JP2005023096A - Manufacturing method of open cell polymer foam - Google Patents

Manufacturing method of open cell polymer foam Download PDF

Info

Publication number
JP2005023096A
JP2005023096A JP2003186550A JP2003186550A JP2005023096A JP 2005023096 A JP2005023096 A JP 2005023096A JP 2003186550 A JP2003186550 A JP 2003186550A JP 2003186550 A JP2003186550 A JP 2003186550A JP 2005023096 A JP2005023096 A JP 2005023096A
Authority
JP
Japan
Prior art keywords
mpa
temperature
pressure
polymer
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003186550A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nishimura
浩之 西村
Kae Yamazaki
加恵 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Inoac Technical Center Co Ltd
Original Assignee
Inoue MTP KK
Inoac Corp
Inoac Technical Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue MTP KK, Inoac Corp, Inoac Technical Center Co Ltd filed Critical Inoue MTP KK
Priority to JP2003186550A priority Critical patent/JP2005023096A/en
Publication of JP2005023096A publication Critical patent/JP2005023096A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an open cell polymer foam. <P>SOLUTION: The manufacturing method of the polymer foam of an open cell structure having a diameter of 1-500 μm comprises impregnating a polymer having a storage elastic modulus of 1.0-2.5 MPa and a loss elastic modulus of 250-400 kPa at the impregnation temperature with a substance, which is gaseous at ordinary temperature, in a supercritical state and at a pressure of at least 7.0 MPa and a temperature of not more than 30°C lower than the melting point and lower than the melting point and subsequently decreasing the pressure at a pressure-reducing rate of 0.1-1.0 MPa/s. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、連続気泡の高分子発泡体の製造方法に関し、さらに詳細には、超臨界状態の物質を高分子化合物に含浸させ、圧力を減少させる方法によって連続気泡の発泡体を製造する方法に関する。
【0002】
【従来の技術】
連続気泡を有する高分子発泡体としては、ポリエチレン、ポリプロピレン、ポリスチレン、ABS、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリウレタンなど、各種のものが知られている。これらの連続気泡を有する樹脂発泡体は、微細フィルター、ウィルス分離膜、人工肺などに有用である。
【0003】
ポリエチレン、ポリプロピレンのような一般の樹脂においては、アゾ化合物、ニトロソ化合物、ヒドラジド化合物のような発泡剤を樹脂に混練しておき、加熱して窒素ガスを発生させることにより、発泡体を得ることができる。
【0004】
一方、ポリウレタンでは、イソシアネートと水との反応によって発生する炭酸ガスにより、さらに必要に応じてブタンやジクロロメタンのような発泡助剤を用いることにより、発泡体を得ることができる。
【0005】
このような従来の発泡法による場合、連続気泡を目的として条件を設定し、または一対の回転ローラーに通すなどの後工程を設けても、連続気泡と独立気泡が混在する多孔体が形成されるので、フィルターのような連続気泡を前提とする用途に用いるには、効率が悪い。
【0006】
特許文献1には、ポリマーに塩化カリウムのような水溶性物質を多量に混練して、水で該水溶性物質を抽出することにより、連続気泡の多孔体を得ることが開示されている。しかしながら、この方法は、抽出に長時間を要するうえ、発泡に使用した水溶性物質や発泡剤を抽出しきれず、それらが残存して、得られた発泡体の純度や物性に影響を与える。特に、このようにして得られた多孔体を、半導体デバイスのシールや医療用の埋入材などに用いる場合、不純物による汚染や、不純物に基因するガスの発生があるため、そのような用途に用いることができない。
【0007】
特許文献2には、独立気泡構造のゴム状弾性体発泡体を形成した後、ロールのような回転体に通すことにより、破泡して、連続気泡を生じさせる方法を開示している。しかしながら、このような方法では、連続気泡率が低い発泡体しか得ることはできない。
【0008】
特許文献3には、ポリカーボネートのような樹脂に、超臨界状態の気体、たとえば二酸化炭素を浸透させた後、急激な冷却と減圧を同時に行って、連続気泡の発泡体を得ることが、開示されている。しかしながら、このような方法によっても、完全な連続気泡体を得ることは困難である。非特許文献1は、このような気泡形成の過程を追跡して、そのメカニズムを解明したものであり、ひも状の空孔からなる連続気泡が得られている。
【0009】
【特許文献1】
特開2001−302839号公報
【特許文献2】
特開平8−302335号公報
【特許文献3】
特開2002−144363号公報
【非特許文献1】
成嶋大介、斎藤拓;「光散乱による超臨界二酸化炭素含浸下での多孔構造形成過程の追跡」、成形加工シンポジア(プラスチック成形加工学会)、′01、特別セッションII、p.139〜140(2001.5.31〜6.1)
【0010】
【発明が解決しようとする課題】
本発明の課題は、微細フィルターに適する連続気泡の高分子発泡体の製造方法を提供することである。
【0011】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するために、検討を重ねた結果、特定の超臨界状態にある流体を、融点未満のポリマーに含浸させた後、比較的低い圧力減少速度で減圧することにより、その目的を達成し得ることを見出して、本発明を完成するに至った。
【0012】
すなわち、本発明は、直径1〜500μmの連続気泡構造を有する高分子発泡体を製造する方法であって、常温で気体である物質を、超臨界状態であり、かつ圧力7.0MPa以上、ポリマーの融点より30℃低い温度以上、融点未満の温度で、該含浸温度における貯蔵弾性率が1.0〜2.5MPaであり、損失弾性率が250〜400kPaであるポリマーに含浸させた後、圧力減少速度0.1〜1.0MPa/sで圧力を減少させることを特徴とする、高分子発泡体の製造方法に関する。
【0013】
【発明の実施の形態】
本発明で発泡体のポリマー相に用いられるポリマーには、熱可塑性樹脂および熱可塑性エラストマーが包含される。熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、共重合ポリオレフィンのようなポリオレフィン樹脂;ポリスチレン、AS樹脂、ABS樹脂、AAS樹脂、ポリα−メチルスチレンのようなスチレン系樹脂;ポリ塩化ビニル、ポリメチルメタクリレートのようなビニル系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレートのようなポリエステル系樹脂;ポリカーボネート;ナイロン6、ナイロン12、ナイロン66のようなポリアミド系樹脂;ポリウレタン;ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルスルホンのような芳香族系樹脂などが例示され、これらに限定されるものではない。熱可塑性エラストマー(TPE)としては、ポリエチレン/EPDMブレンド、ポリプロピレン/EPDMブレンドのようなポリオレフィン系TPE;SBS、SIS、SEBSのようなスチレン系TPE;ポリ塩化ビニルのようなビニル系TPE;ポリブチレンテレフタレート・脂肪族ポリエーテルブロック共重合体、ポリブチレンテレフタレート・ポリカプロラクトンブロック共重合体のようなポリエステル系TPE;セグメント化ポリエーテル型ポリウレタンのようなポリウレタン系TPE;ポリアミド・ポリエーテルブロック共重合体のようなポリアミド系TPE;ならびに各種のブレンド系TPEなどが例示され、これらに限定されるものではない。本発明の発泡体には、これらのポリマーの1種を用いても、2種以上のポリマーの混合物を用いてもよい。
【0014】
これらのポリマーのうち、リサイクルが容易であることから熱可塑性樹脂が好ましく、ポリオレフィン系樹脂が特に好ましい。また成形の容易さから熱可塑性エラストマーが好ましい。
【0015】
本発明の発泡体は、上記のポリマーを主成分として含み、連続気泡率が高く、形成された連続気泡は、直径1〜500μmの構造を示す。
【0016】
このような気泡構造を形成させるために、本発明の製造方法においては、常温で気体である物質を、超臨界状態でポリマーに含浸させた後、圧力を減少させて発泡させる。ポリマーとしては、前述のような熱可塑性樹脂および/または熱可塑性エラストマーを用いることができる。これらを、たとえば溶融して、流延、注型、押出し成形、ブロー成形、射出成形など、任意の成形方法によって所定の形状に成形した後、上記の含浸と、続いて発泡に供する。あるいは、上記の成形と同時に、ポリマーに、常温で気体である物質を含浸させてもよい。
【0017】
用いる気体としては、超臨界状態でポリマーに浸透するものであればよく、酸素、窒素、ヘリウム、二酸化炭素、プロパンなど、およびそれらの混合ガスが例示され、取扱いが容易で、安全性が高いことから、二酸化炭素および窒素が好ましい。
【0018】
常温で気体である物質をポリマーに含浸させる条件は、該物質の超臨界状態であるという前提で、圧力が7.0MPa以上、好ましくは10.0〜20.0MPaであり;温度がポリマーの融点より30℃低い温度以上、融点未満である。圧力が7.0MPa未満では該物質のポリマーへの滲透量が充分ではなく、そのため連続気泡化するのに充分な数の気泡が得られない。含浸温度が融点より30℃低い温度未満では、充分な発泡が行われないか、単に独立気泡の発泡体となる。融点以上では、連続気泡が得られず、また発泡とともに発泡体の変形や収縮を生じる。なお、ここにポリマーの融点とは、熱軟化点、流動点などで示される、高温で状態変化を行う温度を指す。一部の熱可塑性エラストマーのように、示差熱分析を行っても明瞭な融点を示さず、融解熱のブロードなピークを示すものについては、そのピークの高温側の肩部温度を融点とする。
【0019】
常温で気体である物質をポリマーに含浸させる時間は、必要な含浸量および含浸温度・圧力によって異なるが、通常10分〜1日、好ましくは30分〜2時間である。
【0020】
連続気泡の良好な発泡体を得るには、含浸を行う温度におけるポリマーの貯蔵弾性率G′が1.0〜2.5MPa、損失弾性率G″が250〜400kPaの範囲である。G′またはG″が上記のそれぞれの下限未満では連続気泡の発泡体が得られず、また発泡の際に収縮や変形を生じる。また、これらがそれぞれの上限を越えても、連続気泡の発泡体は得られない。
【0021】
本発明においては、上記の条件で、常温で気体である物質をポリマーに含浸させた後、圧力を、減少速度0.1〜1.0MPa/s、好ましくは0.2MPa/s以上、0.5MPa/s未満、さらに好ましくは0.3〜0.4MPa/sで減少させることにより、発泡させる。このことにより、まず、ポリマー中に含浸した気体が発泡して独立気泡を生じ、ついで圧力の減少とともに成長した気泡が繋がって、連続気泡構造の高分子発泡体を得ることができる。圧力減少速度が0.1MPa/s未満では、成長した気泡の直径が大きくなりすぎ、1.0MPa/sを越えると、気泡の成長が瞬時に起こり、気泡はセル同士が連結することなく、独立気泡のままに留まる。
【0022】
本発明の製造方法において、後工程として、発泡体をロールに通して、残存する独立気泡を破泡させる方法、開放気孔に溶媒を圧入して、気泡の間に存在する薄い隔壁を溶解させる方法などを併用して、連続気泡率を向上させることもできる。
【0023】
【実施例】
以下、本発明を、実施例によってさらに詳細に説明する。実施例および比較例において、部は、重量部を表す。本発明は、これらの実施例によって限定されるものではない。
【0024】
実施例および比較例において、次の測定法を用いた。
(1)融点:示差熱分析により、融解熱の発生温度から求めた。
(2)貯蔵弾性率G′および損失弾性率G″:二酸化炭素を含浸する温度における未発泡試料の貯蔵弾性率および損失弾性率を、ASTM D5279−92によるプラスチックの動的弾性測定法を用いて測定した。
(3)発泡倍率:比重計を用いて、発泡前と発泡後の比重を測定し、下記の計算式によって算出した。
発泡倍率 = (発泡前の比重)/(発泡後の比重)
(4)セル径の範囲:断面を電子顕微鏡により撮影して、画面を肉眼で観察し、画面のセルの80〜90%が分布しているセル径の範囲を、セル径範囲とした。
(5)加圧通気量:ポロメーター(Automated Perm Porometer, 32Bits Version, 米国 Porous Material社商品名)を用い、表に示す圧力を加えて、発泡体に空気を通し、その流量を測定して、連続気泡形成の指標とした。
(6)気泡の状態:電子顕微鏡による観察のほか、上記加圧通気流を、指標として用いた。
【0025】
実施例1
示差熱分析による融解熱ピークの高温側肩部の温度から得た熱軟化点155℃の熱可塑性ポリウレタンエラストマーを、温度200℃で射出成形して、100×100mm、厚さ3mmの板を作製し、試料とした。これを、オートクレーブに挿入して、表1に示す温度で二酸化炭素を導入し、圧力20MPaで、試料に30分間含浸した。ついで、放冷するとともに、30秒かけて常圧に戻して、発泡体を得た。含浸条件における試料の貯蔵弾性率および損失弾性率、発泡倍率、セル径ならびに連続気泡の形成は、表1に示すとおりであり、含浸温度148℃および153℃において、厚さ5〜10mmの連続発泡体を得た。実験1−1は、含浸温度が低い比較例であり、実験1−4および1−5は、含浸温度が融点を越える比較例である。また、これらの比較例において、含浸温度における試料の貯蔵弾性率および損失弾性率も、本発明の範囲外であった。
【0026】
【表1】

Figure 2005023096
【0027】
実施例2
実施例1と同じ熱可塑性ポリウレタンエラストマーから、同様にして作製した試料を、実施例1と同様な方法により、温度153℃、圧力20MPa、含浸時間30分で含浸した。ついで、圧力開放時間を30〜120秒の間に設定して、圧力を減少させた。その結果を表2に示す。いずれの圧力解放時間においても、良好な、厚さ4〜10mmの連続発泡体を得た。
【0028】
【表2】
Figure 2005023096
【0029】
実施例3
熱軟化点85℃の末端ブチル化低密度ポリエチレンを、温度140℃で射出成形して、100×100mm、厚さ3mmの板を作製し、試料とした。これを、オートクレーブに挿入して、表3に示す温度で二酸化炭素を導入し、圧力20MPaで、試料に120分間含浸した。ついで、放冷するとともに、60秒かけて常圧に戻して、発泡体を得た。含浸条件における試料の貯蔵弾性率および損失弾性率、発泡倍率、セル径ならびに連続気泡の形成のは、表3に示すとおりであり、含浸温度70℃において、厚さ3.5〜6.0mmの連続発泡体を得た。なお、実験3−1および3−3は、含浸温度における貯蔵弾性率および損失弾性率が、本発明の範囲外である比較例である。
【0030】
【表3】
Figure 2005023096
【0031】
表1〜3から明らかなように、含浸温度におけるポリマーの弾性率が、貯蔵弾性率1.0〜2.5MPa、損失弾性率250〜400kPaの範囲になる条件で、含浸および圧力減少を行ったとき、連続気泡を形成して、優れた発泡体を得ることができた。
【0032】
【発明の効果】
本発明によって、直径1〜500μmの、微細な連続気泡を有する高分子発泡体を得ることができる。本発明の発泡体は、目詰まりがなく、ろ過する流体の抵抗が少ない点で優れており、自動車部品、家庭用品をはじめ各種の用途に用いるフィルター;医薬、化粧品などの精製の際の精密ろ過;細胞育成用培地、ウイルス分離膜、人工肺などに、きわめて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an open cell polymer foam, and more particularly to a method for producing an open cell foam by a method in which a polymer compound is impregnated with a supercritical substance and the pressure is reduced. .
[0002]
[Prior art]
As the polymer foam having open cells, various types such as polyethylene, polypropylene, polystyrene, ABS, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, and polyurethane are known. These resin foams having open cells are useful for fine filters, virus separation membranes, artificial lungs and the like.
[0003]
In general resins such as polyethylene and polypropylene, a foam can be obtained by kneading a foaming agent such as an azo compound, a nitroso compound, or a hydrazide compound in the resin and generating nitrogen gas by heating. it can.
[0004]
On the other hand, in the case of polyurethane, a foam can be obtained by using carbon dioxide generated by the reaction between isocyanate and water and further using a foaming aid such as butane or dichloromethane as necessary.
[0005]
In the case of such a conventional foaming method, a porous body in which continuous cells and closed cells are mixed is formed even if a post-process such as setting conditions for the purpose of open cells or passing through a pair of rotating rollers is provided. Therefore, it is inefficient to use in applications that assume open cells such as filters.
[0006]
Patent Document 1 discloses that an open-cell porous body is obtained by kneading a polymer with a large amount of a water-soluble substance such as potassium chloride and extracting the water-soluble substance with water. However, this method requires a long time for extraction, and the water-soluble substance and foaming agent used for foaming cannot be completely extracted, and these remain, affecting the purity and physical properties of the obtained foam. In particular, when the porous body obtained in this way is used for semiconductor device seals, medical implants, etc., it is contaminated by impurities and gas generation due to impurities occurs. Cannot be used.
[0007]
Patent Document 2 discloses a method in which a closed-cell structure rubber-like elastic foam is formed and then passed through a rotating body such as a roll to break bubbles and generate open cells. However, with such a method, only a foam having a low open cell ratio can be obtained.
[0008]
Patent Document 3 discloses that after supercritical gas such as carbon dioxide is infiltrated into a resin such as polycarbonate, rapid cooling and decompression are simultaneously performed to obtain an open-cell foam. ing. However, even with such a method, it is difficult to obtain a complete open-cell body. Non-Patent Document 1 traces such a bubble formation process and elucidates the mechanism, and an open cell consisting of string-like holes is obtained.
[0009]
[Patent Document 1]
JP 2001-302839 A [Patent Document 2]
JP-A-8-302335 [Patent Document 3]
JP 2002-144363 A [Non-Patent Document 1]
Daisuke Narishima, Taku Saito; “Tracking of the formation process of porous structure under supercritical carbon dioxide impregnation by light scattering”, Molding Symposia (Plastic Molding Processing Society), '01, Special Session II, p. 139-140 (2001.31-6.1)
[0010]
[Problems to be solved by the invention]
The subject of this invention is providing the manufacturing method of the polymer foam of an open cell suitable for a fine filter.
[0011]
[Means for Solving the Problems]
As a result of repeated studies to solve the above-described problems, the present inventors impregnate a fluid in a specific supercritical state with a polymer having a temperature lower than the melting point, and then reduce the pressure at a relatively low pressure reduction rate. Thus, the inventors have found that the object can be achieved, and have completed the present invention.
[0012]
That is, the present invention is a method for producing a polymer foam having an open-cell structure with a diameter of 1 to 500 μm, wherein a substance that is a gas at room temperature is in a supercritical state and has a pressure of 7.0 MPa or more. After impregnating a polymer having a storage elastic modulus of 1.0 to 2.5 MPa and a loss elastic modulus of 250 to 400 kPa at a temperature of 30 ° C. or lower and lower than the melting point of The present invention relates to a method for producing a polymer foam, wherein the pressure is reduced at a reduction rate of 0.1 to 1.0 MPa / s.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The polymers used in the polymer phase of the foam in the present invention include thermoplastic resins and thermoplastic elastomers. As thermoplastic resins, polyolefin resins such as polyethylene, polypropylene and copolymer polyolefins; polystyrene, AS resins, ABS resins, AAS resins, styrene resins such as poly α-methylstyrene; polyvinyl chloride, polymethyl methacrylate Vinyl resins such as: Polyester resins such as polyethylene terephthalate and polybutylene terephthalate; Polycarbonates; Polyamide resins such as nylon 6, nylon 12, and nylon 66; Polyurethanes; Polyphenylene ether, polyphenylene sulfide, polyether sulfone, etc. An aromatic resin etc. are illustrated and it is not limited to these. As thermoplastic elastomer (TPE), polyolefin-based TPE such as polyethylene / EPDM blend and polypropylene / EPDM blend; styrene-based TPE such as SBS, SIS and SEBS; vinyl-based TPE such as polyvinyl chloride; polybutylene terephthalate・ Polyester type TPE such as aliphatic polyether block copolymer, polybutylene terephthalate, polycaprolactone block copolymer; Polyurethane type TPE such as segmented polyether type polyurethane; Polyamide / polyether block copolymer Examples thereof include various polyamide-based TPEs; and various blend-based TPEs, but are not limited thereto. In the foam of the present invention, one kind of these polymers may be used, or a mixture of two or more kinds of polymers may be used.
[0014]
Of these polymers, a thermoplastic resin is preferable because of easy recycling, and a polyolefin resin is particularly preferable. Also, a thermoplastic elastomer is preferable because of easy molding.
[0015]
The foam of the present invention contains the above polymer as a main component, has a high open cell ratio, and the formed open cells have a structure with a diameter of 1 to 500 μm.
[0016]
In order to form such a bubble structure, in the production method of the present invention, a substance that is a gas at room temperature is impregnated in a polymer in a supercritical state, and then the pressure is reduced to cause foaming. As the polymer, the above-described thermoplastic resin and / or thermoplastic elastomer can be used. These are melted and formed into a predetermined shape by any molding method such as casting, casting, extrusion molding, blow molding, injection molding, etc., and then subjected to the impregnation and subsequent foaming. Alternatively, simultaneously with the above molding, the polymer may be impregnated with a substance that is a gas at normal temperature.
[0017]
As the gas to be used, any gas that penetrates the polymer in a supercritical state may be used, and examples thereof include oxygen, nitrogen, helium, carbon dioxide, propane, and mixed gas thereof, and are easy to handle and highly safe. Therefore, carbon dioxide and nitrogen are preferable.
[0018]
The conditions for impregnating the polymer with a substance that is a gas at normal temperature are pressures of 7.0 MPa or more, preferably 10.0 to 20.0 MPa, assuming that the substance is in a supercritical state; the temperature is the melting point of the polymer The temperature is lower than the melting point by 30 ° C. or lower. When the pressure is less than 7.0 MPa, the permeation amount of the substance into the polymer is not sufficient, and therefore, a sufficient number of bubbles to form continuous bubbles cannot be obtained. When the impregnation temperature is lower than 30 ° C. below the melting point, sufficient foaming is not performed or the foam becomes a closed-cell foam. Above the melting point, open cells cannot be obtained, and deformation and shrinkage of the foam occur with foaming. Here, the melting point of the polymer refers to the temperature at which the state changes at a high temperature indicated by the thermal softening point, the pour point, and the like. For some thermoplastic elastomers that do not show a clear melting point even when differential thermal analysis is performed and show a broad peak of heat of fusion, the shoulder temperature on the high temperature side of the peak is taken as the melting point.
[0019]
The time for impregnating the polymer with a substance that is a gas at normal temperature varies depending on the required amount of impregnation and the impregnation temperature and pressure, but is usually 10 minutes to 1 day, preferably 30 minutes to 2 hours.
[0020]
In order to obtain a foam having good open cells, the storage elastic modulus G ′ of the polymer at the temperature for impregnation is in the range of 1.0 to 2.5 MPa, and the loss elastic modulus G ″ is in the range of 250 to 400 kPa. If G ″ is less than the above lower limit, an open-cell foam cannot be obtained, and shrinkage or deformation occurs during foaming. Moreover, even if these exceed the respective upper limits, open-cell foams cannot be obtained.
[0021]
In the present invention, the polymer is impregnated with a substance that is gaseous at room temperature under the above conditions, and then the pressure is decreased by 0.1 to 1.0 MPa / s, preferably 0.2 MPa / s or more, and 0.0. Foaming is performed by reducing the pressure at less than 5 MPa / s, more preferably 0.3 to 0.4 MPa / s. As a result, first, the gas impregnated in the polymer is foamed to form closed cells, and then the bubbles that have grown as the pressure is reduced are connected to obtain a polymer foam having an open cell structure. When the pressure reduction rate is less than 0.1 MPa / s, the diameter of the grown bubble becomes too large, and when it exceeds 1.0 MPa / s, the bubble grows instantaneously, and the bubble is independent without the cells being connected to each other. Stay in bubbles.
[0022]
In the production method of the present invention, as a subsequent step, a method of passing the foam through a roll to break the remaining closed cells, a method of injecting a solvent into open pores and dissolving a thin partition existing between the bubbles Etc. can also be used in combination to improve the open cell ratio.
[0023]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples. In the examples and comparative examples, parts represent parts by weight. The present invention is not limited by these examples.
[0024]
In the examples and comparative examples, the following measuring methods were used.
(1) Melting point: It was determined from the temperature at which heat of fusion was generated by differential thermal analysis.
(2) Storage elastic modulus G ′ and loss elastic modulus G ″: The storage elastic modulus and loss elastic modulus of the unfoamed sample at the temperature impregnated with carbon dioxide are measured using the dynamic elastic modulus measurement method of plastic according to ASTM D5279-92. It was measured.
(3) Foaming ratio: The specific gravity before foaming and after foaming was measured using a hydrometer, and calculated by the following formula.
Expansion ratio = (specific gravity before foaming) / (specific gravity after foaming)
(4) Cell diameter range: The cross section was photographed with an electron microscope, the screen was observed with the naked eye, and the cell diameter range in which 80 to 90% of the cells on the screen were distributed was defined as the cell diameter range.
(5) Pressurized air flow: Using a porometer (Automated Perm Porometer, 32 Bits Version, US Porous Material, Inc.), applying the pressure shown in the table, passing air through the foam, measuring the flow rate, It was used as an index for the formation of open cells.
(6) Bubble state: In addition to observation with an electron microscope, the above-described pressurized air flow was used as an index.
[0025]
Example 1
A thermoplastic polyurethane elastomer with a thermal softening point of 155 ° C obtained from the temperature of the high-temperature shoulder of the melting heat peak by differential thermal analysis is injection-molded at a temperature of 200 ° C to produce a plate of 100 x 100 mm and a thickness of 3 mm. A sample was prepared. This was inserted into an autoclave, carbon dioxide was introduced at the temperature shown in Table 1, and the sample was impregnated for 30 minutes at a pressure of 20 MPa. Subsequently, it was allowed to cool and returned to normal pressure over 30 seconds to obtain a foam. The storage elastic modulus and loss elastic modulus of the sample under the impregnation conditions, the expansion ratio, the cell diameter, and the formation of open cells are as shown in Table 1, and the continuous foam of 5 to 10 mm in thickness at the impregnation temperatures of 148 ° C. and 153 ° C. Got the body. Experiment 1-1 is a comparative example in which the impregnation temperature is low, and Experiments 1-4 and 1-5 are comparative examples in which the impregnation temperature exceeds the melting point. In these comparative examples, the storage elastic modulus and loss elastic modulus of the sample at the impregnation temperature were also outside the scope of the present invention.
[0026]
[Table 1]
Figure 2005023096
[0027]
Example 2
A sample prepared in the same manner from the same thermoplastic polyurethane elastomer as in Example 1 was impregnated in the same manner as in Example 1 at a temperature of 153 ° C., a pressure of 20 MPa, and an impregnation time of 30 minutes. The pressure release time was then set between 30 and 120 seconds to reduce the pressure. The results are shown in Table 2. A good continuous foam having a thickness of 4 to 10 mm was obtained at any pressure release time.
[0028]
[Table 2]
Figure 2005023096
[0029]
Example 3
A terminal butylated low-density polyethylene having a heat softening point of 85 ° C. was injection-molded at a temperature of 140 ° C. to produce a plate of 100 × 100 mm and a thickness of 3 mm, and used as a sample. This was inserted into an autoclave, carbon dioxide was introduced at the temperature shown in Table 3, and the sample was impregnated for 120 minutes at a pressure of 20 MPa. Subsequently, it was allowed to cool and returned to normal pressure over 60 seconds to obtain a foam. The storage elastic modulus and loss elastic modulus of the sample under the impregnation conditions, the expansion ratio, the cell diameter and the formation of open cells are as shown in Table 3, and the impregnation temperature is 70 ° C. and the thickness is 3.5 to 6.0 mm. A continuous foam was obtained. Experiments 3-1 and 3-3 are comparative examples in which the storage elastic modulus and loss elastic modulus at the impregnation temperature are outside the scope of the present invention.
[0030]
[Table 3]
Figure 2005023096
[0031]
As apparent from Tables 1 to 3, impregnation and pressure reduction were performed under the conditions that the elastic modulus of the polymer at the impregnation temperature was in the range of a storage elastic modulus of 1.0 to 2.5 MPa and a loss elastic modulus of 250 to 400 kPa. In some cases, open cells were formed, and an excellent foam was obtained.
[0032]
【The invention's effect】
According to the present invention, a polymer foam having fine open cells having a diameter of 1 to 500 μm can be obtained. The foam of the present invention is excellent in that it is not clogged and has low resistance to the fluid to be filtered, and is used in various applications including automobile parts and household products; microfiltration during purification of pharmaceuticals, cosmetics, etc. It is extremely useful for cell culture medium, virus separation membrane, artificial lung, etc.

Claims (3)

直径1〜500μmの連続気泡構造を有する高分子発泡体を製造する方法であって、常温で気体である物質を、超臨界状態であり、かつ圧力7.0MPa以上、融点より30℃低い温度以上、融点未満の温度で、該含浸温度における貯蔵弾性率が1.0〜2.5MPaであり、損失弾性率が250〜400kPaであるポリマーに含浸させた後、0.1〜1.0MPa/sの圧力減少速度で圧力を減少させることを特徴とする、高分子発泡体の製造方法。A method for producing a polymer foam having an open-cell structure having a diameter of 1 to 500 μm, wherein a substance that is a gas at normal temperature is in a supercritical state and has a pressure of 7.0 MPa or more and a temperature lower than the melting point by 30 ° C. After impregnating a polymer having a storage elastic modulus at the impregnation temperature of 1.0 to 2.5 MPa and a loss elastic modulus of 250 to 400 kPa at a temperature below the melting point, 0.1 to 1.0 MPa / s A method for producing a polymer foam, wherein the pressure is reduced at a pressure reduction rate of 5%. 常温で気体である物質が、二酸化炭素である、請求項1記載の高分子発泡体の製造方法。The method for producing a polymer foam according to claim 1, wherein the substance that is gaseous at room temperature is carbon dioxide. 圧力減少速度が、0.2MPa/s以上、0.5MPa/s未満である、請求項1または2記載の高分子発泡体の製造方法。The method for producing a polymer foam according to claim 1 or 2, wherein the pressure reduction rate is 0.2 MPa / s or more and less than 0.5 MPa / s.
JP2003186550A 2003-06-30 2003-06-30 Manufacturing method of open cell polymer foam Pending JP2005023096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003186550A JP2005023096A (en) 2003-06-30 2003-06-30 Manufacturing method of open cell polymer foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003186550A JP2005023096A (en) 2003-06-30 2003-06-30 Manufacturing method of open cell polymer foam

Publications (1)

Publication Number Publication Date
JP2005023096A true JP2005023096A (en) 2005-01-27

Family

ID=34185648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003186550A Pending JP2005023096A (en) 2003-06-30 2003-06-30 Manufacturing method of open cell polymer foam

Country Status (1)

Country Link
JP (1) JP2005023096A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225488A (en) * 2005-02-16 2006-08-31 Nitto Denko Corp Thermoplastic resin foam and method for producing the same
JP2010029665A (en) * 2008-07-29 2010-02-12 Ivoclar Vivadent Ag Burnable, readily machineable cad blocks made of foam plastic and use of same
JP2013528238A (en) * 2010-05-27 2013-07-08 コンパニー ゼネラール デ エタブリッスマン ミシュラン Pneumatic tire with tire crown with inner layer to reduce rotational noise
JP2015142282A (en) * 2014-01-29 2015-08-03 日東電工株式会社 Waterproof sound-transmitting member
JP2018122852A (en) * 2017-02-01 2018-08-09 西川ゴム工業株式会社 Weather Strip
US10300776B2 (en) * 2017-02-01 2019-05-28 Nishikawa Rubber Co., Ltd. Weather strip

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225488A (en) * 2005-02-16 2006-08-31 Nitto Denko Corp Thermoplastic resin foam and method for producing the same
JP4683952B2 (en) * 2005-02-16 2011-05-18 日東電工株式会社 Thermoplastic resin foam and method for producing the same
JP2010029665A (en) * 2008-07-29 2010-02-12 Ivoclar Vivadent Ag Burnable, readily machineable cad blocks made of foam plastic and use of same
JP2013528238A (en) * 2010-05-27 2013-07-08 コンパニー ゼネラール デ エタブリッスマン ミシュラン Pneumatic tire with tire crown with inner layer to reduce rotational noise
JP2015142282A (en) * 2014-01-29 2015-08-03 日東電工株式会社 Waterproof sound-transmitting member
JP2018122852A (en) * 2017-02-01 2018-08-09 西川ゴム工業株式会社 Weather Strip
US10300776B2 (en) * 2017-02-01 2019-05-28 Nishikawa Rubber Co., Ltd. Weather strip
JP7064336B2 (en) 2017-02-01 2022-05-10 西川ゴム工業株式会社 Weather Strip

Similar Documents

Publication Publication Date Title
JP3493079B2 (en) Method for producing microporous thermoplastic resin membrane
EP1474222B1 (en) Halar membranes
JP2509030B2 (en) Ultra-permeable polypropylene microporous film and method for producing the same
CN102504323B (en) Method for preparing polymer foamed material by using supercritical fluid technology
CN103435836B (en) Preparation method of polymer foam material in open pore structure
JPS62500385A (en) Ultra-high molecular weight polyethylene microporous membrane
JPH0834874A (en) Preparation of fluorocarbon film
US20160137806A1 (en) Solid-state thermoplastic nanofoams
Lee et al. Extrusion of microcellular open‐cell LDPE‐based sheet foams
CN104277237A (en) Preparation method of polymer foam material
JP2004263184A (en) Open-cell foamed body composed of high melting point plastic
Huang et al. Polycarbonate hollow fiber membranes by melt extrusion
JP3555986B2 (en) Method for producing thermoplastic resin foam
Jiang et al. Tunable cell structure and mechanism in porous thermoplastic polyurethane micro-film fabricated by a diffusion-restricted physical foaming process
JP2005023096A (en) Manufacturing method of open cell polymer foam
Cuadra-Rodríguez et al. Production of cellular polymers without solid outer skins by gas dissolution foaming: A long-sought step towards new applications
Huang et al. Melt extruded open-cell microcellular foams for membrane separation: Processing and cell morphology relationship
CN108479431B (en) Through hole filtering membrane and preparation method thereof
JP5011491B2 (en) Membrane and its use
EP2746307B1 (en) Polyvinylidene fluoride resin expanded beads, method for producing polyvinylidene fluoride resin expanded beads, and molded articles of polyvinylidene fluoride resin expanded beads
Pinto et al. Nanoporous polymer foams from nanostructured polymer blends: preparation, characterization, and properties
JP3581201B2 (en) Method for producing porous polymer structure
Krause et al. New ways to produce porous polymeric membranes by carbon dioxide foaming
JP2003103625A (en) Polyolefin microporous film and method for manufacturing the same
CN112876725B (en) Polylactic acid through hole film and preparation method and application thereof