JP2005020805A - Wind power generator - Google Patents

Wind power generator Download PDF

Info

Publication number
JP2005020805A
JP2005020805A JP2003178135A JP2003178135A JP2005020805A JP 2005020805 A JP2005020805 A JP 2005020805A JP 2003178135 A JP2003178135 A JP 2003178135A JP 2003178135 A JP2003178135 A JP 2003178135A JP 2005020805 A JP2005020805 A JP 2005020805A
Authority
JP
Japan
Prior art keywords
voltage
secondary battery
converter
switch
wind power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003178135A
Other languages
Japanese (ja)
Other versions
JP3817582B2 (en
Inventor
Teru Kikuchi
輝 菊池
Motoo Futami
基生 二見
Naoshi Sugawara
直志 菅原
Koichi Miyazaki
晃一 宮崎
Satoshi Maekawa
聡 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering and Services Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering and Services Co Ltd
Priority to JP2003178135A priority Critical patent/JP3817582B2/en
Publication of JP2005020805A publication Critical patent/JP2005020805A/en
Application granted granted Critical
Publication of JP3817582B2 publication Critical patent/JP3817582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To continue the operation of a wind power generator without using a secondary battery even when a fault occurs in the secondary battery which can be connected directly to a DC between a rectifier and an inverter without supplying overcurrent. <P>SOLUTION: A wind power generator includes a rectifier 3 for rectifying an AC output of the wind power generator into a DC voltage, the inverter 5 for converting a wind power generator output converted into the DC voltage into an AC voltage, the DC having a smoothing capacitor 4 for connecting the rectifier 3 to the inverter 5, the secondary battery 9 having a switch 10 connected directly to the DC and a current limiting switch 8 connected to the DC via a current limiter circuit 7, and a switching controller 26 for comparing the secondary battery voltage with the smoothing capacitor voltage to close the switch 10 for connecting the secondary battery 9 directly to the DC when the secondary battery voltage substantially coincides with the smoothing capacitor voltage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は風力発電装置に係り、特に風力発電機の交流出力を直流電圧に変換する順変換器の出力側に二次電池を備えた風力発電装置に関する。
【0002】
【従来の技術】
特許文献1には、風車を同期発電機に接続し、風のエネルギーによって回転する風車により同期発電機を駆動する風力発電装置が示されている。前記同期発電機により発電した交流電力は順変換器により直流電力に変換し、さらに逆変換器により商用周波数の交流電力に変換して電力系統に供給している。
【0003】
ところで、風力発電装置の出力は風速に大きく依存し、風速変動に起因する出力変動は電力系統の周波数や電圧を大きく変動させ、電力系統に悪影響を与えることになる。従って、風力発電装置を導入する際には、このような出力変動を抑制する技術が必須となる。
【0004】
また、特許文献1には、二次電池を変換器の直流部に直結し、風速変動に伴う出力変動を二次電池で補償することにより、風速が変動した場合においても、二次電池を充放電することで電力系統へ悪影響を抑制した風力発電装置が示されている。
【0005】
【特許文献1】
特開平11−299295号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来技術に示すように、二次電池を変換器の直流部に接続すると、二次電池の充電量が少なく二次電池端子電圧が低い場合には、変換器による電力制御が困難となる。すなわち、変換器においては還流ダイオードがIGBT等のスイッチング素子と逆並列に接続されているため、変換器の直流側電圧が低下すると交流側(系統側)から前記環流ダイオードを介して過電流が流れ込むことになる。
【0007】
また、風力発電装置の運転中に二次電池に異常が発生した場合運転継続が不可能となる。また、二次電池をメンテナンスする際には装置を停止しなければならない。
【0008】
本発明は、これらの問題点に鑑みてなされたもので、過電流を流すことなく二次電池を順変換器と逆変換器の間の直流部に直接接続することが可能で、また、二次電池に異常が発生した場合にも二次電池を使用することなく装置の運転を継続することのできる風力発電装置を提供する。
【0009】
【課題を解決するための手段】
本発明は、上記の課題を解決するために次のような手段を採用した。
【0010】
風力発電機の交流出力を直流電圧に変換する順変換器と、前記直流電圧に変換した風力発電機出力を交流電圧に変換する逆変換器と、平滑コンデンサを備え前記順変換器と逆変換器を接続する直流部と、前記直流部に直接接続するスイッチ及び前記直流部に限流回路を介して接続する限流スイッチを備えた二次電池と、前記二次電池電圧と平滑コンデンサ電圧を比較し、略一致したとき前記二次電池を直流部に直接接続するスイッチを投入する切替制御器を備えた。
【0011】
【発明の実施の形態】
以下、本発明の実施形態を添付図面を参照しながら説明する。図1は、本発明の実施形態にかかる風力発電装置を説明する図である。図において、同期発電機2等の発電機の回転子は風車1の軸に接続されており、風車1が風のエネルギーにより回転すると、同期発電機2は風車1の回転速度に応じた可変周波数の交流電力を発生する。同期発電機2の固定子側巻線には順変換器3が接続されており、同期発電機2の発生する可変周波数の交流電力は順変換器3により直流電力に変換される。順変換器3は直流コンデンサ4を介して逆変換器5に接続されており、逆変換器5は順変換器3から供給される直流電力を固定周波数の交流電力に変換する。逆変換器5は系統連系用変圧器6を介して電力系統に接続されており、固定周波数の交流電力を電力系統に供給する。
【0012】
順変換器3と逆変換器5の間の直流部には、限流回路7及びスイッチ8(限流スイッチ)を介して二次電池9を接続する。二次電池9としては鉛蓄電池、ニッケル水素電池、ニッケルカドミウム電池、リチウムイオン電池等が使用可能である。また、前記限流回路7は限流抵抗等で構成することができる。
【0013】
直流コンデンサ4には直流コンデンサ4の端子電圧を検出する電圧検出センサ15が設置されており、二次電池9には二次電池9の二次電池端子電圧を検出する電圧検出センサ16が設置されている。
【0014】
同期発電機2と順変換器3の間には電圧検出センサ11と電流検出センサ12が設置されており、電圧検出センサ11は同期発電機2の端子電圧を、電流検出センサ12は同期発電機2の固定子側巻線に流れる電流を検出する。検出された電圧、電流値は3相/2相変換器13によって有効分と無効分の2軸成分に変換される。
【0015】
有効電力検出器14は3相/2相変換器13の出力する2軸成分の信号に基づいて同期発電機2の出力する有効電力を検出する。
【0016】
有効電力指令演算器17は有効電力検出器14の検出する同期発電機2の出力する有効電力及び電圧検出センサ16の検出する二次電池9の端子電圧に基づいて逆変換器5への有効電力指令を演算する。
【0017】
図2は、有効電力指令演算器17の詳細を説明する図である。有効電力指令演算器17はフィルタ30と二次電池端子電圧補正器31から構成される。フィルタ30はローパスフィルタであり、有効電力検出器14の検出する同期発電機2の出力する有効電力の検出値PGから変動成分を除去した値を逆変換器5への有効電力指令Prefとして与える機能を有する。このように構成することで、逆変換器5が系統へ出力する有効電力は同期発電機2の出力する有効電力から変動成分を除去したものとなり、系統電圧や系統周波数に悪影響を与えない。すなわち、同期発電機2の出力する有効電力に含まれる変動成分は二次電池9の充放電により補償されることになる。
【0018】
二次電池端子電圧補正器31は電圧検出センサ16の検出する二次電池9の端子電圧が通常範囲を逸脱した場合に二次電池9の端子電圧が通常範囲内に収まるように逆変換器5への有効電力指令Prefを調整する機能を有する。例えば、二次電池9の端子電圧が通常範囲よりも高い場合には逆変換器5への有効電力指令Prefを増加させる。その結果、二次電池9が放電され、二次電池9の端子電圧が低くなる。逆に、二次電池9の端子電圧が通常範囲よりも低い場合には逆変換器5への有効電力指令Prefを減少させる。その結果、二次電池9が充電され、二次電池9の端子電圧が高くなる。
【0019】
図3は、直流電圧指令演算器22の詳細を説明する図である。直流電圧指令演算器22は電圧検出センサ16の検出する二次電池9の端子電圧に基づいて逆変換器5への直流電圧指令を演算する。
【0020】
直流電圧指令演算器22は上限値、下限値を備えたリミッタから構成される。二次電池9の端子電圧がリミッタの範囲内であれば二次電池9の端子電圧検出値が逆変換器5への直流電圧指令となる。逆に、二次電池9の端子電圧がリミッタの範囲外であればリミッタの上限値あるいは下限値が逆変換器5への直流電圧指令となる。
【0021】
図1において、逆変換器5と系統連系用変圧器6の間には電圧検出センサ18と電流検出センサ19が設置されており、電圧検出センサ18は系統電圧を、電流検出センサ19は系統へ流れる電流を検出する。検出された電圧、電流値は3相/2相変換器20によって有効分と無効分の2軸成分に変換される。
【0022】
有効電力検出器21は3相/2相変換器20の出力する2軸成分の信号に基づいて逆変換器5が系統側へ出力する有効電力を検出する。
【0023】
直流電圧制御器23の入力は直流電圧指令演算器22の出力する直流電圧指令と電圧検出センサ15の検出する直流コンデンサ4の端子電圧の偏差であり、出力は逆変換器5が直流電圧制御を行う場合の逆変換器5への電流指令の有効分となる。直流電圧制御器23は例えば比例積分制御系により構成され、直流電圧指令と直流電圧検出値の偏差が零になるように逆変換器5への電流指令を決定する。
【0024】
有効電力制御器24の入力は有効電力指令演算器17の出力する有効電力指令と有効電力検出器21の検出する有効電力検出値の偏差であり、出力は逆変換器5が有効電力制御を行う場合の逆変換器5への電流指令の有効分となる。有効電力制御器24は例えば比例積分制御系により構成され、有効電力指令と有効電力検出値の偏差が零になるように逆変換器5への電流指令を決定する。
【0025】
切替スイッチ25は切換制御器26からの指令により直流電圧制御器23あるいは有効電力制御器24の出力する逆変換器5への電流指令のいずれかを選択する。切換制御器26は電圧検出センサ15の検出する直流コンデンサ4の端子電圧及び電圧検出センサ16の検出する二次電池9の端子電圧を入力とし、それらの値を比較することで切替スイッチ及びスイッチ8及びスイッチ10の制御を行う。
【0026】
電流制御器27への入力は3相/2相変換器20の出力する2軸成分の電流検出値と切替スイッチ25の出力する逆変換器5への電流指令であり、出力は逆変換器5への出力電圧指令となる。電流制御器27は例えば比例積分制御系により構成され、電流検出値と電流指令の偏差が零になるように逆変換器5への出力電圧指令を決定する。電流制御器27の出力する逆変換器5への出力電圧指令は2軸成分の電圧指令であるので、2相/3相変換器28によって3相の電圧指令に変換する。
【0027】
パルス発生器29は、2相/3相変換器28の出力する逆変換器5への3相出力電圧指令に基づいて、PWM(Pulse Width Modulation)により逆変換器5へのゲートパルス信号を出力する。逆変換器5はゲートパルス信号を受け、IGBT等のスイッチング素子を高周波でスイッチングする。これにより逆変換器5は指令に応じた電圧を出力することになる。
【0028】
以上のような制御系の構成により、逆変換器5による直流電圧制御および有効電力制御が可能となる。
【0029】
次に、図1に示す風力発電装置の運転方法について説明する。まず、逆変換器5に備えられた初充電回路により直流コンデンサ4を初充電する。次に切換制御器26からの指令によりスイッチ8を投入する。これにより二次電池9は限流回路7を介して順変換器3と逆変換器5の間の直流部に接続されることになる。このとき、限流回路7を介して接続しているので直流コンデンサ4及び二次電池9に過電流が流れることはない。
【0030】
次に、切替制御器26からの指令により切替スイッチ25は直流電圧制御器23が出力する逆変換器5への電流指令を選択する。これにより逆変換器5は直流電圧指令演算器22の出力する直流電圧指令に従って直流電圧制御を行う。なお、直流電圧指令演算器22は、前述のようにリミッタにより構成され、その上限値及び下限値は有効電力制御器24が有効電力制御が可能となるような直流電圧の範囲に設定されている。
【0031】
続いて、切替制御器26は直流コンデンサ4の端子電圧と二次電池9の端子電圧を比較し、それらの電圧が略一致した場合、スイッチ10に投入指令を与える。これにより二次電池9を順変換器3と逆変換器5の間の直流部に直接接続する。更に、切替スイッチ25に有効電力制御器24の出力する逆変換器5への電流指令を選択する指令を与える。これにより逆変換器5の制御を直流電圧制御から有効電力制御に切り替えることができる。
【0032】
このように、直流コンデンサ4の端子電圧と二次電池9の端子電圧とを比較し差異がある場合(二次電池9の端子電圧が有効電力制御器24の有効電力制御が可能となる直流電圧の範囲外にある場合)には、逆変換器5の直流電圧制御により二次電池9の端子電圧が有効電力制御器24の有効電力制御が可能となる直流電圧範囲内に入るまで限流回路7を介して二次電池9を充放電し、直流コンデンサ4の端子電圧と二次電池9の端子電圧が略一致したとき(二次電池9の端子電圧が有効電力制御器24の有効電力制御が可能となる直流電圧の範囲内になったとき)スイッチ10を投入して、二次電池9を順変換器3と逆変換器5の間の直流部に直接接続し、逆変換器5による有効電力制御を開始する。このように、直流コンデンサ4の端子電圧と二次電池9の端子電圧が略一致したときスイッチ10を投入するので、スイッチ10を投入したときに過電流を流すことなく有効電力制御を開始することができる。
【0033】
以上説明したように、本実施形態によれば、二次電池9の端子電圧に応じて順変換器3と逆変換器5の間の直流部と二次電池9間の接続方法及び逆変換器5の制御方法を切り替える。
【0034】
これにより、過放電あるいは過充電等の要因により二次電池9の充電量が適正範囲内にない場合においても、順変換器3と逆変換器5の間の直流部と二次電池9間を限流回路を介して接続することにより装置を起動することが可能になる。
【0035】
更に、二次電池9の充電量が適正範囲内に入るように調整され二次電池9の充電量が適正範囲内に入った時点(直流コンデンサ4の端子電圧と二次電池9の端子電圧が略一致した時点)で二次電池9を順変換器3と逆変換器5の間の直流部に直接接続して運転をすることができる。なお、有効電力指令演算器17に備えられた二次電池9の端子電圧補正機能により二次電池9の充電量が適正範囲内に入るように常時制御されているので、システム起動時に二次電池9の充電量が適正範囲外になることは通常は防止されている。
【0036】
また、本実施形態では風力発電装置の運転中に二次電池9に異常が発生した場合に、切替制御器26を介してスイッチ8及びスイッチ10に開放指令を与えることで、二次電池9を順変換器3と逆変換器5の間の直流部から開放し、また、切替スイッチ25に直流電圧制御器23の出力する逆変換器5への有効電流指令を選択するように指令を与える。これにより、逆変換器5により直流電圧制御を行いながら連係運転を継続することが可能である。また、二次電池9をメンテナンスする場合には、切替制御器26を介してスイッチ8及びスイッチ10を開放し、更に、切替スイッチ25に直流電圧制御器23の出力する逆変換器5への有効電流指令を選択するように指令を与えることで、二次電池9を使用することなく連係運転を継続することが可能である。
【0037】
図4は、図1に示す風力発電装置の制御盤構成を説明する図である。図に示すように、二次電池9は二次電池用制御盤34に配置する。一方、順変換器3、直流コンデンサ4、逆変換器5、限流回路7、スイッチ8,10等は前記制御盤34とは異なる主制御盤33に配置する。スイッチ35は主制御盤33と二次電池用制御盤34間の配線を遮断する分離スイッチである。従って、分離スイッチ35を遮断しておけばスイッチ8あるいはスイッチ10の状態に係わらず二次電池9を順変換器3と逆変換器5間の直流部から完全に切り離すことができる。このため二次電池9のメンテナンスを装置の運転中にも行うことが可能となる。
【0038】
このように本実施形態によれば、過電流を流すことなく二次電池を順変換器と逆変換器間の直流部に直接接続することが可能となる。また、二次電池に異常が発生した場合においても装置の運転を継続することが可能である。
【0039】
【発明の効果】
以上説明したように本発明によれば、過電流を流すことなく二次電池を順変換器と逆変換器の間の直流部に直接接続することが可能で、二次電池に異常が発生した場合にも二次電池を使用することなく装置の運転を継続することができる。
【図面の簡単な説明】
【図1】本発明の実施形態にかかる風力発電装置を説明する図である。
【図2】有効電力指令演算器17の詳細を説明する図である。
【図3】直流電圧指令演算器22の詳細を説明する図である。
【図4】図1に示す風力発電装置の制御盤構成を説明する図である。
【符号の説明】
1 風車
2 同期発電機
3 順変換器
4 直流コンデンサ
5 逆変換器
6 系統連系用変圧器
7 限流回路
8,10 スイッチ
9 二次電池
11,15、16,18 電圧検出センサ
12,19 電流検出センサ
13,20 3相/2相変換器
14,21 有効電力検出器
17 有効電力指令演算器
22 直流電圧指令演算器
23 直流電圧制御器
24 有効電力制御器
25 切替スイッチ
26 切替制御器
27 電流制御器
28 2相/3相変換器
29 パルス発生器
30 フィルタ
31 二次電池端子電圧補正器
33 主制御盤
34 二次電池用制御盤
35 分離スイッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wind turbine generator, and more particularly to a wind turbine generator that includes a secondary battery on the output side of a forward converter that converts an AC output of a wind generator into a DC voltage.
[0002]
[Prior art]
Patent Document 1 discloses a wind turbine generator that connects a wind turbine to a synchronous generator and drives the synchronous generator by a wind turbine that is rotated by wind energy. AC power generated by the synchronous generator is converted to DC power by a forward converter, and further converted to AC power of commercial frequency by an inverse converter and supplied to the power system.
[0003]
By the way, the output of the wind turbine generator greatly depends on the wind speed, and the output fluctuation caused by the wind speed fluctuation greatly fluctuates the frequency and voltage of the power system, and adversely affects the power system. Therefore, when introducing a wind power generator, a technique for suppressing such output fluctuation is essential.
[0004]
Further, in Patent Document 1, a secondary battery is directly connected to the DC portion of the converter, and the secondary battery is compensated for the output fluctuation caused by the wind speed fluctuation even when the wind speed fluctuates. A wind turbine generator that suppresses adverse effects on the power system by discharging is shown.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-299295
[Problems to be solved by the invention]
However, as shown in the above prior art, when the secondary battery is connected to the DC part of the converter, it is difficult to control the power by the converter when the secondary battery has a small charge and the secondary battery terminal voltage is low. Become. That is, since the freewheeling diode is connected in antiparallel with the switching element such as IGBT in the converter, an overcurrent flows from the AC side (system side) through the freewheeling diode when the DC side voltage of the converter decreases. It will be.
[0007]
Further, if an abnormality occurs in the secondary battery during the operation of the wind turbine generator, the operation cannot be continued. Further, the apparatus must be stopped when maintaining the secondary battery.
[0008]
The present invention has been made in view of these problems. It is possible to directly connect a secondary battery to a direct current portion between a forward converter and an inverse converter without passing an overcurrent. Provided is a wind power generator capable of continuing the operation of a device without using a secondary battery even when an abnormality occurs in the secondary battery.
[0009]
[Means for Solving the Problems]
The present invention employs the following means in order to solve the above problems.
[0010]
Forward converter for converting AC output of wind power generator to DC voltage, reverse converter for converting wind power generator output converted to DC voltage to AC voltage, and smoothing capacitor, the forward converter and the reverse converter A secondary battery having a direct current connecting part, a switch directly connected to the direct current part and a current limiting switch connected to the direct current part via a current limiting circuit, and comparing the secondary battery voltage and the smoothing capacitor voltage. And a switching controller that turns on a switch that directly connects the secondary battery to the DC section when they substantially coincide.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram illustrating a wind power generator according to an embodiment of the present invention. In the figure, the rotor of the generator such as the synchronous generator 2 is connected to the shaft of the windmill 1, and when the windmill 1 is rotated by wind energy, the synchronous generator 2 has a variable frequency corresponding to the rotational speed of the windmill 1. Generates AC power. A forward converter 3 is connected to the stator side winding of the synchronous generator 2, and variable frequency AC power generated by the synchronous generator 2 is converted into DC power by the forward converter 3. The forward converter 3 is connected to an inverse converter 5 via a DC capacitor 4, and the inverse converter 5 converts the DC power supplied from the forward converter 3 into AC power having a fixed frequency. The reverse converter 5 is connected to the power system via the grid interconnection transformer 6 and supplies AC power of a fixed frequency to the power system.
[0012]
A secondary battery 9 is connected to the direct current section between the forward converter 3 and the reverse converter 5 via a current limiting circuit 7 and a switch 8 (current limiting switch). As the secondary battery 9, a lead storage battery, a nickel metal hydride battery, a nickel cadmium battery, a lithium ion battery, or the like can be used. The current limiting circuit 7 can be constituted by a current limiting resistor or the like.
[0013]
The DC capacitor 4 is provided with a voltage detection sensor 15 for detecting the terminal voltage of the DC capacitor 4, and the secondary battery 9 is provided with a voltage detection sensor 16 for detecting the secondary battery terminal voltage of the secondary battery 9. ing.
[0014]
A voltage detection sensor 11 and a current detection sensor 12 are installed between the synchronous generator 2 and the forward converter 3. The voltage detection sensor 11 is a terminal voltage of the synchronous generator 2, and the current detection sensor 12 is a synchronous generator. 2 detects the current flowing through the stator side windings. The detected voltage and current values are converted by the three-phase / two-phase converter 13 into two-axis components of an effective component and an ineffective component.
[0015]
The active power detector 14 detects the active power output from the synchronous generator 2 based on the two-axis component signal output from the three-phase / two-phase converter 13.
[0016]
The active power command calculator 17 is based on the active power output from the synchronous generator 2 detected by the active power detector 14 and the terminal power of the secondary battery 9 detected by the voltage detection sensor 16. Calculate the command.
[0017]
FIG. 2 is a diagram for explaining the details of the active power command calculator 17. The active power command calculator 17 includes a filter 30 and a secondary battery terminal voltage corrector 31. The filter 30 is a low-pass filter, and a function of giving a value obtained by removing the fluctuation component from the detected value PG of the active power output from the synchronous generator 2 detected by the active power detector 14 as the active power command Pref to the inverse converter 5 Have By configuring in this way, the active power output to the system by the inverse converter 5 is obtained by removing the fluctuation component from the active power output by the synchronous generator 2, and does not adversely affect the system voltage and system frequency. That is, the fluctuation component included in the active power output from the synchronous generator 2 is compensated by charging / discharging of the secondary battery 9.
[0018]
The secondary battery terminal voltage corrector 31 is connected to the reverse converter 5 so that the terminal voltage of the secondary battery 9 falls within the normal range when the terminal voltage of the secondary battery 9 detected by the voltage detection sensor 16 deviates from the normal range. It has a function of adjusting the active power command Pref. For example, when the terminal voltage of the secondary battery 9 is higher than the normal range, the active power command Pref to the inverter 5 is increased. As a result, the secondary battery 9 is discharged, and the terminal voltage of the secondary battery 9 is lowered. On the contrary, when the terminal voltage of the secondary battery 9 is lower than the normal range, the active power command Pref to the inverse converter 5 is decreased. As a result, the secondary battery 9 is charged, and the terminal voltage of the secondary battery 9 is increased.
[0019]
FIG. 3 is a diagram for explaining the details of the DC voltage command calculator 22. The DC voltage command calculator 22 calculates a DC voltage command to the inverse converter 5 based on the terminal voltage of the secondary battery 9 detected by the voltage detection sensor 16.
[0020]
The DC voltage command calculator 22 includes a limiter having an upper limit value and a lower limit value. If the terminal voltage of the secondary battery 9 is within the limiter range, the terminal voltage detection value of the secondary battery 9 becomes a DC voltage command to the inverse converter 5. On the other hand, if the terminal voltage of the secondary battery 9 is outside the limiter range, the upper limit value or lower limit value of the limiter becomes a DC voltage command to the inverse converter 5.
[0021]
In FIG. 1, a voltage detection sensor 18 and a current detection sensor 19 are installed between the inverter 5 and the grid interconnection transformer 6. The voltage detection sensor 18 is a system voltage, and the current detection sensor 19 is a system. Detect current flowing to The detected voltage and current values are converted into two-axis components by the three-phase / two-phase converter 20 for the effective component and the ineffective component.
[0022]
The active power detector 21 detects the active power output from the inverse converter 5 to the system based on the biaxial component signal output from the three-phase / two-phase converter 20.
[0023]
The input of the DC voltage controller 23 is a deviation between the DC voltage command output from the DC voltage command calculator 22 and the terminal voltage of the DC capacitor 4 detected by the voltage detection sensor 15, and the output is controlled by the inverse converter 5 with the DC voltage control. This is an effective portion of the current command to the inverse converter 5 when it is performed. The DC voltage controller 23 is constituted by, for example, a proportional integration control system, and determines a current command to the inverse converter 5 so that a deviation between the DC voltage command and the detected DC voltage value becomes zero.
[0024]
The input of the active power controller 24 is a deviation between the active power command output from the active power command calculator 17 and the detected active power value detected by the active power detector 21. The output is controlled by the inverse converter 5. It becomes an effective part of the current command to the inverse converter 5 in the case. The active power controller 24 is constituted by, for example, a proportional-integral control system, and determines a current command to the inverse converter 5 so that the deviation between the active power command and the detected active power value becomes zero.
[0025]
The changeover switch 25 selects either a current command to the inverse converter 5 output from the DC voltage controller 23 or the active power controller 24 according to a command from the switching controller 26. The switching controller 26 inputs the terminal voltage of the DC capacitor 4 detected by the voltage detection sensor 15 and the terminal voltage of the secondary battery 9 detected by the voltage detection sensor 16, and compares the values to switch the switch 8 and the switch 8. The switch 10 is controlled.
[0026]
The input to the current controller 27 is the current detection value of the biaxial component output from the 3-phase / 2-phase converter 20 and the current command to the inverse converter 5 output from the changeover switch 25, and the output is the inverse converter 5. Output voltage command to The current controller 27 is configured by, for example, a proportional-integral control system, and determines an output voltage command to the inverse converter 5 so that the deviation between the detected current value and the current command becomes zero. Since the output voltage command to the inverse converter 5 output from the current controller 27 is a voltage command of a two-axis component, it is converted into a three-phase voltage command by the two-phase / three-phase converter 28.
[0027]
The pulse generator 29 outputs a gate pulse signal to the inverse converter 5 by PWM (Pulse Width Modulation) based on the three-phase output voltage command to the inverse converter 5 output from the two-phase / three-phase converter 28. To do. The inverse converter 5 receives a gate pulse signal and switches a switching element such as an IGBT at a high frequency. As a result, the inverse converter 5 outputs a voltage corresponding to the command.
[0028]
With the configuration of the control system as described above, DC voltage control and active power control by the inverter 5 can be performed.
[0029]
Next, a method for operating the wind turbine generator shown in FIG. 1 will be described. First, the DC capacitor 4 is initially charged by the initial charging circuit provided in the inverse converter 5. Next, the switch 8 is turned on by a command from the switching controller 26. As a result, the secondary battery 9 is connected to the direct current section between the forward converter 3 and the reverse converter 5 via the current limiting circuit 7. At this time, since the connection is made through the current limiting circuit 7, no overcurrent flows through the DC capacitor 4 and the secondary battery 9.
[0030]
Next, the changeover switch 25 selects a current command to the inverse converter 5 output from the DC voltage controller 23 according to a command from the switching controller 26. As a result, the inverse converter 5 performs DC voltage control according to the DC voltage command output from the DC voltage command calculator 22. The DC voltage command calculator 22 is configured by a limiter as described above, and the upper limit value and the lower limit value thereof are set to a DC voltage range in which the active power controller 24 can perform active power control. .
[0031]
Subsequently, the switching controller 26 compares the terminal voltage of the DC capacitor 4 with the terminal voltage of the secondary battery 9, and gives an input command to the switch 10 when these voltages substantially match. As a result, the secondary battery 9 is directly connected to the DC section between the forward converter 3 and the reverse converter 5. Further, a command for selecting a current command to the inverter 5 output from the active power controller 24 is given to the changeover switch 25. Thereby, the control of the inverter 5 can be switched from the DC voltage control to the active power control.
[0032]
Thus, when the terminal voltage of the DC capacitor 4 and the terminal voltage of the secondary battery 9 are compared and there is a difference (the DC voltage at which the terminal voltage of the secondary battery 9 can control the active power of the active power controller 24). The current limit circuit until the terminal voltage of the secondary battery 9 falls within the DC voltage range in which the active power control of the active power controller 24 is possible by the DC voltage control of the inverter 5. 7, when the secondary battery 9 is charged / discharged and the terminal voltage of the DC capacitor 4 and the terminal voltage of the secondary battery 9 are substantially equal (the terminal voltage of the secondary battery 9 is the active power control of the active power controller 24. Switch 10 is turned on, and the secondary battery 9 is directly connected to the direct current section between the forward converter 3 and the reverse converter 5, and the reverse converter 5 Start active power control. Thus, since the switch 10 is turned on when the terminal voltage of the DC capacitor 4 and the terminal voltage of the secondary battery 9 substantially match, the active power control can be started without flowing an overcurrent when the switch 10 is turned on. Can do.
[0033]
As described above, according to the present embodiment, the connection method between the direct current section between the forward converter 3 and the reverse converter 5 and the secondary battery 9 and the reverse converter according to the terminal voltage of the secondary battery 9. 5 is switched.
[0034]
As a result, even when the amount of charge of the secondary battery 9 is not within the appropriate range due to factors such as overdischarge or overcharge, the direct current section between the forward converter 3 and the reverse converter 5 and the secondary battery 9 are connected. It is possible to start the device by connecting via a current limiting circuit.
[0035]
Further, when the charge amount of the secondary battery 9 is adjusted so as to fall within the appropriate range and the charge amount of the secondary battery 9 falls within the proper range (the terminal voltage of the DC capacitor 4 and the terminal voltage of the secondary battery 9 are The secondary battery 9 can be directly connected to the direct current section between the forward converter 3 and the reverse converter 5 at the time of substantially coincident). Since the charge amount of the secondary battery 9 is always controlled by the terminal voltage correction function of the secondary battery 9 provided in the active power command calculator 17 so that the secondary battery 9 falls within an appropriate range. It is normally prevented that the charge amount 9 is outside the proper range.
[0036]
In the present embodiment, when an abnormality occurs in the secondary battery 9 during the operation of the wind turbine generator, the secondary battery 9 is provided by giving an opening command to the switch 8 and the switch 10 via the switching controller 26. The direct current section between the forward converter 3 and the reverse converter 5 is opened, and a command is given to the changeover switch 25 so as to select an effective current command to the reverse converter 5 output from the DC voltage controller 23. As a result, the linked operation can be continued while the DC voltage control is performed by the inverse converter 5. When maintaining the secondary battery 9, the switch 8 and the switch 10 are opened via the switching controller 26, and the switching converter 25 is effective for the inverter 5 output from the DC voltage controller 23. By giving the command to select the current command, the linked operation can be continued without using the secondary battery 9.
[0037]
FIG. 4 is a diagram for explaining a control panel configuration of the wind turbine generator shown in FIG. 1. As shown in the figure, the secondary battery 9 is disposed on the secondary battery control panel 34. On the other hand, the forward converter 3, the DC capacitor 4, the reverse converter 5, the current limiting circuit 7, the switches 8, 10, etc. are arranged on a main control panel 33 different from the control panel 34. The switch 35 is a separation switch for cutting off the wiring between the main control panel 33 and the secondary battery control panel 34. Therefore, if the separation switch 35 is cut off, the secondary battery 9 can be completely disconnected from the DC portion between the forward converter 3 and the reverse converter 5 regardless of the state of the switch 8 or the switch 10. For this reason, it becomes possible to perform the maintenance of the secondary battery 9 even during operation of the apparatus.
[0038]
As described above, according to the present embodiment, the secondary battery can be directly connected to the direct current portion between the forward converter and the reverse converter without flowing an overcurrent. Further, even when an abnormality occurs in the secondary battery, the operation of the device can be continued.
[0039]
【The invention's effect】
As described above, according to the present invention, it is possible to directly connect the secondary battery to the direct current portion between the forward converter and the reverse converter without flowing an overcurrent, and an abnormality has occurred in the secondary battery. Even in this case, the operation of the apparatus can be continued without using a secondary battery.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a wind turbine generator according to an embodiment of the present invention.
FIG. 2 is a diagram for explaining details of an active power command calculator 17;
FIG. 3 is a diagram for explaining the details of a DC voltage command calculator 22;
4 is a diagram illustrating a control panel configuration of the wind turbine generator shown in FIG. 1. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Windmill 2 Synchronous generator 3 Forward converter 4 DC capacitor 5 Reverse converter 6 System interconnection transformer 7 Current limiting circuit 8, 10 Switch 9 Secondary battery 11, 15, 16, 18 Voltage detection sensor 12, 19 Current Detection sensors 13, 20 3-phase / 2-phase converters 14, 21 Active power detector 17 Active power command calculator 22 DC voltage command calculator 23 DC voltage controller 24 Active power controller 25 Changeover switch 26 Changeover controller 27 Current Controller 28 2-phase / 3-phase converter 29 Pulse generator 30 Filter 31 Secondary battery terminal voltage corrector 33 Main control panel 34 Secondary battery control panel 35 Separation switch

Claims (10)

風力発電機の交流出力を直流電圧に変換する順変換器と、
前記直流電圧に変換した風力発電機出力を交流電圧に変換する逆変換器と、
平滑コンデンサを備え前記順変換器と逆変換器を接続する直流部と、
前記直流部に直接接続するスイッチ及び前記直流部に限流回路を介して接続する限流スイッチを備えた二次電池と、
前記二次電池電圧と平滑コンデンサ電圧を比較し、略一致したとき前記二次電池を直流部に直接接続するスイッチを投入する切替制御器を備えたことを特徴とする風力発電装置。
A forward converter that converts the AC output of the wind power generator to a DC voltage;
An inverse converter that converts the wind power generator output converted into the DC voltage into an AC voltage;
A direct current unit including a smoothing capacitor and connecting the forward converter and the reverse converter;
A secondary battery including a switch directly connected to the DC unit and a current limiting switch connected to the DC unit via a current limiting circuit;
A wind power generator comprising: a switching controller that compares the secondary battery voltage with a smoothing capacitor voltage and turns on a switch that directly connects the secondary battery to a DC unit when they substantially match.
請求項1記載の風力発電機において、
前記限流回路は限流抵抗からなることを特徴とする風力発電装置。
The wind power generator according to claim 1, wherein
The wind current generator is characterized in that the current limiting circuit comprises a current limiting resistor.
請求項1記載の風力発電機において
前記二次電池は、順変換器及び逆変換器を収容する盤とは異なる盤に収容することを特徴とする風力発電装置。
2. The wind power generator according to claim 1, wherein the secondary battery is housed in a panel different from the panel housing the forward converter and the reverse converter.
請求項1記載の風力発電機において
前記二次電池は、順変換器及び逆変換器を収容する盤とは異なる盤に収容すると共に、前記限流回路とは分離スイッチを介して接続したことを特徴とする風力発電装置。
The wind turbine generator according to claim 1, wherein the secondary battery is housed in a board different from the board housing the forward converter and the reverse converter, and is connected to the current limiting circuit via a separation switch. A featured wind power generator.
請求項1記載の風力発電機において
切替制御器は前記二次電池に異常が発生したとき、二次電池を直流部に直接接続するスイッチ及び前記限流スイッチを開放することを特徴とする風力発電装置。
2. The wind power generator according to claim 1, wherein when the abnormality occurs in the secondary battery, the switching controller opens the switch for directly connecting the secondary battery to the DC unit and the current limiting switch. apparatus.
風力発電機の交流出力を直流電圧に変換する順変換器と、
前記直流電圧に変換した風力発電機出力を交流電圧に変換する逆変換器と、
平滑コンデンサを備え前記順変換器と逆変換器を接続する直流部と、
前記直流部に直接接続するスイッチ及び前記直流部に限流抵抗を介して接続する限流スイッチを備えた二次電池と、
前記二次電池電圧と平滑コンデンサ電圧との偏差をもとに前記逆変換器の電流指令を出力する自動電圧調整器と、
前記風力発電機出力と逆変換器出力との偏差をもとに前記逆変換器の電流指令を出力する自動電力調整器と、
前記二次電池の電圧と平滑コンデンサの電圧を比較し、略一致したとき前記二次電池を直流部に直接接続するスイッチを投入するとともに、前記自動電圧調整器による制御から前記自動電力調整器による制御に切り換える切替制御器を備えたことを特徴とする風力発電装置。
A forward converter that converts the AC output of the wind power generator to a DC voltage;
An inverse converter that converts the wind power generator output converted into the DC voltage into an AC voltage;
A direct current unit including a smoothing capacitor and connecting the forward converter and the reverse converter;
A secondary battery including a switch directly connected to the DC unit and a current limiting switch connected to the DC unit via a current limiting resistor;
An automatic voltage regulator that outputs a current command of the inverse converter based on a deviation between the secondary battery voltage and a smoothing capacitor voltage;
An automatic power regulator that outputs a current command of the inverter based on a deviation between the wind power generator output and the inverter output;
The voltage of the secondary battery and the voltage of the smoothing capacitor are compared, and when they substantially coincide with each other, a switch for directly connecting the secondary battery to the direct current unit is turned on, and from the control by the automatic voltage regulator, the automatic power regulator A wind turbine generator comprising a switching controller for switching to control.
請求項6記載の風力発電機において
前記切替制御器は、風力発電装置の起動時、前記自動電圧調整器による制御に切り換えて起動することを特徴とする風力発電装置。
The wind turbine generator according to claim 6, wherein the switching controller is switched to the control by the automatic voltage regulator and activated when the wind turbine generator is activated.
風力発電機の交流出力を直流電圧に変換する順変換器と、
前記直流電圧に変換した風力発電機出力を交流電圧に変換する逆変換器と、
平滑コンデンサを備え前記順変換器と逆変換器を接続する直流部と、
前記直流部に直接接続するスイッチ及び前記直流部に限流抵抗を介して接続する限流スイッチを備えた二次電池と、
前記二次電池電圧と平滑コンデンサ電圧との偏差をもとに前記逆変換器の電流指令を出力する自動電圧調整器と、
前記風力発電機出力と逆変換器出力との偏差をもとに前記逆変換器の電流指令を出力する自動電力調整器と、
前記二次電池の電圧と平滑コンデンサの電圧を比較し、略一致したとき前記二次電池を直流部に直接接続するスイッチを投入するとともに、前記自動電圧調整器による制御から前記自動電力調整器による制御に切り換える切替制御器と、
前記自動電圧調整器による電流指令あるいは前記自動電力調整器による電流指令のいずれかと前記逆変換器の出力電流との偏差をもとに前記逆変換器の電圧指令を出力する電流制御器を備えたことを特徴とする風力発電装置。
A forward converter that converts the AC output of the wind power generator to a DC voltage;
An inverse converter that converts the wind power generator output converted into the DC voltage into an AC voltage;
A direct current unit including a smoothing capacitor and connecting the forward converter and the reverse converter;
A secondary battery including a switch directly connected to the DC unit and a current limiting switch connected to the DC unit via a current limiting resistor;
An automatic voltage regulator that outputs a current command of the inverse converter based on a deviation between the secondary battery voltage and a smoothing capacitor voltage;
An automatic power regulator that outputs a current command of the inverter based on a deviation between the wind power generator output and the inverter output;
The voltage of the secondary battery and the voltage of the smoothing capacitor are compared, and when they substantially coincide with each other, a switch for directly connecting the secondary battery to the direct current unit is turned on, and from the control by the automatic voltage regulator, the automatic power regulator A switching controller for switching to control,
A current controller that outputs a voltage command of the inverse converter based on a deviation between either the current command by the automatic voltage regulator or the current command by the automatic power regulator and the output current of the inverse converter; Wind power generator characterized by that.
請求項8記載の風力発電機において
前記切替制御器は、風力発電装置の起動時、前記自動電圧調整器による制御に切り換えて起動することを特徴とする風力発電装置。
9. The wind turbine generator according to claim 8, wherein the switching controller is switched to control by the automatic voltage regulator and activated when the wind turbine generator is activated.
請求項1記載の風力発電機において
前記切替制御器は、風力発電装置の起動時、前記自動電圧調整器による制御に切り換えて起動することを特徴とする風力発電装置。
2. The wind turbine generator according to claim 1, wherein the switching controller is switched to the control by the automatic voltage regulator and activated when the wind turbine generator is activated.
JP2003178135A 2003-06-23 2003-06-23 Wind power generator Expired - Fee Related JP3817582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003178135A JP3817582B2 (en) 2003-06-23 2003-06-23 Wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003178135A JP3817582B2 (en) 2003-06-23 2003-06-23 Wind power generator

Publications (2)

Publication Number Publication Date
JP2005020805A true JP2005020805A (en) 2005-01-20
JP3817582B2 JP3817582B2 (en) 2006-09-06

Family

ID=34179852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003178135A Expired - Fee Related JP3817582B2 (en) 2003-06-23 2003-06-23 Wind power generator

Country Status (1)

Country Link
JP (1) JP3817582B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101971732A (en) * 2010-08-24 2011-02-16 无锡同春新能源科技有限公司 Harvester with power device based on new energy source complementation of wind power and lithium ion battery
CN101316091B (en) * 2007-05-30 2011-06-01 株式会社日立制作所 Wind power generation system and method of controlling power converter
JP2013021792A (en) * 2011-07-08 2013-01-31 Sanyo Denki Co Ltd Power supply system
WO2013129683A1 (en) 2012-03-02 2013-09-06 日揮株式会社 Power supply device, electricity storage device, and electricity storage system
EP1752659B1 (en) * 2005-08-12 2014-03-12 REpower Systems SE Method of operation of a windpark
JP2018007458A (en) * 2016-07-05 2018-01-11 株式会社日立製作所 Wind power generation equipment, operation method thereof, and wind farm
CN109386427A (en) * 2017-08-04 2019-02-26 南京理工大学 Consider the direct drive permanent magnetic synchronous wind unit allocation method of inverter cut-off current characteristics

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1752659B1 (en) * 2005-08-12 2014-03-12 REpower Systems SE Method of operation of a windpark
CN101316091B (en) * 2007-05-30 2011-06-01 株式会社日立制作所 Wind power generation system and method of controlling power converter
CN101971732A (en) * 2010-08-24 2011-02-16 无锡同春新能源科技有限公司 Harvester with power device based on new energy source complementation of wind power and lithium ion battery
JP2013021792A (en) * 2011-07-08 2013-01-31 Sanyo Denki Co Ltd Power supply system
WO2013129683A1 (en) 2012-03-02 2013-09-06 日揮株式会社 Power supply device, electricity storage device, and electricity storage system
US9641022B2 (en) 2012-03-02 2017-05-02 Jgc Corporation Power supply apparatus, battery apparatus, and battery system
JP2018007458A (en) * 2016-07-05 2018-01-11 株式会社日立製作所 Wind power generation equipment, operation method thereof, and wind farm
CN109386427A (en) * 2017-08-04 2019-02-26 南京理工大学 Consider the direct drive permanent magnetic synchronous wind unit allocation method of inverter cut-off current characteristics
CN109386427B (en) * 2017-08-04 2021-01-08 南京理工大学 Direct-drive permanent magnet synchronous wind turbine generator control method considering current limiting characteristic of inverter

Also Published As

Publication number Publication date
JP3817582B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
US7485980B2 (en) Power converter for doubly-fed power generator system
US8350397B2 (en) Current source converter-based wind energy system
US20130328309A1 (en) Matrix converter apparatus for wind-power generation, method for controlling matrix converter, wind-power generator apparatus, wind farm, and method for manufacturing wind turbine
EP0166052B1 (en) Method and system for reconnecting inverter to rotating motors
US20040178640A1 (en) Gas turbine generator
US11223310B2 (en) Variable speed generator/motor device
JP2017184362A (en) Power conditioner, power supply system, and current control method
WO2001048904A1 (en) Portable generator
JP2005269843A (en) Parallel operation device
JP3817582B2 (en) Wind power generator
JP4092949B2 (en) Wind power generator equipped with secondary battery, converter control device, and power converter control method
JP4344523B2 (en) Distributed power supply output stabilization device and control method thereof
JP3974373B2 (en) Wind power generator and wind power generation method
JP5490801B2 (en) Self-excited reactive power compensator
EP3968480A1 (en) System and method for controlling drivetrain damping during multiple low-voltage ride through events
JP2004208345A (en) Three-phase unbalanced voltage restraining apparatus
JP3978126B2 (en) Wind power generation system with secondary battery
JP3073983B1 (en) Portable generator and method of adjusting output of portable generator
JP2013243934A (en) Self-excited reactive power compensation device
JPH11299244A (en) Power converter system
JP7186743B2 (en) power converter
JP3042686B1 (en) Portable generator
JP2008011588A (en) Wind turbine generator
JP4614489B2 (en) Grid interconnection inverter
JP2009033798A (en) Starting system for induction generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees