JP2005020885A - Rotary linear dc motor - Google Patents

Rotary linear dc motor Download PDF

Info

Publication number
JP2005020885A
JP2005020885A JP2003182122A JP2003182122A JP2005020885A JP 2005020885 A JP2005020885 A JP 2005020885A JP 2003182122 A JP2003182122 A JP 2003182122A JP 2003182122 A JP2003182122 A JP 2003182122A JP 2005020885 A JP2005020885 A JP 2005020885A
Authority
JP
Japan
Prior art keywords
winding
linear
rotary
pole
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003182122A
Other languages
Japanese (ja)
Inventor
Takayuki Mizuno
孝行 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2003182122A priority Critical patent/JP2005020885A/en
Publication of JP2005020885A publication Critical patent/JP2005020885A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Linear Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a rotary linear DC motor that is improved in characteristics and can move linearly, rotationally and spirally. <P>SOLUTION: In the rotary linear DC motor, a rotary winding 14 and a linear winding 13 are applied to a stator core 12 to form a stator 10, N-pole magnets 15 are arranged at every other pole in the circumferential direction and the axial direction on the surface of a cylindrical needle core 8, and S-pole magnets are arranged at every other pole in the circumferential direction and the axial direction, in positions where the S-pole magnets are arranged at every other pole of the N-pole magnet 15 in the circumferential direction and the axial direction to form a needle 9; and a three-phase AC is applied to the rotary winding 14 to rotate the needle 9, or a DC is applied to the linear winding 13 to linearly move the needle 9, or the three-phase AC and the DC are applied to the winding 14, 13, respectively, to spirally move the rotary linear DC motor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、推力と回転力を発生するロータリ・リニア直流モータ、特にその構造に関するものである。
【0002】
【従来の技術】
ロータリ・リニアモータは、単体のモータで回転運動、直線運動、螺旋運動(回転運動+直線運動)を用途に応じて使い分けるものであり、誘導形のものが非特許文献1に示されている。しかし、誘導形モータは力率や効率が悪いので、永久磁石を用いた磁石式ロータリ・リニアモータとすることが望ましいが、永久磁石を用いた場合、回転運動と直線運動があるため、界磁の配置が困難となり、磁石式ロータリ・リニアモータはほとんど例を見ない。ところで、直線運動だけするものでは、磁石界磁式の例もあり、簡単なリニア直流モータの例が非特許文献2に示されており、その構造を図4(a),(b)に示す。
【0003】
図4(a).(b)において、固定子1では、円筒状の固定子鉄心2に円環状の溝2aが軸方向に複数個形成され、これによって溝2a間には歯部2bが形成され、歯部2bの接続部分にヨーク部2cが形成される。円環状の溝2aには円環状のコイル3が収納される。固定子1の内周側には可動子4が軸方向移動可能に設けられ、可動子4においては円筒状鉄心5の中心に可動軸6が突出形成され、円筒状鉄心5の外周にはN極とS極の永久磁石7が貼り付けられている。コイル3と永久磁石7の配設ピッチは同一としており、コイル3に直流電流Iを印加することにより、可動子4は軸方向に直線運動する。しかし、回転運動は不可能である。
【0004】
【非特許文献1】
西本裕宣、外2名、「ロータリ・リニア誘導モータのロータリ運転時の特性算定と諸特性に及ぼす二次抵抗の影響」、1997年度電気関係学会東海支部連合大会(1997年9月29日)、論文No.223
【0005】
【非特許文献2】
水野 勉、外5名、「磁石可動形リニア直流モータの電気的時定数」電気学会論文誌D、119巻3号、平成11年
【0006】
【発明が解決しようとする課題】
上記したように、誘導形のロータリ・リニアモータは力率や効率が悪い。これに対して、永久磁石を用いた図4のリニア直流モータはストロークは小さいが、構造が簡単で力率、効率が良く、制御性も良い。しかし、回転させることができなかった。
【0007】
この発明は上記のような課題を解決するために成されたものであり、力率、効率、制御性が良く、かつ直線、回転、螺旋運動が可能なロータリ・リニア直流モータを得ることを目的とする。
【0008】
【課題を解決するための手段】
この発明の請求項1に係るロータリ・リニア直流モータは、回転可能であるとともに、軸方向へも可動可能な可動子を有し、かつ固定子においては固定子鉄心に可動子を回転運動させるための回転磁束を形成するロータリ巻線と可動子を軸方向に直線運動させるためのリニア巻線とを施したロータリ・リニアモータにおいて、可動子は、円筒状の可動子鉄心の表面に、N極磁石を周方向及び軸方向に1極置きに配設するとともに、この各N極磁石とは周方向及び軸方向に1極ずらせた位置にS極磁石を周方向及び軸方向に1極置きに配設し、ロータリ巻線に三相交流を印加し、あるいはリニア巻線に直流を印加し、あるいはロータリ巻線に三相交流を印加するとともに、リニア巻線に直流を印加するようにしたものである。
【0009】
請求項2に係るロータリ・リニア直流モータは、可動子鉄心の表面の磁石間に、鉄心による磁極を配設したものである。
【0010】
請求項3に係るロータリ・リニア直流モータは、磁石に代えて鉄心による磁極を用いたものである。
【0011】
請求項4に係るロータリ・リニア直流モータは、ロータリ巻線の極数とスロット数とを集中巻可能な数にするとともに、固定子鉄心の歯部にロータリ巻線を施して集中巻としたものである。
【0012】
【発明の実施の形態】
実施形態1
以下、この発明の実施の形態を図面とともに説明する。図1(a),(b)はこの発明の実施形態1によるロータリ・リニア直流モータの要部側面図及び要部断面図を示し、永久磁石界磁を用いて回転運動を同期モータとして動作させるために、円筒状の可動子鉄心8の外周に永久磁石を貼り付けて可動子9を構成する。固定子10においては、円筒状のバックヨーク11の内周に固定子鉄心12を取り付け、固定子鉄心12には円環状のスロット12aが軸方向に複数個設けられ、スロット12aには円環状のリニア巻線13を収納する。又、固定子鉄心12には軸方向にも複数のスロット12bが形成され、スロット12b間には歯部12cが形成され、歯部12cにはロータリ巻線14を集中巻により設ける。両巻線13,14は共に4極構成とする。永久磁石の貼り付けにおいては、まず、ロータリ巻線14用のN極磁石15をリニア巻線13の巻線ピッチに相当する軸方向長さで円周方向のN極とすべき位置に貼り付ける。N極磁石15と同一円周上においては、180度異なる位置にN極磁石15を設けるが、S極磁石は設けない。次に、貼り付けたN極磁石15から軸方向にリニア巻線13の1極ピッチずらせて、かつ周方向に電気角で180度ずらせてS極磁石16を貼り付ける。S極磁石16も同一円周上に機械的に180度ずらせて一対設けるとともに、軸方向にはリニア巻線13の1極置きに設ける。
【0013】
以上のような作業を繰り返すことにより、軸方向に見た場合に同種の磁極磁石が1極置きに存在し、円周方向に見た場合にも同種の磁極磁石が1極置きに存在するようになる。このような構造により、リニア巻線13及びロータリ巻線14それぞれに対する磁極が互いに独立して存在することになり、ロータリ巻線14に三相交流を印加すると、通常の回転形永久磁石同期モータとして動作し(1極当たりの磁石は通常のモータの1/2となる。)、可動子9は回転する。又、リニア巻線13に直流を印加すると、通常のリニア直流モータとして動作し、可動子9は直線運動をする。両巻線13,14に電圧を印加すると、可動子9は螺旋運動をする。従って、上記構造により、回転、直線、螺旋運動が可能なロータリ・リニア直流モータが実現できる。
【0014】
又、ロータリ巻線14を鉄心歯部12cに直接巻線する集中巻とした。この場合、一般に毎極毎相スロット数QがQ≦0.5となるので、分数スロット巻となる。具体的には、スロット数:極数=3:2、9:8、9:10などのものが知られている。可動子9が直線運動することによる永久磁石形界磁のロータリ巻線14への影響がなくなるので、ロータリ巻線14の巻線方法として集中巻を採用することができる。また、リニア巻線13の場合も集中巻の考え方を採用し、リニア巻線13の巻線ピッチと磁極ピッチとを同一とし、集中巻と同等なスロット数を採用することができ、リニアモータとしてのスロット数を低減することができる。
【0015】
実施形態1においては、ロータリ・リニア直流モータを永久磁石界磁として構成できるので、力率、効率などの特性を向上することができるとともに、制御性も向上することができる。又、回転、直線、螺旋の各運動が可能なロータリ・リニア直流モータを実現することができる。さらに、ロータリ巻線を集中巻としたので、コイル数を減少させるとともに、コイルエンド寸法を小さく抑えることができる。このため、モータとしての小形、軽量化、コストダウンが実現できる。
【0016】
実施形態2
図2(a),(b)はこの発明の実施形態2によるロータリ・リニア直流モータの要部側面図及び要部断面図を示し、可動子18は可動子鉄心8の表面にN極磁石15とS極磁石16とを実施形態1と同様に配設するとともに、可動子鉄心8の表面のN極磁石15間及びS極磁石16間に鉄心による磁極17を配設している。磁極17は、珪素鋼板などを積層して形成する。固定子10等の構成は実施形態1と同様である。
【0017】
上記構成において、ロータリ巻線14から見た場合、磁極17は可動子鉄心8の外周の同一周面上の磁石15,16と逆の極性となり、軸方向では磁石15,16と同一の極性となるように動作する。このため、実施形態1より磁束が増加し、力率、効率、制御性などの特性が改善される。一方、リニア巻線13から見た場合、磁極17は可動子鉄心8の周面上で軸方向では磁石15,16と逆極性となり、同一周面上では磁石15,16と同一極性となるように動作するので、やはり磁束が増加し、特性が改善される。その他、実施形態1と同様な効果がある。
【0018】
実施形態3
図3(a),(b)は実施形態4によるロータリ・リニア直流モータの要部側面図及び要部断面図を示し、実施形態2における磁極17はそのままとし、磁石15,16に代えて鉄心による磁極17を用い、可動子19を構成する。固定子10は実施形態1,2と同様である。このように、全てを磁極17により形成すると、ロータリ巻線14に電圧を印加した場合もリニア巻線13に電圧を印加した場合もいずれもいわゆるリラクタンスモータとして動作する。特性的には実施形態2より磁束が減少し、力率等の特性は実施形態2より劣るが、低コストで製作できるメリットがある。その他、実施形態1と同様な効果がある。
【0019】
実施形態4
上記実施形態1〜3においては、ロータリ巻線14については4極6スロット、リニア巻線13については4極4スロットの構成であるが、この組み合わせは任意であり、それぞれロータリ巻線14については集中巻可能な極数とスロット数を採用し、リニア巻線13については任意の極数と極数と同一のスロット数とすれば、種々の極数とスロット数を持つロータリ・リニア直流モータが製作可能となる。又、リニア巻線13を本方式とし、ロータリ巻線14を従来同様の分布巻としたものも製作可能である。
【0020】
【発明の効果】
以上のようにこの発明の請求項1によれば、ロータリ・リニアモータを永久磁石界磁として構成したので、力率、効率、制御性などの特性を向上することができる。又、回転、直線、螺旋の各運動を行うことができるロータリ・リニア直流モータを実現することができる。
【0021】
請求項2によれば、可動子鉄心の磁石間に磁極を配設したので、磁束が増加し、力率、効率、制御性などの特性を改善することができる。
【0022】
請求項3によれば、磁石間に磁極を設けるとともに、磁石を磁極に代えており、磁束の増加は請求項2には劣るが、やはり力率等の特性を改善することができるとともに、製作コストを下げることができる。
【0023】
請求項4によれば、ロータリ巻線を集中巻としており、コイル数を減少させるとともに、コイルエンド寸法を小さくすることができ、モータとして小形化、軽量化、コストダウンを実現することができる。
【図面の簡単な説明】
【図1】この発明の実施形態1によるロータリ・リニア直流モータの要部側面図及び要部断面図である。
【図2】実施形態2によるロータリ・リニア直流モータの要部側面図及び要部断面図である。
【図3】実施形態3によるロータリ・リニア直流モータの要部側面図及び要部断面図である。
【図4】非特許文献2に示された従来のコイル可動形リニア直流モータの要部縦断正面図および要部側面図である。
【符号の説明】
8…可動子鉄心
9,18,19…可動子
10…固定子
12…固定子鉄心
12a,12b…スロット
12c…歯部
13…リニア巻線
14…ロータリ巻線
15…N極磁石
16…S極磁石
17…磁極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotary linear DC motor that generates thrust and rotational force, and more particularly to its structure.
[0002]
[Prior art]
A rotary linear motor is a single motor that uses a rotary motion, a linear motion, and a spiral motion (rotational motion + linear motion) depending on the application. An induction type motor is disclosed in Non-Patent Document 1. However, since induction motors have poor power factor and efficiency, it is desirable to use a magnet-type rotary / linear motor that uses permanent magnets. This makes it difficult to arrange magnets, and there are few examples of magnetic rotary linear motors. By the way, in the case of only linear motion, there is an example of a magnet field type, and an example of a simple linear DC motor is shown in Non-Patent Document 2, and its structure is shown in FIGS. 4 (a) and 4 (b). .
[0003]
FIG. In (b), in the stator 1, a plurality of annular grooves 2a are formed in the axial direction in the cylindrical stator core 2, whereby tooth portions 2b are formed between the grooves 2a. A yoke portion 2c is formed at the connection portion. An annular coil 3 is accommodated in the annular groove 2a. A movable element 4 is provided on the inner peripheral side of the stator 1 so as to be movable in the axial direction. In the movable element 4, a movable shaft 6 protrudes from the center of the cylindrical iron core 5. A permanent magnet 7 having poles and S poles is attached. The arrangement pitch of the coil 3 and the permanent magnet 7 is the same. By applying a direct current I to the coil 3, the mover 4 linearly moves in the axial direction. However, rotational movement is not possible.
[0004]
[Non-Patent Document 1]
Hironobu Nishimoto and two others, "Characteristics calculation of rotary linear induction motor during rotary operation and the effect of secondary resistance on various characteristics", 1997 Tokai Branch Union Conference of Electrical Engineering Society (September 29, 1997) , Paper No. 223
[0005]
[Non-Patent Document 2]
Tsutomu Mizuno, 5 others, "Electrical time constant of a magnet linear linear DC motor" IEICE Transactions D, Vol. 119, No. 3, 1999
[Problems to be solved by the invention]
As described above, the induction type rotary linear motor has poor power factor and efficiency. On the other hand, the linear DC motor of FIG. 4 using a permanent magnet has a small stroke, but has a simple structure, good power factor and efficiency, and good controllability. However, it could not be rotated.
[0007]
The present invention has been made to solve the above-described problems, and an object thereof is to obtain a rotary linear DC motor having good power factor, efficiency, controllability, and capable of linear, rotational, and helical motion. And
[0008]
[Means for Solving the Problems]
The rotary linear direct current motor according to claim 1 of the present invention has a mover that is rotatable and movable also in the axial direction, and in the stator, the stator iron core rotates the mover. In a rotary linear motor having a rotary winding that forms a rotating magnetic flux and a linear winding for linearly moving the mover in the axial direction, the mover is placed on the surface of a cylindrical mover iron core with N poles. The magnets are arranged every other pole in the circumferential direction and the axial direction, and the S pole magnets are placed every other pole in the circumferential direction and the axial direction at positions shifted from each N pole magnet in the circumferential direction and the axial direction. A three-phase alternating current is applied to the rotary winding, a direct current is applied to the linear winding, or a three-phase alternating current is applied to the rotary winding and a direct current is applied to the linear winding. It is.
[0009]
In the rotary linear DC motor according to claim 2, magnetic poles by the iron core are arranged between the magnets on the surface of the mover iron core.
[0010]
The rotary linear direct current motor according to claim 3 uses a magnetic pole by an iron core instead of a magnet.
[0011]
The rotary linear direct current motor according to claim 4 is configured such that the number of poles and the number of slots of the rotary winding can be concentrated, and the winding of the stator core is subjected to rotary winding to form concentrated winding. It is.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
Embodiments of the present invention will be described below with reference to the drawings. 1 (a) and 1 (b) are a side view and a sectional view of a main part of a rotary linear DC motor according to Embodiment 1 of the present invention, and a rotary motion is operated as a synchronous motor using a permanent magnet field. For this purpose, the mover 9 is configured by attaching a permanent magnet to the outer periphery of the cylindrical mover core 8. In the stator 10, a stator core 12 is attached to the inner periphery of a cylindrical back yoke 11, and a plurality of annular slots 12a are provided in the stator core 12 in the axial direction. The slot 12a has an annular shape. The linear winding 13 is accommodated. A plurality of slots 12b are also formed in the stator core 12 in the axial direction, teeth 12c are formed between the slots 12b, and rotary windings 14 are provided on the teeth 12c by concentrated winding. Both windings 13 and 14 have a four-pole configuration. In attaching the permanent magnet, first, the N-pole magnet 15 for the rotary winding 14 is attached at a position where it should be the N-pole in the circumferential direction with an axial length corresponding to the winding pitch of the linear winding 13. . On the same circumference as the N-pole magnet 15, the N-pole magnet 15 is provided at a position different by 180 degrees, but the S-pole magnet is not provided. Next, the S-pole magnet 16 is pasted from the pasted north-pole magnet 15 by shifting one pole pitch of the linear winding 13 in the axial direction and 180 degrees in the circumferential direction by an electrical angle. A pair of S-pole magnets 16 are mechanically shifted 180 degrees on the same circumference, and are provided every other pole of the linear winding 13 in the axial direction.
[0013]
By repeating the above operations, the same kind of magnetic pole magnets are present every other pole when viewed in the axial direction, and the same kind of magnetic pole magnets are present every other pole when viewed in the circumferential direction. become. With such a structure, the magnetic poles for the linear winding 13 and the rotary winding 14 exist independently of each other. When a three-phase alternating current is applied to the rotary winding 14, a normal rotary permanent magnet synchronous motor is obtained. Operates (the number of magnets per pole is half that of a normal motor), and the mover 9 rotates. When a direct current is applied to the linear winding 13, it operates as a normal linear direct current motor, and the mover 9 performs a linear motion. When a voltage is applied to both the windings 13 and 14, the mover 9 performs a spiral motion. Therefore, with the above structure, a rotary linear DC motor capable of rotating, linear, and spiral motion can be realized.
[0014]
The rotary winding 14 is a concentrated winding that is wound directly around the iron core tooth portion 12c. In this case, since the number Q of slots per phase per pole is generally Q ≦ 0.5, it is a fractional slot winding. Specifically, the number of slots: the number of poles = 3: 2, 9: 8, 9:10, and the like are known. Since the influence of the permanent magnet field on the rotary winding 14 due to the linear movement of the mover 9 is eliminated, concentrated winding can be adopted as the winding method of the rotary winding 14. In the case of the linear winding 13, the concept of concentrated winding is adopted, the winding pitch of the linear winding 13 and the magnetic pole pitch are made the same, and the number of slots equivalent to the concentrated winding can be adopted. The number of slots can be reduced.
[0015]
In the first embodiment, since the rotary linear DC motor can be configured as a permanent magnet field, characteristics such as power factor and efficiency can be improved, and controllability can also be improved. Further, it is possible to realize a rotary linear DC motor capable of rotating, linear, and spiral movements. Furthermore, since the rotary winding is concentrated winding, the number of coils can be reduced and the coil end dimensions can be kept small. For this reason, the motor can be reduced in size, weight, and cost.
[0016]
Embodiment 2
FIGS. 2A and 2B show a side view and a sectional view of the main part of a rotary linear DC motor according to Embodiment 2 of the present invention. The mover 18 has an N-pole magnet 15 on the surface of the mover iron core 8. And the S-pole magnet 16 are arranged in the same manner as in the first embodiment, and the magnetic pole 17 is arranged between the N-pole magnet 15 and the S-pole magnet 16 on the surface of the mover iron core 8. The magnetic pole 17 is formed by laminating silicon steel plates or the like. The configuration of the stator 10 and the like is the same as that of the first embodiment.
[0017]
In the above configuration, when viewed from the rotary winding 14, the magnetic pole 17 has a polarity opposite to that of the magnets 15 and 16 on the same circumferential surface of the mover core 8, and has the same polarity as the magnets 15 and 16 in the axial direction. It works to be. For this reason, magnetic flux increases from Embodiment 1, and characteristics, such as a power factor, efficiency, and controllability, are improved. On the other hand, when viewed from the linear winding 13, the magnetic pole 17 has the opposite polarity to the magnets 15 and 16 in the axial direction on the peripheral surface of the mover core 8, and the same polarity as the magnets 15 and 16 on the same peripheral surface. Therefore, the magnetic flux is increased and the characteristics are improved. In addition, there are effects similar to those of the first embodiment.
[0018]
Embodiment 3
FIGS. 3A and 3B show a side view and a cross-sectional view of the main part of the rotary linear DC motor according to the fourth embodiment. The magnetic pole 17 in the second embodiment is left as it is, and the iron core is replaced with the magnets 15 and 16. The mover 19 is configured using the magnetic pole 17 by the above. The stator 10 is the same as in the first and second embodiments. Thus, if all are formed by the magnetic pole 17, both when the voltage is applied to the rotary winding 14 and when the voltage is applied to the linear winding 13, it operates as a so-called reluctance motor. In terms of characteristics, the magnetic flux is reduced from that of the second embodiment, and the characteristics such as the power factor are inferior to those of the second embodiment, but there is an advantage that it can be manufactured at low cost. In addition, there are effects similar to those of the first embodiment.
[0019]
Embodiment 4
In the first to third embodiments, the rotary winding 14 has a configuration of 4 poles and 6 slots, and the linear winding 13 has a configuration of 4 poles and 4 slots, but this combination is arbitrary. If the number of poles and the number of slots that can be concentrated are adopted, and the number of slots for the linear winding 13 is the same as the number of poles, the rotary linear DC motor having various poles and slots can be obtained. Can be produced. Also, it is possible to manufacture a linear winding 13 of this type and a rotary winding 14 of the same distributed winding as in the prior art.
[0020]
【The invention's effect】
As described above, according to the first aspect of the present invention, since the rotary linear motor is configured as a permanent magnet field, characteristics such as power factor, efficiency, and controllability can be improved. Further, it is possible to realize a rotary / linear DC motor capable of rotating, linear and spiral movements.
[0021]
According to the second aspect, since the magnetic pole is disposed between the magnets of the mover core, the magnetic flux is increased, and characteristics such as power factor, efficiency, and controllability can be improved.
[0022]
According to claim 3, a magnetic pole is provided between the magnets, and the magnet is replaced with a magnetic pole, and the increase in magnetic flux is inferior to that of claim 2, but the characteristics such as the power factor can be improved, and the manufacturing is performed. Cost can be reduced.
[0023]
According to claim 4, the rotary winding is concentrated winding, the number of coils can be reduced, the coil end dimensions can be reduced, and the motor can be reduced in size, weight and cost.
[Brief description of the drawings]
1A and 1B are a side view and a cross-sectional view of main parts of a rotary linear DC motor according to Embodiment 1 of the present invention.
FIGS. 2A and 2B are a side view and a cross-sectional view of a main part of a rotary linear DC motor according to a second embodiment.
FIGS. 3A and 3B are a side view and a cross-sectional view of main parts of a rotary linear DC motor according to a third embodiment. FIGS.
FIGS. 4A and 4B are a vertical front view and a side view of main parts of a main part of a conventional coil movable linear DC motor shown in Non-Patent Document 2. FIGS.
[Explanation of symbols]
8 ... Motor core 9, 18, 19 ... Motor 10 ... Stator 12 ... Stator core 12a, 12b ... Slot 12c ... Tooth part 13 ... Linear winding 14 ... Rotary winding 15 ... N pole magnet 16 ... S pole Magnet 17 ... magnetic pole

Claims (4)

回転可能であるとともに、軸方向へも可動可能な可動子を有し、かつ固定子においては固定子鉄心に可動子を回転運動させるための回転磁束を形成するロータリ巻線と可動子を軸方向に直線運動させるためのリニア巻線とを施したロータリ・リニアモータにおいて、可動子は、円筒状の可動子鉄心の表面に、N極磁石を周方向及び軸方向に1極置きに配設するとともに、この各N極磁石とは周方向及び軸方向に1極ずらせた位置にS極磁石を周方向及び軸方向に1極置きに配設し、ロータリ巻線に三相交流を印加し、あるいはリニア巻線に直流を印加し、あるいはロータリ巻線に三相交流を印加するとともに、リニア巻線に直流を印加するようにしたことを特徴とするロータリ・リニア直流モータ。It has a mover that can be rotated and moved in the axial direction, and in the stator, the rotary winding and the mover that form a rotating magnetic flux for rotating the mover in the stator core are axially arranged. In a rotary linear motor having a linear winding for linear movement, a mover has N pole magnets arranged on the surface of a cylindrical mover iron core in the circumferential direction and every other pole in the axial direction. At the same time, each N pole magnet is provided with S pole magnets arranged at every other pole in the circumferential direction and the axial direction at positions shifted by one pole in the circumferential direction and the axial direction, and a three-phase alternating current is applied to the rotary winding. Alternatively, a direct current is applied to the linear winding, or a three-phase alternating current is applied to the rotary winding, and a direct current is applied to the linear winding. 可動子鉄心の表面の磁石間に、鉄心による磁極を配設したことを特徴とする請求項1記載のロータリ・リニア直流モータ。2. The rotary linear DC motor according to claim 1, wherein a magnetic pole by an iron core is disposed between magnets on the surface of the mover iron core. 磁石に代えて鉄心による磁極を用いたことを特徴とする請求項2記載のロータリ・リニア直流モータ。3. The rotary linear DC motor according to claim 2, wherein a magnetic pole using an iron core is used instead of the magnet. ロータリ巻線の極数とスロット数とを集中巻可能な数にするとともに、固定子鉄心の歯部にロータリ巻線を施して集中巻としたことを特徴とする請求項1〜3の何れかに記載のロータリ・リニア直流モータ。The number of poles and the number of slots of the rotary winding are set to a number capable of concentrated winding, and concentrated winding is performed by applying rotary winding to the teeth of the stator core. Rotary linear DC motor as described in 1.
JP2003182122A 2003-06-26 2003-06-26 Rotary linear dc motor Pending JP2005020885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003182122A JP2005020885A (en) 2003-06-26 2003-06-26 Rotary linear dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003182122A JP2005020885A (en) 2003-06-26 2003-06-26 Rotary linear dc motor

Publications (1)

Publication Number Publication Date
JP2005020885A true JP2005020885A (en) 2005-01-20

Family

ID=34182593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003182122A Pending JP2005020885A (en) 2003-06-26 2003-06-26 Rotary linear dc motor

Country Status (1)

Country Link
JP (1) JP2005020885A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096519A1 (en) * 2007-02-08 2008-08-14 Mitsubishi Electric Corporation Rotary-linear motor
JP2008236818A (en) * 2007-03-16 2008-10-02 Yaskawa Electric Corp thetaZ ACTUATOR
JP2009071967A (en) * 2007-09-12 2009-04-02 Namiki Precision Jewel Co Ltd Compound movement actuator of rotation and direct drive
US7768158B2 (en) * 2006-06-26 2010-08-03 Hitachi, Ltd. Cylindrical linear motor and a vehicle using the same
CN105553221A (en) * 2016-01-22 2016-05-04 山东理工大学 Circular-distributed cylinder type linear actuator at each phase
CN105656281A (en) * 2016-01-22 2016-06-08 山东理工大学 Three-phase reluctance-type tubular linear motor with excitation windings
CN107896020A (en) * 2017-12-20 2018-04-10 宝龙电子集团有限公司 A kind of drive motor
CN108462362A (en) * 2018-01-24 2018-08-28 东南大学 A kind of sine wave power supply double freedom screw motor with position self-locking function
JP2020099185A (en) * 2018-12-17 2020-06-25 ネクスペリア ベー.フェー. Device, apparatus, and system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7768158B2 (en) * 2006-06-26 2010-08-03 Hitachi, Ltd. Cylindrical linear motor and a vehicle using the same
WO2008096519A1 (en) * 2007-02-08 2008-08-14 Mitsubishi Electric Corporation Rotary-linear motor
JPWO2008096519A1 (en) * 2007-02-08 2010-05-20 三菱電機株式会社 Rotary / linear motor
JP2008236818A (en) * 2007-03-16 2008-10-02 Yaskawa Electric Corp thetaZ ACTUATOR
JP2009071967A (en) * 2007-09-12 2009-04-02 Namiki Precision Jewel Co Ltd Compound movement actuator of rotation and direct drive
CN105553221A (en) * 2016-01-22 2016-05-04 山东理工大学 Circular-distributed cylinder type linear actuator at each phase
CN105656281A (en) * 2016-01-22 2016-06-08 山东理工大学 Three-phase reluctance-type tubular linear motor with excitation windings
CN107896020A (en) * 2017-12-20 2018-04-10 宝龙电子集团有限公司 A kind of drive motor
CN107896020B (en) * 2017-12-20 2024-04-12 浙江宝龙机电有限公司 Driving motor
CN108462362A (en) * 2018-01-24 2018-08-28 东南大学 A kind of sine wave power supply double freedom screw motor with position self-locking function
JP2020099185A (en) * 2018-12-17 2020-06-25 ネクスペリア ベー.フェー. Device, apparatus, and system

Similar Documents

Publication Publication Date Title
JP4207386B2 (en) Inductor-type electric machine with magnet-equipped armature
JP5318758B2 (en) Ring coil motor
US4843270A (en) Electrical machine with unequal pole faces
US8901785B2 (en) Electric motor comprising iron core having primary teeth and secondary teeth
JP2009247046A (en) Rotary electric machine
JP5272831B2 (en) Rotating electric machine
TW201131940A (en) Multi-phase stator device
US20130134805A1 (en) Switched reluctance motor
US20110163641A1 (en) Permanent-magnet synchronous motor
JPS63117647A (en) Permanent magnet field type motor
JPH10174403A (en) Dc machine
WO2016004823A1 (en) Stator, brushless direct current motor, three-phase switch reluctance motor and shaded pole motor
WO2019008848A1 (en) Rotating electric machine and direct-acting electric motor
US8917004B2 (en) Homopolar motor-generator
JP2004343903A (en) Rotary linear synchronous motor
JP2005020885A (en) Rotary linear dc motor
CN112688523B (en) Axial magnetic field stator yoke-free magnetic flux reverse permanent magnet motor
JP6408766B2 (en) Axial three-dimensional gap type rotating electric machine
JP2017509311A (en) Hybrid electric machine
EP0431178B1 (en) Synchronous machine
JPH05146121A (en) Motor
JP2018108007A (en) Generator decreasing magnetic force resistance
JP2006025486A (en) Electric electric machine
JP2021535718A (en) Claw pole motor with ring coil and meandering coil
JP3797488B2 (en) Multi-pole rotating electric machine