diagram showing a configuration example of a lignite-fired boiler related to the prior art.
[Explanation of symbols]
1 Combustion furnace 2 Burner 3 Furnace bottom combustion device

Claims (9)

固体燃料を燃焼炉炉壁に設けたバーナに供給して燃焼させる燃焼システムであって、
前記固体燃料は、粉砕されその粒度が可変調整されて前記バーナに供給され、
前記燃焼炉の負荷に応じて前記固体燃料の粉砕粒度を変化させる
ことを特徴とする燃焼システム。
A combustion system for supplying solid fuel to a burner provided on a furnace wall and burning it,
The solid fuel is pulverized and its particle size is variably adjusted and supplied to the burner,
A combustion system characterized by changing a pulverization particle size of the solid fuel according to a load of the combustion furnace.
固体燃料を燃焼炉炉壁に設けたバーナに供給して燃焼させる燃焼システムであって、
前記固体燃料は、粉砕されその粒度が可変調整されて前記バーナに供給され、
前記バーナは、前記燃焼炉炉壁の配置高さを異にする多段のバーナで構成され、
前記各バーナの配置高さに応じて各バーナへ供給する前記固体燃料の粉砕粒度を変化させる
ことを特徴とする燃焼システム。
A combustion system for supplying solid fuel to a burner provided on a furnace wall and burning it,
The solid fuel is pulverized and its particle size is variably adjusted and supplied to the burner,
The burner is composed of a multi-stage burner having different arrangement heights of the combustion furnace furnace wall,
The combustion system characterized by changing the pulverization particle size of the solid fuel supplied to each burner according to the arrangement height of each burner.
固体燃料を燃焼炉炉壁に設けたバーナに供給して燃焼させる燃焼システムであって、
前記固体燃料は、粉砕されその粒度が可変調整されて前記バーナに供給され、
前記バーナは、前記燃焼炉炉壁の配置高さを異にする多段のバーナで構成され、
前記燃焼炉の負荷及び前記各バーナの配置高さに応じて前記固体燃料の粉砕粒度を変化させる
ことを特徴とする燃焼システム。
A combustion system for supplying solid fuel to a burner provided on a furnace wall and burning it,
The solid fuel is pulverized and its particle size is variably adjusted and supplied to the burner,
The burner is composed of a multi-stage burner having different arrangement heights of the combustion furnace furnace wall,
A combustion system, wherein the pulverized particle size of the solid fuel is changed according to the load of the combustion furnace and the arrangement height of each burner.
請求項1、2又は3において、
前記燃焼炉負荷が大きいときに又は前記バーナ配置高さが高いときに、前記粉砕粒度を大きくすることを特徴とする燃焼システム。
In claim 1, 2 or 3,
When the combustion furnace load is large or the burner arrangement height is high, the pulverized particle size is increased.
固体燃料を燃焼炉炉壁に設けたバーナに供給して燃焼させる燃焼システムであって、
前記固体燃料は、粉砕されその粒度が可変調整されて前記バーナに供給され、
前記バーナは、前記燃焼炉炉壁の配置高さを異にする多段のバーナで構成され、
前記多段バーナの上方側のバーナには揮発分の高い固体燃料を供給し且つ粉砕粒度を大きくし、
前記多段バーナの下方側のバーナには揮発分の低い固体燃料を供給し且つ粉砕粒度を小さくする
ことを特徴とする燃焼システム。
A combustion system for supplying solid fuel to a burner provided on a furnace wall and burning it,
The solid fuel is pulverized and its particle size is variably adjusted and supplied to the burner,
The burner is composed of a multi-stage burner having different arrangement heights of the combustion furnace furnace wall,
The upper burner of the multistage burner is supplied with a solid fuel having a high volatile content and the pulverized particle size is increased.
A combustion system characterized in that a solid fuel having a low volatile content is supplied to a lower burner of the multistage burner and the pulverized particle size is reduced.
請求項5において、
前記揮発分の高い固体燃料は、前記燃焼炉の負荷に応じて前記固体燃料の粉砕粒度を変化させる
ことを特徴とする燃焼システム。
In claim 5,
The combustion system, wherein the solid fuel having a high volatile content changes a pulverization particle size of the solid fuel according to a load of the combustion furnace.
固体燃料と気体又は液体燃料を燃焼炉炉壁に設けたバーナに供給して燃焼させる燃焼システムであって、
前記固体燃料は、粉砕されその粒度が可変調整されて前記バーナに供給され、
前記バーナは、前記燃焼炉炉壁の配置高さを異にする多段のバーナで構成され、
前記多段バーナの上方側のバーナには、前記固体燃料を供給し且つ粉砕粒度を前記燃焼炉の負荷に応じて変化させ、
前記多段バーナの下方側のバーナには気体又は液体燃料を供給する
ことを特徴とする燃焼システム。
A combustion system for supplying a solid fuel and a gas or liquid fuel to a burner provided on a combustion furnace furnace wall and burning it,
The solid fuel is pulverized and its particle size is variably adjusted and supplied to the burner,
The burner is composed of a multi-stage burner having different arrangement heights of the combustion furnace furnace wall,
The burner on the upper side of the multistage burner is supplied with the solid fuel and the pulverized particle size is changed according to the load of the combustion furnace,
A combustion system characterized in that gas or liquid fuel is supplied to a burner below the multistage burner.
請求項1ないし7のいずれか1つの請求項において、
前記粉砕粒度の可変調整は、気体流が粒子に及ぼす抗力を利用した分級方法を用いたことを特徴とする燃焼システム。
In any one of claims 1 to 7,
The pulverized particle size is variably adjusted by using a classification method using a drag force exerted on particles by a gas flow.
請求項1ないし8のいずれか1つの請求項に記載の燃焼システムを適用したボイラ。A boiler to which the combustion system according to any one of claims 1 to 8 is applied.
JP2003188208A 2003-06-30 2003-06-30 Combustion system and boiler using the same Pending JP2005024138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003188208A JP2005024138A (en) 2003-06-30 2003-06-30 Combustion system and boiler using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003188208A JP2005024138A (en) 2003-06-30 2003-06-30 Combustion system and boiler using the same

