JP2005009538A - Vibration damper - Google Patents

Vibration damper Download PDF

Info

Publication number
JP2005009538A
JP2005009538A JP2003172446A JP2003172446A JP2005009538A JP 2005009538 A JP2005009538 A JP 2005009538A JP 2003172446 A JP2003172446 A JP 2003172446A JP 2003172446 A JP2003172446 A JP 2003172446A JP 2005009538 A JP2005009538 A JP 2005009538A
Authority
JP
Japan
Prior art keywords
cylinder
friction member
sliding friction
piston
slidable movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003172446A
Other languages
Japanese (ja)
Inventor
Shuji Aida
修司 会田
Doshu Ida
道秋 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home and Life Solutions Inc filed Critical Hitachi Home and Life Solutions Inc
Priority to JP2003172446A priority Critical patent/JP2005009538A/en
Publication of JP2005009538A publication Critical patent/JP2005009538A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vibration Dampers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration damper capable of increasing wear resistance by effectively preventing a lubricating material from being exhausted at a slidable movement portion between a cylinder 12 and a slidable movement friction member 14. <P>SOLUTION: This vibration damper 11 comprises the cylinder 12, a piston 13 having one end inserted into the cylinder 12 and the other end extended to the outside of the cylinder 12, and the slidable movement friction member 14 slidably fitted into the cylinder, held on the piston 13 movable in a specified area, and developing a frictional force in the area thereof in contact with the cylinder 12. The lubricant 21 is interposed between the cylinder 12 and the slidable movement friction member 14. The holding surfaces of the slidable movement friction member 14 on the piston 13 are formed in tilted surfaces 17b and 18b, and when the piston 13 moves, the slidable movement friction member 14 comes into contact with the cylinder 12 through a wedge-like clearance. Since a clearance on the contact surface of the cylinder 12 with the slidable movement friction member 14 is formed in a wedge shape, the lubricant 21 is accumulated in the wedge-like clearance, and the sliding surface of the slidable movement friction member 14 can be brought into a fluid lubrication state with less wear. As a result, wear between the cylinder 12 and the slidable movement friction member 14 can be reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、摺動により減衰力を発生させる防振ダンパに関し、特に耐摩耗性の向上に係るものである。
【0002】
【従来の技術】
摺動により減衰力を発生させる防振ダンパを用いるものとして、例えば図11に示すようなドラム式洗濯機がある。このドラム式洗濯機は、外周部に多数の通水孔4を有し洗濯物を洗濯脱水するために回転するドラム3と、このドラム3を内包する水槽2と、この水槽2の振動を低減するために水槽2に取り付けられた錘7と、水槽2を収納する外枠1と、水槽2と外枠1との間に装備して水槽2の荷重を受ける防振ばね10と、水槽2と外枠1の間に装備して水槽2の振動を抑制する防振ダンパ11と、ドラム3を駆動するモータ5と、一端をドラム3の回転中心に固定した回転軸6を備え、さらに外枠1に設けた開口部から洗濯物の出し入れを行うとともに水漏れや洗濯物の飛び出しを防止するドア9と、水槽2と外枠1の開口部を弾性接続するベローズ8と、を備えた構成になっている。
【0003】
そして、この洗濯機に適用される従来の一般的な防振ダンパとして、例えば図12に示すような防振ダンパ11がある。この防振ダンパ11は、円筒状のシリンダ12と、一端側がシリンダ12内に挿入され他端側がシリンダ12の外部に延ばされたピストン13と、シリンダ12内に摺動可能に嵌合されかつピストン13に固定保持されてシリンダ12との間で摩擦力を発生する摺動摩擦部材14と、を備えてなり、シリンダ12の端部に設けられた取付部15を水槽2に取り付けるとともに、ピストン13の端部に設けられた取付部16を外枠1に取り付けて構成される。
【0004】
前記ドラム式洗濯機の構成において、洗浄・すすぎ工程時にはドラム3はモータ5により低速回転駆動され、ドラム3内の洗濯物を持ち上げて水面上に落下させることにより洗浄・すすぎを行う。脱水工程時には、ドラム3を高速回転させて脱水を行う。この時ドラム3の内の洗濯物に片寄りが生じると、ドラム3及び水槽2は振動し、特に脱水回転開始時における共振により大きく振動する。そのため、起こりうる洗濯物の最大の片寄りによるアンバランスに対しても過度の水槽2の振動を防ぎ所定の振幅以下に抑えるため、緩衝力の非常に大きな防振ダンパ11を用いることにより振動振幅を低減している。
【0005】
したがって、脱水回転数が高い定常回転時には、この防振ダンパ11の大きな緩衝力により、防振ダンパ11を介して水槽2の振動を外枠1に直接伝達し、さらには洗濯機を設置している床面にも大きな振動を伝達する。これにより、床面が大きく振動し、木造家屋においては家屋全体が振動するとともに使用者に不快感を与え、騒音面でも問題があった。
【0006】
この問題を解決する方法の一例として、下記の特許文献1に記載の防振ダンパがある。この防振ダンパは、シリンダと、一端側がシリンダ内に挿入され他端側がシリンダの外部に延ばされたピストンと、シリンダ内に摺動可能に嵌合されかつピストンに対し所定範囲内で移動可能に保持されてシリンダとの間で摩擦力を発生する摺動摩擦部材と、備えた構成になっている。この構成により、共振等の振動振幅の大きな時は摺動摩擦部材が摩擦摺動し大きな緩衝力を生じさせるが、ドラムの回転が高くなり振動振幅が小さくなるとピストンは、摺動摩擦部材に拘束されることなく移動できるため、ほとんど緩衝力が生じないようになっている。また、摺動摩擦部材がシリンダに全面接触する状態では、その締め代のわずかな変化で減衰力が大きく変動するため、摺動摩擦部材をタイコ状に形成したり、両端を面取りする等の構成とし、減衰力のバラツキを減少させている。
【特許文献1】
特開平5−248468号公報
【0007】
【発明が解決しようとする課題】
ところで、通常このような防振ダンパでは、シリンダと摺動摩擦部材との間に潤滑剤を介在させてある。この潤滑剤としては例えば油(潤滑油)が用いられ、この潤滑剤があることによってシリンダと摺動摩擦部材との間の摩擦が少なくなり、摩耗が抑えられるものである。
しかしながら、前述した従来の防振ダンパおいては、潤滑剤の枯渇に関する考慮が何ら行われていなかった。従って従来の防振ダンパでは、摺動摩擦部材が繰り返し摺動することよってその摺動部分から徐々に潤滑剤が失われ、長期にわたる使用の結果、シリンダと摺動摩擦部材に摩耗が生じて振動減衰力の低下を招くおそれがあった。
【0008】
本発明はこのような問題点に鑑みてなされたもので、シリンダと摺動摩擦部材の摺動部分における潤滑材の枯渇を効果的に防止し、耐摩耗性を向上させた防振ダンパを提供することを目的とする。
【0009】
【課題を解決するための手段】
上記の目的を達成するために本発明の請求項1に記載の発明は、シリンダと、一端側がシリンダ内に挿入され他端側がシリンダの外部に延ばされたピストンと、シリンダ内に摺動可能に嵌合されかつピストンに対し所定範囲内で移動可能に保持されてシリンダとの間で摩擦力を発生する摺動摩擦部材と、を備え、シリンダと摺動摩擦部材との間には潤滑剤が介在されてなる防振ダンパにおいて、ピストンにおける摺動摩擦部材の保持面に傾斜を設け、ピストンの移動時に摺動摩擦部材が楔状の隙間を有してシリンダに接触する構造としたものである。
さらに請求項2に記載の発明は、摺動摩擦部材に、径方向の伸縮変形を容易とするための溝を設けた構成としたものである。
また請求項3に記載の発明は、摺動摩擦部材を、径方向の伸縮変形を容易とするために多層構造に構成したものである。
また請求項4に記載の発明は、ピストンの移動時に摺動摩擦部材を強制的に移動させてシリンダに押し付ける機構を設けた構成としたものである。
【0010】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施の形態について詳細に説明する。
図1〜図4は本発明の好適な一実施例の構成を示し、図1は本発明に係る防振ダンパ11の縦断側面図であり、図2〜図4は防振ダンパ11の動作説明に用いる主要部の部分拡大図である。
本実施例の防振ダンパ11は、図1に示すように円筒状のシリンダ12と、一端側がシリンダ12内に挿入され他端側がシリンダ12の外部に延ばされたピストン13と、シリンダ12内に摺動可能に嵌合されかつピストン13に対し所定範囲内で移動可能に保持されてシリンダ12との間で摩擦力を発生する摺動摩擦部材14と、を備えて構成される。この防振ダンパ11の両端には、シリンダ12の上端部とピストン13の下端部に夫々設けられた取付部15と16を有し、この取付部15と16が例えば図11に示した洗濯機の水槽2と外枠1に夫々取り付けられる。
【0011】
ピストン13のヘッド部17にはストッパ18がナット19によって固定されており、このヘッド部17の下端部とストッパ18の上端部に夫々設けられた規制手段であるフランジ部17aと18aの間で移動可能にリング状の摺動摩擦部材14が嵌合保持されている。なお、この構成においてシリンダ12は金属製、ピストン13及びストッパ18はプラスチック製であり、また摺動摩擦部材14には例えばウレタンのような振動減衰性に優れた材料が好適に用いられる。
【0012】
この防振ダンパ11においては、シリンダ12と摺動摩擦部材14の摺動部分の摩耗を抑えるために、シリンダ12と摺動摩擦部材14との間に潤滑剤(潤滑油)を介在させてある。
そして特に本実施例の防振ダンパ11では、この潤滑剤の枯渇防止を目的として、後述する如くピストン13の移動時に摺動摩擦部材14が楔状の隙間を有してシリンダ12に接触するように、摺動摩擦部材の保持部においてその保持面に傾斜を設けてある。即ちこの防振ダンパ11において、摺動摩擦部材の保持部を構成するヘッド部17とストッパ18は、摺動摩擦部材の保持面(摺動摩擦部材14の内周面が接触する面)を傾斜面17bと18bとしたテーパ形状に形成されており、このヘッド部17とストッパ18よって摺動摩擦部材の保持部は全体として鼓形に形成されている。
また、本実施例においては、摺動摩擦部材14の径方向の伸縮変形が容易なように、図4(A)に示す如く摺動摩擦部材14の内外周面に厚み方向に形成される溝20を多数設けてある。
【0013】
次に、本実施例の防振ダンパ11における動作を説明する。図2はシリンダ12に対しピストン13が入り込むように移動(防振ダンパ11の取付距離が短くなるように移動)した時の様子を示す拡大断面図であり、図3はシリンダ12に対してピストン13が出て行くように移動(防振ダンパ11の取付距離が長くなるように移動)した時の様子を示す拡大断面図である。
【0014】
ピストン13に対し摺動摩擦部材14が中立の状態の場合は図1のように、摺動部材14はピストン13のヘッド部17とストッパ18の中間位置に均等に接触し、摺動部材14の外周面はシリンダ12の内周面に全面的に接触している。その状態からシリンダ12が動き、シリンダ12に対しピストン13が入り込むように移動して行くと、図2(A)に示す如くピストン13のヘッド部17の傾斜面17bが摺動動摩擦部材14の内周に入り込み、ヘッド部17のフランジ部17aが当たるまで入り込むと、摺動摩擦部材14の内周面がピストン13のヘッド部17の傾斜面17bとほぼ同等の傾斜になる。それにより、摺動摩擦部材14の外周面もほぼ同様に変形し、その変形によって摺動摩擦部材14は進行方向の外周が狭くなって図4(B)に示すような形状になり、シリンダ12との間に進行方向の隙間が広い楔状の隙間が生じる。
【0015】
そして図2(B)に示す如くこの楔状の隙間に潤滑剤21が溜まる状態となり、その状態で潤滑剤21は、摺動摩擦部材14の移動に伴って摺動摩擦部材14とシリンダ12の摺動面および摺動摩擦部材14の外周部の溝20から進行方向の下流側に流れて行く。摺動摩擦部材14とシリンダ12の摺動面を通る潤滑剤21は、楔状の隙間の作用により摺動摩擦部材14とシリンダ12の間に圧縮された状態で十分に入り込み、油膜が十分な流体潤滑状態になる。それにより、潤滑剤の枯渇を防止でき、摺動摩擦部材14やシリンダ12の摩耗を低減することが可能になる。
【0016】
また、以上とは逆に、シリンダ12に対しピストン13が出て行くように移動した時は、図3(A)に示す如くストッパ18の傾斜面18bが摺動摩擦部材14の内周に入り込み、ストッパ18のフランジ部18aが当たるまで入り込むと、摺動摩擦部材14の内周面がストッパ18の傾斜面18bとほぼ同等の傾斜になる。それにより、摺動摩擦部材14の外周面も図示の如くほぼ同様に変形し、その変形によって摺動摩擦部材14は進行方向の外周が狭くなり、シリンダ12との間に進行方向の隙間が広い楔状の隙間が生じる。
【0017】
そして図3(B)に示す如くこの楔状の隙間に潤滑剤21が溜まる状態となり、その状態で潤滑剤21は、摺動摩擦部材14の移動に伴って摺動摩擦部材14とシリンダ12の摺動面および摺動摩擦部材14の外周部の溝20から進行方向の下流側に流れて行くことにより、前述したように摺動摩擦部材14とシリンダ12の摺動面を流体潤滑状態にでき、摺動摩擦部材14やシリンダ12の摩耗を低減することが可能になる。
【0018】
また、以上の実施例では、摺動摩擦部材14の変形が容易に行えるように、摺動摩擦部材14の内外周面に溝20を設けたが、より一層の耐摩耗性の向上と変形を容易とするために、図5に示す如く摺動摩擦部材14を材質の違う材料による多層構造にしてもよい。
【0019】
図5(A)は摺動摩擦部材14を径方向に多層構造にした場合の実施例で、即ちこの摺動摩擦部材14はその本体部を柔らかい材質14Aで形成して径方向の変形を容易とし、ピストン13と接触する内周部およびシリンダ12と摺動する外周部は摩耗を低減するために硬い材質14Bを使用して形成してある。この硬い材質14Bで形成される内外周面にも多数の溝20が設けられ、これによって摺動摩擦部材14は径方向の変形がさらに容易となっている。
【0020】
また図5(B)は摺動摩擦部材14を円周方向に多層構造にした場合の実施例で、即ちこの摺動摩擦部材14は円周方向に複数のブロックに分割された構造を有し、ここで各ブロックは硬い材質14Bで形成され、この硬い材質14Bの各ブロック間を柔らかい材質14Aで繋いだ構成とすることで径方向の変形を容易としている。この場合、各ブロック間を繋ぐ柔らかい材質14Aの部分には溝20が設けられ、これによって摺動摩擦部材14の径方向の変形がさらに容易となっている。
【0021】
これらの実施例で使用する材料として、硬い材質には金属、樹脂、硬質ゴム等が考えられ、軟らかい材質には軟質ゴム、発泡樹脂等が考えられるが、この材質は特に限定されるものではない。また硬さの異なる材質を多層構造にする方法としては、例えば接着、溶着、一体成形等の方法が可能である。
【0022】
さらにこの防振ダンパでは、摺動摩擦部材14の内周にピストン13のヘッド部17やストッパ18の傾斜面17b,18bが入り込み易いように、図6に示す如く摺動摩擦部材14の内周面の上下角部14a,14bに面取り(またはR)を設けた構成としてもよい。
また図7に示すように、ピストン13のヘッド部17とストッパ18の夫々の傾斜面17bと18bの間に平坦面17cと18cを設けた形状とし、ピストン13に対する摺動摩擦部材14の移動範囲を大きくとった構成としても、前述した実施例と同様の動作をすればよい。
さらに以上の実施例において、ピストン13のヘッド部17をピストン13と別部材にしてもよく、またストッパ18をピストン13のヘッド部17と一体の構成とすることもできる。
【0023】
次に、ピストンの移動時に摺動摩擦部材を強制的に移動させる実施例について図8および図9を用いて説明する。
前述までの実施例は、摺動摩擦部材14とシリンダ12との摩擦力と、摺動摩擦部材14にピストン13のヘッド部17等の傾斜面が入り込む時の摩擦力とにおいて、摺動摩擦部材14とシリンダ12との摩擦力が大きい場合に成り立つ。
しかし、実際に使用する場合には、シリンダ12に対してピストン13は、軸方向に対し傾いた荷重を受けることが頻繁に起こりうる可能性が高い。その状態では、摺動摩擦部材14とシリンダ12の接触は片当たり状態になり、摺動摩擦部材14の片側の部分しか移動できずに、ピストン13に対して摺動摩擦部材14は傾いてしまい、十分に性能を発揮できなくなってしまう。そこで、強制的に摺動部材を移動させ性能を安定させる実施例を考案した。
【0024】
この実施例の防振ダンパ11は、図8(A)に示すように円筒状のシリンダ12と、一端側がシリンダ12内に挿入され他端側がシリンダ12の外部に延ばされたピストンロッド23と、シリンダ12内に摺動可能に嵌合されかつピストンロッド23に対し移動可能に保持されてシリンダ12との間で摩擦力を発生する2つの摺動摩擦部材24および25と、を備えて構成され、ここで摺動摩擦部材24と25は、ピストンロッド23に対して移動可能に設けられた上部ストッパ26と下部ストッパ27に夫々嵌合保持されている。
【0025】
この構成において上部ストッパ26と下部ストッパ27は、夫々摺動摩擦部材24と25を保持する保持面を傾斜面26b,27bとしたテーパ形状に形成されており、上部ストッパ26の上端部と下部ストッパ27の下端部には、摺動摩擦部材の移動範囲を規制するフランジ部26aと27aが夫々形成されている。
この上部ストッパ26と下部ストッパ27は、下部ストッパ27から突出する固定ピン28を上部ストッパ26に嵌め込んで一体的に連結されており、この上部ストッパ26と下部ストッパ27によって摺動摩擦部材の保持部は全体として鼓形に形成されている。
【0026】
そしてこの上部ストッパ26と下部ストッパ27の間には、摺動摩擦部材を移動させるための円板状の作動板29が配設されている。この作動板29は、変形が容易な柔らかい材質によりなるもので、これがピストンロッド23の先端部23aに固定されてピストンロッド23と一体に動くようになっており、この作動板29と対向する上部ストッパ26と下部ストッパ27の夫々の内側面には、この作動板29を変形させるための球面状の凹部26cと27cが形成されている。なお、下部ストッパ27から突出する固定ピン28は、この作動板29に形成された通孔29aを貫通して上部ストッパ26と下部ストッパ27を連結する構造となっている。
【0027】
続いて、この実施例の防振ダンパ11の動作について説明する。図9(A)はピストンロッド23がシリンダ12に対して入り込む方向に動作した場合、同図(B)はピストンロッド23がシリンダ12に対して出て行くように動作した場合を表している。
【0028】
図のように、作動板29はピストンロッド23に固定されており、ピストンロッド23が動くと、作動板29もピストンロッド23と共に動くが、このとき作動板29は上下のストッパ26,27の凹部26c,27cに当接してこの凹部26c,27cの球面に沿って変形し、外周部がピストンロッド23の移動方向とは逆方向に突き出るように湾曲する。それにより、ピストンロッド23がシリンダ12に入り込む場合は、図9(A)のように作動板29が下側の摺動摩擦部材25を押し下げ、そのためこの摺動摩擦部材25は、下部ストッパ27の傾斜面27bに沿って変形し、楔形の隙間を有する状態でシリンダ12の内周面に全面的に押し付けられ、またピストンロッド23がシリンダ12から出る場合は、図9(B)のように作動板29が上側の摺動摩擦部材24を押し上げ、そのためこの摺動摩擦部材24は、上部ストッパ26の傾斜面26bに沿って変形し、楔形の隙間を有する状態でシリンダ12の内周面に全面的に押し付けられる状態となる。
【0029】
このように、ピストンロッド23がどちらに移動した場合でも、摺動摩擦部材24,25のどちらか一方がシリンダ12に全面的に押し付けられることにより、軸方向に対し傾いた荷重を受けた場合でも安定した潤滑状態を保つことができる。
【0030】
なお、本発明は以上に示した実施例の構成に限定されるものではなく、構成部材の形状および材質は、シリンダと摺動摩擦部材の接触部の隙間が楔状になるものであれば、どのようなものを用いてもよい。
【0031】
また、図11の適用例で示した洗濯機の構成では、防振ダンパ11と防振ばね10は別の場所に取り付けてあるが、防振ばね10を防振ダンパ11のシリンダ12の内側あるいは外側の近傍に設けた構造としてもよい。
その一例として、防振ばねをシリンダに内装し、吊り下げて使用する防振ダンパの実施例を図10に示す。
【0032】
この実施例の防振ダンパ31は、円筒状のシリンダ32と、このシリンダ32に上方から挿入されるピストンに相当する吊り棒33と、この吊り棒33の下端部に固定される上下のストッパ34,35と、このストッパ34,35に嵌合保持されてシリンダ32との間で摩擦力を発生する摺動摩擦部材36と、シリンダ32の内部においてストッパ34とシリンダ32の上面部との間に挿着される防振ばね37と、を備えて構成され、ここで上下のストッパ34,35における摺動摩擦部材の保持面がテーパ状の傾斜面34b,35bとなされ、吊り棒33の移動時に摺動摩擦部材36が変形し楔状の隙間を有してシリンダ32に接触する構造は前述した実施例と同様である。
【0033】
この図10の実施例で示す防振ダンパ31は、荷重を支える防振ばね37をシリンダ32に内装した構造により、コンパクトに構成できる。そして例えば図11に示したような洗濯機において、防振ばね10と防振ダンパ11に代えてこの実施例の防振ダンパ31を適用し、これで水槽2を吊って外枠1に支持する構成とすることもできる。
【0034】
【発明の効果】
以上に説明した如く本発明の防振ダンパは、ピストンにおける摺動摩擦部材の保持面に傾斜を設け、ピストンの移動時に摺動摩擦部材が楔状の隙間を有してシリンダに接触する構造としたことにより、シリンダと摺動摩擦部材との間に介在される潤滑剤が楔状の隙間に溜まり、この楔状の隙間の広い方から狭い方に潤滑剤を流すように作用するため、シリンダと摺動摩擦部材の摺動面を摩耗が少ない流体潤滑状態にでき、シリンダと摺動摩擦部材の摩耗を低減することが可能となり、耐摩耗性の優れた防振ダンパを提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す防振ダンパの縦断側面図である。
【図2】図1の防振ダンパにおいて、シリンダに対しピストンが入り込む時の様子を示す拡大断面図で、(A)は摺動摩擦部材の付近の拡大断面図、(B)は潤滑剤の潤滑状態を表わす拡大断面図である。
【図3】図1の防振ダンパにおいて、シリンダに対しピストン出て行く時の様子を示す拡大断面図で、(A)は摺動摩擦部材の付近の拡大断面図、(B)は潤滑剤の潤滑状態を表わす拡大断面図である。
【図4】摺動摩擦部材の形状を示す斜視図で、(A)は通常の形状、(B)は変形時の形状である。
【図5】摺動摩擦部材を多層構造にした実施例で、(A)は径方向に多層構造とした例、(B)は円周方向に多層構造とした例である。
【図6】防振ダンパにおける摺動摩擦部材の付近のさらに他の実施例を示す拡大縦断面図である。
【図7】防振ダンパにおける摺動摩擦部材の付近の他の実施例を示す拡大縦断面図である。
【図8】摺動摩擦部材を強制的に移動させる実施例の防振ダンパを示す図で、(A)は摺動摩擦部材の付近の拡大断面図、(B)は下部ストッパの平面図である。
である。
【図9】図8の防振ダンパにおける動作説明図で、(A)はシリンダに対しピストンが入り込む時の様子を示す拡大断面図、(B)はシリンダに対しピストンが出て行く時の様子を示す拡大断面図である。
【図10】防振ばねを一体化した実施例の防振ダンパを示す縦断側面図である。
【図11】防振ダンパが適用されるドラム式洗濯機の概略構成図である。
【図12】従来の防振ダンパを示す縦断側面図である。
【符号の説明】
11…防振ダンパ、12…シリンダ、13…ピストン、14…摺動摩擦部材、14A…柔らかい材質、14B…硬い材質、17…ヘッド部、17b…傾斜面(保持面)、18…ストッパ、18b…傾斜面(保持面)、20…溝、21…潤滑剤、23…ピストンロッド、24,25…摺動摩擦部材、26,27…上下ストッパ、26b,27b…傾斜面(保持面)、31…防振ダンパ、32…シリンダ、33…吊り棒、34,35…上下ストッパ、34b,35b…傾斜面(保持面)、36…摺動摩擦部材、37…防振ばね
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anti-vibration damper that generates a damping force by sliding, and particularly relates to an improvement in wear resistance.
[0002]
[Prior art]
For example, a drum-type washing machine as shown in FIG. 11 is used as an anti-vibration damper that generates a damping force by sliding. This drum type washing machine has a large number of water passage holes 4 on the outer peripheral portion thereof, a drum 3 that rotates to wash and dehydrate laundry, a water tank 2 that contains the drum 3, and a vibration of the water tank 2 that is reduced. A weight 7 attached to the water tank 2, an outer frame 1 for housing the water tank 2, an anti-vibration spring 10 provided between the water tank 2 and the outer frame 1 to receive the load of the water tank 2, and the water tank 2 And an anti-vibration damper 11 that is installed between the outer frame 1 and suppresses the vibration of the water tank 2, a motor 5 that drives the drum 3, and a rotary shaft 6 that has one end fixed to the rotation center of the drum 3. A structure provided with a door 9 that allows the laundry to be taken in and out of the opening provided in the frame 1 and prevents water leakage and the laundry from jumping out, and a bellows 8 that elastically connects the water tank 2 and the opening of the outer frame 1 It has become.
[0003]
As a conventional general vibration damping damper applied to this washing machine, for example, there is a vibration damping damper 11 as shown in FIG. The vibration damping damper 11 is slidably fitted into the cylinder 12, a piston 13 having one end inserted into the cylinder 12 and the other end extended outside the cylinder 12, and slidably fitted in the cylinder 12. A sliding friction member 14 that is fixedly held by the piston 13 and generates a frictional force with the cylinder 12. The mounting portion 15 provided at the end of the cylinder 12 is attached to the water tank 2, and the piston 13 An attachment portion 16 provided at the end of the outer frame 1 is attached to the outer frame 1.
[0004]
In the construction of the drum type washing machine, during the washing / rinsing process, the drum 3 is driven to rotate at a low speed by the motor 5, and washing and rinsing are performed by lifting the laundry in the drum 3 and dropping it onto the water surface. During the dehydration process, the drum 3 is rotated at high speed to perform dehydration. If the laundry in the drum 3 is displaced at this time, the drum 3 and the water tub 2 vibrate, and particularly vibrate greatly due to resonance at the start of the spin-drying rotation. Therefore, in order to prevent excessive vibration of the aquarium 2 and to suppress it to a predetermined amplitude or less even against imbalance due to the largest deviation of the laundry that can occur, the vibration amplitude is reduced by using the vibration damping damper 11 having a very large buffering force. Is reduced.
[0005]
Therefore, at the time of steady rotation with a high dehydration speed, the vibration of the water tank 2 is directly transmitted to the outer frame 1 through the vibration damping damper 11 by the large damping force of the vibration damping damper 11, and a washing machine is installed. Large vibrations are transmitted to the floor. As a result, the floor surface vibrates greatly, and in a wooden house, the entire house vibrates and gives the user an unpleasant feeling.
[0006]
As an example of a method for solving this problem, there is an anti-vibration damper described in Patent Document 1 below. This anti-vibration damper is a cylinder, a piston having one end inserted into the cylinder and the other end extended to the outside of the cylinder, a slidably fitted into the cylinder, and movable within a predetermined range with respect to the piston. And a sliding friction member that generates a frictional force between the cylinder and the cylinder. With this configuration, when the vibration amplitude such as resonance is large, the sliding friction member frictionally slides to generate a large buffering force. However, when the drum rotation increases and the vibration amplitude decreases, the piston is restrained by the sliding friction member. Since it can move without any shock, almost no buffering force is generated. Also, in the state where the sliding friction member is in full contact with the cylinder, the damping force varies greatly with a slight change in the tightening allowance, so the sliding friction member is formed in the shape of a tie, or both ends are chamfered. The variation in damping force is reduced.
[Patent Document 1]
JP-A-5-248468 [0007]
[Problems to be solved by the invention]
By the way, normally, in such an anti-vibration damper, a lubricant is interposed between the cylinder and the sliding friction member. As this lubricant, for example, oil (lubricating oil) is used, and the presence of this lubricant reduces friction between the cylinder and the sliding friction member, thereby suppressing wear.
However, in the above-described conventional vibration damping damper, no consideration has been given to lubricant depletion. Therefore, in the conventional vibration damping damper, the sliding friction member slides repeatedly, so that the lubricant is gradually lost from the sliding portion, and as a result of long-term use, the cylinder and the sliding friction member are worn, resulting in vibration damping force. There was a risk of lowering.
[0008]
The present invention has been made in view of such problems, and provides a vibration-proof damper that effectively prevents depletion of a lubricant in a sliding portion between a cylinder and a sliding friction member, and has improved wear resistance. For the purpose.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 of the present invention includes a cylinder, a piston having one end inserted into the cylinder and the other end extended to the outside of the cylinder, and slidable within the cylinder. And a sliding friction member that is movably held within a predetermined range with respect to the piston and generates a frictional force between the cylinder and a lubricant interposed between the cylinder and the sliding friction member In the vibration-proof damper, the holding surface of the sliding friction member in the piston is inclined so that the sliding friction member contacts the cylinder with a wedge-shaped gap when the piston moves.
Furthermore, the invention described in claim 2 is configured such that the sliding friction member is provided with a groove for facilitating radial expansion and contraction.
According to a third aspect of the present invention, the sliding friction member is configured in a multilayer structure in order to facilitate radial expansion and contraction.
According to a fourth aspect of the present invention, a mechanism is provided in which a sliding friction member is forcibly moved and pressed against a cylinder when the piston moves.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 to 4 show the configuration of a preferred embodiment of the present invention. FIG. 1 is a longitudinal side view of the vibration damping damper 11 according to the present invention. FIGS. It is the elements on larger scale of the principal part used for.
As shown in FIG. 1, the vibration damper 11 of the present embodiment includes a cylindrical cylinder 12, a piston 13 having one end inserted into the cylinder 12 and the other end extended outside the cylinder 12, And a sliding friction member 14 that is slidably fitted to the piston 13 and is movably held within a predetermined range with respect to the piston 13 and generates a frictional force with the cylinder 12. At both ends of the vibration damping damper 11, there are mounting portions 15 and 16 provided at the upper end portion of the cylinder 12 and the lower end portion of the piston 13, respectively. The mounting portions 15 and 16 are, for example, the washing machine shown in FIG. Are attached to the water tank 2 and the outer frame 1 respectively.
[0011]
A stopper 18 is fixed to the head portion 17 of the piston 13 by a nut 19. The stopper 18 is moved between flange portions 17 a and 18 a which are regulating means provided at the lower end portion of the head portion 17 and the upper end portion of the stopper 18, respectively. A ring-shaped sliding friction member 14 is fitted and held as possible. In this configuration, the cylinder 12 is made of metal, the piston 13 and the stopper 18 are made of plastic, and the sliding friction member 14 is preferably made of a material having excellent vibration damping properties such as urethane.
[0012]
In the vibration damping damper 11, a lubricant (lubricating oil) is interposed between the cylinder 12 and the sliding friction member 14 in order to suppress wear of the sliding portion between the cylinder 12 and the sliding friction member 14.
In particular, in the vibration damping damper 11 of this embodiment, for the purpose of preventing the depletion of the lubricant, as described later, the sliding friction member 14 has a wedge-shaped gap and contacts the cylinder 12 when the piston 13 moves. In the holding part of the sliding friction member, the holding surface is inclined. That is, in the vibration damper 11, the head portion 17 and the stopper 18 constituting the holding portion of the sliding friction member have the holding surface of the sliding friction member (the surface on which the inner peripheral surface of the sliding friction member 14 is in contact) with the inclined surface 17b. The holding portion of the sliding friction member is formed in a drum shape as a whole by the head portion 17 and the stopper 18.
Further, in this embodiment, the grooves 20 formed in the thickness direction are formed on the inner and outer peripheral surfaces of the sliding friction member 14 as shown in FIG. 4A so that the sliding friction member 14 can be easily expanded and contracted in the radial direction. There are many.
[0013]
Next, the operation in the vibration proof damper 11 of this embodiment will be described. FIG. 2 is an enlarged cross-sectional view showing a state in which the piston 13 moves with respect to the cylinder 12 (moves so that the mounting distance of the vibration damping damper 11 is shortened), and FIG. FIG. 13 is an enlarged cross-sectional view showing a state when 13 is moved out (moved so that the attachment distance of the vibration damping damper 11 is increased).
[0014]
When the sliding friction member 14 is in a neutral state with respect to the piston 13, as shown in FIG. 1, the sliding member 14 uniformly contacts the intermediate position between the head portion 17 of the piston 13 and the stopper 18. The surface is in full contact with the inner peripheral surface of the cylinder 12. When the cylinder 12 moves from that state and moves so that the piston 13 enters the cylinder 12, the inclined surface 17b of the head portion 17 of the piston 13 moves into the sliding friction member 14 as shown in FIG. When entering the circumference and entering until the flange portion 17a of the head portion 17 hits, the inner peripheral surface of the sliding friction member 14 has an inclination substantially equal to the inclined surface 17b of the head portion 17 of the piston 13. As a result, the outer peripheral surface of the sliding friction member 14 is deformed in substantially the same manner, and the deformation causes the outer periphery of the sliding friction member 14 to become narrower as shown in FIG. A wedge-shaped gap having a wide gap in the traveling direction is generated therebetween.
[0015]
As shown in FIG. 2B, the lubricant 21 accumulates in the wedge-shaped gap, and in this state, the lubricant 21 slides between the sliding friction member 14 and the cylinder 12 as the sliding friction member 14 moves. And flows from the groove 20 on the outer peripheral portion of the sliding friction member 14 to the downstream side in the traveling direction. The lubricant 21 passing through the sliding surface of the sliding friction member 14 and the cylinder 12 sufficiently enters in a compressed state between the sliding friction member 14 and the cylinder 12 by the action of the wedge-shaped gap, and the fluid lubrication state in which the oil film is sufficient. become. Thereby, exhaustion of the lubricant can be prevented, and wear of the sliding friction member 14 and the cylinder 12 can be reduced.
[0016]
Contrary to the above, when the piston 13 moves out of the cylinder 12, the inclined surface 18b of the stopper 18 enters the inner periphery of the sliding friction member 14, as shown in FIG. When it enters until the flange portion 18a of the stopper 18 hits, the inner peripheral surface of the sliding friction member 14 is inclined substantially the same as the inclined surface 18b of the stopper 18. As a result, the outer peripheral surface of the sliding friction member 14 is deformed in substantially the same manner as shown in the figure, and the deformation causes the sliding friction member 14 to have a narrow outer periphery in the traveling direction and a wedge-shaped clearance between the cylinder 12 and the traveling direction. A gap is created.
[0017]
Then, as shown in FIG. 3B, the lubricant 21 is accumulated in the wedge-shaped gap. In this state, the lubricant 21 slides between the sliding friction member 14 and the cylinder 12 as the sliding friction member 14 moves. By flowing from the groove 20 on the outer peripheral portion of the sliding friction member 14 to the downstream side in the traveling direction, the sliding surfaces of the sliding friction member 14 and the cylinder 12 can be brought into a fluid lubrication state as described above. In addition, wear of the cylinder 12 can be reduced.
[0018]
In the above embodiment, the grooves 20 are provided on the inner and outer peripheral surfaces of the sliding friction member 14 so that the sliding friction member 14 can be easily deformed. However, the wear resistance is further improved and the deformation is facilitated. For this purpose, the sliding friction member 14 may have a multilayer structure made of different materials as shown in FIG.
[0019]
FIG. 5A shows an embodiment in which the sliding friction member 14 has a multilayer structure in the radial direction, that is, the sliding friction member 14 is formed of a soft material 14A to facilitate deformation in the radial direction. The inner peripheral portion that contacts the piston 13 and the outer peripheral portion that slides with the cylinder 12 are formed using a hard material 14B in order to reduce wear. A large number of grooves 20 are also provided on the inner and outer peripheral surfaces formed of the hard material 14B, whereby the sliding friction member 14 is further easily deformed in the radial direction.
[0020]
FIG. 5B shows an embodiment in which the sliding friction member 14 has a multilayer structure in the circumferential direction, that is, the sliding friction member 14 has a structure divided into a plurality of blocks in the circumferential direction. Each block is formed of a hard material 14B, and the blocks of the hard material 14B are connected by a soft material 14A to facilitate radial deformation. In this case, a groove 20 is provided in a portion of the soft material 14A that connects the blocks, thereby further facilitating deformation of the sliding friction member 14 in the radial direction.
[0021]
Examples of materials used in these examples include metals, resins, and hard rubbers as hard materials, and soft rubbers and foamed resins as soft materials. However, these materials are not particularly limited. . In addition, as a method of forming materials having different hardnesses into a multilayer structure, for example, methods such as adhesion, welding, and integral molding are possible.
[0022]
Further, in this vibration damping damper, the inner peripheral surface of the sliding friction member 14 is arranged as shown in FIG. 6 so that the head portion 17 of the piston 13 and the inclined surfaces 17b, 18b of the stopper 18 can easily enter the inner periphery of the sliding friction member 14. It is good also as a structure which provided the chamfer (or R) in the up-and-down corner part 14a, 14b.
As shown in FIG. 7, flat surfaces 17c and 18c are provided between the inclined surfaces 17b and 18b of the head portion 17 of the piston 13 and the stopper 18, and the movement range of the sliding friction member 14 relative to the piston 13 is set. Even with a large configuration, the same operation as in the above-described embodiment may be performed.
Further, in the above embodiment, the head portion 17 of the piston 13 may be a separate member from the piston 13, and the stopper 18 may be integrated with the head portion 17 of the piston 13.
[0023]
Next, an embodiment in which the sliding friction member is forcibly moved during the movement of the piston will be described with reference to FIGS.
In the above-described embodiments, the frictional force between the sliding friction member 14 and the cylinder 12 and the frictional force when the inclined surface such as the head portion 17 of the piston 13 enters the sliding friction member 14 are as follows. This is true when the frictional force with 12 is large.
However, in actual use, the piston 13 is likely to frequently receive a load inclined with respect to the axial direction with respect to the cylinder 12. In this state, the contact between the sliding friction member 14 and the cylinder 12 is in a single-contact state, and only one side portion of the sliding friction member 14 can move, and the sliding friction member 14 tilts with respect to the piston 13, which is sufficient. It becomes impossible to demonstrate performance. Therefore, an embodiment has been devised in which the sliding member is forcibly moved to stabilize the performance.
[0024]
As shown in FIG. 8A, the vibration damping damper 11 of this embodiment includes a cylindrical cylinder 12, a piston rod 23 having one end inserted into the cylinder 12 and the other end extended to the outside of the cylinder 12. Two sliding friction members 24 and 25 that are slidably fitted in the cylinder 12 and are movably held with respect to the piston rod 23 to generate a frictional force with the cylinder 12. Here, the sliding friction members 24 and 25 are fitted and held by an upper stopper 26 and a lower stopper 27 which are provided so as to be movable with respect to the piston rod 23, respectively.
[0025]
In this configuration, the upper stopper 26 and the lower stopper 27 are formed in a tapered shape with the holding surfaces for holding the sliding friction members 24 and 25 as inclined surfaces 26b and 27b, respectively, and the upper end portion and the lower stopper 27 of the upper stopper 26 are formed. Flange portions 26a and 27a for restricting the range of movement of the sliding friction member are formed at the lower end portion of each.
The upper stopper 26 and the lower stopper 27 are integrally connected by fitting a fixing pin 28 protruding from the lower stopper 27 into the upper stopper 26, and the upper stopper 26 and the lower stopper 27 are used to integrally hold the sliding friction member holding portion. Is formed in a drum shape as a whole.
[0026]
Between the upper stopper 26 and the lower stopper 27, a disk-shaped operation plate 29 for moving the sliding friction member is disposed. The operation plate 29 is made of a soft material that can be easily deformed. The operation plate 29 is fixed to the distal end portion 23a of the piston rod 23 so as to move integrally with the piston rod 23. On the inner side surfaces of the stopper 26 and the lower stopper 27, spherical concave portions 26c and 27c for deforming the operating plate 29 are formed. The fixing pin 28 protruding from the lower stopper 27 has a structure that connects the upper stopper 26 and the lower stopper 27 through a through hole 29 a formed in the operation plate 29.
[0027]
Next, the operation of the vibration damper 11 of this embodiment will be described. FIG. 9A shows a case where the piston rod 23 moves in the direction of entering the cylinder 12, and FIG. 9B shows a case where the piston rod 23 moves so as to go out of the cylinder 12.
[0028]
As shown in the figure, the operation plate 29 is fixed to the piston rod 23. When the piston rod 23 moves, the operation plate 29 also moves together with the piston rod 23. At this time, the operation plate 29 is recessed in the upper and lower stoppers 26, 27. It abuts against 26c, 27c and deforms along the spherical surfaces of the recesses 26c, 27c, and the outer peripheral portion is curved so as to protrude in the direction opposite to the moving direction of the piston rod 23. Accordingly, when the piston rod 23 enters the cylinder 12, the operating plate 29 pushes down the lower sliding friction member 25 as shown in FIG. 9A, so that the sliding friction member 25 is formed on the inclined surface of the lower stopper 27. When the piston rod 23 is entirely pressed against the inner peripheral surface of the cylinder 12 with a wedge-shaped gap and deformed along the wedge 27b, and the piston rod 23 comes out of the cylinder 12, the operating plate 29 is as shown in FIG. Pushes up the upper sliding friction member 24, so that the sliding friction member 24 is deformed along the inclined surface 26 b of the upper stopper 26 and is entirely pressed against the inner peripheral surface of the cylinder 12 with a wedge-shaped gap. It becomes a state.
[0029]
Thus, no matter which piston rod 23 is moved, either one of the sliding friction members 24, 25 is entirely pressed against the cylinder 12, so that it is stable even when receiving a load inclined with respect to the axial direction. The lubricated state can be maintained.
[0030]
The present invention is not limited to the configuration of the embodiment described above, and the shape and material of the constituent members can be any as long as the gap between the contact portions of the cylinder and the sliding friction member is wedge-shaped. You may use anything.
[0031]
Further, in the configuration of the washing machine shown in the application example of FIG. 11, the vibration damping damper 11 and the vibration damping spring 10 are attached to different locations, but the vibration damping spring 10 is attached to the inside of the cylinder 12 of the vibration damping damper 11 or It is good also as a structure provided in the outer vicinity.
As an example, FIG. 10 shows an embodiment of a vibration damping damper in which a vibration damping spring is built in a cylinder and suspended.
[0032]
The anti-vibration damper 31 of this embodiment includes a cylindrical cylinder 32, a suspension bar 33 corresponding to a piston inserted into the cylinder 32 from above, and an upper and lower stopper 34 fixed to the lower end portion of the suspension bar 33. , 35 and a sliding friction member 36 that is fitted and held in the stoppers 34, 35 and generates a frictional force with the cylinder 32, and is inserted between the stopper 34 and the upper surface of the cylinder 32 inside the cylinder 32. And the anti-vibration springs 37 attached thereto, wherein the holding surfaces of the sliding friction members in the upper and lower stoppers 34, 35 are tapered inclined surfaces 34b, 35b, and the sliding friction when the suspension rod 33 moves. The structure in which the member 36 is deformed to contact the cylinder 32 with a wedge-shaped gap is the same as that of the above-described embodiment.
[0033]
The anti-vibration damper 31 shown in the embodiment of FIG. 10 can be made compact by a structure in which an anti-vibration spring 37 for supporting a load is built in the cylinder 32. For example, in the washing machine as shown in FIG. 11, the anti-vibration damper 31 of this embodiment is applied instead of the anti-vibration spring 10 and the anti-vibration damper 11, and the water tank 2 is suspended and supported by the outer frame 1. It can also be configured.
[0034]
【The invention's effect】
As described above, the vibration damping damper of the present invention has a structure in which the holding surface of the sliding friction member in the piston is inclined, and the sliding friction member has a wedge-shaped gap and contacts the cylinder when the piston moves. Since the lubricant interposed between the cylinder and the sliding friction member accumulates in the wedge-shaped gap and acts to flow the lubricant from the wider side of the wedge-shaped gap to the narrower side, the sliding of the cylinder and the sliding friction member is performed. The moving surface can be made into a fluid lubrication state with less wear, wear of the cylinder and the sliding friction member can be reduced, and an anti-vibration damper having excellent wear resistance can be provided.
[Brief description of the drawings]
FIG. 1 is a longitudinal side view of a vibration damping damper showing an embodiment of the present invention.
2 is an enlarged cross-sectional view showing a state in which a piston enters a cylinder in the vibration damping damper of FIG. 1, (A) is an enlarged cross-sectional view in the vicinity of a sliding friction member, and (B) is lubrication of a lubricant. It is an expanded sectional view showing a state.
3 is an enlarged cross-sectional view showing a state in which the piston protrudes from the cylinder in the vibration damping damper of FIG. 1, (A) is an enlarged cross-sectional view in the vicinity of the sliding friction member, and (B) is the lubricant. It is an expanded sectional view showing a lubrication state.
4A and 4B are perspective views showing the shape of a sliding friction member, where FIG. 4A is a normal shape, and FIG. 4B is a shape when deformed.
5A and 5B show an example in which the sliding friction member has a multilayer structure, in which FIG. 5A shows an example of a multilayer structure in the radial direction, and FIG. 5B shows an example of a multilayer structure in the circumferential direction.
FIG. 6 is an enlarged longitudinal sectional view showing still another embodiment in the vicinity of the sliding friction member in the vibration damping damper.
FIG. 7 is an enlarged longitudinal sectional view showing another embodiment in the vicinity of the sliding friction member in the vibration damping damper.
8A and 8B are diagrams showing an anti-vibration damper according to an embodiment for forcibly moving a sliding friction member, in which FIG. 8A is an enlarged cross-sectional view in the vicinity of the sliding friction member, and FIG. 8B is a plan view of a lower stopper.
It is.
9A and 9B are operation explanatory views of the vibration damping damper of FIG. 8, in which FIG. 9A is an enlarged cross-sectional view showing a state where the piston enters the cylinder, and FIG. 9B is a state when the piston goes out of the cylinder. FIG.
FIG. 10 is a longitudinal side view showing a vibration damping damper of an embodiment in which a vibration damping spring is integrated.
FIG. 11 is a schematic configuration diagram of a drum type washing machine to which a vibration damping damper is applied.
FIG. 12 is a vertical sectional side view showing a conventional vibration damping damper.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Vibration-proof damper, 12 ... Cylinder, 13 ... Piston, 14 ... Sliding friction member, 14A ... Soft material, 14B ... Hard material, 17 ... Head part, 17b ... Inclined surface (holding surface), 18 ... Stopper, 18b ... Inclined surface (holding surface), 20 ... groove, 21 ... lubricant, 23 ... piston rod, 24, 25 ... sliding friction member, 26, 27 ... up / down stopper, 26b, 27b ... inclined surface (holding surface), 31 ... prevention Vibration damper 32 ... Cylinder 33 ... Suspension rod 34, 35 ... Up / down stopper 34b, 35b ... Inclined surface (holding surface) 36 ... Sliding friction member 37 ... Anti-vibration spring

Claims (4)

シリンダと、一端側が前記シリンダ内に挿入され他端側が前記シリンダの外部に延ばされたピストンと、前記シリンダ内に摺動可能に嵌合されかつ前記ピストンに対し所定範囲内で移動可能に保持されて前記シリンダとの間で摩擦力を発生する摺動摩擦部材と、を備え、前記シリンダと前記摺動摩擦部材との間には潤滑剤が介在されてなる防振ダンパにおいて、
前記ピストンにおける前記摺動摩擦部材の保持面に傾斜を設け、前記ピストンの移動時に前記摺動摩擦部材が楔状の隙間を有して前記シリンダに接触する構造としたことを特徴とする防振ダンパ。
A cylinder, a piston having one end inserted into the cylinder and the other end extended to the outside of the cylinder, a slidably fitted into the cylinder, and held movably within a predetermined range with respect to the piston A vibration friction member that generates a frictional force between the cylinder and the cylinder, and a vibration damping damper in which a lubricant is interposed between the cylinder and the sliding friction member.
An anti-vibration damper having a structure in which a holding surface of the sliding friction member in the piston is inclined and the sliding friction member contacts the cylinder with a wedge-shaped gap when the piston moves.
前記摺動摩擦部材に、径方向の伸縮変形を容易とするための溝を設けたことを特徴とする請求項1に記載の防振ダンパ。2. The vibration damping damper according to claim 1, wherein a groove for facilitating expansion and contraction in the radial direction is provided in the sliding friction member. 前記摺動摩擦部材を、径方向の伸縮変形を容易とするために多層構造としたことを特徴とする請求項1または2に記載の防振ダンパ。3. The vibration damping damper according to claim 1, wherein the sliding friction member has a multilayer structure in order to facilitate expansion and contraction in the radial direction. 前記ピストンの移動時に前記摺動摩擦部材を強制的に移動させて前記シリンダに押し付ける機構を設けたことを特徴とする請求項1〜3の何れか1項に記載の防振ダンパ。4. The vibration damping damper according to claim 1, further comprising a mechanism for forcibly moving the sliding friction member and pressing the cylinder against the cylinder when the piston moves. 5.
JP2003172446A 2003-06-17 2003-06-17 Vibration damper Pending JP2005009538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003172446A JP2005009538A (en) 2003-06-17 2003-06-17 Vibration damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003172446A JP2005009538A (en) 2003-06-17 2003-06-17 Vibration damper

Publications (1)

Publication Number Publication Date
JP2005009538A true JP2005009538A (en) 2005-01-13

Family

ID=34096599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003172446A Pending JP2005009538A (en) 2003-06-17 2003-06-17 Vibration damper

Country Status (1)

Country Link
JP (1) JP2005009538A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084029A (en) * 2004-09-15 2006-03-30 Suspa Holding Gmbh Damper
JP2009228869A (en) * 2008-03-25 2009-10-08 Kayaba Ind Co Ltd Piston section structure
JP2015232358A (en) * 2014-06-09 2015-12-24 トヨタ自動車株式会社 Damper device of vehicle
WO2017122992A1 (en) * 2016-01-11 2017-07-20 주식회사 썬 프레인 코 Variable damper for washing machine and multi-stage integrated friction damper
KR101804654B1 (en) * 2016-01-11 2017-12-04 선철곤 Variable damper for washing machine
WO2021075311A1 (en) * 2019-10-17 2021-04-22 株式会社パイオラックス Vibration suppressing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084029A (en) * 2004-09-15 2006-03-30 Suspa Holding Gmbh Damper
JP4560464B2 (en) * 2004-09-15 2010-10-13 ズスパ ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Damper
USRE45461E1 (en) 2004-09-15 2015-04-14 Suspa Gmbh Damper
JP2009228869A (en) * 2008-03-25 2009-10-08 Kayaba Ind Co Ltd Piston section structure
JP2015232358A (en) * 2014-06-09 2015-12-24 トヨタ自動車株式会社 Damper device of vehicle
WO2017122992A1 (en) * 2016-01-11 2017-07-20 주식회사 썬 프레인 코 Variable damper for washing machine and multi-stage integrated friction damper
KR101804654B1 (en) * 2016-01-11 2017-12-04 선철곤 Variable damper for washing machine
WO2021075311A1 (en) * 2019-10-17 2021-04-22 株式会社パイオラックス Vibration suppressing device

Similar Documents

Publication Publication Date Title
KR100821014B1 (en) Drum type washing machine
JP2006230591A (en) Drum type washing machine
RU2369785C2 (en) Shock absorber with elastic unit of aligned damping
CA2274462C (en) Friction damper for washing machines or the like
KR100769623B1 (en) Thrust sliding bearing
KR100665432B1 (en) Drum-type washing machine
US9297434B2 (en) Shock absorber having an improved friction element
CN1312348C (en) Damper for drum type washing machine
JP2005009538A (en) Vibration damper
JPH05248468A (en) Friction damper
JP2007044268A (en) Drum type washing machine
US9618073B2 (en) Shock absorber having an improved friction element
CN104611885A (en) Washing machine and method of manufacturing the same
JP2016154705A (en) Washing machine
JP4118257B2 (en) Elastic support device for stabilizer bar
JP2002213430A (en) Ball joint
JP4783323B2 (en) Drum washing machine
JPH0429153Y2 (en)
US20210381552A1 (en) Rotation induction device for vehicle
US11629753B2 (en) Rotation induction device for vehicle
JP2022091265A (en) washing machine
JP2001321593A (en) Dehydrating washing machine
JP2002045592A (en) Dewatering washing machine
JP2003326082A (en) Dehydrating-washing machine
KR100488047B1 (en) Suspension apparatus in top-loading washer