JP2005022881A - Mesoporous silica having bimodal type pore structure, and method of preparing the same - Google Patents

Mesoporous silica having bimodal type pore structure, and method of preparing the same Download PDF

Info

Publication number
JP2005022881A
JP2005022881A JP2003186726A JP2003186726A JP2005022881A JP 2005022881 A JP2005022881 A JP 2005022881A JP 2003186726 A JP2003186726 A JP 2003186726A JP 2003186726 A JP2003186726 A JP 2003186726A JP 2005022881 A JP2005022881 A JP 2005022881A
Authority
JP
Japan
Prior art keywords
sol
group
gel reaction
mesoporous silica
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003186726A
Other languages
Japanese (ja)
Other versions
JP4370388B2 (en
Inventor
Akihiro Okabe
晃博 岡部
Takanori Fukushima
孝典 福島
Katsuhiko Ariga
克彦 有賀
Takuzo Aida
卓三 相田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003186726A priority Critical patent/JP4370388B2/en
Publication of JP2005022881A publication Critical patent/JP2005022881A/en
Application granted granted Critical
Publication of JP4370388B2 publication Critical patent/JP4370388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for constructing a porous silica consisting of a bimodal type pore structure having two kinds of meso pores different in type. <P>SOLUTION: When the meso porous silica is prepared by a sol-gel reaction by using the aggregation structure of a surfactant as a template, an anion (e.g. BF<SB>4</SB><SP>-</SP>, PF<SB>6</SB><SP>-</SP>or F<SP>-</SP>) being a reaction accelerating material other than a sol-gel reaction catalyst is allowed to exist in a reaction system. Thus, two kinds of the meso pores, that are, cylindrical pores arranged honeycomb-like and respectively having 2-4 nm pore diameter and ≥4 nm pore diameter are obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、触媒担体等として利用される多孔質の無機構造体の技術分野に属し、特に、2種類のタイプの異なる細孔を有するバイモーダル型細孔構造を有するメソ多孔性シリカとその製造法に関する。
【0002】
【従来の技術】
近年、メソ多孔性シリカ、所謂、メソポーラスシリカと呼ばれる特徴的なメソ細孔を有するシリカが注目されている。よく知られているように、多孔性材料中の細孔は、ミクロ細孔(マイクロポア)、メソ細孔(メソポア)およびマクロ細孔(マクロポア)に大別され、メソ細孔とは一般に径が2〜50(nm)の範囲の細孔として分類される。これに対して、一般に、孔径2nm以下がミクロ細孔であり、50nm以上をマクロ細孔と呼ぶことがIUPACでも提唱している。この特徴的な細孔構造をもつメソ多孔性シリカは、均一かつ規則的細孔構造を有するゼオライト触媒と同様に、細孔の径および形状に起因する選択的な吸着および触媒反応等が期待できると同時に、ゼオライトの持つミクロ細孔より大きいメソ細孔を有するため、これまで実現できなかった巨大な分子に関連する吸着および触媒反応を対象とすることが可能となった。具体的には高分子重合反応(例えば、Science, 285, 2113 (1999))、ポルフィリン合成(例えば、J. Chem. Soc., Chem. Commun., 1801 (1995))、酵素反応(例えば、Nature, 368, 289, (1994))等が挙げられる。
【0003】
メソ多孔性シリカは、界面活性剤の集合構造(例えば棒状ミセル)を鋳型として、その周囲(表面)で適当なシリカ源を原料としてゾルゲル反応を行わせてシリカを生成し、その後に鋳型と成る界面活性剤を焼成などにより除いてシリカ骨格を残すことにより作製され、界面活性剤を除去されてできた空孔が均一で規則的に配列したメソ細孔となる。
【0004】
メソ多孔性シリカの規則構造としては様々の種類のものが知られているが、最も一般的なものは界面活性剤の棒状ミセルに由来して形成され円筒状(シリンダー状)の細孔が蜂の巣状に配列した所謂ヘキサゴナル(六方晶)構造のものである。例えば、米国特許第5098684号公報(特許文献1)には、細孔径が1.5nm以上で、(100)面間隔(d100)が1.8nm以上のX線回折ピークを有する、ヘキサゴナルの規則性を持って細孔が配列したメソ多孔性シリカ(所謂、MCM−41)が記載されている。このようなヘキサゴナル構造のメソ多孔性シリカが、触媒担体などとして用いられる場合、反応物が細孔内の活性点へ到達するためには、円筒の断面から入り、連続性の高い一次元円筒状の細孔内を通過して拡散する必要がある。この構造により、反応速度よりも反応物の拡散速度が遅くなってしまう可能性がある。さらに、この構造においては、生成物および副生成物が細孔内に長く滞留することによって、更なる反応が進行し、高分子量化することによる活性点被毒をもたらす可能性も考えられる。
【0005】
最近、ミクロ細孔やメソ細孔をもつシリカ等の多孔性材料において、細孔内での反応物、生成物、または副生成物の拡散を促進してその機能を向上させるために、当該多孔性材料が2種類のタイプの異なる細孔から構成されるようにする、所謂バイモーダル型細孔構造にすることが提供されている。例えば、フィッシャー・トロップシュ合成反応にシリカまたはシリカ−ジルコニアから成るバイモーダル担体を用いたコバルト触媒を用いて活性向上を図ることが試みられている(Catal. Comm., 2, 311 (2001):非特許文献4)。しかし、これまでに知られているバイモーダル型細孔構造の多くは上記の例に見られるようにミクロ細孔とマクロ細孔とから成るものであり、精密に制御された2種類のメソ細孔から構成されるバイモーダル型多孔体は見当たらない。
【特許文献1】米国特許第5098684号公報
【非特許文献1】Science, 285, 2113 (1999)
【非特許文献2】J. Chem. Soc., Chem. Commun. 1801 (1995)
【非特許文献3】Nature, 368, 289 (1994)
【非特許文献4】Catal. Comm., 2331 (2001)
【0006】
【発明が解決しようとする課題】
本発明の目的は、2種類のタイプの異なるメソ細孔を同時に有するバイモーダル型細孔構造のメソ多孔性シリカを構築する新しい技術を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、ゾルゲル反応によりメソ多孔性シリカを調製するに際して特定のアニオンから成るゾルゲル反応促進物質を反応系に存在させることにより上記の目的を達成したものである。
かくして、本発明に従えば、第1のメソ細孔群とそれよりも孔径の大きい第2のメソ細孔群とから成る孔径の異なる2種類のメソ細孔を同時に有することを特徴とするメソ多孔性シリカが提供される。
本発明に従うメソ多孔性シリカは、特に好ましい態様として、第1のメソ細孔群が蜂の巣状に配列し孔径2〜4nmの範囲にあるシリンダー状の細孔から成り、第2のメソ細孔群が4nm以上の孔径を有することを特徴とする。
【0008】
本発明は、さらに、上記のメソ多孔性シリカを製造する方法であって、界面活性剤、シリカ源、ゾルゲル反応触媒、水および必要に応じて有機溶媒を含む反応溶液を調製してゾルゲル反応を行い、生じた固体を濾過・乾燥して粉末とし、さらに、高温焼成または有機溶媒による抽出により前記界面活性剤を除去してメソ多孔性シリカを製造するに当たり、前記反応溶液中に前記ゾルゲル反応触媒以外のゾルゲル反応促進物質を存在させることを特徴とする方法が提供される。本発明の好ましい態様において、ゾルゲル反応触媒以外のゾルゲル反応促進物質は、IIIB(13)族、IVB(14)族、VB(15)族、および水素から選ばれる0〜3種の元素とVB(15)族、VIB(16)族、VIIB(17)族から選ばれる1〜2種の元素より構成されるアニオンであり、特に好ましいのは、IIIB(13)族、IVB(14)族およびVB(15)族から選ばれる0〜1種の元素とフッ素より構成されるアニオンであり、その好ましい具体例は、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオンまたはフッ素イオンである。
【0009】
【発明の実施の形態】
本発明を実施するに当たって最も重要な点は、界面活性剤の集合構造を鋳型としてゾルゲル反応によりシリカ源からメソ多孔性シリカを調製するに当たり、ゾルゲル反応触媒とは別にゾルゲル反応促進物質を存在させておくことにある。
フッ素イオンがゾルゲル反応を促進することについては従来からも指摘されている。本発明者は、フッ素イオンに限らず、幾つかのアニオンがゾルゲル反応を促進することを見出し(後述の参考例参照)、シリカを生成するゾルゲル反応系にこのようなアニオンを共存させておくと、従来からよく知られているヘキサゴナル構造に代表される規則的なメソ細孔に加えて、これよりも大径のメソ細孔が形成することを発見し、これを利用してバイモーダル型細孔構造を有するメソ多孔性シリカを導き出した。
【0010】
このように、本発明の方法によってバイモーダル型細孔分布を持つメソ多孔体が生成する理由として次のことが考えられるが、これによって、本発明が何らかの意味で拘束されるものではない:メソ多孔性シリカ生成機構は、界面活性剤の形成するミセルが、ゾルゲル反応で成長するシリカを介して集合し、規則的に配列することで、界面活性剤が細孔の鋳型となり、これを除去することで規則的な細孔が発現することによる。ゾルゲル反応触媒に加えてゾルゲル反応を促進するアニオンが存在する本発明の方法では、通常に比べてミセル表面でのゾルゲル反応進行が局所的に速いため、その部分で密度が高く柔軟性の低いシリカ骨格が成長し、シリカの空間的な疎密の差が激しくなるため、疎の部分が第二細孔として成長することによると考えられる。
【0011】
本発明においてゾルゲル反応触媒とは、よく知られているように、酸(塩酸、硫酸、硝酸、酢酸など)またはアルカリ(例えばアンモニア、水酸化ナトリウム)を指称するものとする。したがって、本発明においてゾルゲル反応触媒以外のゾルゲル反応促進物質とは、上記のような触媒として作用する酸やアルカリ以外でゾルゲル反応を促進するものであれば、いずれのアニオンでもよいが、一般的には、IIIB(13)族、IVB(14)族、VB(15)族、および水素から選ばれる0〜3種の元素とVB(15)族、VIB(16)族、VIIB(17)族から選ばれる1〜2種の元素より構成されるアニオンであり、特にIIIB(13)族、IVB(14)族およびVB(15)族から選ばれる0〜1種の元素とフッ素より構成されるアニオンである。図1には、このような本発明においてゾルゲル反応触媒以外のゾルゲル反応物質として使用することのできるアニオンを例示している。これらのうちでも特に効果的であり本発明において用いられるのに好適なものは、テトラフルオロホウ酸イオン(BF )、ヘキサフルオロリン酸イオン(PF )、またはフッ素イオン(F)である。
【0012】
上記のようなゾルゲル反応触媒以外のゾルゲル反応促進物質を反応系に含ませる手段としては、テトラフルオロホウ酸ナトリウム、テトラフルオロホウ酸アンモニウム等の適当な塩として添加(後述の実施例2〜8参照)してもよいが、対イオンとして界面活性剤中に含ませる(後述の実施例1参照)ことも可能である。
【0013】
本発明に従うメソ多孔性シリカの製造方法は、上述のようにゾルゲル反応触媒に加えて、該触媒以外のゾルゲル反応促進物質を存在させることを除いては従来のメソ多孔性シリカを調製する場合と同様に実施される。すなわち、界面活性剤、シリカ源、ゾルゲル反応触媒、水および必要に応じて有機溶媒から構成される溶液を原料とし、ゾルゲル反応触媒以外のゾルゲル反応促進物質を反応系内に含ませてゾルゲル反応を行い、生じた固体を濾過・乾燥して粉末とした後、さらに高温焼成または有機溶媒による抽出により、界面活性剤を除去する。反応溶液を調製するには、界面活性剤、ゾルゲル反応触媒、該触媒以外のゾルゲル反応促進物質、水および必要に応じて有機溶媒から構成される均一な溶液に、シリカ源を添加するのが代表的であるが、これに限定されるものではない。
【0014】
本発明に用いられる界面活性剤としては、下記の一般式(1)、(2)または(3)で表されるものが挙げられる。式(1)、(2)および(3)において、XおよびX’は親水性官能基または原子団を表す。図2に好ましい親水性官能基または原子団の例を挙げるが、これに限定されるものではない。式(1)、(2)および(3)においてYは界面活性剤構成成分として従来より知られるアルキル基、フェニル基またはポリプロピレンオキシド基等から成る疎水部を表す。図3に界面活性剤の疎水部として好ましい疎水性官能基または原子団の例を挙げるがこれに限定されるものではない。式(1)においてZはYがイオン性である場合の対イオンを表す。例として、一般的な塩化物イオン(Cl)、臭化物イオン(Br)、ナトリウムイオン(Na)、および既述したようなゾルゲル反応促進イオンとして図1のイオン等が挙げられるが、これに限定されるものではない。ゾルゲル反応促進物質としてアニオンを反応系に含ませている点から、界面活性剤としてはアニオンと強く相互作用を持つカチオン性界面活性剤を用いるのが好ましい。
【0015】
【化1】

Figure 2005022881
【0016】
本発明に用いられるシリカ源としては、テトラエトキシシラン(TEOS)、メチルトリエトキシシラン、ビス(トリエトキシシリル)エタン等のアルコキシド、珪酸ソーダ、テトラメチルアンモニウムシリケート等の水溶性珪酸塩、コロイダルシリカ等が使用可能であるが、中でもアルコキシドが好ましい。
ゾルゲル反応溶液には、必要に応じて混合を円滑にするため、有機溶媒を添加してもよい。有機溶媒としては、エタノールが一般的に用いられるが、これに限定されるものではない。
【0017】
ゾルゲル反応温度は、反応容器を室温下に放置またはオイルバスに浸漬することによって調節し、10〜50℃の範囲の適当な温度、特に25℃、30℃、または40℃で行う。反応液はマグネティックスターラー等で攪拌しながら、2〜72時間、好ましくは18〜22時間放置する。この間に、界面活性剤を含んだシリカ複合体の白色沈殿が生じ、溶液がスラリー状となるので、これを濾過・水洗し試料を得る。
【0018】
上記試料は、室温で2時間以上風乾した後、100℃で5〜24時間乾燥する。乾燥後の試料は、界面活性剤成分を高温焼成または溶媒洗浄等の方法により除去して細孔を得る。主に、高温焼成としては空気中550℃で3時間放置、溶媒洗浄としては1N塩酸/エタノール溶液10g中において、試料0.06gを60℃で10時間攪拌することにより行うが、これに限定されるものではない。
【0019】
以上のような操作により本発明に従えば、第1のメソ細孔群とそれよりも孔径の大きい第2のメソ細孔群とから成る孔径の異なる2種類のメソ細孔を同時に有するメソ多孔性シリカが得られる。第1のメソ細孔群は、界面活性剤の集合形態から形成される各種のメソ構造体、すなわち、従来よりよく知られているヘキサゴナル構造、キュービック構造、あるいは層状構造等に由来しそれらの構造を呈する界面活性剤が除去されて形成される規則的な細孔であり、一方、第2のメソ細孔群は既述のようにゾルゲル反応触媒以外のゾルゲル反応促進物質を存在させたことに因るものと考えられる。規則的なメソ細孔(第1のメソ細孔群)の存在は、例えば、X線回折により確認することができ、また、それぞれのメソ細孔群の孔径は窒素吸着測定の結果をBJH法により解析した細孔分布から知ることができる。
【0020】
本発明は、以上のような各種のメソ構造体に由来するメソ細孔を有するメソ多孔性シリカを調製するのに適用できるが、特に、ヘキサゴナル構造の規則性を持つ細孔を有するシリカを製造するのに最も適している。すなわち、本発明の特に好ましい態様に従えば、第1のメソ細孔群が蜂の巣状に配列し孔径2〜4nmの範囲にあるシリンダー状の細孔から成り、第2のメソ細孔群が4nm以上の孔径を有するメソ多孔性シリカが得られる。
【0021】
このようなヘキサゴナル構造に由来する規則的な配列から成るメソ細孔群の存在は、少なくとも1つ以上、好ましくは3つ以上のX線回折ピーク、すなわち、低角側から順に、ヘキサゴナル構造の(100)面、(110)面、(200)面、および場合によっては更なる高次の面に対応する回折ピークにより確認できる。代表的なものとしては、d100が3.5〜4.0nmの範囲に存在するメソ多孔性シリカが挙げられるが、これに限定されるものではない。そして、この本発明の多孔性シリカは、以上のようにX線回折パターンで示された細孔、すなわち、蜂の巣状に配列し孔径2〜4nmの範囲にあるシリンダー状の細孔から成る第1のメソ細孔群の他に、4nm以上の孔径から成る第2のメソ細孔群を有することが、窒素吸収測定の結果をBJH法により解析した細孔分布曲線から確認できる。ここで、第2のメソ細孔群とは、4nm以上のメソ細孔、すなわち、一般的には、4〜50nmのものを指称するが、好ましくは4〜20nm、特に好ましくは4〜10nmの範囲にある細孔である。ここで、本発明の更なる特徴は、ゾルゲル反応におけるゾルゲル反応促進物質の添加量、またはゾルゲル反応温度を変えることで、第2のメソ細孔の細孔容積を変えることもできることである(後述の実施例5〜8参照)。
【0022】
本発明のメソ多孔性シリカが、特に好ましい態様として、ヘキサゴナルに配列するハニカム状の細孔構造(蜂の巣状に配列し孔径2〜4nmの範囲にあるシリンダー状の細孔)と、これとは異なる径の細孔(4nm以上のメソ細孔)とを有するバイモーダル型の細孔構造を呈することは透過型電子顕微鏡観察により視覚的に確認することもできる(実施例1、図6参照)。
【0023】
バイモーダル型細孔分布を持つ、本発明のメソ多孔性シリカは、2種類のメソ細孔を同時に持ち、新しい触媒担体等としての有用性が期待される。すなわち、形状選択性等の特殊な反応場としての性質を持つ、径が均一でかつ規則的に配列している第1の細孔群に加えて、反応物・生成物・副生成物・溶媒等の拡散を促進する第2の細孔群が存することで、反応速度向上・活性点を被毒する副生成物除去等の機能を発揮すると考えられる。さらに、本発明に従えば、第一細孔とは異なる反応場となり、副反応の原因となる可能性を持つ第二細孔について、その細孔容積を必要に応じて制御することもできるので、本発明のメソ多孔性シリカはさらに応用範囲の広がることも期待できる材料である。
【0024】
【実施例】
以下、実施例および参考例によって本発明をさらに具体的に説明するが、本発明はこれらの実施例によって何らの制限を受けるものではない。なお、参考例は、特定のアニオンがゾルゲル反応を促進することを示す実験例であり、本発明はこの事実を見出したことを基に導き出されたものである。
【0025】
実施例1
水38.0g、11N濃塩酸17.0g、エタノール4.80gを混合し、攪拌することで調製した水/塩酸/エタノール溶液11.21gに、図1の(1)に示される1−セチル−3−メチルイミダゾリウムテトラフルオロボレート(以下、CMI−BF)0.379gを添加して容器を密閉し、30℃のオイルバス中でマグネティックスターラーにより1時間攪拌して、CMI−BFを完全に溶解させた。この容器をオイルバスより取り出し、TEOS0.750gを瞬時に添加し再び密閉して、30℃のオイルバス中でマグネティックスターラーにより18時間攪拌した。この間にゾルゲル反応が進行して、界面活性剤を含んだシリカの白色沈殿が生じ、溶液がスラリー状となる。これを吸引濾過した後、漏斗内にて、水による濾過洗浄を5回繰り返し、そのまま風乾した。回収した白色粉末を、空気中100℃で12時間乾燥した後、同じく空気中550℃で3時間焼成することにより、界面活性剤を除去しメソ多孔性シリカを得た。これを試料1とする。
X線回折測定によりd100=3.8nm、d110=2.2nm、d200=1.9nm(図5(1))のピークが観測され、ヘキサゴナルの規則性を持つ細孔構造の存在が確認された。
窒素吸着測定の結果をBJH法により解析した細孔分布曲線(図5(2))から、X線回折で確認された径が2〜3nm程度の細孔と、それ以外に4〜10nm付近にややブロードに分布している細孔が存在し、バイモーダル型の細孔分布を示した。
この結果、BF イオンをカチオン性界面活性剤の対イオンとして反応系に含ませることにより、バイモーダル型細孔分布を持つメソ多孔性シリカを調製できることが明らかとなった。
【0026】
実施例2
実施例1と同じ組成の水/塩酸/エタノール溶液11.21gに、図4の(2)に示される1−セチル−3−メチルイミダゾリウムクロライド(以下、CMI−Cl)0.330gおよびNaBF0.053gを添加して容器を密閉し、30℃のオイルバス中でマグネティックスターラーにより1時間攪拌して、CMI−ClおよびNaBFを完全に溶解させた。この溶液にTEOS0.750gを加えゾルゲル反応を開始し、実施例1と同じ手法によりメソ多孔性シリカを得た。これを試料2とする。
X線回折測定によりd100=3.7nm、d110=2.1nm、d200=1.9nm(図7(1))のピークが観測され、ヘキサゴナルの規則性を持つ細孔構造の存在が確認された。
窒素吸着測定の結果をBJH法により解析した細孔分布曲線(図7(2))から、X線回折で確認された径が2〜3nm程度の細孔と、それ以外に4〜10nm付近にややブロードに分布している細孔が存在し、バイモーダル型の細孔分布を示した。
さらに、透過型電子顕微鏡像(図6)により、細孔径2〜3nm程度の、ヘキサゴナルに配列した規則的な細孔、および4〜10nm程度の細孔が共存していることが確認され、BF イオンを添加物として反応系に含ませることによっても、バイモーダル型細孔分布を持つメソ多孔性シリカを調製できることが明らかとなった。
【0027】
実施例3
実施例2の添加物NaBFの代わりにNaF0.020gを添加した以外は、実施例2と同様の操作を行いメソ多孔性シリカを得た。これを試料3とする。
X線回折測定によりd100=3.6nm、d110=2.1nm、d200=1.8nm(図8(1))のピークが観測され、ヘキサゴナルの規則性を持つ細孔構造の存在が確認された。
窒素吸着測定の結果をBJH法により解析した細孔分布曲線(図8(2))から、X線回折で確認された径が2〜3nm程度の細孔と、それ以外に4〜10nm付近にややブロードに分布している細孔が存在し、バイモーダル型の細孔分布を示した。
この結果、Fイオンを添加物として反応系に含ませることによっても、バイモーダル型細孔分布を持つメソ多孔性シリカを調製できることが明らかとなった。
【0028】
実施例4
実施例2の界面活性剤CMI−Clを図4の(3)に示されるセチルピリジニウムクロライド(以下、CPy−Cl、添加量0.327g)とし、TEOS添加前および後の溶液攪拌の際のオイルバス温度を40℃とした以外は実施例2と同様の操作を行いメソ多孔性シリカを得た。これを試料4とする。
X線回折測定によりd100=3.7nm、d110=2.1nm、d200=1.9nm(図9(1))のピークが観測され、ヘキサゴナルの規則性を持つ細孔構造の存在が確認された。
窒素吸着測定の結果をBJH法により解析した細孔分布曲線(図9(2))から、X線回折で確認された径が2〜3nm程度の細孔と、それ以外に4〜10nm付近にややブロードに分布している細孔が存在し、バイモーダル型の細孔分布を示した。
この結果、界面活性剤としてCPy−Clを用いることによっても、バイモーダル型細孔分布を持つメソ多孔性シリカを調製できることが明らかとなった。
【0029】
実施例5
実施例2のNaBF添加量を0.032gとした以外は、実施例2と同様の操作を行いメソ多孔性シリカを得た。これを試料5とする。
【0030】
実施例6
実施例2のNaBF添加量を0.063gとした以外は、実施例2と同様の操作を行いメソ多孔性シリカを得た。これを試料6とする。
【0031】
実施例7
実施例2のNaBF添加量を0.106gとした以外は、実施例2と同様の操作を行いメソ多孔性シリカを得た。これを試料7とする。
【0032】
実施例8
実施例2のTEOS添加前および後の溶液攪拌の際のオイルバス温度を40℃とした以外は、実施例2と同様の操作を行いメソ多孔性シリカを得た。これを試料8とする。
細孔容積比(R)を式(4)に定義される式で求めた。
R=V/V・・・(4)
:窒素吸着量測定結果をBJH法により解析して得られた第1の細孔の細孔容積〔cc/g〕
:窒素吸着量測定結果をBJH法により解析して得られた第2の細孔の細孔容積〔cc/g〕
表1に、試料2および4〜7についてのV、V、細孔容積比の値を示す。
【0033】
【表1】
Figure 2005022881
【0034】
表1の結果より明らかなように、試料2および5〜7について、NaBFの添加量を変えることによりRを変えることができ、さらにNaBF添加量が少ないほどRが大きくなる傾向が認められた。このことから、NaBFの添加量を少なくすることで、第2の細孔の容積が第1の細孔の容積に比べて相対的に広げられることが明らかとなった。
【0035】
また、試料2および8について、ゾルゲル反応温度を変えることによりRを変えることができ、さらに温度が低いほどRが大きくなる傾向がある。このことから、ゾルゲル反応温度を下げることで、第2の細孔の容積が第1の細孔の容積に比べて相対的に広げられることも明らかとなった。
【0036】
参考例
水1.420g、11N濃塩酸0.640g、エタノール0.180gを混合し調製した水/塩酸/エタノール溶液に、NaBF、NaFおよびNaBrの内のいずれかを必要に応じて添加物として加え、界面活性剤を入れずに、TEOS0.15gを添加して室温で攪拌した。添加物であるNaBF、NaFおよびNaBrはいずれの場合もモル量(0.07mmol)が一定になるように添加した(NaBF:0.008g、NaF:0.003g、NaBr:0.007g)。TEOSがゲル化するまでの時間を測定した結果を図10に示す。TEOSのゲル化は、反応器を逆さにして、ゲルが落ちてこないことを目視で確認することで判断した。NaBF、NaFは添加物を加えない場合と比較してゲル化までの時間が200分の1以下になっており、ゾルゲル反応が促進されていることが分かった。またNaBF、NaFに見られるゾルゲル反応促進は、NaBrには見られず、この効果がアニオン種(BF 、F)によるものであることが解明された。同様の効果はPF の場合についても確認された。
【図面の簡単な説明】
【図1】本発明で用いられる、ゾルゲル反応触媒以外のゾルゲル反応促進物質として好ましい官能基または原子団の例の化学構造式を示す。
【図2】本発明で用いられる、界面活性剤の親水部を構成するのに好ましい官能基または原子団の例の化学構造式を示す。
【図3】本発明で用いられる、界面活性剤の疎水部を構成するのに好ましい官能基または原子団の例の化学構造式を示す。
【図4】本発明で使用されている界面活性剤として好適な例の化学構造式を示す。
【図5】本発明に従い、CMI−BFを界面活性剤として用い合成したメソ多孔性シリカの(1)X線回折パターン、(2)窒素吸着測定結果をBJH法により解析した細孔分布曲線を示す。
【図6】本発明に従い、CMI−BFを界面活性剤として用い合成したメソ多孔性シリカの透過型電子顕微鏡観察像を示す。
【図7】本発明に従い、CMI−Clを界面活性剤として用い、ゾルゲル反応促進物質としてNaBFを添加し合成したメソ多孔性シリカの1)X線回折パターン、(2)窒素吸着測定結果をBJH法により解析した細孔分布曲線を示す。
【図8】本発明に従い、CMI−Clを界面活性剤として用い、ゾルゲル反応促進物質としてNaFを添加し合成したメソ多孔性シリカの1)X線回折パターン、(2)窒素吸着測定結果をBJH法により解析した細孔分布曲線を示す。
【図9】本発明に従い、CPy−Clを界面活性剤として用い、ゾルゲル反応促進物質としてNaBFを添加し合成したメソ多孔性シリカの1)X線回折パターン、(2)窒素吸着測定結果をBJH法により解析した細孔分布曲線を示す。
【図10】参考例として、NaBF、NaFまたはNaBrを添加して、TEOSのゲル化反応を行った際のTEOSゲル化までの時間を測定した結果を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of porous inorganic structures used as catalyst supports and the like, and in particular, mesoporous silica having a bimodal pore structure having two different types of pores and the production thereof Regarding the law.
[0002]
[Prior art]