Publications (1)

Publication Number Publication Date
JP2005024138A true JP2005024138A (en) 2005-01-27

Family

ID=34186821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003188208A Pending JP2005024138A (en) 2003-06-30 2003-06-30 Combustion system and boiler using the same

Country Status (1)

Country Link
JP (1) JP2005024138A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011106550A2 (en) * 2010-02-26 2011-09-01 Global Greensteam Llc Biomass-to-energy combustion method
JP2013010675A (en) * 2011-06-30 2013-01-17 Jfe Engineering Corp Method for firing cement using dried product of sewage sludge and/or organic sludge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011106550A2 (en) * 2010-02-26 2011-09-01 Global Greensteam Llc Biomass-to-energy combustion method
WO2011106550A3 (en) * 2010-02-26 2011-12-22 Global Greensteam Llc Biomass-to-energy combustion method
JP2013010675A (en) * 2011-06-30 2013-01-17 Jfe Engineering Corp Method for firing cement using dried product of sewage sludge and/or organic sludge

Similar Documents

Publication Publication Date Title
JP5357714B2 (en) Boiler equipment
KR101280199B1 (en) Biomass-mixed-firing pulverized coal fired boiler and operation method of the boiler
JP4865865B2 (en) Classification device, vertical pulverizer equipped with the same, and coal fired boiler device
JP5594941B2 (en) Biomass crusher and control method of the apparatus
JP4801552B2 (en) Biomass crusher and control method thereof
CN1386180A (en) Solid fuel burner and combustion method using solid fuel burner
JP2011242006A (en) Biomass pulverization device, and biomass/coal co-combustion system
JP2011245357A (en) Biomass pulverizing device and biomass/coal co-combustion system
JP5645469B2 (en) Biomass crusher and biomass / coal co-firing system
JP3712691B2 (en) Operation method of coal wood waste mixing and grinding equipment
JP2012083017A (en) Biomass crusher, and biomass-coal mixed combustion system
JP5645482B2 (en) Biomass crusher and biomass / coal co-firing system
JP2007101135A (en) Mixed combustion method of pulverized coal and biomass
JP2005291534A (en) Combustion equipment and method of biomass fuel
JP2005024138A (en) Combustion system and boiler using the same
CN208108067U (en) Tertiary air air-coal separating burner
KR102533816B1 (en) Solid fuel pulverizer and power plant provided with the same, and method for pulverizing solid fuel
JP6937061B2 (en) Burner device and combustion device
JP7282540B2 (en) Solid fuel crushing device, power plant equipped with the same, and solid fuel crushing method
JP2011251223A (en) Biomass crusher and biomass-coal co-firing system
JP2006084062A (en) Operation method and device for coal burning furnace
EP2993400B1 (en) A combustion system
CN108240618A (en) A kind of tertiary air air-coal separating burner
JP3816501B2 (en) Coal fired combustion method
JPS58207953A (en) Crushing and sorting device