JP2005015268A - Acid-proof mortar composition - Google Patents

Acid-proof mortar composition Download PDF

Info

Publication number
JP2005015268A
JP2005015268A JP2003181587A JP2003181587A JP2005015268A JP 2005015268 A JP2005015268 A JP 2005015268A JP 2003181587 A JP2003181587 A JP 2003181587A JP 2003181587 A JP2003181587 A JP 2003181587A JP 2005015268 A JP2005015268 A JP 2005015268A
Authority
JP
Japan
Prior art keywords
mortar composition
alumina cement
acid
fine powder
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003181587A
Other languages
Japanese (ja)
Inventor
Toshiyuki Saeki
俊之 佐伯
Kazuhiro Oda
一浩 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2003181587A priority Critical patent/JP2005015268A/en
Priority to AU2003252320A priority patent/AU2003252320A1/en
Priority to PCT/JP2003/009654 priority patent/WO2005000767A1/en
Publication of JP2005015268A publication Critical patent/JP2005015268A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/23Acid resistance, e.g. against acid air or rain
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alumina cement mortar composition that has good acid resistance and strength development as well as is excellent in applicability without causing transition. <P>SOLUTION: The acid resistance mortar composition contains alumina cement, a slag fine powder of which the specific surface area is 6,000 cm<SP>2</SP>/g or less and the basicity is 1.6 or more, and a moisture evaporation preventing agent. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、セメント材料としてアルミナセメントを用いた耐酸性モルタル組成物に関する。
【0002】
【従来の技術】
アルミナセメントの水和組成物は、CaOをC、AlをA、HOをHと表記すると、低温ではCAH10であり、やや高温ではCAHである。さらに高温になるとCAH及びAHである。アルミナセメントは、ポルトランドセメントのように水酸化カルシウムCa(OH)を生成せず耐酸性に優れるが、CAH10及びCAHが、時間の経過とともにCAH及びAHに変化するいわゆる転移(コンバージョン)を起こす。転移が発生すると体積収縮が起こり、その結果、空隙率の増加と強度の低下が生ずる。
【0003】
そのため、高炉スラグ微粉末やフライアッシュを混和して、CASHを生成させることで転移を防ぐこと、再乳化粉末樹脂やポリマーディスパージョン等のポリマー混和剤を結合材の2〜300質量%程度加えることで、付着力向上やひび割れ防止を図ることが提案されている(例えば、特許文献1、特許文献2、特許文献3及び特許文献4参照)。
【0004】
しかしながら、このような方法では、付着力の向上に伴って粘性も上がるため、コテ塗りが行い難くなり作業性が低下する。更に、圧着け性も困難になるため、壁に塗り付けた際ダレが生じやすい。また、高炉スラグ微粉末、特に比表面積の高い高炉スラグ微粉末を混和したモルタル組成物は粘性が高くなり、施工性が低下するため実用的ではない。また、ポリマー混和剤の添加は付着力の向上としては有効であるが、強度発現性が低下し、耐酸性の低下も起こる。更に、ポリマー混和剤を添加すると、セメント水和物相とポリマーフィルム相が相互に入り込む形でモルタル内部に網状構造を形成するため、粘度を調整することが困難になるといった問題がある。
【0005】
このように、強度発現性と耐酸性が要求される分野で、アルミナセメントモルタルを使用するには未だ性能的に不十分であり、また、施工性も普通ポルトランドセメントを使用した市販のモルタルに比べかなり低く、実用的なものが得られていない。
【0006】
【特許文献1】
特公平1−54294号公報
【特許文献2】
特開平5−170496号公報
【特許文献3】
特許第2951385号公報
【特許文献4】
特開2003−89565号公報
【0007】
【発明が解決しようとする課題】
本発明は、転移を起こすことなく、良好な耐酸性と強度発現性を保持すると共に、施工性に優れたアルミナセメントモルタル組成物を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、斯かる実情に鑑み鋭意検討したところ、特定の比表面積及び塩基度をもつスラグ微粉末と、水分蒸発防止剤を混和することで、転移を防止するとともに、優れた強度と適度の付着力及び良好な施工性を有する耐酸性アルミナセメントモルタル組成物が得られることを見出し、本発明を完成した。
【0009】
すなわち本発明は、アルミナセメント、比表面積が6000cm/g以下で且つ塩基度が1.60以上のスラグ微粉末及び水分蒸発防止剤を含有してなる耐酸性モルタル組成物を提供するものである。
【0010】
【発明の実施の形態】
本発明において用いられるアルミナセメントとしては、カルシウムアルミネート(CaO・Al)を主成分とするものであれば、特に限定されるものでなく、市販のアルミナセメントを使用することができる。例えば、旭硝子(株)製商品名「アルミナセメント1号」、「アルミナセメント2号」、「アサヒフォンジュ」ラファージュアルミネート製商品名「セカール51BTF」、「シマンフォンジュ」、電気化学工業(株)製商品名「アルミナセメント1号」、「アルミナセメント2号」、「ハイアルミナセメント」、太平洋マテリアル(株)製商品名「太平洋アルミナセメント1号」、「太平洋アルミナセメント2号」等が挙げられる。
【0011】
スラグ微粉末は、比表面積が6000cm/g以下で且つ塩基度が1.60以上のものが用いられる。
比表面積が6000cm/gを超えるスラグ微粉末を混和したモルタルは粘性が高くなり、施工性が低下するため好ましくない。また、塩基度が1.60未満である場合には、アルミナセメントとの反応性が鈍く、強度発現性と耐酸性が低下するため好ましくない。
尚、比表面積は6000cm/g以下であればよいが、好ましくは3000〜5500cm/g、特に3500〜5000cm/gのものを使用するのが好ましい。また、塩基度は、1.60〜2.10、特に1.70〜2.00であるものを用いるのが好ましい。
【0012】
ここで、塩基度とは、次式(1)で表される塩基度を意味する。
塩基度=(CaO+MgO+Al)/SiO (1)
但し、MgO、CaO、Al、SiOは、スラグ中の含有質量%。
【0013】
スラグ微粉末は、比表面積が6000cm/g以下で且つ塩基度が1.60以上のものであれば、スラグの種類は特に限定されず、例えば高炉スラグ、下水汚泥溶融スラグ、都市ゴミ溶融スラグ、転炉スラグ、脱リンスラグ等のスラグ微粉末を用いることができ、具体的には、例えばJISA6206に規定するコンクリート用高炉スラグ微粉末、日本下水道事業団大阪エースセンターの下水溶融スラグ等が挙げられる。
【0014】
また、スラグ粉末は、所望の反応活性を確保する点から、その粒子径が5〜100μmであるものを用いるのが好ましい。
【0015】
スラグ微粉末は、アルミナセメント100質量部に対し70〜120質量部用いるのが好ましい。この割合で配合することによりゲーレナイト水和物が生成され、転移の発生を最も効果的に抑制することができる。スラグ微粉末が120質量部を超えると強度発現性が低下することから好ましくなく、70質量部未満では転移発生の原因となるCAH10、CAHの生成割合が上がり好ましくない。
【0016】
水分蒸発防止剤は、硬化時の発熱に伴う含有水分の蒸発を防止できるものであれば特に限定されないが、好ましくは、水溶性セルロース誘導体、ポリビニルアルコール等が挙げられる。
このうち、界面活性効果が付与され、表層部に薄くフィルムを形成し、優れた密封効果する水溶性セルロース誘導体が特に好ましい。水溶性セルロース誘導体としては、例えばメチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、カルメロースナトリウム、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルセルロース、セルロース硫酸エステル等の水溶性セルロース誘導体が挙げられ、これらを2種以上組合せることにより、モルタル組成物の粘度をより適切に調整することが可能になる。
【0017】
アルミナセメントは、ポルトランドセメントに比べ、水和に多量の水が消費される上に、凝結時間が短く、硬化時の発熱量が多い。そのため、硬化体表面が乾燥しやすく乾燥収縮が大きく、ひび割れの発生や付着力の低下が起こりやすいが、斯かる水分蒸発防止剤を少量添加することにより、硬化時の発熱に伴う含有水分の蒸発を防止でき、これらの問題を解決できると共に、施工性の向上も図ることができる。
【0018】
水分蒸発防止剤は、斯かる作用効果の点から、アルミナセメントとスラグ微粉末の混合物100質量部に対し0.2〜2.0質量部配合するのが好ましい。0.2質量部未満では水分蒸発防止効果が得られず、2.0質量部を超えると粘性が上がり施工性が低下するため好ましくない。
【0019】
尚、本発明の耐酸性モルタル組成物には、アクリル樹脂、エチレン酢酸ビニル樹脂等のポリマー混和剤を添加する必要はないが、硬化体の強度発現性、耐酸性及び施工性等に影響を及ぼさない範囲で併用することは可能である。
【0020】
本発明の耐酸性モルタル組成物は、上記成分の他、更に繊維及び細骨材を含むことが好ましい。
繊維としては、モルタル組成物の粉体混合時又はモルタル組成物をミキサで練り混ぜた際に、ファイバーボールを作らず、耐アルカリ性及び耐酸性に優れたものであれば使用可能である。例えば、ビニロン繊維、アラミド繊維、ポリプロピレン繊維、ポリエチレン繊維、アクリル繊維、炭素繊維、耐アルカリガラス繊維などが挙げられる。
繊維の添加量は、アルミナセメントとスラグ微粉末の混合物100質量部に対し0.10〜0.30質量部が好ましい。0.30質量部を超えると水比が上がり強度低下、ひび割れ発生が起こり好ましくない。また、0.10質量部未満では添加した効果が得られない。
【0021】
細骨材は、種類と粒度は特に制限されず、例えば、市販の乾燥珪砂、川砂、砕砂等が使用できるほか、スラグ骨材、クリンカー骨材も使用可能である。
配合量はアルミナセメントとスラグ微粉末の混合物100質量部に対し200質量部以下であることが好ましい。200質量部を超えると、強度発現性と耐酸性が低下するので好ましくない。
【0022】
また、本発明の耐酸性モルタル組成物には、耐酸性、施工性、強度発現性を損なわない範囲で、減水剤、消泡剤等のセメントに使用可能な混和剤を配合することができる。
【0023】
本発明のモルタル組成物における配合各成分の練り混ぜ方法は、特に限定されず、例えばハンドミキサ、左官ミキサ、連続ミキサなどの撹拌型ミキサに使用全成分を水と共に一括投入しても、任意の順に投入しても良い。水の配合も用途に応じて選定すれば良いが、好ましくは結合材100質量部に対し30〜50質量部にすると、強度発現性のより高い硬化体が得られる。
【0024】
また、その施工や製造にあたっての制約も特に受けることはなく、用途に応じた方法を概ね自在に選択することができる。モルタルとして適応可能な施工方法の一例を示せば、鏝による左官施工、スクィーズポンプ、スネークポンプ、プランジャーポンプ等による吹付け施工、グラウト施工等が挙げられる。
【0025】
【実施例】
以下、実施例により本発明をさらに詳細に説明する。
[使用材料]
(1)アルミナセメント:商品名「アルミナセメント1号」(太平洋マテリアル(株)製)
(2)普通セメント:普通ポルトランドセメント(太平洋セメント(株)製)
(3)高炉スラグ微粉末:商品名「セラメント」(第一セメント(株)製)、比表面積4000cm/g、塩基度1.91
(4)高炉スラグ微粉末:商品名「ファインセラメント」(第一セメント(株)製)、比表面積8000cm/g、塩基度1.91
(5)下水汚泥溶融スラグ微粉末A:日本下水道事業団大阪エースセンター下水汚泥溶融スラグ微粉末、比表面積5000cm/g、塩基度1.90
(6)下水汚泥溶融スラグ微粉末B:東京都下水道局下水汚泥溶融スラグ微粉末、比表面積8000cm/g、塩基度0.73
(7)下水汚泥溶融スラグ微粉末C:東京都下水道局下水汚泥溶融スラグ微粉末
(6)と同じ成分で粉砕分級基準のみ変更したもの。比表面積4600cm/g、塩基度0.73
(8)分級フライアッシュ:商品名「太平洋スーパーフロー」(太平洋セメント(株)製)、最大粒径20μm
(9)混合珪砂:粗粒率3.58
(10)7号/8号珪砂
(11)水分蒸発防止剤A:商品名 KCフロックW−50(日本製紙(株)製)
(12)水分蒸発防止剤B:商品名 GK−1(日本製紙(株)製)
(13)水分蒸発防止剤C:商品名 SB4000PV(信越化学工業(株)製)
(14)アクリル粉末樹脂:商品名LL5044(ワッカーケミカルズ(株)製)
(15)ポリアクリル酸エステルエマルジョン:商品名「モルヒットエマルジョン」(太平洋マテリアル(株)製)
(16)EVAエマルジョン:商品名「エフェクト」(太平洋マテリアル(株)製)
(17)ビニロン繊維:(株)クラレ製、繊維長 6mm、RMS182×6
【0026】
[混練物の作製]
前記(1)〜(17)から選定した材料を水と共に表1に示す配合量となるようにホバートミキサに一括投入し約3分間混練した、モルタル混練物を作製した。
【0027】
【表1】

Figure 2005015268
【0028】
[圧縮強度試験]
前記混練物から、JISR5201に準拠した方法で、4×4×16cmの供試体を作製した。供試体は、20℃、80%RHの恒温恒湿槽に24時間養生した後脱型し、材齢3日及び材齢28日まで20℃の水中で養生した。圧縮強度の測定は、JIS R 5201に従って行なった。試験結果を表2に示す。
【0029】
【表2】
Figure 2005015268
【0030】
[転移抑制効果の確認試験]
前記混練物から、JISR5201に準拠した方法で、4×4×16cmの供試体を作製した。供試体は、20℃80%RHの恒温恒湿槽に24時間養生した後脱型し、材齢28日まで20℃の水中で養生し、更に80℃の熱水に6時間浸漬した。JISR5201に従って、熱水に浸漬する前と後で圧縮強度を測定し、転移の発生による強度低下の有無を確認した。転移抑制効果(%)は下記式(2)により算出した。転移抑制効果が90%以上を良好(○)とした。結果を表2に併せて示す。
【0031】
転移抑制効果(%)=(80℃熱水浸漬後の圧縮強度/材齢28日の圧縮強度)×100 (2)
【0032】
[蒸発防止効果の確認]
JISR3202に規定する寸法150×150×5mmのガラス板の上にJISP3801に規定する5Aろ紙(直径5cm)をのせ、その中央部に内径50mm高さ10mm厚さ3mmの真鍮製のリング型枠を設置した。前記混練物をリング型枠に平滑に詰め、リング型枠上部にガラス板をのせ上下裏返し、ろ紙部分が上になるようにして静置した。60分後にろ紙に染み出した水分の広がりが最大と認められた方向と、これに直角な方向の長さを1mm単位まで測定した。
試験は3回行い合計6箇所測定し、その平均値を用いて下記式(3)により保水率を算出し、保水率が80%以上95%以下のものを良好と判定し、80%未満及び95%を超えたものを不良とした。結果を表3に示す。
【0033】
保水率(%)=(50/平均値)×100 (3)
【0034】
[耐硫酸性試験]
前記混練物から作製した直径75mm、高さ150mmの円柱状試験体について、東京都下水道局「コンクリート改修技術マニュアル汚泥処理j施設編」に従い、5%硫酸溶液に28日間浸漬した後、試験体中央部を試験体底面と平行に切断した。1%フェノールフタレイン溶液の呈色範囲を0.1mm単位でノギスを用いて測定し、下記式(4)により硫酸浸透深さを算出した。硫酸浸透深さが3.0mm以下を良好(○)とし、3.0mmを超えたものを不良(×)とした。
尚、試験前の試験体中央部の直径を初期値とし、5%硫酸溶液は7日毎に全量交換した。結果を表3に併せて示す。
【0035】
硫酸浸透深さ(mm)=(初期値−測定値)/2 (4)
【0036】
【表3】
Figure 2005015268
【0037】
[コテ作業性の確認]
100×100×15cmのコンクリート板に金ゴテを用い、2cm厚さで塗り付けコテ作業性を確認した。評価項目は、コテ切れ、コテ伸び、ダレの有無の3項目とした。
コテ切れは、表1に示したモルタル組成物を垂直に立てた100×100×15cmのコンクリート板に塗り付け、使用した金ゴテにモルタル組成物が残らないものを良好(○)とし、金ゴテに残ったものを不良(×)とした。
コテ伸びは、垂直に立てた100×100×15cmのコンクリート板に塗り付け金ゴテで押し広げ、2cm厚さにするために抵抗の小さいもの及び5分未満で押し広げられたものを良好(○)とし、抵抗が大きく5分以上かかったものを不良(×)とした。ダレの発生の有無は、塗り付け後24時間経過後に確認した。ダレの発生しなかったものを良好(○)とし、ダレの発生したものを不良(×)とした。3項目の中で1項目でも不良(×)があれば評価は不良×とした。結果を表4に示す。
【0038】
【表4】
Figure 2005015268
【0039】
【発明の効果】
本発明の耐酸性モルタル組成物は、酸雰囲気下においても、安定した高い強度発現性を示すと共に、適度の付着力を有し、施工性にも優れる。従って、本発明によれば、下水処理施設、畜産施設、食品工場、化学薬品工場等の酸性液貯留施設或いは耐食管等への利用に特に適したモルタル組成物を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an acid resistant mortar composition using alumina cement as a cement material.
[0002]
[Prior art]
When the hydrated composition of alumina cement is expressed as CaO as C, Al 2 O 3 as A, and H 2 O as H, it is CAH 10 at a low temperature and C 2 AH 8 at a slightly high temperature. At higher temperatures, they are C 3 AH 6 and AH 3 . Alumina cement does not produce calcium hydroxide Ca (OH) 2 like Portland cement and has excellent acid resistance, but CAH 10 and C 2 AH 8 change to C 3 AH 6 and AH 3 over time. So-called transition (conversion) occurs. When the transition occurs, volume shrinkage occurs, resulting in an increase in porosity and a decrease in strength.
[0003]
Therefore, blast furnace slag fine powder and fly ash are mixed to produce C 2 ASH 8 to prevent transition, and polymer admixture such as re-emulsified powder resin and polymer dispersion is added in an amount of 2 to 300% by mass of the binder. It has been proposed to improve adhesion and prevent cracking by adding a certain amount (see, for example, Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4).
[0004]
However, in such a method, the viscosity increases as the adhesive force is improved, so that it is difficult to apply a trowel and the workability is lowered. Furthermore, since the crimping property becomes difficult, sagging is likely to occur when applied to the wall. Moreover, a mortar composition in which blast furnace slag fine powder, particularly blast furnace slag fine powder having a high specific surface area is mixed, is not practical because the viscosity becomes high and the workability deteriorates. Addition of a polymer admixture is effective for improving adhesion, but strength development is reduced and acid resistance is also reduced. Furthermore, when a polymer admixture is added, a network structure is formed inside the mortar in such a manner that the cement hydrate phase and the polymer film phase interpenetrate with each other, which makes it difficult to adjust the viscosity.
[0005]
In this way, in fields where strength development and acid resistance are required, performance is still insufficient for using alumina cement mortar, and workability is also in comparison with commercial mortar using ordinary Portland cement. It is quite low and has not been practical.
[0006]
[Patent Document 1]
Japanese Patent Publication No. 1-54294 [Patent Document 2]
Japanese Patent Laid-Open No. 5-170496 [Patent Document 3]
Japanese Patent No. 2951385 [Patent Document 4]
Japanese Patent Laid-Open No. 2003-89565 [0007]
[Problems to be solved by the invention]
An object of the present invention is to provide an alumina cement mortar composition that maintains good acid resistance and strength development without causing transition, and has excellent workability.
[0008]
[Means for Solving the Problems]
The present inventors have intensively studied in view of such circumstances, and by mixing a slag fine powder having a specific specific surface area and basicity with a moisture evaporation inhibitor, the present invention prevents transition and has excellent strength. It was found that an acid-resistant alumina cement mortar composition having moderate adhesion and good workability was obtained, and the present invention was completed.
[0009]
That is, the present invention provides an acid-resistant mortar composition comprising alumina cement, slag fine powder having a specific surface area of 6000 cm 2 / g or less and a basicity of 1.60 or more, and a moisture evaporation inhibitor. .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The alumina cement used in the present invention is not particularly limited as long as it contains calcium aluminate (CaO.Al 2 O 3 ) as a main component, and a commercially available alumina cement can be used. For example, “Alumina Cement No. 1”, “Alumina Cement No. 2” manufactured by Asahi Glass Co., Ltd., “Asahi Fonju” Lafarge Aluminate, “Sekal 51BTF”, “Simanfonju”, manufactured by Denki Kagaku Kogyo Co., Ltd. Trade names “Alumina Cement No. 1”, “Alumina Cement No. 2”, “High Alumina Cement”, trade names “Pacific Alumina Cement No. 1”, “Pacific Alumina Cement No. 2” manufactured by Taiheiyo Material Co., Ltd., and the like can be mentioned.
[0011]
Slag fine powder having a specific surface area of 6000 cm 2 / g or less and a basicity of 1.60 or more is used.
A mortar mixed with fine slag powder having a specific surface area exceeding 6000 cm 2 / g is not preferable because the viscosity becomes high and the workability is lowered. Moreover, when basicity is less than 1.60, the reactivity with an alumina cement is dull, and strength expression and acid resistance fall, and it is unpreferable.
The specific surface area may be less than or equal to 6000 cm 2 / g, preferably it is preferred to use those 3000~5500cm 2 / g, especially 3500~5000cm 2 / g. Moreover, it is preferable to use what has a basicity of 1.60-2.10, especially 1.70-2.00.
[0012]
Here, basicity means the basicity represented by the following formula (1).
Basicity = (CaO + MgO + Al 2 O 3 ) / SiO 2 (1)
However, MgO, CaO, Al 2 O 3, SiO 2 , the content by mass% in the slag.
[0013]
As long as the slag fine powder has a specific surface area of 6000 cm 2 / g or less and a basicity of 1.60 or more, the type of slag is not particularly limited. For example, blast furnace slag, sewage sludge melting slag, municipal waste melting slag Slag fine powders such as converter slag and dephosphorization slag can be used. Specific examples include blast furnace slag fine powder for concrete defined in JIS A6206, sewage molten slag of Japan Sewerage Corporation Osaka Ace Center, etc. .
[0014]
Moreover, it is preferable to use the slag powder having a particle size of 5 to 100 μm from the viewpoint of securing a desired reaction activity.
[0015]
The slag fine powder is preferably used in an amount of 70 to 120 parts by mass with respect to 100 parts by mass of the alumina cement. By blending at this ratio, gehlenite hydrate is generated, and the occurrence of transition can be most effectively suppressed. If the slag fine powder exceeds 120 parts by mass, the strength development is reduced, which is not preferable, and if it is less than 70 parts by mass, the generation ratio of CAH 10 and C 2 AH 8 causing the occurrence of transition increases.
[0016]
The moisture evaporation inhibitor is not particularly limited as long as it can prevent evaporation of the contained moisture accompanying heat generation during curing, and preferred examples include water-soluble cellulose derivatives and polyvinyl alcohol.
Among these, a water-soluble cellulose derivative that has a surface-active effect, forms a thin film on the surface layer portion, and has an excellent sealing effect is particularly preferable. Examples of the water-soluble cellulose derivatives include water-soluble cellulose derivatives such as methyl cellulose, carboxymethyl cellulose, carboxymethyl cellulose sodium, carmellose sodium, hydroxypropyl methyl cellulose, hydroxyethyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl cellulose, cellulose sulfate, etc. By combining two or more of these, the viscosity of the mortar composition can be adjusted more appropriately.
[0017]
Compared with Portland cement, alumina cement consumes a large amount of water for hydration and has a short setting time and a large amount of heat generated during curing. As a result, the surface of the cured product is easy to dry and the drying shrinkage is large, and cracking and adhesion are liable to occur.However, by adding a small amount of such a moisture evaporation inhibitor, evaporation of the water content accompanying heat generation during curing is possible. In addition to solving these problems, it is possible to improve workability.
[0018]
From the viewpoint of such an effect, the moisture evaporation inhibitor is preferably blended in an amount of 0.2 to 2.0 parts by mass with respect to 100 parts by mass of the mixture of alumina cement and slag fine powder. If the amount is less than 0.2 parts by mass, the effect of preventing moisture evaporation cannot be obtained. If the amount exceeds 2.0 parts by mass, the viscosity increases and the workability is lowered, which is not preferable.
[0019]
Although it is not necessary to add a polymer admixture such as an acrylic resin or an ethylene vinyl acetate resin to the acid-resistant mortar composition of the present invention, it affects the strength development, acid resistance, workability, etc. of the cured product. It is possible to use in combination as long as there is no range.
[0020]
The acid-resistant mortar composition of the present invention preferably contains fibers and fine aggregates in addition to the above components.
Any fiber can be used as long as it is excellent in alkali resistance and acid resistance without forming a fiber ball when the powder of the mortar composition is mixed or when the mortar composition is kneaded with a mixer. Examples thereof include vinylon fiber, aramid fiber, polypropylene fiber, polyethylene fiber, acrylic fiber, carbon fiber, and alkali-resistant glass fiber.
The addition amount of the fiber is preferably 0.10 to 0.30 parts by mass with respect to 100 parts by mass of the mixture of alumina cement and slag fine powder. If the amount exceeds 0.30 parts by mass, the water ratio increases, the strength decreases, and cracking occurs, which is not preferable. In addition, if it is less than 0.10 parts by mass, the added effect cannot be obtained.
[0021]
The type and particle size of the fine aggregate are not particularly limited. For example, commercially available dry silica sand, river sand, crushed sand and the like can be used, and slag aggregate and clinker aggregate can also be used.
The blending amount is preferably 200 parts by mass or less with respect to 100 parts by mass of the mixture of alumina cement and slag fine powder. If it exceeds 200 parts by mass, strength development and acid resistance are lowered, which is not preferable.
[0022]
In addition, the acid-resistant mortar composition of the present invention can be mixed with an admixture that can be used for cement such as a water reducing agent and an antifoaming agent, as long as the acid resistance, workability, and strength development are not impaired.
[0023]
The method of kneading each component blended in the mortar composition of the present invention is not particularly limited. For example, even if all the components used in a stirring mixer such as a hand mixer, a plastering mixer, and a continuous mixer are added together with water, any component You may throw in order. The composition of water may be selected according to the use, but preferably 30 to 50 parts by mass with respect to 100 parts by mass of the binder gives a cured product having higher strength.
[0024]
In addition, there are no particular restrictions on the construction and manufacturing, and a method according to the application can be selected almost freely. Examples of construction methods that can be applied as mortar include plastering with a hoe, spraying with a squeeze pump, snake pump, plunger pump, and grout construction.
[0025]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[Materials used]
(1) Alumina cement: Trade name “Alumina cement 1” (manufactured by Taiheiyo Material Co., Ltd.)
(2) Ordinary cement: Ordinary Portland cement (manufactured by Taiheiyo Cement Co., Ltd.)
(3) Blast-furnace slag fine powder: Trade name “Cerement” (manufactured by Daiichi Cement Co., Ltd.), specific surface area 4000 cm 2 / g, basicity 1.91
(4) Blast furnace slag fine powder: Trade name “Fine Serament” (Daiichi Cement Co., Ltd.), specific surface area 8000 cm 2 / g, basicity 1.91
(5) Sewage sludge molten slag fine powder A: Japan Sewage Works Osaka Ace Center Sewage sludge molten slag fine powder, specific surface area 5000 cm 2 / g, basicity 1.90
(6) Sewage sludge molten slag fine powder B: Tokyo Metropolitan Sewerage Bureau sewage sludge molten slag fine powder, specific surface area 8000 cm 2 / g, basicity 0.73
(7) Sewage sludge melted slag fine powder C: The same component as the sewage sludge melted slag fine powder (6), Tokyo Metropolitan Sewerage Bureau, but only the pulverization classification criteria were changed. Specific surface area 4600 cm 2 / g, basicity 0.73
(8) Classification fly ash: trade name “Pacific Super Flow” (manufactured by Taiheiyo Cement Co., Ltd.), maximum particle size 20 μm
(9) Mixed silica sand: Coarse grain ratio 3.58
(10) No. 7/8 No. 8 silica sand (11) Moisture evaporation inhibitor A: Trade name KC Flock W-50 (manufactured by Nippon Paper Industries Co., Ltd.)
(12) Moisture evaporation inhibitor B: Trade name GK-1 (manufactured by Nippon Paper Industries Co., Ltd.)
(13) Moisture evaporation inhibitor C: trade name SB4000PV (manufactured by Shin-Etsu Chemical Co., Ltd.)
(14) Acrylic powder resin: trade name LL5044 (manufactured by Wacker Chemicals)
(15) Polyacrylic ester emulsion: Trade name “Mole Hit Emulsion” (manufactured by Taiheiyo Material Co., Ltd.)
(16) EVA emulsion: Trade name “Effect” (manufactured by Taiheiyo Material Co., Ltd.)
(17) Vinylon fiber: manufactured by Kuraray Co., Ltd., fiber length 6 mm, RMS 182 × 6
[0026]
[Preparation of kneaded product]
A mortar kneaded material was prepared in which the materials selected from (1) to (17) together with water were mixed into a Hobart mixer so as to have the blending amounts shown in Table 1 and kneaded for about 3 minutes.
[0027]
[Table 1]
Figure 2005015268
[0028]
[Compressive strength test]
A 4 × 4 × 16 cm specimen was prepared from the kneaded material by a method based on JIS R5201. The specimen was cured in a constant temperature and humidity chamber at 20 ° C. and 80% RH for 24 hours, then demolded, and cured in water at 20 ° C. until the material age was 3 days and the material age was 28 days. The compressive strength was measured according to JIS R 5201. The test results are shown in Table 2.
[0029]
[Table 2]
Figure 2005015268
[0030]
[Confirmation test of metastasis suppression effect]
A 4 × 4 × 16 cm specimen was prepared from the kneaded material by a method based on JIS R5201. The specimen was cured in a constant temperature and humidity chamber at 20 ° C. and 80% RH for 24 hours, then demolded, cured in water at 20 ° C. until the age of 28 days, and further immersed in hot water at 80 ° C. for 6 hours. According to JISR5201, the compressive strength was measured before and after being immersed in hot water, and the presence or absence of strength reduction due to the occurrence of transition was confirmed. The metastasis inhibitory effect (%) was calculated by the following formula (2). A metastasis suppression effect of 90% or more was considered good (◯). The results are also shown in Table 2.
[0031]
Transition inhibiting effect (%) = (Compressive strength after hot water immersion at 80 ° C./Compressive strength at age 28 days) × 100 (2)
[0032]
[Confirmation of evaporation prevention effect]
5A filter paper (5 cm in diameter) specified in JISP3801 is placed on a glass plate with dimensions 150 × 150 × 5 mm specified in JIS R3202, and a brass ring form with an inner diameter of 50 mm, a height of 10 mm, and a thickness of 3 mm is installed in the center. did. The kneaded product was smoothly packed in a ring mold, placed on a glass plate on the top of the ring mold, turned upside down, and allowed to stand with the filter paper portion facing up. The length of the direction in which the spread of moisture exuded on the filter paper after 60 minutes was recognized as the maximum and the direction perpendicular thereto was measured up to 1 mm.
The test was performed three times, measuring a total of 6 locations, and using the average value, the water retention rate was calculated by the following formula (3), and those with a water retention rate of 80% or more and 95% or less were judged good, less than 80% and A product exceeding 95% was regarded as defective. The results are shown in Table 3.
[0033]
Water retention rate (%) = (50 / average value) × 100 (3)
[0034]
[Sulfuric acid resistance test]
A cylindrical test specimen having a diameter of 75 mm and a height of 150 mm prepared from the kneaded product was immersed in a 5% sulfuric acid solution for 28 days in accordance with the Tokyo Metropolitan Sewerage Bureau “Concrete Refurbishment Technology Manual Sludge Treatment j Facility”, and then the center of the specimen was tested. The part was cut in parallel with the bottom of the specimen. The color range of the 1% phenolphthalein solution was measured with a caliper in units of 0.1 mm, and the sulfuric acid penetration depth was calculated by the following formula (4). A sulfuric acid penetration depth of 3.0 mm or less was evaluated as good (◯), and a depth exceeding 3.0 mm was determined as defective (x).
In addition, the diameter of the test body center part before a test was made into the initial value, and the 5% sulfuric acid solution was replaced | exchanged for every 7 days. The results are also shown in Table 3.
[0035]
Sulfuric acid penetration depth (mm) = (initial value−measured value) / 2 (4)
[0036]
[Table 3]
Figure 2005015268
[0037]
[Check of iron workability]
A gold trowel was used on a 100 × 100 × 15 cm concrete plate, and the workability of applying a soldering iron was confirmed at a thickness of 2 cm. The evaluation items were three items, that is, iron breakage, iron elongation, and presence or absence of sagging.
A piece of iron is applied to a concrete plate measuring 100 × 100 × 15 cm in which the mortar composition shown in Table 1 stands vertically, and the gold mortar used does not leave a mortar composition as good (◯). Those remaining in were considered as defective (x).
The elongation of the iron is 100 × 100 × 15 cm on a concrete plate that is vertically spread with a gold trowel and spread with a metal trowel. ), And those with a large resistance that took 5 minutes or more were defined as defective (x). The presence or absence of sagging was confirmed 24 hours after application. Those in which sagging did not occur were evaluated as good (◯), and those in which sagging occurred were evaluated as bad (x). If there was a defect (x) even in one of the three items, the evaluation was a defect x. The results are shown in Table 4.
[0038]
[Table 4]
Figure 2005015268
[0039]
【The invention's effect】
The acid-resistant mortar composition of the present invention exhibits a stable high strength expression even in an acid atmosphere, has an appropriate adhesion, and is excellent in workability. Therefore, according to the present invention, it is possible to provide a mortar composition particularly suitable for use in an acid liquid storage facility such as a sewage treatment facility, a livestock facility, a food factory, a chemical factory, or a corrosion-resistant pipe.

Claims (4)

アルミナセメント、比表面積が6000cm/g以下で且つ塩基度が1.60以上のスラグ微粉末及び水分蒸発防止剤を含有してなる耐酸性モルタル組成物。An acid-resistant mortar composition comprising alumina cement, slag fine powder having a specific surface area of 6000 cm 2 / g or less and a basicity of 1.60 or more, and a moisture evaporation inhibitor. 水分蒸発防止剤をアルミナセメント及びスラグ微粉末の混合物100質量部に対し0.2〜2.0質量部含有するものである請求項1記載の耐酸性モルタル組成物。The acid-resistant mortar composition according to claim 1, wherein the moisture evaporation inhibitor is contained in an amount of 0.2 to 2.0 parts by mass with respect to 100 parts by mass of a mixture of alumina cement and slag fine powder. 水分蒸発防止剤が水溶性セルロース誘導体である請求項1又は2記載の耐酸性モルタル組成物。The acid-resistant mortar composition according to claim 1 or 2, wherein the moisture evaporation inhibitor is a water-soluble cellulose derivative. アルミナセメント100質量部に対しスラグ微粉末を70〜120質量部含有する請求項1〜3のいずれか1項記載の耐酸性モルタル組成物。The acid-resistant mortar composition according to any one of claims 1 to 3, comprising 70 to 120 parts by mass of slag fine powder with respect to 100 parts by mass of alumina cement.
JP2003181587A 2003-06-25 2003-06-25 Acid-proof mortar composition Pending JP2005015268A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003181587A JP2005015268A (en) 2003-06-25 2003-06-25 Acid-proof mortar composition
AU2003252320A AU2003252320A1 (en) 2003-06-25 2003-07-30 Acid-resistant mortar composition
PCT/JP2003/009654 WO2005000767A1 (en) 2003-06-25 2003-07-30 Acid-resistant mortar composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003181587A JP2005015268A (en) 2003-06-25 2003-06-25 Acid-proof mortar composition

Publications (1)

Publication Number Publication Date
JP2005015268A true JP2005015268A (en) 2005-01-20

Family

ID=33549530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003181587A Pending JP2005015268A (en) 2003-06-25 2003-06-25 Acid-proof mortar composition

Country Status (3)

Country Link
JP (1) JP2005015268A (en)
AU (1) AU2003252320A1 (en)
WO (1) WO2005000767A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225221A (en) * 2005-02-21 2006-08-31 Denki Kagaku Kogyo Kk Mortar composition
JP2006306646A (en) * 2005-04-27 2006-11-09 Denki Kagaku Kogyo Kk Alumina cement composition and repairing method using the same
JP2006306647A (en) * 2005-04-27 2006-11-09 Denki Kagaku Kogyo Kk Alumina cement composition and repairing method using the same
JP2007223876A (en) * 2006-02-27 2007-09-06 Denki Kagaku Kogyo Kk Alumina cement composition and repair method using the same
CN102060499A (en) * 2010-11-08 2011-05-18 郑州安耐克实业有限公司 Acid-resisting coating composition for ironmaking blast-furnace hot blast stove and using method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10538383B2 (en) 2011-02-17 2020-01-21 Saudi Arabian Oil Company Protection system for sulfur storage apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4961787A (en) * 1987-10-15 1990-10-09 National Reserach Development Corporation Cement composition
JPH0446047A (en) * 1990-06-13 1992-02-17 Nippon Cement Co Ltd Hydraulic cement composition
JP3361046B2 (en) * 1997-12-15 2003-01-07 三菱マテリアル株式会社 Air purification cement products
JP2002137955A (en) * 2000-10-27 2002-05-14 Taiheiyo Cement Corp Hydraulic composition
JP2002220272A (en) * 2001-01-23 2002-08-09 Taiheiyo Cement Corp Self-leveling composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225221A (en) * 2005-02-21 2006-08-31 Denki Kagaku Kogyo Kk Mortar composition
JP4575187B2 (en) * 2005-02-21 2010-11-04 電気化学工業株式会社 Mortar composition
JP2006306646A (en) * 2005-04-27 2006-11-09 Denki Kagaku Kogyo Kk Alumina cement composition and repairing method using the same
JP2006306647A (en) * 2005-04-27 2006-11-09 Denki Kagaku Kogyo Kk Alumina cement composition and repairing method using the same
JP4634212B2 (en) * 2005-04-27 2011-02-16 電気化学工業株式会社 Alumina cement composition and repair method using the same
JP4634213B2 (en) * 2005-04-27 2011-02-16 電気化学工業株式会社 Alumina cement composition and repair method using the same
JP2007223876A (en) * 2006-02-27 2007-09-06 Denki Kagaku Kogyo Kk Alumina cement composition and repair method using the same
CN102060499A (en) * 2010-11-08 2011-05-18 郑州安耐克实业有限公司 Acid-resisting coating composition for ironmaking blast-furnace hot blast stove and using method thereof
CN102060499B (en) * 2010-11-08 2012-10-24 郑州安耐克实业有限公司 Acid-resisting coating composition for ironmaking blast-furnace hot blast stove and using method thereof

Also Published As

Publication number Publication date
WO2005000767A1 (en) 2005-01-06
AU2003252320A1 (en) 2005-01-13

Similar Documents

Publication Publication Date Title
JP5273761B2 (en) High durability cross-section repair material
JP5276974B2 (en) Large tile adhesive
JP2007320783A (en) Thick applying mortar
JP2017132667A (en) Corrosion resistant mortar composition
JP2006131488A (en) Acid resistant grout composition
JP4820034B2 (en) Acid-resistant concrete cross-section restoration material
JP4490200B2 (en) High acid resistant mortar composition with improved wet adhesion
JP2010155740A (en) High-fluidity mortar
JP2009084092A (en) Mortar-based restoring material
JP4647767B2 (en) Hydraulic composition and its paste, mortar, concrete
JP2007176740A (en) Thickening mortar
JP2008297170A (en) High strength repair material
JP2007277017A (en) Adhesive for tile
JP2006306646A (en) Alumina cement composition and repairing method using the same
JP2005015268A (en) Acid-proof mortar composition
JP5285376B2 (en) High-flowing mortar whitening inhibitor and high-flowing mortar
JP3599397B2 (en) Resin mortar composition
JP4593383B2 (en) Anticorrosive composite and process for producing the same
JP2003261372A (en) Mortar composition for facility in corrosive environment, and construction method for inhibiting corrosion of concrete structure
JP4649873B2 (en) Acid resistant concrete repair material
JP2011207634A (en) Acid-proof cement composition
JP4225873B2 (en) Polymer cement acid-resistant repair material
JP4388250B2 (en) Hydraulic composition and cured body thereof
JP2012140777A (en) Joint sealer for building
JP2022053054A (en) Cement composition, mortar composition, and repair method of concrete structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090811