In recent years, mesoporous silica, that is, silica having characteristic mesopores called so-called mesoporous silica has attracted attention. As is well known, pores in a porous material are roughly classified into micropores (micropores), mesopores (mesopores), and macropores (macropores). Are classified as pores in the range of 2 to 50 (nm). On the other hand, in general, IUPAC also proposes that a pore diameter of 2 nm or less is a micropore, and that a diameter of 50 nm or more is called a macropore. The mesoporous silica having this characteristic pore structure can be expected to selectively adsorb and catalyze due to the diameter and shape of the pores as well as the zeolite catalyst having a uniform and regular pore structure. At the same time, it has mesopores larger than the micropores of zeolite, making it possible to target adsorption and catalytic reactions related to huge molecules that could not be realized so far. Specifically, polymer polymerization reaction (for example, Science, 285, 2113 (1999)), porphyrin synthesis (for example, J. Chem. Soc., Chem. Commun., 1801 (1995)), enzyme reaction (for example, Nature) 368, 289, (1994)).
[0003]
Mesoporous silica is produced by a sol-gel reaction using a surfactant aggregate structure (eg, rod-like micelles) as a template and an appropriate silica source as a raw material around the surface (surface). It is produced by removing the surfactant by baking or the like and leaving the silica skeleton, and the pores formed by removing the surfactant become uniform and regularly arranged mesopores.
[0004]
Various types of mesoporous silica are known, but the most common one is derived from surfactant rod-like micelles, and cylindrical (cylindrical) pores are honeycombs. So-called hexagonal (hexagonal) structure. For example, in US Pat. No. 5,098,684 (Patent Document 1), the pore diameter is 1.5 nm or more and the (100) spacing (d100) Has an X-ray diffraction peak of 1.8 nm or more, and mesoporous silica (so-called MCM-41) in which pores are arranged with hexagonal regularity is described. When such hexagonal-structured mesoporous silica is used as a catalyst support, the reactant enters from the cross section of the cylinder in order to reach the active point in the pore, and is a one-dimensional cylindrical shape with high continuity. It is necessary to diffuse through the pores. This structure may cause the reactant diffusion rate to be slower than the reaction rate. Further, in this structure, the product and by-products stay in the pores for a long time, so that further reaction proceeds, and there is a possibility of causing active site poisoning by increasing the molecular weight.
[0005]
Recently, in porous materials such as silica having micropores and mesopores, the porous material is used to promote the diffusion of reactants, products, or by-products in the pores and improve their functions. A so-called bimodal pore structure is provided in which the conductive material is composed of two types of different pores. For example, attempts have been made to improve the activity by using a cobalt catalyst using a bimodal support composed of silica or silica-zirconia in the Fischer-Tropsch synthesis reaction (Catal. Comm., 2, 311 (2001): Non- Patent Document 4). However, many of the bimodal pore structures known so far are composed of micropores and macropores, as seen in the above example. There is no bimodal porous body composed of pores.
[Patent Document 1] US Pat. No. 5,098,684
[Non-Patent Document 1] Science, 285, 2113 (1999)
[Non-Patent Document 2] Chem. Soc. Chem. Commun. 1801 (1995)
[Non-Patent Document 3] Nature, 368, 289 (1994)
[Non-Patent Document 4] Catal. Comm. , 2331 (2001)
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a new technique for constructing mesoporous silica having a bimodal type pore structure having two different types of different mesopores simultaneously.
[0007]
[Means for Solving the Problems]
The present invention achieves the above object by making a sol-gel reaction promoting substance composed of a specific anion present in a reaction system when preparing mesoporous silica by sol-gel reaction.
Thus, according to the present invention, the mesopore is characterized in that it has two types of mesopores having different pore diameters, each consisting of a first mesopore group and a second mesopore group having a larger pore diameter. Porous silica is provided.
The mesoporous silica according to the present invention has, as a particularly preferred embodiment, the first mesopore group consisting of cylindrical pores arranged in a honeycomb shape and having a pore diameter in the range of 2 to 4 nm. Has a pore diameter of 4 nm or more.
[0008]
The present invention further relates to a method for producing the above mesoporous silica, wherein a reaction solution containing a surfactant, a silica source, a sol-gel reaction catalyst, water and, if necessary, an organic solvent is prepared to carry out a sol-gel reaction. In the production of mesoporous silica by removing the surfactant by high-temperature baking or extraction with an organic solvent, the sol-gel reaction catalyst is added to the reaction solution. There is provided a method characterized in that a sol-gel reaction promoting substance other than the above is present. In a preferred embodiment of the present invention, the sol-gel reaction promoting substance other than the sol-gel reaction catalyst includes 0-3 elements selected from IIIB (13), IVB (14), VB (15), and hydrogen, and VB ( 15), VIB (16), and VIIB (17) are anions composed of one or two elements selected from the group, particularly preferred are IIIB (13), IVB (14) and VB. An anion composed of 0 to 1 element selected from the group (15) and fluorine, and preferred specific examples thereof are tetrafluoroborate ion, hexafluorophosphate ion or fluorine ion.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The most important point in practicing the present invention is that, in preparing mesoporous silica from a silica source by a sol-gel reaction using a surfactant aggregate as a template, a sol-gel reaction promoting substance is present separately from the sol-gel reaction catalyst. There is to leave.
It has been pointed out that fluorine ions promote the sol-gel reaction. The present inventor has found that not only fluorine ions but also some anions promote the sol-gel reaction (see Reference Examples described later), and if such anions coexist in a sol-gel reaction system that produces silica. In addition to the regular mesopores typified by the well-known hexagonal structure, it was discovered that larger mesopores were formed, and this was used to make bimodal fine pores. Mesoporous silica with a pore structure was derived.
[0010]
As described above, the following reason can be considered as the reason why a mesoporous material having a bimodal pore distribution is generated by the method of the present invention, but this does not restrict the present invention in any way: In the porous silica formation mechanism, the micelles formed by the surfactant gather through the silica that grows by the sol-gel reaction and arrange them regularly, so that the surfactant becomes the template of the pores and removes it. This is because regular pores appear. In the method of the present invention in which an anion that promotes the sol-gel reaction is present in addition to the sol-gel reaction catalyst, the progress of the sol-gel reaction locally on the micelle surface is faster than usual. It is considered that the sparse part grows as the second pore because the skeleton grows and the difference in spatial density of silica becomes severe.
[0011]
In the present invention, the sol-gel reaction catalyst refers to an acid (hydrochloric acid, sulfuric acid, nitric acid, acetic acid, etc.) or an alkali (for example, ammonia, sodium hydroxide), as is well known. Accordingly, in the present invention, the sol-gel reaction promoting substance other than the sol-gel reaction catalyst may be any anion as long as it promotes the sol-gel reaction other than the acid or alkali that acts as the catalyst as described above. Is a group selected from Group IIIB (13), Group IVB (14), Group VB (15), and hydrogen, and Group 0 to Group VB (15), Group VIB (16), and Group VIIB (17) An anion composed of one or two selected elements, in particular, an anion composed of fluorine and 0 to 1 element selected from IIIB (13), IVB (14) and VB (15) groups It is. FIG. 1 illustrates anions that can be used as a sol-gel reactant other than the sol-gel reaction catalyst in the present invention. Among these, tetrafluoroborate ions (BF) are particularly effective and suitable for use in the present invention.4 ), Hexafluorophosphate ion (PF)6 ) Or fluorine ions (F).
[0012]
As a means for including a sol-gel reaction promoting substance other than the sol-gel reaction catalyst as described above in the reaction system, it is added as an appropriate salt such as sodium tetrafluoroborate or ammonium tetrafluoroborate (see Examples 2 to 8 described later). However, it may be included as a counter ion in the surfactant (see Example 1 described later).
[0013]
The method for producing mesoporous silica according to the present invention includes a case where conventional mesoporous silica is prepared except that a sol-gel reaction promoting substance other than the catalyst is present in addition to the sol-gel reaction catalyst as described above. The same is done. That is, a solution composed of a surfactant, a silica source, a sol-gel reaction catalyst, water and, if necessary, an organic solvent is used as a raw material, and a sol-gel reaction promoting substance other than the sol-gel reaction catalyst is included in the reaction system to carry out the sol-gel reaction. After the resulting solid is filtered and dried to form a powder, the surfactant is further removed by high-temperature baking or extraction with an organic solvent. To prepare a reaction solution, it is typical to add a silica source to a uniform solution composed of a surfactant, a sol-gel reaction catalyst, a sol-gel reaction promoting substance other than the catalyst, water and, if necessary, an organic solvent. However, it is not limited to this.
[0014]
Examples of the surfactant used in the present invention include those represented by the following general formula (1), (2) or (3). In the formulas (1), (2) and (3), X and X ′ each represent a hydrophilic functional group or an atomic group. Although the example of a preferable hydrophilic functional group or atomic group is given in FIG. 2, it is not limited to this. In the formulas (1), (2) and (3), Y represents a hydrophobic part composed of an alkyl group, a phenyl group, a polypropylene oxide group or the like conventionally known as a surfactant component. Although the example of a hydrophobic functional group or an atomic group preferable as a hydrophobic part of surfactant is given in FIG. 3, it is not limited to this. In the formula (1), Z represents a counter ion when Y is ionic. As an example, the common chloride ion (Cl), Bromide ions (Br), Sodium ion (Na+) And the sol-gel reaction promoting ions as described above include, but are not limited to, the ions of FIG. From the viewpoint that an anion is included in the reaction system as a sol-gel reaction promoting substance, a cationic surfactant having a strong interaction with the anion is preferably used as the surfactant.
[0015]
[Chemical 1]
Figure 2005022881
[0016]
Examples of the silica source used in the present invention include alkoxides such as tetraethoxysilane (TEOS), methyltriethoxysilane, and bis (triethoxysilyl) ethane, water-soluble silicates such as sodium silicate and tetramethylammonium silicate, colloidal silica, and the like. Can be used, but alkoxide is preferable among them.
An organic solvent may be added to the sol-gel reaction solution as necessary in order to facilitate mixing. As the organic solvent, ethanol is generally used, but is not limited thereto.
[0017]
The sol-gel reaction temperature is adjusted by allowing the reaction vessel to stand at room temperature or immersing in an oil bath, and is performed at an appropriate temperature in the range of 10 to 50 ° C., particularly 25 ° C., 30 ° C., or 40 ° C. The reaction solution is allowed to stand for 2 to 72 hours, preferably 18 to 22 hours while stirring with a magnetic stirrer or the like. During this time, a white precipitate of the silica composite containing the surfactant is formed, and the solution becomes a slurry, which is filtered and washed with water to obtain a sample.
[0018]
The sample is air-dried at room temperature for 2 hours or more and then dried at 100 ° C. for 5 to 24 hours. From the dried sample, pores are obtained by removing the surfactant component by a method such as high-temperature baking or solvent washing. Mainly, high-temperature baking is performed in air at 550 ° C. for 3 hours, and solvent cleaning is performed by stirring 0.06 g of a sample at 60 ° C. for 10 hours in 10 g of a 1N hydrochloric acid / ethanol solution. It is not something.
[0019]
According to the present invention by the operation as described above, a mesoporous material having simultaneously two types of mesopores having different pore diameters, the first mesopore group and the second mesopore group having a larger pore diameter. Silica is obtained. The first mesopore group is derived from various mesostructures formed from the aggregated form of surfactants, that is, from the well-known hexagonal structure, cubic structure, or layered structure. On the other hand, the second mesopore group has the presence of a sol-gel reaction promoting substance other than the sol-gel reaction catalyst as described above. It is thought to be due. Presence of regular mesopores (first mesopore group) can be confirmed by, for example, X-ray diffraction, and the pore diameter of each mesopore group is the result of nitrogen adsorption measurement by the BJH method. Can be known from the pore distribution analyzed.
[0020]
The present invention can be applied to the preparation of mesoporous silica having mesopores derived from various mesostructures as described above, and in particular, producing silica having pores having regularity of hexagonal structure. It is most suitable to do. That is, according to a particularly preferred embodiment of the present invention, the first mesopore group is composed of cylindrical pores arranged in a honeycomb shape and having a pore diameter in the range of 2 to 4 nm, and the second mesopore group is 4 nm. Mesoporous silica having the above pore diameter is obtained.
[0021]
The existence of a mesopore group consisting of a regular arrangement derived from such a hexagonal structure is at least one, preferably three or more X-ray diffraction peaks, that is, hexagonal structure ( It can be confirmed by diffraction peaks corresponding to the (100) plane, the (110) plane, the (200) plane, and possibly higher order planes. A typical example is d100Is, but is not limited to, mesoporous silica in the range of 3.5 to 4.0 nm. The porous silica of the present invention is a first composed of pores shown in the X-ray diffraction pattern as described above, that is, cylindrical pores arranged in a honeycomb shape and having a pore diameter of 2 to 4 nm. In addition to the mesopore group, it can be confirmed from the pore distribution curve obtained by analyzing the result of nitrogen absorption measurement by the BJH method that the second mesopore group has a pore diameter of 4 nm or more. Here, the second mesopore group refers to mesopores of 4 nm or more, that is, generally 4 to 50 nm, preferably 4 to 20 nm, particularly preferably 4 to 10 nm. It is a pore in the range. Here, a further feature of the present invention is that the pore volume of the second mesopores can be changed by changing the amount of the sol-gel reaction promoting substance added in the sol-gel reaction or the sol-gel reaction temperature (described later). Examples 5 to 8).
[0022]
The mesoporous silica of the present invention is different from the honeycomb-like pore structure (cylindrical pores having a honeycomb diameter in the range of 2 to 4 nm) arranged in a hexagonal manner as a particularly preferred embodiment. It can also be visually confirmed by observation with a transmission electron microscope that a bimodal pore structure having pores having a diameter (mesopores of 4 nm or more) is present (see Example 1 and FIG. 6).
[0023]
The mesoporous silica of the present invention having a bimodal pore distribution has two types of mesopores at the same time, and is expected to be useful as a new catalyst support. That is, in addition to the first pore group having a characteristic as a special reaction field such as shape selectivity and having a uniform diameter and regularly arranged, a reactant, a product, a by-product, and a solvent It is considered that the presence of the second pore group that promotes the diffusion of the above and the like exhibits functions such as reaction rate improvement and removal of by-products that poison the active sites. Furthermore, according to the present invention, the pore volume can be controlled as necessary for the second pore that has a reaction field different from that of the first pore and may cause a side reaction. The mesoporous silica of the present invention is a material that can be expected to further expand the application range.
[0024]
【Example】
EXAMPLES Hereinafter, although an Example and a reference example demonstrate this invention further more concretely, this invention does not receive a restriction | limiting at all by these Examples. The reference example is an experimental example showing that a specific anion promotes the sol-gel reaction, and the present invention is derived based on the finding of this fact.
[0025]
Example 1
18.0 g of water / hydrochloric acid / ethanol solution prepared by mixing 38.0 g of water, 17.0 g of 11N concentrated hydrochloric acid and 4.80 g of ethanol and stirring was added to 1-cetyl- 3-methylimidazolium tetrafluoroborate (hereinafter referred to as CMI-BF)4) Add 0.379g, seal the container, stir for 1 hour with a magnetic stirrer in an oil bath at 30 ° C, CMI-BF4Was completely dissolved. The container was taken out from the oil bath, 0.750 g of TEOS was added instantaneously, the container was sealed again, and the mixture was stirred for 18 hours in a 30 ° C. oil bath with a magnetic stirrer. During this time, the sol-gel reaction proceeds to produce a white precipitate of silica containing a surfactant, and the solution becomes a slurry. After filtering this with suction, the filter was washed with water five times in the funnel, and then air-dried as it was. The recovered white powder was dried in air at 100 ° C. for 12 hours and then calcined in air at 550 ° C. for 3 hours to remove the surfactant and obtain mesoporous silica. This is designated as Sample 1.
D by X-ray diffraction measurement100= 3.8 nm, d110= 2.2 nm, d200= 1.9 nm (FIG. 5 (1)) was observed, confirming the presence of a pore structure having hexagonal regularity.
From the pore distribution curve (FIG. 5 (2)) obtained by analyzing the result of the nitrogen adsorption measurement by the BJH method, the diameter confirmed by X-ray diffraction is about 2 to 3 nm, and in addition to the pores around 4 to 10 nm. Slightly broad pores were present, indicating a bimodal pore distribution.
As a result, BF4 It has been clarified that mesoporous silica having a bimodal pore distribution can be prepared by including ions in the reaction system as counter ions of the cationic surfactant.
[0026]
Example 2
To 11.21 g of a water / hydrochloric acid / ethanol solution having the same composition as in Example 1, 0.330 g of 1-cetyl-3-methylimidazolium chloride (hereinafter referred to as CMI-Cl) shown in (2) of FIG. 4 and NaBF40.053 g was added and the vessel was sealed, stirred in a 30 ° C. oil bath with a magnetic stirrer for 1 hour, and CMI-Cl and NaBF4Was completely dissolved. To this solution, 0.750 g of TEOS was added to start the sol-gel reaction, and mesoporous silica was obtained by the same method as in Example 1. This is designated as Sample 2.
D by X-ray diffraction measurement100= 3.7 nm, d110= 2.1 nm, d200= 1.9 nm (FIG. 7 (1)) was observed, confirming the presence of a pore structure having hexagonal regularity.
From the pore distribution curve (FIG. 7 (2)) obtained by analyzing the result of the nitrogen adsorption measurement by the BJH method, the diameter confirmed by X-ray diffraction was about 2 to 3 nm, and in addition to the pores around 4 to 10 nm. Slightly broad pores were present, indicating a bimodal pore distribution.
Furthermore, the transmission electron microscope image (FIG. 6) confirmed that regular pores having a pore diameter of about 2 to 3 nm and hexagonal pores and pores of about 4 to 10 nm coexist.4 It has been clarified that mesoporous silica having a bimodal pore distribution can also be prepared by including ions in the reaction system as an additive.
[0027]
Example 3
Additive NaBF of Example 24A mesoporous silica was obtained by performing the same operation as in Example 2 except that 0.020 g of NaF was added instead of. This is designated as Sample 3.
D by X-ray diffraction measurement100= 3.6 nm, d110= 2.1 nm, d200= 1.8 nm (FIG. 8 (1)) was observed, confirming the presence of a pore structure having hexagonal regularity.
From the pore distribution curve (FIG. 8 (2)) obtained by analyzing the result of the nitrogen adsorption measurement by the BJH method, the diameter confirmed by X-ray diffraction was about 2 to 3 nm, and in addition to the pores around 4 to 10 nm. Slightly broad pores were present, indicating a bimodal pore distribution.
As a result, FIt has been clarified that mesoporous silica having a bimodal pore distribution can also be prepared by including ions in the reaction system as an additive.
[0028]
Example 4
The surfactant CMI-Cl of Example 2 was cetylpyridinium chloride (hereinafter referred to as CPy-Cl, added amount 0.327 g) shown in (3) of FIG. 4, and the oil during the stirring of the solution before and after the addition of TEOS Except that the bath temperature was 40 ° C., the same operation as in Example 2 was performed to obtain mesoporous silica. This is designated as Sample 4.
D by X-ray diffraction measurement100= 3.7 nm, d110= 2.1 nm, d200= 1.9 nm (FIG. 9 (1)) was observed, confirming the presence of a pore structure having hexagonal regularity.
From the pore distribution curve (FIG. 9 (2)) obtained by analyzing the result of nitrogen adsorption measurement by the BJH method, the diameter confirmed by X-ray diffraction was about 2 to 3 nm, and in addition to the pores around 4 to 10 nm. Slightly broad pores were present, indicating a bimodal pore distribution.
As a result, it has been clarified that mesoporous silica having bimodal pore distribution can be prepared by using CPy-Cl as a surfactant.
[0029]
Example 5
NaBF of Example 24Except for the addition amount of 0.032 g, the same operation as in Example 2 was performed to obtain mesoporous silica. This is designated as Sample 5.
[0030]
Example 6
NaBF of Example 24Except for the addition amount of 0.063 g, the same operation as in Example 2 was performed to obtain mesoporous silica. This is designated as Sample 6.
[0031]
Example 7
NaBF of Example 24Except for the addition amount of 0.106 g, the same operation as in Example 2 was performed to obtain mesoporous silica. This is designated as Sample 7.
[0032]
Example 8
A mesoporous silica was obtained in the same manner as in Example 2 except that the oil bath temperature at the time of solution stirring before and after addition of TEOS in Example 2 was 40 ° C. This is designated as Sample 8.
The pore volume ratio (R) was determined by the formula defined by formula (4).
R = V2/ V1... (4)
V1: The pore volume of the first pore obtained by analyzing the nitrogen adsorption amount measurement result by the BJH method [cc / g]
V2: The pore volume of the second pore obtained by analyzing the nitrogen adsorption amount measurement result by the BJH method [cc / g]
Table 1 shows the V for Samples 2 and 4-7.1, V2The value of the pore volume ratio is shown.
[0033]
[Table 1]
Figure 2005022881
[0034]
As is clear from the results in Table 1, NaBF was used for samples 2 and 5-7.4R can be changed by changing the addition amount of NaBF, and NaBF4There was a tendency for R to increase as the amount added decreased. From this, NaBF4It has been clarified that the volume of the second pores can be relatively expanded as compared with the volume of the first pores by reducing the amount of addition of.
[0035]
Further, for Samples 2 and 8, R can be changed by changing the sol-gel reaction temperature, and there is a tendency that R decreases as the temperature decreases. From this, it was also clarified that the volume of the second pores is relatively expanded as compared with the volume of the first pores by lowering the sol-gel reaction temperature.
[0036]
Reference example
To a water / hydrochloric acid / ethanol solution prepared by mixing 1.420 g of water, 0.640 g of 11N concentrated hydrochloric acid and 0.180 g of ethanol,4Any of NaF and NaBr was added as an additive as necessary, and 0.15 g of TEOS was added without stirring the surfactant and stirred at room temperature. Additive NaBF4NaF and NaBr were added so that the molar amount (0.07 mmol) was constant in each case (NaBF4: 0.008 g, NaF: 0.003 g, NaBr: 0.007 g). The result of measuring the time until TEOS gels is shown in FIG. The gelation of TEOS was judged by inverting the reactor and visually confirming that the gel did not fall. NaBF4NaF has a time to gelation of 1/20 or less compared to the case where no additive is added, and it was found that the sol-gel reaction was promoted. NaBF4The enhancement of the sol-gel reaction seen in NaF is not seen in NaBr, and this effect is due to the anion species (BF4 , F). Similar effect is PF6 The case of was confirmed.
[Brief description of the drawings]
FIG. 1 shows a chemical structural formula of an example of a functional group or atomic group preferable as a sol-gel reaction promoting substance other than the sol-gel reaction catalyst used in the present invention.
FIG. 2 shows a chemical structural formula of an example of a functional group or an atomic group preferable for constituting the hydrophilic portion of a surfactant used in the present invention.
FIG. 3 shows a chemical structural formula of an example of a functional group or atomic group preferable for constituting the hydrophobic portion of a surfactant used in the present invention.
FIG. 4 shows a chemical structural formula of an example suitable as a surfactant used in the present invention.
FIG. 5 shows CMI-BF according to the present invention.4(1) X-ray diffraction pattern and (2) nitrogen adsorption measurement result of mesoporous silica synthesized by using BJH method are shown.
FIG. 6 shows CMI-BF according to the present invention.4Shows a transmission electron microscope observation image of mesoporous silica synthesized using as a surfactant.
FIG. 7 shows that, according to the present invention, CMI-Cl is used as a surfactant and NaBF is used as a sol-gel reaction promoting substance.42 shows a pore distribution curve obtained by analyzing 1) X-ray diffraction pattern and (2) nitrogen adsorption measurement result of mesoporous silica synthesized by adding B2H.
FIG. 8 shows 1) X-ray diffraction pattern and (2) nitrogen adsorption measurement results of mesoporous silica synthesized using CMI-Cl as a surfactant and adding NaF as a sol-gel reaction accelerator according to the present invention. The pore distribution curve analyzed by the method is shown.
FIG. 9 shows the use of CPy-Cl as a surfactant and NaBF as a sol-gel reaction accelerator according to the present invention.42 shows a pore distribution curve obtained by analyzing 1) X-ray diffraction pattern and (2) nitrogen adsorption measurement result of mesoporous silica synthesized by adding B2H.
FIG. 10 shows NaBF as a reference example.43 shows the results of measuring the time until TEOS gelation when TEOS gelation reaction was performed by adding NaF or NaBr.

Claims (6)

第1のメソ細孔群とそれよりも孔径の大きい第2のメソ細孔群とから成る孔径の異なる2種類のメソ細孔を同時に有することを特徴とするメソ多孔性シリカ。A mesoporous silica characterized by having simultaneously two kinds of mesopores having different pore diameters composed of a first mesopore group and a second mesopore group having a larger pore diameter. 第1のメソ細孔群が蜂の巣状に配列し孔径2〜4nmの範囲にあるシリンダー状の細孔から成り、第2のメソ細孔群が4nm以上の孔径を有することを特徴とする請求項1に記載のメソ多孔性シリカ。The first mesopore group is composed of cylindrical pores arranged in a honeycomb shape and having a pore diameter of 2 to 4 nm, and the second mesopore group has a pore diameter of 4 nm or more. The mesoporous silica according to 1. 請求項1または2に記載のメソ多孔性シリカを製造する方法であって、界面活性剤、シリカ源、ゾルゲル反応触媒、水および必要に応じて有機溶媒を含む反応溶液を調製してゾルゲル反応を行い、生じた固体を濾過・乾燥して粉末とし、さらに、高温焼成または有機溶媒による抽出により前記界面活性剤を除去してメソ多孔性シリカを製造するに当たり、前記反応溶液中に前記ゾルゲル反応触媒以外のゾルゲル反応促進物質を存在させることを特徴とする方法。A method for producing mesoporous silica according to claim 1 or 2, wherein a reaction solution containing a surfactant, a silica source, a sol-gel reaction catalyst, water and, if necessary, an organic solvent is prepared to carry out a sol-gel reaction. In the production of mesoporous silica by removing the surfactant by high-temperature baking or extraction with an organic solvent, the sol-gel reaction catalyst is added to the reaction solution. A method comprising the presence of a sol-gel reaction promoting substance other than ゾルゲル反応触媒以外のゾルゲル反応促進物質がIIIB(13)族、IVB(14)族、VB(15)族、および水素から選ばれる0〜3種の元素とVB(15)族、IVB(16)族、VIIB(17)族から選ばれる1〜2種の元素より構成されるアニオンであることを特徴とする請求項3に記載の製造方法。The sol-gel reaction promoting substance other than the sol-gel reaction catalyst is selected from IIIB (13) group, IVB (14) group, VB (15) group, and hydrogen selected from 0 to 3 elements and VB (15) group, IVB (16) The production method according to claim 3, wherein the anion is composed of one or two elements selected from the group VIIB (17). ゾルゲル反応触媒以外のゾルゲル反応促進物質が、IIIB(13)族、IVB(14)族、およびVB(15)族から選ばれる0〜1種の元素とフッ素より構成されるアニオンであることを特徴とする請求項4に記載の製造方法。The sol-gel reaction promoting substance other than the sol-gel reaction catalyst is an anion composed of 0 to 1 element selected from IIIB (13) group, IVB (14) group, and VB (15) group and fluorine. The manufacturing method according to claim 4. ゾルゲル反応触媒以外のゾルゲル反応促進物質がテトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオンまたはフッ素イオンであることを特徴とする請求項5に記載の製造方法。6. The production method according to claim 5, wherein the sol-gel reaction promoting substance other than the sol-gel reaction catalyst is tetrafluoroborate ion, hexafluorophosphate ion or fluorine ion.
JP2003186726A 2003-06-30 2003-06-30 Mesoporous silica having bimodal pore structure and method for producing the same Expired - Fee Related JP4370388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003186726A JP4370388B2 (en) 2003-06-30 2003-06-30 Mesoporous silica having bimodal pore structure and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003186726A JP4370388B2 (en) 2003-06-30 2003-06-30 Mesoporous silica having bimodal pore structure and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005022881A true JP2005022881A (en) 2005-01-27
JP4370388B2 JP4370388B2 (en) 2009-11-25

Family

ID=34185783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003186726A Expired - Fee Related JP4370388B2 (en) 2003-06-30 2003-06-30 Mesoporous silica having bimodal pore structure and method for producing the same

Country Status (1)

Country Link
JP (1) JP4370388B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070145A (en) * 2005-09-05 2007-03-22 Chiba Univ Method for producing binary porous silica
JP2009013035A (en) * 2007-07-09 2009-01-22 Toyota Central R&D Labs Inc Spherical silica-based mesoporous body having bimodal pore structure and method for producing the same
CN102039132A (en) * 2010-11-02 2011-05-04 华东理工大学 Large-aperture mesoporous nanoparticles and preparation method thereof
KR101294100B1 (en) 2012-02-01 2013-08-07 한국에너지기술연구원 Manufacturing method for alloy and metal supported catalysts using sequential melt-infiltration process and alloy and hybrid metal supported catalyst thereof
JP2014105130A (en) * 2012-11-28 2014-06-09 National Institute Of Advanced Industrial & Technology Silica structure and method for manufacturing the same
CN114044667A (en) * 2021-11-23 2022-02-15 广州市香港科大***研究院 Mesoporous inorganic fiber composite material and preparation method and application thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070145A (en) * 2005-09-05 2007-03-22 Chiba Univ Method for producing binary porous silica
JP4684813B2 (en) * 2005-09-05 2011-05-18 国立大学法人 千葉大学 Method for producing dual pore silica
JP2009013035A (en) * 2007-07-09 2009-01-22 Toyota Central R&D Labs Inc Spherical silica-based mesoporous body having bimodal pore structure and method for producing the same
CN102039132A (en) * 2010-11-02 2011-05-04 华东理工大学 Large-aperture mesoporous nanoparticles and preparation method thereof
KR101294100B1 (en) 2012-02-01 2013-08-07 한국에너지기술연구원 Manufacturing method for alloy and metal supported catalysts using sequential melt-infiltration process and alloy and hybrid metal supported catalyst thereof
JP2014105130A (en) * 2012-11-28 2014-06-09 National Institute Of Advanced Industrial & Technology Silica structure and method for manufacturing the same
CN114044667A (en) * 2021-11-23 2022-02-15 广州市香港科大***研究院 Mesoporous inorganic fiber composite material and preparation method and application thereof

Also Published As

Publication number Publication date
JP4370388B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
Pauly et al. Textural mesoporosity and the catalytic activity of mesoporous molecular sieves with wormhole framework structures
Gao et al. Synthesis of NiMo catalysts supported on mesoporous Al-SBA-15 with different morphologies and their catalytic performance of DBT HDS
CN1212972C (en) Inorganic oxides with mesoporosity or combined meso-and microporosity and process for the preparation thereof
Tanev et al. Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating: a comparison of physical properties
CN1234456C (en) Inorganic oxides with mesoporosity or combined neso- and microporosity and process for preparation thereof
CN101456562B (en) Method for preparing mesoporous titanium silicate molecular sieve
RU2640072C9 (en) Small crystal ferrierite and method of making the same
JP2006206436A (en) Titanium-silicalite molecular sieve and method for its preparation
WO2019022782A1 (en) Methods for producing hierarchical mesoporous zeolite beta
CN103265050A (en) Method for preparing multi-stage pore zeolite molecular sieve microsphere
CN102826565A (en) Preparation method of multi-stage pore channel beta molecular screen
CN105621445B (en) A kind of NaY types molecular sieve and preparation method thereof
CN105329912B (en) A kind of preparation method of Jie&#39;s micropore composite Y molecular sieve
RU2722028C2 (en) Zeolite materials with pronounced macroporosity of monocrystals and method of their production
JP4370388B2 (en) Mesoporous silica having bimodal pore structure and method for producing the same
JP4106510B2 (en) Hydrothermally stable metal-containing MCM-41 type mesopore molecular sieve
JPH0859223A (en) Micro to intermediate fine hole gel and its preparation
Ali et al. Evaluating pore characteristics and acid site locations in hierarchical SAPO-11 by catalytic model reactions
Mao et al. Synthesis and catalytic properties of highly ordered mesostructured silica-pillared α-zirconium phosphate: Self-assembly via interlayered templating method
JP5901817B2 (en) Heterojunction porous crystal for catalytic cracking and hydrocracking of heavy hydrocarbon oils
CN108275694A (en) The synthetic method of BEC molecular sieves, BEC molecular sieves of synthesis and application thereof
CN106629772A (en) Method for preparing hierarchical porous SAPO-11 molecular sieve by using templating agent P123-containing SBA-15 as silicon source
CN106587093B (en) The preparation method of Y-Beta composite molecular screens
RU2422361C1 (en) Method of producing mesoporous elementosilicates
JP2005290032A (en) Method for producing hierarchical porous body containing meso pore having long range order

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050415

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080630

A131 Notification of reasons for refusal

Effective date: 20080708

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080821

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090728

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090805

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120911

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees