JP2005016879A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2005016879A
JP2005016879A JP2003184198A JP2003184198A JP2005016879A JP 2005016879 A JP2005016879 A JP 2005016879A JP 2003184198 A JP2003184198 A JP 2003184198A JP 2003184198 A JP2003184198 A JP 2003184198A JP 2005016879 A JP2005016879 A JP 2005016879A
Authority
JP
Japan
Prior art keywords
condenser
heat insulating
insulating material
refrigerator
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003184198A
Other languages
Japanese (ja)
Inventor
Makoto Oyamada
真 小山田
Tetsuya Saito
哲哉 斎藤
Yoshito Kimura
義人 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003184198A priority Critical patent/JP2005016879A/en
Publication of JP2005016879A publication Critical patent/JP2005016879A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Refrigerator Housings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator with a condenser and a vacuum heat insulating material arranged in a urethane heat insulating material between an outer box and an inner box, increasing the heat radiating effect of the condenser and the heat absorbing amount reducing effect of the vacuum heat insulating material and improving the efficiency of assembling work. <P>SOLUTION: The condenser 18 is arranged between an outer box flat plate 16 and the vacuum heat insulating material 17 and pasted to each other with an adhesive member to form an integrated panel which is arranged on at least either side face of the outer box. Thus, the heat of the condenser 18 is efficiently transferred to outside air, improving heat radiating capability. The vacuum heat insulating material 17 is pasted at a maximum to the condenser 18 to partition the inside, greatly reducing the quantity of heat entering from the condenser 18. The outer box flat plate 16, the condenser 17 and the vacuum heat insulating material 18 are formed into the integrated panel, improving workability when assembling the outer box. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、発泡断熱材で形成された断熱箱体よりなる冷蔵庫に関するものである。
【0002】
【従来の技術】
近年、冷蔵庫の大容量化および設置スペース縮小の需要が高まるにつれて、冷蔵庫断熱壁内には真空断熱材を備えて断熱性能の向上を図っている(例えば特許文献1参照)。
【0003】
以下、図面を参照しながら上記従来の冷蔵庫を説明する。
【0004】
図9は、従来の冷蔵庫の略断面図を示す。図9に示すように、従来の冷蔵庫1は、冷蔵庫1の外壁を形成する外箱2と、冷蔵庫の庫内壁を形成する内箱3と、外箱2と内箱3の間に発泡充填させたウレタン断熱材4、ウレタン断熱材4内に配置した真空断熱材5からなる断熱箱体6と、断熱箱体6のウレタン断熱材4内に配置した冷蔵庫冷却装置(図示せず)の凝縮器7により構成され、さらに断熱箱体内6を第一仕切り壁8および第二仕切り壁9によって上下に区画し、それぞれに冷蔵室10および冷凍室11、野菜室12を形成している。
【0005】
真空断熱材5は、ガスの透過を阻止する多層ラミネート構造のフィルムから成る外被袋、シリカ・パーライト等の微粉末もしくは無機繊維等からなる芯材により構成され、芯材を封入した後、外被袋内のガス(空気)を排気し、真空状態にしてヒートシールで密封している。この真空断熱材5の熱伝導率は、0.008から0.0025W/m・Kと非常に断熱性能が優れているため、特に低温が要求される冷凍室11の周囲に貼り付ければ、断熱箱体6の壁厚を薄くしても、庫内に侵入してくる熱量を有効的に削減することが可能となる。また真空断熱材5の固定場所は比較的平らな外箱内面側に取り付けられる。
【0006】
ウレタン断熱材4内に配置された凝縮器7は冷却装置が運転中には高温となるため、放熱能力を確保し、庫内への侵入熱量を削減するために外箱内面側に取り付けられている。また外箱側に取り付けることにより前記凝縮器7の発熱が外箱2表面に伝わり、表面に露が付くのを防止している。
【0007】
このように真空断熱材5と凝縮器7は双方共に外箱内面側に配置されるため、図5のように互いの配置位置を阻害しないよう真空断熱材の周囲に凝縮器7を配置させる構造をとっている。
【0008】
【特許文献1】
特開平9−269177号公報
【0009】
【発明が解決しようとする課題】
しかしながら、従来の方法では、冷蔵庫1の吸熱量を低減するために真空断熱材5の被覆面積を拡大した場合に、凝縮器7の配置が真空断熱材5の周囲部分に限られるため、凝縮器7の放熱能力を十分に確保できない。その結果、冷凍サイクルの高効率化を狙った凝縮温度の低温化が困難となる。
【0010】
さらに従来の外箱の組み立て工程では、側面部を折り曲げて加工して外箱を形成した後に真空断熱材5を貼り付けているが、立体的に構成された外箱内側の各面に真空断熱材5を貼り付けるために貼り付け工程が煩雑となって生産コストの低減が困難になってしまうという課題があった。
【0011】
本発明は、従来の技術的課題を克服するものであり、凝縮器の放熱能力を十分確保しながら、真空断熱材による吸熱量低減の効果を高め、さらに前記凝縮器および前記真空断熱材の組み立て作業効率を向上することができる構造を備えた冷蔵庫を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明の請求項1に記載の発明は、平板と真空断熱材の間に凝縮器を配置して、それぞれを接着部材により貼り付けて一体化したパネルの平板側を外側にして、少なくとも一平面を前記パネルで構成した外箱と、庫内壁を形成する内箱と、前記外箱と前記内箱間に充填した発泡ウレタン断熱材からなる断熱箱体で構成するものであり、前記パネル表面全体で前記凝縮器の放熱を行なうことで十分な放熱能力が確保でき、また前記真空断熱材を有効な大きさで貼りつけることで外気および前記凝縮器からの侵入熱を大幅に低減することができ、さらに前記凝縮器と前記真空断熱材を一体化したパネルで外箱を構成することにより断熱箱体の組み立て作業効率を向上することができるという作用を有する。
【0013】
請求項2に記載の発明は、請求項1に記載の発明において、前記凝縮器の少なくとも一側面を平面状としたものであり、前記凝縮器と外気側にある前記平板との接触面積を大きくすることで、前記凝縮器の熱を効率よく外気に伝え、放熱能力を向上することができるという作用を有する。
【0014】
請求項3に記載の発明は、請求項1または2に記載の発明において、前記平板の端面から前記真空断熱材の端面までの距離を約100mm以内にしたものであり、外箱を構成する前記パネルの接合部分のスペースを確保して、最大限度の大きさで前記真空断熱材を外箱全体に覆うように配置することができるので、冷蔵庫の吸熱量を大幅に削減することができるという作用を有する。
【0015】
請求項4に記載の発明は、請求項1から3のいずれか一項に記載の発明において、凝縮器の入口および出口配管と他の配管との接続部分を冷蔵庫背面下部に設けた機械室内に配置したものであり、外箱をパネル化することで増加した配管接合部分を集約して、溶接作業を効率的に行なうことができるという作用を有する。
【0016】
請求項5に記載の発明は、請求項4に記載の発明において、圧縮機を機械室の中心から左右にずらして配置し、前記圧縮機をずらして配置した位置とは逆側に凝縮器の入口および出口配管と他の配管との接続部分を配置したものであり、隣り合う接合部分の距離をとって配管溶接時の作業効率を向上することができるという作用を有する。
【0017】
請求項6に記載の発明は、請求項5に記載の発明において、機械室内で冷蔵庫の除霜水を受ける蒸発皿を圧縮機と並べて配置し、前記圧縮機と凝縮器をつなぐ配管が前記蒸発皿内に浸漬したものであり、前記圧縮機から吐出された高温冷媒を前記凝縮器に入る前に除霜水で冷却することで、凝縮温度が高温となるのを防ぎ、さらに前記蒸発皿内にある除霜水の蒸発を促進することができるという作用を有する。
【0018】
請求項7に記載の発明は、請求項6に記載の発明において、外箱の両側面と背面とを前記パネルで構成し、圧縮器の吐出配管から、圧縮機から遠い側面の凝縮器、背面の凝縮器、圧縮機から近い側面の凝縮器へと順に接続したものであり、機械室内の配管配置を簡素化することができるので、前記機械室の省スペース化を図り、配管長さを最小にすることができるという作用を有する。
【0019】
請求項8に記載の発明は、請求項7に記載の発明において、機械室内にある配管溶接部分を前記パネルから離して配置したものであり、溶接時の熱が配管を通して前記パネル側に伝わり、真空断熱材の袋が高温となり、劣化することを防止することができるという作用を有する。
【0020】
【発明の実施の形態】
以下、本発明による冷蔵庫の実施の形態について、図面を参照しながら説明する。
【0021】
(実施の形態1)
図1は本発明の実施の形態1による冷蔵庫の断熱箱体を構成する外箱の分解図、図2は同実施の形態による冷蔵庫の外観傾斜図、図3は同実施の形態による冷蔵庫の断熱箱体断面図、図4は同実施の形態による冷蔵庫の風路構成図、図5は同実施の形態による冷蔵庫の冷凍サイクル図、図6は同実施の形態による冷蔵庫の背面下部にある機械室の配置図、図7は同実施の形態による細径管で構成した凝縮器を用いた冷蔵庫の箱体断面図、図8は同実施の形態による波形平板で構成した凝縮器を用いた冷蔵庫の箱体断面図である。
【0022】
実施の形態1の冷蔵庫15は、鉄製の外箱平板16と真空断熱材17と凝縮器18からなる外箱パネル19、硬質樹脂製の内箱20、外箱パネル19と内箱20間に発泡充填されたウレタン断熱材21からなる断熱箱体22と、冷蔵室ドア23および冷凍室ドア24と断熱箱体22をシールするガスケット25と、庫内仕切り壁26により区分けされた冷蔵室27および冷凍室28と、冷蔵室の温度を検知する冷蔵室センサ29と、冷凍室の温度を検知する冷凍室室センサ30と、冷蔵室への冷気を調整する冷蔵室ダンパ31と、各部屋に冷気を送る送風ファン32と、冷蔵庫の冷凍サイクルを構成する冷凍室背面に配置された冷却器33と、冷蔵庫背面下側の機械室34と、機械室34内に配置された圧縮機35と、減圧器であるキャピラリチューブ36と、冷凍サイクル内の水分を除去するドライヤ37、除霜水を受ける蒸発皿38と、圧縮機への戻り配管39、圧縮器の吐出配管40、凝縮器18と真空断熱材17間に配置した柔軟性フォーム41により構成されている。
【0023】
図1および図3に示すように外箱パネル19は、凝縮器18の扁平配管を接着部材により平板16に貼り付けており、さらに凝縮器18と真空断熱材17は、両者間の隙間に空気が混入しないように柔軟性フォーム41を敷き詰めて接着している。
【0024】
また凝縮器18を構成する扁平管は、管内表面に0.1mmから0.2mmの深さの溝もしくは切りおこし(図示せず)加工を施すことにより、管内側の熱伝達率を向上して放熱能力を高めている。
【0025】
また真空断熱材17は、外箱パネル同士の接合部分の空間をあけるようにして、外箱平板16の端面から約100mm以内の位置に貼り付けられている。
【0026】
以上のように構成された本実施の形態の冷蔵庫について、以下にその動作を説明する。
【0027】
冷蔵庫の運転が開始される条件は、冷蔵室センサ29もしくは冷凍室センサ30の温度がオン温度以上の場合であり、また運転が停止する条件は、冷蔵室センサ29および冷凍室センサ30の両方がオフ温度以下の場合である。
【0028】
まず冷凍室28の冷却について説明する。冷凍室28が外気からの侵入熱およびドア開閉などにより、庫内温度が昇温して冷凍室センサ30がオン温度以上になった場合に、圧縮機35が起動し冷却が開始される。圧縮機35から吐出された高温高圧の冷媒は、蒸発皿38内の除霜水に浸漬されている吐出配管40を通ることで一次冷却され、さらに外箱パネル19内の凝縮器18に側面、背面および他方側面と順次に流れ込み、その間に外気にさらされている鉄製の平板16との熱交換により、冷却されて液化する。さらに液化した冷媒はドライヤ37で水分を除去されて、毛細管であるキャピラリチューブ32で減圧される。減圧された液化冷媒は冷却器33に流入し、庫内空気との熱交換によりガス化して、戻り配管39を通過して、圧縮機31に戻る。庫内が冷却されて冷凍室センサ30の温度がオフ温度以下になり、かつ冷蔵室センサ29の温度がオフ温度以下になった場合に圧縮機35の運転が停止する。
【0029】
次に冷蔵室28の冷却について説明する。冷凍室27と同様に、庫内温度が昇温して冷蔵室センサ29の温度がオン温度以上になった場合に、冷蔵室27と冷却器33間の風路にある冷蔵室ダンパ31が開き、圧縮機35の運転が開始される。冷却器33の冷気が送風ファン32により庫内に流入して庫内空気が冷却されて、冷蔵室センサ29の温度がオフ温度以下になり、かつ冷凍室センサ30の温度がオフ温度以下の場合に圧縮機35の運転が停止する。また冷蔵室ダンパ31は、冷蔵室センサ29の温度がオフ温度以下で全閉し、冷蔵室の温度がオフ温度以下の時に冷凍室の温度がオフ温度以上の場合で圧縮機の運転が継続しても、冷蔵室温度がそれよりも低下しないようにして冷蔵室内の食品の凍結を防止している。
【0030】
次に、凝縮器18の取り付け工程について説明する。
【0031】
従来では、断熱箱体内部に凝縮器18を構成する配管を配置する場合にアルミテープで配管を一時固定した後に、ウレタン発泡で固定する方法をとっていた。しかしながら配管の浮き具合、アルミテープの貼り方等により配管と外箱の間にウレタン断熱材が回り込んで配管周囲が断熱されることで放熱能力が劣化してしまい、さらに凝縮器から外箱表面への熱の授与が十分に行なわれず表面温度が低下し、冷蔵庫表面に結露を生じる場合があった。
【0032】
本実施の形態では、あらかじめ外箱平板16と扁平配管で構成された凝縮器18と真空断熱材17を組み合わせて外箱パネル19としておくことで、断熱箱体の組み立て作業時の効率を向上することができる。
【0033】
また外箱平板16と凝縮器18の扁平配管とは密着性が高いために、凝縮器18内の冷媒から外箱平板16へ熱伝導が促進され、凝縮器18の放熱能力を向上することができる。
【0034】
また図6に示すように凝縮機18の入口および出口配管を機械室34内に排出し、圧縮機35を中心から左右にずらした位置に配置して、圧縮機35を配置した位置とは逆方向の空間部に配管接合部分42を設けることで、本実施例のように外箱をパネル化することで増加した配管接合部分を集約し、隣あう接続部分の距離をとることで配管溶接時の作業性を向上している。
【0035】
また圧縮機35の吐出配管40を蒸発皿内の除霜水に浸漬するように構成することで、圧縮機35から吐出された高温冷媒を凝縮器に入る前に除霜水で冷却して凝縮温度が高温となるのを防ぎ、また除霜水の蒸発を促進できる。
【0036】
また外箱パネル19内の凝縮器18を圧縮機35の遠い位置から順に接続していくことにより、機械室34内の配管同士が重なり合わないように配置を簡素化することができるので、機械室34の省スペース化を図り、配管長さを最少にすることができる。
【0037】
また凝縮器18間の配管溶接部分42および他のサイクル構成部品(例えばドライヤ37や、本実施例では記載していないが冷媒流路を切り替える切替弁等の電動パルブ)を、外箱パネル19から溶接時の高熱が影響を及ぼさない程度に離間した位置に配置することにより、溶接時の熱が配管を通して外箱パネル19側に伝わり、真空断熱材17の袋が高温(約100℃以上)となり、劣化することを防止している。
【0038】
また、図1に示すように真空断熱材17を外箱平板16の端面から約100mm以内の部分に配置することにより、外箱を構成する外箱パネル19の組み立て時の接合部分に必要なスペースを確保ながら、最大限度の大きさで真空断熱材17を外箱全体に覆うように配置することができ、作業性、あるいは組み立て時の真空断熱材17の傷付きを防止しながら、冷蔵庫の吸熱量を大幅に削減できる。
【0039】
さらに凝縮器18と真空断熱材17が断熱壁内で覆層するように配置されているため、真空断熱材17を凝縮器18と庫内を仕切るように大きく貼り付けることで、凝縮器18から庫内への侵入熱量も大幅に削減している。
【0040】
また真空断熱材17の取り付けでは、図3のように凝縮器18の内箱側に柔軟性フォーム41を配置して、凝縮器18と真空断熱材17の間に隙間なく接着することで、隙間に空気が残留し温度変動により空気が膨張および収縮して外箱を変形させることを防止している。
【0041】
なお柔軟性フォーム41の替わりに、接着部材を凝縮器18と真空断熱材19の間に隙間なく塗布して接着してもよい。その場合には、凝縮器18と真空断熱材19が更に密接に接着されるので、断熱壁厚中のウレタン流動路が確保され、ウレタン未充填部分(ボイド)を削減することができる。
【0042】
なお凝縮器18の形状について、図7に示すように外径2mmから3mmで内径を1mmから2mmの細径管42を用いた仕様でもよい。その場合には、細径管42を用いることで凝縮器18の厚みを減らすことで、断熱箱体22の壁厚削減を図ることができる。さらに真空断熱材17と凝縮器18の密着性を高め、両者間にウレタンや空気が回り込んで剥離するのを防ぐことができる。
【0043】
なお凝縮器18の形状について、図8に示すように平板16と波形に加工を施した板43を貼り合わせて、その平板間に形成した隙間を冷媒流路とした仕様でもよい。その場合には、冷媒流路の表面積を拡大することで放熱能力を向上させ、さらに真空断熱材17と凝縮器18との密着度を高めることで固定を容易にすることができる。
【0044】
【発明の効果】
以上説明したように、請求項1に記載の発明は、平板と真空断熱材の間に凝縮器を配置して、それぞれを接着部材により貼り付けて一体化したパネルの平板側を外側にして、少なくとも一平面を前記パネルで構成した外箱と、庫内壁を形成する内箱と、前記外箱と前記内箱間に充填した発泡ウレタン断熱材からなる断熱箱体で構成するものであり、十分な放熱能力が確保でき、外気および凝縮器からの侵入熱を大幅に低減することができる。さらに断熱箱体の組み立て作業効率を向上することができる。
【0045】
また、請求項2に記載の発明は、請求項1に記載の発明において、前記凝縮器の少なくとも一側面を平面状としたものであり、凝縮器の熱を効率よく外気に伝え、放熱能力を向上することができる。
【0046】
また、請求項3に記載の発明は、請求項1または2に記載の発明において、前記平板の端面から前記真空断熱材の端面までの距離を約100mm以内にしたものであり、外箱を構成する前記パネルの接合部分のスペースを確保しながら、冷蔵庫の吸熱量を大幅に削減することができる。
【0047】
また、請求項4に記載の発明は、請求項1から3のいずれか一項に記載の発明において、凝縮器の入口および出口配管と他の配管との接続部分を冷蔵庫背面下部に設けた機械室内に配置したものであり、外箱をパネル化することで増加した配管接合部分を集約して、溶接作業を効率的に行なうことができる。
【0048】
また、請求項5に記載の発明は、請求項4に記載の発明において、圧縮機を機械室の中心から左右にずらして配置し、前記圧縮機をずらして配置した位置とは逆側に凝縮器の入口および出口配管と他の配管との接続部分を配置したものであり、隣り合う接合部分の距離をとって配管溶接時の作業効率を向上することができる。
【0049】
また、請求項6に記載の発明は、請求項5に記載の発明において、機械室内で冷蔵庫の除霜水を受ける蒸発皿を圧縮機と並べて配置し、前記圧縮機と凝縮器をつなぐ配管が前記蒸発皿内に浸漬したものであり、凝縮温度の低温化と、前記蒸発皿内にある除霜水の蒸発を促進することができる。
【0050】
また、請求項7に記載の発明は、請求項6に記載の発明において、外箱の両側面と背面とを前記パネルで構成し、圧縮器の吐出配管から、圧縮機から遠い側面の凝縮器、背面の凝縮器、圧縮機から近い側面の凝縮器へと順に接続したものであり、機械室内の配管配置を簡素化することができるので、前記機械室の省スペース化を図り、配管長さを最小にすることができる。
【0051】
また、請求項8に記載の発明は、請求項7に記載の発明において、機械室内にある配管溶接部分を前記パネルから離して配置したものであり、溶接時の熱が配管を通して前記パネル側に伝わり、真空断熱材の袋が高温となり、劣化することを防止することができるという作用を有する。
【図面の簡単な説明】
【図1】本発明の実施の形態1による冷蔵庫の断熱箱体を構成する外箱の分解図
【図2】同実施の形態による冷蔵庫の外観傾斜図
【図3】同実施の形態の冷蔵庫の断熱箱体断面図
【図4】同実施の形態の冷蔵庫の風路構成図
【図5】同実施の形態による冷蔵庫の冷凍サイクル図
【図6】同実施の形態による冷蔵庫の背面下部にある機械室の配置図
【図7】同実施の形態による細径管で構成した凝縮器を用いた冷蔵庫の箱体断面図
【図8】同実施の形態による波形平板で構成した凝縮器を用いた冷蔵庫の箱体断面図
【図9】従来の冷蔵庫の略断面図
【符号の説明】
15 冷蔵庫
16 外箱平板
17 真空断熱材
18 凝縮器
19 外箱パネル
20 内箱
21 ウレタン断熱材
22 断熱箱体
34 機械室
35 圧縮機
38 蒸発皿
39 戻り配管
40 吐出配管
41 柔軟性フォーム
42 配管接合部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerator including a heat insulating box formed of a foam heat insulating material.
[0002]
[Prior art]
In recent years, as the demand for increasing the capacity of a refrigerator and reducing the installation space increases, a vacuum heat insulating material is provided in the refrigerator heat insulating wall to improve heat insulating performance (see, for example, Patent Document 1).
[0003]
Hereinafter, the conventional refrigerator will be described with reference to the drawings.
[0004]
FIG. 9 shows a schematic cross-sectional view of a conventional refrigerator. As shown in FIG. 9, the conventional refrigerator 1 is foam-filled between the outer box 2 that forms the outer wall of the refrigerator 1, the inner box 3 that forms the inner wall of the refrigerator, and the outer box 2 and the inner box 3. A heat insulating box 6 comprising a vacuum heat insulating material 4, a vacuum heat insulating material 5 disposed in the urethane heat insulating material 4, and a refrigerator cooling device (not shown) condenser disposed in the urethane heat insulating material 4 of the heat insulating box 6. 7, and further, the heat insulating box 6 is vertically divided by a first partition wall 8 and a second partition wall 9 to form a refrigerator compartment 10, a freezer compartment 11, and a vegetable compartment 12, respectively.
[0005]
The vacuum heat insulating material 5 is composed of a jacket bag made of a film having a multi-layer laminate structure that prevents gas permeation, and a core material made of fine powder such as silica and pearlite or inorganic fibers. The gas (air) in the bag is evacuated, vacuumed and sealed with a heat seal. The heat conductivity of the vacuum heat insulating material 5 is 0.008 to 0.0025 W / m · K, which is very excellent in heat insulation performance. Even if the wall thickness of the box 6 is reduced, the amount of heat entering the interior can be effectively reduced. Moreover, the fixing place of the vacuum heat insulating material 5 is attached to the relatively flat inner surface of the outer box.
[0006]
Since the condenser 7 disposed in the urethane heat insulating material 4 becomes high temperature during operation of the cooling device, the condenser 7 is attached to the inner surface of the outer box in order to secure heat radiation capability and reduce the amount of heat entering the cabinet. Yes. Further, by attaching to the outer box side, the heat generated by the condenser 7 is transmitted to the surface of the outer box 2 and prevents the surface from being dewed.
[0007]
Thus, since both the vacuum heat insulating material 5 and the condenser 7 are arranged on the inner side of the outer box, a structure in which the condenser 7 is arranged around the vacuum heat insulating material so as not to disturb the mutual arrangement position as shown in FIG. Have taken.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 9-269177
[Problems to be solved by the invention]
However, in the conventional method, when the covering area of the vacuum heat insulating material 5 is expanded in order to reduce the heat absorption amount of the refrigerator 1, the arrangement of the condenser 7 is limited to the peripheral portion of the vacuum heat insulating material 5. The heat dissipation capacity of 7 cannot be secured sufficiently. As a result, it is difficult to lower the condensation temperature with the aim of increasing the efficiency of the refrigeration cycle.
[0010]
Further, in the conventional outer box assembling process, the side wall portion is bent and processed to form the outer box, and then the vacuum heat insulating material 5 is pasted. Since the material 5 is pasted, there is a problem that the pasting process becomes complicated and it is difficult to reduce the production cost.
[0011]
The present invention overcomes the conventional technical problems, enhances the effect of reducing the amount of heat absorbed by the vacuum heat insulating material while sufficiently securing the heat dissipation capability of the condenser, and further assembles the condenser and the vacuum heat insulating material. It aims at providing the refrigerator provided with the structure which can improve work efficiency.
[0012]
[Means for Solving the Problems]
According to the first aspect of the present invention, a condenser is disposed between a flat plate and a vacuum heat insulating material, and each of them is bonded to each other by an adhesive member, and the flat plate side of the integrated panel is set to the outside, and at least one plane is provided. And an outer box composed of the panel, an inner box forming an inner wall of the cabinet, and a heat insulating box made of urethane foam heat insulating material filled between the outer box and the inner box, and the entire panel surface The heat radiation capacity of the condenser can be ensured, and sufficient heat radiation capacity can be ensured, and the vacuum heat insulating material can be pasted in an effective size to greatly reduce the intrusion heat from the outside air and the condenser. Furthermore, it has the effect | action that the assembly work efficiency of a heat insulation box can be improved by comprising an outer box with the panel which integrated the said condenser and the said vacuum heat insulating material.
[0013]
According to a second aspect of the present invention, in the first aspect of the invention, at least one side surface of the condenser is planar, and the contact area between the condenser and the flat plate on the outside air side is increased. By doing so, it has the effect | action that the heat | fever of the said condenser can be efficiently tell | transmitted to outside air and heat dissipation capability can be improved.
[0014]
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the distance from the end face of the flat plate to the end face of the vacuum heat insulating material is within about 100 mm, and constitutes the outer box. Since the space for the joint portion of the panel can be secured and the vacuum heat insulating material can be arranged to cover the entire outer box with the maximum size, the heat absorption amount of the refrigerator can be greatly reduced. Have
[0015]
According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects of the present invention, a connection portion between the inlet and outlet pipes of the condenser and other pipes is provided in the machine room provided at the lower back of the refrigerator. It is arranged and has an effect that the pipe joints increased by making the outer box into a panel can be aggregated and welding work can be performed efficiently.
[0016]
According to a fifth aspect of the present invention, in the invention of the fourth aspect, the compressor is arranged to be shifted left and right from the center of the machine room, and the condenser is arranged on the opposite side of the position where the compressor is arranged to be shifted. The connecting portion between the inlet and outlet pipes and other pipes is arranged, and has an effect that the working efficiency at the time of pipe welding can be improved by taking the distance between adjacent joint portions.
[0017]
According to a sixth aspect of the present invention, in the fifth aspect of the present invention, the evaporating dish for receiving the defrost water of the refrigerator is arranged side by side with the compressor in the machine room, and a pipe connecting the compressor and the condenser is the evaporation. The high-temperature refrigerant discharged from the compressor is cooled with defrosted water before entering the condenser, so that the condensation temperature is prevented from becoming high. It has the effect | action that the evaporation of defrost water in can be accelerated | stimulated.
[0018]
The invention according to claim 7 is the invention according to claim 6, wherein both sides and the back of the outer box are constituted by the panel, and the condenser on the side far from the compressor from the discharge pipe of the compressor, the back The condenser is connected in order from the condenser to the condenser on the side of the compressor in order, and the piping arrangement in the machine room can be simplified, so the space in the machine room is saved and the pipe length is minimized. It has the effect that it can be made.
[0019]
The invention according to claim 8 is the invention according to claim 7, wherein a pipe welding portion in the machine room is arranged away from the panel, and heat at the time of welding is transmitted to the panel side through the pipe, It has the effect that the bag of vacuum heat insulating material becomes hot and can be prevented from deteriorating.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a refrigerator according to the present invention will be described with reference to the drawings.
[0021]
(Embodiment 1)
FIG. 1 is an exploded view of an outer box constituting a heat insulation box of a refrigerator according to Embodiment 1 of the present invention, FIG. 2 is an external inclination view of the refrigerator according to the embodiment, and FIG. 3 is heat insulation of the refrigerator according to the embodiment. 4 is a cross-sectional view of the box, FIG. 4 is a configuration diagram of the air path of the refrigerator according to the embodiment, FIG. 5 is a refrigeration cycle diagram of the refrigerator according to the embodiment, and FIG. 6 is a machine room at the lower back of the refrigerator according to the embodiment. FIG. 7 is a box cross-sectional view of a refrigerator using a condenser constituted by a thin tube according to the embodiment, and FIG. 8 is a diagram of a refrigerator using a condenser constituted by a corrugated plate according to the embodiment. It is box body sectional drawing.
[0022]
The refrigerator 15 according to the first embodiment includes an outer box panel 19 including an iron outer box flat plate 16, a vacuum heat insulating material 17, and a condenser 18, a hard resin inner box 20, and foaming between the outer box panel 19 and the inner box 20. A heat insulating box 22 made of filled urethane heat insulating material 21, a refrigerator compartment door 23 and a freezer compartment door 24, a gasket 25 for sealing the heat insulating box 22, and a refrigerator compartment 27 and a refrigerator separated by an internal partition wall 26. A refrigeration room sensor 29 for detecting the temperature of the refrigeration room, a freezing room sensor 30 for detecting the temperature of the freezing room, a refrigerating room damper 31 for adjusting the cooling air to the refrigerating room, A blower fan 32 to be sent, a cooler 33 arranged on the back of the freezer compartment constituting the refrigeration cycle of the refrigerator, a machine room 34 on the lower side of the refrigerator back, a compressor 35 arranged in the machine room 34, and a decompressor Capilla A tube 36, a dryer 37 for removing moisture in the refrigeration cycle, an evaporating dish 38 for receiving defrosted water, a return pipe 39 to the compressor, a discharge pipe 40 for the compressor, between the condenser 18 and the vacuum heat insulating material 17. The flexible form 41 is arranged.
[0023]
As shown in FIGS. 1 and 3, the outer box panel 19 has a flat pipe of the condenser 18 attached to the flat plate 16 with an adhesive member, and the condenser 18 and the vacuum heat insulating material 17 have air in the gap between them. The flexible foam 41 is spread and bonded so as not to mix.
[0024]
Further, the flat tube constituting the condenser 18 improves the heat transfer coefficient inside the tube by subjecting the inner surface of the tube to a groove or cutting (not shown) with a depth of 0.1 mm to 0.2 mm. Increases heat dissipation capability.
[0025]
Moreover, the vacuum heat insulating material 17 is affixed on the position within about 100 mm from the end surface of the outer box flat plate 16 so that the space of the junction part of outer box panels may be opened.
[0026]
About the refrigerator of this Embodiment comprised as mentioned above, the operation | movement is demonstrated below.
[0027]
The condition for starting the operation of the refrigerator is when the temperature of the refrigerator compartment sensor 29 or the freezer compartment sensor 30 is equal to or higher than the ON temperature, and the condition for stopping the operation is that both the refrigerator compartment sensor 29 and the freezer compartment sensor 30 are operated. This is the case of the off temperature or lower.
[0028]
First, cooling of the freezer compartment 28 will be described. When the freezer compartment 28 rises in temperature due to intrusion heat from outside air, door opening and closing, etc., and the freezer compartment sensor 30 reaches the on temperature or higher, the compressor 35 is activated and cooling is started. The high-temperature and high-pressure refrigerant discharged from the compressor 35 is primarily cooled by passing through the discharge pipe 40 immersed in the defrosted water in the evaporating dish 38, and further on the side surface of the condenser 18 in the outer box panel 19. It flows into the back surface and the other side surface in sequence, and is cooled and liquefied by heat exchange with the iron flat plate 16 exposed to the outside air therebetween. Furthermore, moisture is removed from the liquefied refrigerant by the dryer 37 and the pressure is reduced by the capillary tube 32 which is a capillary tube. The decompressed liquefied refrigerant flows into the cooler 33, gasifies by heat exchange with the internal air, passes through the return pipe 39, and returns to the compressor 31. When the inside of the refrigerator is cooled and the temperature of the freezer compartment sensor 30 becomes the off temperature or less and the temperature of the refrigerator compartment sensor 29 becomes the off temperature or less, the operation of the compressor 35 is stopped.
[0029]
Next, cooling of the refrigerator compartment 28 will be described. Similarly to the freezer compartment 27, when the internal temperature rises and the temperature of the refrigerator compartment sensor 29 becomes equal to or higher than the ON temperature, the refrigerator compartment damper 31 in the air path between the refrigerator compartment 27 and the cooler 33 opens. The operation of the compressor 35 is started. When the cool air from the cooler 33 flows into the warehouse by the blower fan 32 and the interior air is cooled, the temperature of the refrigerator compartment sensor 29 becomes lower than the off temperature, and the temperature of the freezer compartment sensor 30 falls below the off temperature. Then, the operation of the compressor 35 is stopped. The refrigerator compartment damper 31 is fully closed when the temperature of the refrigerator compartment sensor 29 is below the off temperature, and the compressor continues to operate when the temperature of the freezer compartment is above the off temperature when the temperature of the refrigerator compartment is below the off temperature. However, the food in the refrigerator compartment is prevented from freezing so that the temperature in the refrigerator compartment does not drop further.
[0030]
Next, the attachment process of the condenser 18 will be described.
[0031]
Conventionally, when arranging the pipes constituting the condenser 18 inside the heat insulating box, the pipes are temporarily fixed with aluminum tape and then fixed with urethane foam. However, the heat insulation capacity deteriorates because the urethane insulation wraps around between the pipe and the outer box due to the floating condition of the pipe, the way the aluminum tape is applied, etc. In some cases, heat was not sufficiently given to the surface, the surface temperature was lowered, and condensation was formed on the refrigerator surface.
[0032]
In the present embodiment, the condenser 18 configured by the outer box flat plate 16 and the flat pipe and the vacuum heat insulating material 17 are combined in advance to form the outer box panel 19, thereby improving the efficiency during the assembly work of the heat insulating box. be able to.
[0033]
Moreover, since the outer casing flat plate 16 and the flat piping of the condenser 18 have high adhesion, heat conduction from the refrigerant in the condenser 18 to the outer casing flat plate 16 is promoted, and the heat dissipation capability of the condenser 18 can be improved. it can.
[0034]
Further, as shown in FIG. 6, the inlet and outlet pipes of the condenser 18 are discharged into the machine chamber 34, and the compressor 35 is disposed at a position shifted left and right from the center, which is opposite to the position where the compressor 35 is disposed. By providing the pipe joint portion 42 in the direction space portion, the pipe joint portions increased by forming the outer box as a panel as in this embodiment are aggregated, and the distance between the adjacent connection portions is taken to weld the pipe Workability has been improved.
[0035]
Further, the discharge pipe 40 of the compressor 35 is soaked in the defrosted water in the evaporating dish so that the high-temperature refrigerant discharged from the compressor 35 is cooled and condensed with the defrosted water before entering the condenser. The temperature can be prevented from becoming high, and evaporation of defrost water can be promoted.
[0036]
Further, by connecting the condenser 18 in the outer box panel 19 in order from a position far from the compressor 35, the arrangement can be simplified so that the pipes in the machine chamber 34 do not overlap each other. The space of the chamber 34 can be saved and the piping length can be minimized.
[0037]
Further, the pipe welded portion 42 between the condensers 18 and other cycle components (for example, a dryer 37 and an electric valve such as a switching valve that switches a refrigerant flow path although not described in the present embodiment) are connected to the outer box panel 19. By disposing it at a position where the high heat at the time of welding does not affect it, the heat at the time of welding is transferred to the outer box panel 19 side through the piping, and the bag of the vacuum heat insulating material 17 becomes high temperature (about 100 ° C. or more). To prevent deterioration.
[0038]
Moreover, as shown in FIG. 1, the space required for the joining part at the time of the assembly of the outer box panel 19 which comprises an outer box by arrange | positioning the vacuum heat insulating material 17 in the part within about 100 mm from the end surface of the outer box flat plate 16 is carried out. It is possible to arrange the vacuum heat insulating material 17 so as to cover the entire outer box with the maximum size, while ensuring the workability, and to prevent the vacuum heat insulating material 17 from being scratched during assembly. The amount of heat can be greatly reduced.
[0039]
Furthermore, since the condenser 18 and the vacuum heat insulating material 17 are arranged so as to cover the inside of the heat insulating wall, the vacuum heat insulating material 17 is attached so as to partition the condenser 18 and the inside of the cabinet, so that the condenser 18 The amount of heat entering the cabinet has also been greatly reduced.
[0040]
Moreover, in the attachment of the vacuum heat insulating material 17, the flexible foam 41 is arranged on the inner box side of the condenser 18 as shown in FIG. 3, and the gap between the condenser 18 and the vacuum heat insulating material 17 is adhered without a gap. In this case, air remains and the air is prevented from expanding and contracting due to temperature fluctuations to deform the outer case.
[0041]
Instead of the flexible foam 41, an adhesive member may be applied and adhered between the condenser 18 and the vacuum heat insulating material 19 without any gap. In this case, since the condenser 18 and the vacuum heat insulating material 19 are more closely bonded, a urethane flow path in the heat insulating wall thickness is secured, and the urethane unfilled portion (void) can be reduced.
[0042]
The shape of the condenser 18 may be a specification using a thin tube 42 having an outer diameter of 2 to 3 mm and an inner diameter of 1 to 2 mm as shown in FIG. In that case, the wall thickness of the heat insulating box 22 can be reduced by reducing the thickness of the condenser 18 by using the small diameter tube 42. Furthermore, the adhesiveness between the vacuum heat insulating material 17 and the condenser 18 can be improved, and urethane or air can be prevented from coming around and peeling between them.
[0043]
In addition, about the shape of the condenser 18, as shown in FIG. 8, the specification which stuck the flat plate 16 and the plate 43 which processed the waveform, and made the clearance gap formed between the flat plates the refrigerant | coolant flow path may be sufficient. In that case, the heat radiation capacity can be improved by increasing the surface area of the refrigerant flow path, and the fixing can be facilitated by increasing the degree of adhesion between the vacuum heat insulating material 17 and the condenser 18.
[0044]
【The invention's effect】
As described above, the invention according to claim 1 is arranged such that the condenser is disposed between the flat plate and the vacuum heat insulating material, and the flat plate side of the panel integrated with each other is bonded by an adhesive member, It is composed of an outer box composed of at least one plane with the panel, an inner box that forms the inner wall of the cabinet, and a heat insulating box made of a urethane foam heat insulating material filled between the outer box and the inner box. Heat dissipation capability can be ensured, and intrusion heat from the outside air and the condenser can be greatly reduced. Furthermore, the assembly work efficiency of the heat insulation box can be improved.
[0045]
Further, the invention according to claim 2 is the invention according to claim 1, wherein at least one side surface of the condenser is planar, efficiently transferring heat of the condenser to the outside air, and providing heat dissipation capability. Can be improved.
[0046]
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the distance from the end face of the flat plate to the end face of the vacuum heat insulating material is within about 100 mm, and constitutes an outer box. The heat absorption amount of the refrigerator can be greatly reduced while securing the space of the joining portion of the panel.
[0047]
Further, the invention according to claim 4 is the machine according to any one of claims 1 to 3, wherein a connection portion between the condenser inlet and outlet pipes and the other pipes is provided in the lower part of the back of the refrigerator. It is arranged indoors, and the pipe joints that have been increased by making the outer box into a panel can be consolidated to perform the welding work efficiently.
[0048]
According to a fifth aspect of the present invention, in the invention of the fourth aspect, the compressor is shifted from the center of the machine room to the left and right, and condensed on the side opposite to the position where the compressor is shifted. The connection portion between the inlet and outlet pipes of the vessel and the other pipes is arranged, and the working efficiency at the time of pipe welding can be improved by taking the distance between adjacent joint portions.
[0049]
The invention according to claim 6 is the invention according to claim 5, wherein an evaporating dish for receiving defrosted water from the refrigerator is arranged side by side with the compressor in the machine room, and a pipe connecting the compressor and the condenser is provided. It is immersed in the evaporating dish, and it is possible to promote the lowering of the condensing temperature and the evaporation of defrost water in the evaporating dish.
[0050]
The invention according to claim 7 is the invention according to claim 6, wherein both sides and the rear surface of the outer box are constituted by the panel, and the condenser on the side surface far from the compressor is provided from the discharge pipe of the compressor. The condenser on the back and the condenser on the side near the compressor are connected in order, and the piping arrangement in the machine room can be simplified. Can be minimized.
[0051]
The invention according to claim 8 is the invention according to claim 7, in which a pipe welding portion in the machine room is arranged away from the panel, and heat during welding is directed to the panel side through the pipe. It has the effect of preventing the bag of vacuum heat insulating material from becoming hot and deteriorating.
[Brief description of the drawings]
FIG. 1 is an exploded view of an outer box constituting a heat insulation box body of a refrigerator according to Embodiment 1 of the present invention. FIG. 2 is an external inclination view of the refrigerator according to the embodiment. Cross-sectional view of heat insulation box [FIG. 4] Airflow path configuration diagram of refrigerator of the same embodiment [FIG. 5] Refrigeration cycle diagram of refrigerator according to the same embodiment [FIG. FIG. 7 is a box cross-sectional view of a refrigerator using a condenser configured with a thin tube according to the embodiment. FIG. 8 is a refrigerator using a condenser configured with a corrugated plate according to the embodiment. Sectional view of box [Fig. 9] Schematic sectional view of conventional refrigerator [Explanation of symbols]
15 refrigerator 16 outer box flat plate 17 vacuum heat insulating material 18 condenser 19 outer box panel 20 inner box 21 urethane heat insulating material 22 heat insulating box body 34 machine room 35 compressor 38 evaporating dish 39 return pipe 40 discharge pipe 41 flexible foam 42 pipe joint Part

Claims (8)

平板と真空断熱材の間に凝縮器を配置して、それぞれを接着部材により貼り付けて一体化したパネルの平板側を外側にして、少なくとも一平面を前記パネルで構成した外箱と、庫内壁を形成する内箱と、前記外箱と前記内箱間に充填した発泡ウレタン断熱材からなる断熱箱体で構成することを特徴とした冷蔵庫。A condenser is disposed between the flat plate and the vacuum heat insulating material, and each unit is bonded and adhered by an adhesive member. And a heat insulating box made of a urethane foam heat insulating material filled between the outer box and the inner box. 前記凝縮器の少なくとも一側面を平面状としたことを特徴とする請求項1に記載の冷蔵庫。The refrigerator according to claim 1, wherein at least one side surface of the condenser is planar. 前記平板の端面から前記真空断熱材の端面までの距離を約100mm以内にしたことを特徴とする請求項1または2に記載の冷蔵庫。The refrigerator according to claim 1 or 2, wherein a distance from an end surface of the flat plate to an end surface of the vacuum heat insulating material is within about 100 mm. 凝縮器の入口および出口配管と他の配管との接続部分を冷蔵庫背面下部に設けた機械室内に配置したことを特徴とする請求項1から3のいずれか一項に記載の冷蔵庫。The refrigerator according to any one of claims 1 to 3, wherein a connection portion between the inlet and outlet pipes of the condenser and other pipes is disposed in a machine room provided at a lower part of the back surface of the refrigerator. 圧縮機を機械室の中心から左右にずらして配置し、前記圧縮機をずらして配置した位置とは逆側に凝縮器の入口および出口配管と他の配管との接続部分を配置したことを特徴とする請求項4に記載の冷蔵庫。The compressor is arranged to be shifted left and right from the center of the machine room, and the connection portion between the inlet and outlet pipes of the condenser and other pipes is arranged on the opposite side to the position where the compressor is arranged to be shifted. The refrigerator according to claim 4. 機械室内で冷蔵庫の除霜水を受ける蒸発皿を圧縮機と並べて配置し、前記圧縮機と凝縮器をつなぐ配管が前記蒸発皿内に浸漬したことを特徴とする請求項5記載の冷蔵庫。6. The refrigerator according to claim 5, wherein an evaporating dish for receiving defrosted water from the refrigerator is disposed side by side with the compressor in a machine room, and a pipe connecting the compressor and the condenser is immersed in the evaporating dish. 外箱の両側面と背面とを前記パネルで構成し、圧縮器の吐出配管から、圧縮機から遠い側面の凝縮器、背面の凝縮器、圧縮機から近い側面の凝縮器へと順に接続したことを特徴とする請求項6記載の冷蔵庫。Both sides and the back of the outer box are made up of the above panels and connected in order from the discharge pipe of the compressor to the condenser on the side far from the compressor, the condenser on the back, and the condenser on the side close to the compressor. The refrigerator according to claim 6. 機械室内にある配管溶接部分を前記パネルから離して配置したことを特徴とした請求項7記載の冷蔵庫。The refrigerator according to claim 7, wherein a pipe welding portion in the machine room is arranged away from the panel.
JP2003184198A 2003-06-27 2003-06-27 Refrigerator Pending JP2005016879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003184198A JP2005016879A (en) 2003-06-27 2003-06-27 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003184198A JP2005016879A (en) 2003-06-27 2003-06-27 Refrigerator

Publications (1)

Publication Number Publication Date
JP2005016879A true JP2005016879A (en) 2005-01-20

Family

ID=34184046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003184198A Pending JP2005016879A (en) 2003-06-27 2003-06-27 Refrigerator

Country Status (1)

Country Link
JP (1) JP2005016879A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074226A1 (en) * 2009-12-16 2011-06-23 パナソニック株式会社 Refrigerator
CN103162492A (en) * 2011-12-16 2013-06-19 博西华电器(江苏)有限公司 Refrigeration appliance
CN103575034A (en) * 2012-08-06 2014-02-12 三菱电机株式会社 Refrigerator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074226A1 (en) * 2009-12-16 2011-06-23 パナソニック株式会社 Refrigerator
CN102656413A (en) * 2009-12-16 2012-09-05 松下电器产业株式会社 Refrigerator
JP5671705B2 (en) * 2009-12-16 2015-02-18 パナソニックIpマネジメント株式会社 refrigerator
CN102656413B (en) * 2009-12-16 2015-03-04 松下电器产业株式会社 Refrigerator
CN103162492A (en) * 2011-12-16 2013-06-19 博西华电器(江苏)有限公司 Refrigeration appliance
CN103162492B (en) * 2011-12-16 2017-08-11 博西华电器(江苏)有限公司 Refrigerating appliance
CN103575034A (en) * 2012-08-06 2014-02-12 三菱电机株式会社 Refrigerator
JP2014031987A (en) * 2012-08-06 2014-02-20 Mitsubishi Electric Corp Refrigerator
CN103575034B (en) * 2012-08-06 2017-07-04 三菱电机株式会社 Refrigerator

Similar Documents

Publication Publication Date Title
CN100498158C (en) Refrigerator
KR100980175B1 (en) Refrigerator
JP3478771B2 (en) refrigerator
JP5677737B2 (en) refrigerator
JP4111096B2 (en) refrigerator
JP2003028562A (en) Refrigerator and method of manufacturing the same
JP3408101B2 (en) refrigerator
JP2007198622A (en) Refrigerator
JP2004125394A (en) Refrigerator
US11408663B2 (en) Evaporator and refrigerator having same
JP2005016879A (en) Refrigerator
JPWO2017033313A1 (en) refrigerator
JP2005164200A (en) Refrigerator
JPH09269177A (en) Refrigerator
JP2005009825A (en) Refrigerator
JP2005172307A (en) Refrigerator
JP3942962B2 (en) refrigerator
JP2000105047A (en) Freezer
JPH10205995A (en) Refrigerator
JP2004125216A (en) Refrigerator
JPH10141583A (en) Heat insulating wall body
JP4238731B2 (en) refrigerator
JP2006112639A (en) Refrigerator
JP2005201529A (en) Refrigerator
JP4187611B2 (en) refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060623

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Effective date: 20060712

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Effective date: 20071019

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20071023

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080401