JP2005008441A - Uniaxial microhollow molybdenum oxide - Google Patents

Uniaxial microhollow molybdenum oxide Download PDF

Info

Publication number
JP2005008441A
JP2005008441A JP2003171485A JP2003171485A JP2005008441A JP 2005008441 A JP2005008441 A JP 2005008441A JP 2003171485 A JP2003171485 A JP 2003171485A JP 2003171485 A JP2003171485 A JP 2003171485A JP 2005008441 A JP2005008441 A JP 2005008441A
Authority
JP
Japan
Prior art keywords
uniaxial
molybdenum
atoms
general formula
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003171485A
Other languages
Japanese (ja)
Inventor
Toshihiro Yamase
利博 山瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polytronics Ltd
Original Assignee
Polytronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polytronics Ltd filed Critical Polytronics Ltd
Priority to JP2003171485A priority Critical patent/JP2005008441A/en
Publication of JP2005008441A publication Critical patent/JP2005008441A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymolybdic acid compound showing high uniaxial symmetry of a nanometer size. <P>SOLUTION: The uniaxial microhollow polymolybdenum oxide is of a tire structure represented by the general formula: A<SB>x</SB>[MoV<SB>28</SB>MoVI<SB>126</SB>O<SB>462</SB>H<SB>28-x</SB>(H<SB>2</SB>O)<SB>m</SB>]-nH<SB>2</SB>O (wherein MoV and MoVI are V-valent and VI-valent molybdenum atoms, respectively; A is at least one atom or atomic group selected from among Li, Na, K, NH<SB>4</SB>, H, and an alkylammonium; and x, m, and n are integers in the ranges: 0≤x≤14, 1≤m≤200, and 100≤n≤200, respectively) or of a nanotube structure composed by longitudinally sequencing unit cells each represented by the general formula: A<SB>y</SB>[MoV<SB>28</SB>MoVI<SB>126</SB>O<SB>458</SB>H<SB>20-y</SB>(H<SB>2</SB>O)<SB>m</SB>]-nH<SB>2</SB>O (wherein y is an integer selected from the range: 1≤y≤15). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、混合原子価を有するモリブデンの酸化物で構成される一軸性微小中空構造を有する新規な物質に関する。
【0002】
【従来の技術】
ポリモリブデン酸イオンは、作成条件によって様々な分子量、分子形態を示すことが知られている。たとえば、アルコールやアルキルアンモニュウム陽イオンなどの電子ドナーを含むイソポリモリブデン酸の水溶液中では、溶液pHによって主要なイオン形態を異にし、pH5−6では[Mo246−が、pH3−4ではβ―[Mo264−が、またpH1−2では[Mo36112(H2O)16]8−(以下、{Mo36}と略記する)がモリブデン酸イオンの多数を占める。
これらイソポリモリブデン酸水溶液に紫外線照射を行うと、酸素原子(リガンド)からモリブデン原子(金属)へ電荷移動を伴う光励起が生じ、ポリモリブデン酸分子の格子中で光化学反応によって生じた[Mo(OH)]サイトの縮重合の結果、モリブデン原子のV価、VI価の混合原子価型ポリ酸イオンを生じることが本発明者らによって発見された。すなわち、pH5−6の領域では[(MoMoVI 2310−(以下、{Mo14}と略記)、pH3−4では{[H10Mo 1240(MoVI][HMo MoVI 3312−(以下、{Mo37}と略記)、pH1−2の領域では[Mo 28MoVI 11443228(HO)5814−(以下、{Mo142}と略記)である。
【0003】
これら光化学反応によって、縮重合の結果合成されたポリモリブデン酸イオンはそれぞれ複雑な化合物形状を示す。たとえば、pH3.3の水溶液から光合成された{Mo37}は6個のKeggin構造を含む核[H10(Mo 1240)(MoVI4−が上下からリガンド[HMo MoIV334−にサンドイッチされ、全体としてD2dの対称性を示す形状を有する化合物である(T,Yamase,E.Ishikawa;Langmuir 16(2000)9023)。
【0004】
一方、Muellerらは、さまざまなモリブデン酸と還元物質を組み合わせて熱的に合成することにより巨大な車輪形状のモリブデン酸ブルー(モリブデンの青色化合物)を作った(A.Mueller,P.Koegerler,A,W,M,Dross ;Coord.Chem.Rev.222(2001)191)。
【0005】
ところで、ある種のポリモリブデン酸イオンは抗腫瘍活性を有することが、本発明者らによって指摘されている。たとえば、前記した[Mo246−やヘテロポリ酸イオンの[CoMo249−などがMeth−Aサルコーマ、MM−46アデノカルシノーマ、B−16メラノーマ、MX−1人乳癌、Co−4人結腸癌を移植したマウスに対し腫瘍の増殖抑制作用を示した。
[Mo246−は、近似的にC2vの部分対称性を有し、また[CoMo249−は近似的にD3dの部分対称性を有している。
【0006】
【発明が解決しようとする課題】
これらモリブデン化合物の抗腫瘍活性のメカニズムはまだ十分明らかにされていないが、腫瘍細胞との間の電子伝達、すなわち酸化還元作用が重要な役割を担っていると考えられる。そのため、これら薬剤イオンの腫瘍細胞に対する捕捉確率が腫瘍抑制の点で重要と考えられる。薬剤イオンと細胞との反応ではイオンの結晶学的対称性や比表面積が捕捉確率と密接な関係を持つと考えられる。その意味で、これまで本発明者らによって抗腫瘍活性が確かめられてきた従来のポリモリブデン酸イオンはなお不十分であり、さらに高い抗腫瘍活性を示すモリブデン酸化合物が望まれている。
本発明の目的は、さらに高い抗腫瘍活性が期待される「より高い結晶学的対称性」と「より広い比表面積」とを有する新規なポリモリブデン酸化合物を提供することである。
【0007】
【課題を解決するための手段】
本発明では、一般式がA[Mo 28MoVI 12646228(HO)]・nHO、ただしここにMoはV価のモリブデン原子、MoVIはVI価のモリブデン原子、AはLi,Na,K,NH、Hおよびアルキルアンモニウムのうちから選択した少なくともひとつの原子または原子団、x,m,nはそれぞれ0≦x≦14,1≦m≦200,100≦n≦200のうちから選ばれた整数を指す
で表示される自動車タイヤ形状の一軸性微小中空構造を有するモリブデンの酸化物を開示する。
さらに本発明では、ユニットセルの一般式が
[Mo 28MoVI 12645420−y(HO)]・nHO、ここにyは1≦y≦15の範囲から選ばれた整数を指す
で表示されるポリモリブデン酸を長軸方向に複数個連ねたナノメートル管形状の一軸性微小中空構造を有するモリブデン酸化物を開示する。
【0008】
【発明の実施の形態】
本発明で開示する二つのポリモリブデン酸化合物は、ともにMoの原子価混合型酸化物{Mo154}であり、従来から本発明者らによって研究されてきた一連の光合成モリブデン酸化合物の延長線上にある。しかし、本発明の{Mo154}化合物は、従来の化合物では得られなかった特異な形状、すなわちナノメートルサイズのタイヤ構造、管構造を示し、医薬品への応用が期待される。
以下に、本発明の物質の合成、同定および応用について述べる。
【0009】
(合成)
周知の方法で合成したNa[Mo36112(HO)16]・58HOから得たアンモニュウム塩[NH[Mo36112(HO)16]・58HOを0.4g(0.059ミリモル)とLaCl・7HOを8.4mg(22マイクロモル)溶解した76mlの水溶液にイソプロピルアンモニュウムPrNHを0.7ml(8.0ミリモル)加え、さらにHClOを加えてpH1.0の溶液に調整した。
【0010】
この水溶液に室温で500Wの超高圧水銀灯の光を2日間照射すると、深青色の溶液が得られる。本溶液をろ過し乾燥すると、斜方六面体の結晶が多数得られる。結晶は、前記2種類のモリブデン酸化合物が混在した状態であり、これを形状によって分離する。収率は、モリブデン原料に対して50%であった。
【0011】
(結晶の同定)
得られた結晶は、光吸収測定(赤外、可視、紫外領域)およびX線測定によって組成および結晶構造の解析をおこなった。
結晶をろ過する前の深青色溶液の吸収スペクトルでは、KBrペレットを介してのIR吸収が、ν(cm−1)=1600{m,δ(HO)},988(m),954(s),901(s),861(w),781(s),633(s),599(s)であり、また可視領域ではλ(nm)=680ah,748,1090の特性吸収が得られた。
【0012】
結晶のX線データは、理学電機のRigaku/MSC Saturn CCD X線回折計を用いて採取し、得られたデータを結晶構造ソフトウエアパッケージSHELXS97にかけて結晶の構造解析をおこなった。X線回折は、173.0Kにおいて単波長化したMo−Kα線をソースとして行い、0.5度単位のω−scanをχ=45度で8回繰り返した。結晶と検出器の距離は100.1mmであり、最初の4回は検出器のあおり角度を15.1度、次の4回は検出器のあおり角度を36.1度とした。
無秩序の位置にあるモリブデンと酸素の原子を除くすべての原子は異方的に、また結晶水の酸素原子を含むその他の原子は等方的に精密解析した。
【0013】
以上の解析によって、前記2種類の結晶は、
(1)[Mo 28MoVI 12646228(HO)70]・156.5HOと
(2)[PrNH[Mo 28MoVI 126454(HO)70]・127HO,ただしユニットセルの分子式であると同定された。前記した合成条件下では、得られた結晶の大半は(1)であり、(2)は少量にとどまる。
は一軸性のナノリング構造、(2)は一軸性のナノチューブ構造を示すと同定された。
【0014】
(1)の結晶データは、M=26271.8g/mol,空間群C2/m,a=52.370(9)A,b=40.960(7)A,c=19.060(3)A,β=92.450(5),V=40848(12)A,Z=2,ρ=2.10g/cm,μ=23.7cm−1,F(000)=23952である。
(2)の結晶データは、m=26068.76g/mol,空間群P2/c,a=18.847(1)A,b=37.390(2)A,c=47.449(4)A,β=100.026(3),V=32926.3(2)A,Z=2,ρ=2.58g/cm,μ=29.4cm−1,F(000)=23752である。
それぞれの陰イオン構造をa,b,cの各軸と共に示したのが図1および2である。
【0015】
図1、図2は結晶(1)の陰イオン構造を示すが、図1はユニットセルの分子構造を、図2は結晶の稠密配置図を示す。図1において黒点はモリブデン原子を、白点は酸素原子を示す。水素原子はX線回折では捕捉出来ないので描かれていない。図は自動車タイヤ構造形の、いわば平面図であり、中央に穴があいている。タイヤの外径は約3.5nm,内径は約2,3nm,厚みは約1.1nmとなっている。
一方、図3〜6は結晶(2)の陰イオン構造を示す。このナノチューブはタイヤを積み重ねた構造形となっており、図3はユニットセルの積層構造、図4は結晶の稠密配置図、図5は図3の一部を拡大したもので隣接タイヤとの境界付近を、また図6はさらにその拡大図を示す。図6で大きな四角はモリブデン原子を、小丸は酸素原子を示す。
【0016】
以上の実施例で述べた本発明の新物質は、いずれも陰イオンが酸化モリブデンの一軸性微小(ナノメートルサイズ)中空構造を有し、従来本発明者らが抗腫瘍活性を確認したポリモリブデン酸化合物に比べて高い軸対象性と大きな比表面積を有する。したがって、従来の化合物、たとえば陰イオンが[Mo246−であるPM−8,すなわち[PrNH[Mo24]・3HOの場合、Meth−Aサルコーマを腹腔内移植したマウスに毎日体重1Kgにつき50mgx9回投与すると、延命率(ILS)が111%となるのに対し、本発明の物質(1)の場合は10−30mg程度の投与でさらに大きな延命効果を期待することが出来る。
【0017】
上記した合成例は本発明のナノメートルタイヤ構造およびナノチューブ構造を示すポリモリブデン酸の一部に過ぎない。たとえば{Mo36}を含む原料水溶液にアルカリとしてNaOHやKOHなどを添加するとA[Mo 28MoVI 12646228−x(HO)]・nHOなる分子式のタイヤ構造ポリモリブデン酸結晶が出来る。アルカリ原子Aの化合数xに合わせてタイヤ構造に付随するH原子数が減少する。しかし、アルカリ原子の化合数は結晶の安定性を考慮すると水素原子数を越えることはない、すなわち0≦x≦14である。またタイヤ構造に含まれる水分子数mは、結晶構造の安定性を考慮すると200を超えることはない、すなわち1≦m≦200である。さらに、結晶水の数nは、packing size を考慮すると100乃至200である。原料溶液に添加するアルカリとしては、そのほかにLi,NH,Hおよびアルキルアンモニウムをあげることが出来る。
【0018】
当然、ナノチューブに化合するアルカリとしても上記したアルキルアンモニウムの他に上のような原子を用いることが出来る。この場合、アルカリイオンの化合数はナノチューブ構造に含まれる水素原子数が結晶安定性の観点から5個以下とはならないことを考慮すると15以下、すなわち1≦y≦15となる。
【0019】
【発明の効果】
本発明によれば、結晶学的に見て従来より高い対称性と広い比表面積を有するポリモリブデン酸イオンを得ることができる。ポリモリブデン酸イオンの抗腫瘍活性は腫瘍細胞のDNAとの間の電子伝達機構に由来すると考えられるので、イオンに対する腫瘍細胞の捕捉確率を高めることが腫瘍増殖の抑制にとって重要と考えられる。その意味で、強い指向性と結晶学的対称性および広い活性化比表面積を有する本発明の物質は、より実用性の高い抗腫瘍剤になり得ると期待される。
【図面の簡単な説明】
【図1】本発明の物質の構造を示す図である。
【図2】本発明の物質の構造を示す図である。
【図3】結晶の稠密配置図である。
【図4】結晶の稠密配置図である。
【図5】結晶の稠密配置図である。
【図6】結晶の稠密配置図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel substance having a uniaxial micro hollow structure composed of an oxide of molybdenum having a mixed valence.
[0002]
[Prior art]
Polymolybdate ions are known to exhibit various molecular weights and molecular forms depending on the preparation conditions. For example, in an aqueous solution of isopolymolybdic acid containing an electron donor such as an alcohol or an alkylammonium cation, the main ionic form differs depending on the solution pH, and at pH 5-6, [Mo 7 O 24 ] 6- 4, β- [Mo 8 O 26 ] 4− occupies the majority of molybdate ions, and at pH 1-2, [Mo 36 O 112 (H 2 O) 16] 8− (hereinafter abbreviated as {Mo36}) occupies the majority.
When these aqueous solutions of isopolymolybdic acid are irradiated with ultraviolet rays, photoexcitation accompanied by charge transfer from oxygen atoms (ligands) to molybdenum atoms (metals) occurs, which is generated by a photochemical reaction in the lattice of polymolybdic acid molecules [Mo V O It has been discovered by the present inventors that polycondensation of 5 (OH)] sites results in mixed valence type polyacid ions of V and VI valences of molybdenum atoms. That is, [(Mo V Mo VI 6 O 23 ) 2 ] 10- (hereinafter abbreviated as {Mo 14 }) in the pH 5-6 region, and {[H 10 Mo V 12 O 40 (Mo VI O 2) 3] [H 2 Mo V 6 Mo VI 5 O 33] 2} 12- ( hereinafter, abbreviated as {Mo 37}), in the region of pH1-2 [Mo V 28 Mo VI 114 O 432 H 28 (H 2 O) 58 ] 14- (hereinafter abbreviated as {Mo 142 }).
[0003]
By these photochemical reactions, the polymolybdate ions synthesized as a result of the condensation polymerization each show a complicated compound shape. For example, were photosynthesis from an aqueous solution of pH 3.3 {Mo 37} nuclear containing six Keggin structure [H 10 (Mo V 12 O 40) (Mo VI O 2) 3] 4- ligand from the upper and lower [H 2 Mo V 6 MoIV 4 O 33 ] 4- and is a compound having a shape exhibiting D 2d symmetry as a whole (T, Yamase, E. Ishikawa; Langmuir 16 (2000) 9023).
[0004]
Mueller et al., On the other hand, made a huge wheel-shaped molybdate blue (a blue compound of molybdenum) by thermally synthesizing various molybdic acids and reducing substances (A. Mueller, P. Koeglerer, A). , W, M, Dross; Coord. Chem. Rev. 222 (2001) 191).
[0005]
By the way, it has been pointed out by the present inventors that certain polymolybdate ions have antitumor activity. For example, [Mo 7 O 24 ] 6− described above and [CoMo 6 O 24 ] 9− of a heteropolyacid ion are Meth-A sarcoma, MM-46 adenocarcinoma, B-16 melanoma, MX-1 breast cancer, It showed a tumor growth inhibitory effect on mice transplanted with Co-4 human colon cancer.
[Mo 7 O 24 ] 6− has approximately C 2v partial symmetry, and [CoMo 6 O 24 ] 9− has approximately D 3d partial symmetry.
[0006]
[Problems to be solved by the invention]
Although the mechanism of the antitumor activity of these molybdenum compounds has not been clarified yet, it is thought that electron transfer between tumor cells, that is, redox action plays an important role. Therefore, the capture probability of these drug ions for tumor cells is considered important in terms of tumor suppression. In the reaction between drug ions and cells, the crystallographic symmetry and specific surface area of ions are considered to have a close relationship with the capture probability. In that sense, the conventional polymolybdate ions, which have been confirmed by the present inventors so far, are still insufficient, and molybdate compounds exhibiting higher antitumor activity are desired.
An object of the present invention is to provide a novel polymolybdate compound having “higher crystallographic symmetry” and “wider specific surface area” for which higher antitumor activity is expected.
[0007]
[Means for Solving the Problems]
In the present invention, the general formula A x [Mo V 28 Mo VI 126 O 462 H 28 - x (H 2 O) m] · nH 2 O, but here Mo V is V-valent molybdenum atoms, Mo VI is VI Valent molybdenum atom, A is at least one atom or atomic group selected from Li, Na, K, NH 4 , H and alkylammonium, and x, m and n are 0 ≦ x ≦ 14 and 1 ≦ m ≦, respectively. Disclosed is an oxide of molybdenum having a uniaxial micro hollow structure in the shape of an automobile tire indicated by an integer selected from 200, 100 ≦ n ≦ 200.
Furthermore, in the present invention, the general formula of the unit cell is A y [Mo V 28 Mo VI 126 O 454 H 20-y (H 2 O) m ] · nH 2 O, where y is in the range of 1 ≦ y ≦ 15. Disclosed is a molybdenum oxide having a uniaxial micro hollow structure in the form of a nanometer tube in which a plurality of polymolybdic acids represented by indicating a selected integer are connected in the major axis direction.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The two polymolybdate compounds disclosed in the present invention are both valence mixed oxides of Mo {Mo 154 }, which are on the extension of a series of photosynthetic molybdate compounds that have been studied by the present inventors. is there. However, the {Mo 154 } compound of the present invention exhibits a unique shape that cannot be obtained with conventional compounds, that is, a nanometer-size tire structure and tube structure, and is expected to be applied to pharmaceuticals.
The synthesis, identification and application of the substance of the present invention are described below.
[0009]
(Synthesis)
Ammonium salt [NH 4 ] 8 [Mo 36 O 112 (H 2 O) 16 ] · 58H 2 O obtained from Na 8 [Mo 36 O 112 (H 2 O) 16 ] · 58H 2 O synthesized by a known method the 0.4 g (0.059 mmol) and LaCl 3 · 7H 2 O and an aqueous solution of 8.4 mg 76 ml was (22 .mu.mol) dissolved in isopropyl en Monumentale um i PrNH 2 0.7ml (8.0 mmol) was added, further HClO 4 was added to adjust the solution to pH 1.0.
[0010]
When this aqueous solution is irradiated with light of a 500 W ultrahigh pressure mercury lamp at room temperature for 2 days, a deep blue solution is obtained. When this solution is filtered and dried, a large number of rhombohedral crystals are obtained. The crystal is a state in which the two kinds of molybdate compounds are mixed, and is separated according to the shape. The yield was 50% based on the molybdenum raw material.
[0011]
(Identification of crystal)
The obtained crystal was analyzed for composition and crystal structure by light absorption measurement (infrared, visible, ultraviolet region) and X-ray measurement.
In the absorption spectrum of the deep blue solution before filtering the crystals, the IR absorption through the KBr pellet is ν (cm −1 ) = 1600 {m, δ (H 2 O)}, 988 (m), 954 ( s), 901 (s), 861 (w), 781 (s), 633 (s), 599 (s), and characteristic absorption of λ (nm) = 680 ah , 748, 1090 is obtained in the visible region. It was.
[0012]
X-ray data of the crystal was collected using a Rigaku / MSC Saturn CCD X-ray diffractometer manufactured by Rigaku Corporation, and the obtained data was applied to the crystal structure software package SHELXS97 for structural analysis of the crystal. X-ray diffraction was performed using Mo-Kα rays having a single wavelength at 173.0 K as a source, and ω-scan of 0.5 degree unit was repeated 8 times at χ = 45 degrees. The distance between the crystal and the detector was 100.1 mm, the tilt angle of the detector was 15.1 degrees for the first four times, and the tilt angle of the detector was 36.1 degrees for the next four times.
All atoms except molybdenum and oxygen atoms in disordered positions were anisotropically analyzed, and other atoms including oxygen atom of crystal water were analyzed isotropically.
[0013]
From the above analysis, the two types of crystals are
(1) [Mo V 28 Mo VI 126 O 462 H 28 (H 2 O) 70 ] • 156.5H 2 O and (2) [ i PrNH 3 ] 8 [Mo V 28 Mo VI 126 O 454 H 4 (H 2 O) 70 ] · 127H 2 O, but identified as unit cell molecular formula. Under the synthesis conditions described above, most of the crystals obtained are (1) and (2) remains in a small amount.
Was identified as uniaxial nanoring structure and (2) as uniaxial nanotube structure.
[0014]
The crystal data of (1) is M = 26271.8 g / mol, space group C2 / m, a = 52.370 (9) A, b = 40.960 (7) A, c = 19.060 (3) A, β = 92.450 (5), V = 40848 (12) A 3 , Z = 2, ρ = 2.10 g / cm 3 , μ = 23.7 cm −1 , and F (000) = 23952.
The crystal data of (2) are m = 26066.86 g / mol, space group P2 1 / c, a = 18.847 (1) A, b = 37.390 (2) A, c = 47.449 (4 ) A, β = 100.026 (3), V = 329266.3 (2) A 3 , Z = 2, ρ = 2.58 g / cm 3 , μ = 29.4 cm −1 , F (000) = 23752 It is.
FIGS. 1 and 2 show the respective anion structures together with axes a, b and c.
[0015]
1 and 2 show the anion structure of the crystal (1), FIG. 1 shows the molecular structure of the unit cell, and FIG. 2 shows a dense arrangement of the crystals. In FIG. 1, black dots indicate molybdenum atoms, and white dots indicate oxygen atoms. Hydrogen atoms are not drawn because they cannot be captured by X-ray diffraction. The figure is a so-called plan view of the automobile tire structure, with a hole in the center. The outer diameter of the tire is about 3.5 nm, the inner diameter is about 2.3 nm, and the thickness is about 1.1 nm.
On the other hand, FIGS. 3-6 show the anion structure of the crystal (2). This nanotube has a structure in which tires are stacked, FIG. 3 is a unit cell stack structure, FIG. 4 is a dense arrangement of crystals, and FIG. 5 is an enlarged view of a part of FIG. FIG. 6 shows an enlarged view of the vicinity. In FIG. 6, large squares indicate molybdenum atoms, and small circles indicate oxygen atoms.
[0016]
All of the new substances of the present invention described in the above examples are polymolybdenum in which the anion has a uniaxial minute (nanometer size) hollow structure of molybdenum oxide and the present inventors have confirmed antitumor activity. Compared to acid compounds, it has high axial coverage and a large specific surface area. Therefore, in the case of a conventional compound such as PM-8 in which the anion is [Mo 7 O 24 ] 6− , that is, [ i PrNH 3 ] 8 [Mo 7 O 24 ] · 3H 2 O, the Meth-A sarcoma can When 50 mg × 9 doses per kilogram of body weight are administered daily to an transplanted mouse, the survival rate (ILS) is 111%, whereas in the case of the substance (1) of the present invention, administration of about 10-30 mg has a greater life-prolonging effect. You can expect.
[0017]
The above synthesis examples are only part of the polymolybdic acid exhibiting the nanometer tire structure and nanotube structure of the present invention. For example, when NaOH, KOH, or the like is added as an alkali to an aqueous raw material solution containing {Mo 36 }, a molecular tire structure of A x [Mo V 28 Mo VI 126 O 462 H 28-x (H 2 O) m ] · nH 2 O Polymolybdate crystals can be formed. The number of H atoms associated with the tire structure is reduced in accordance with the compound number x of the alkali atom A. However, the total number of alkali atoms does not exceed the number of hydrogen atoms in consideration of the stability of the crystal, that is, 0 ≦ x ≦ 14. The number m of water molecules contained in the tire structure does not exceed 200 in view of the stability of the crystal structure, that is, 1 ≦ m ≦ 200. Further, the number n of crystal water is 100 to 200 in consideration of the packing size. Other examples of alkali added to the raw material solution include Li, NH 4 , H, and alkylammonium.
[0018]
As a matter of course, the above atoms can be used in addition to the above-mentioned alkylammonium as the alkali combined with the nanotube. In this case, the compound number of alkali ions is 15 or less, that is, 1 ≦ y ≦ 15, considering that the number of hydrogen atoms contained in the nanotube structure is not 5 or less from the viewpoint of crystal stability.
[0019]
【The invention's effect】
According to the present invention, polymolybdate ions having a higher symmetry and a larger specific surface area than conventional ones can be obtained from a crystallographic viewpoint. Since the antitumor activity of polymolybdate ions is thought to originate from the electron transfer mechanism between the DNA of tumor cells, it is considered important to suppress the growth of tumors by increasing the probability of capturing the tumor cells with respect to the ions. In that sense, the substance of the present invention having strong directivity and crystallographic symmetry and a wide activation specific surface area is expected to be a more practical antitumor agent.
[Brief description of the drawings]
FIG. 1 is a diagram showing the structure of a substance of the present invention.
FIG. 2 is a diagram showing the structure of a substance of the present invention.
FIG. 3 is a dense arrangement of crystals.
FIG. 4 is a dense arrangement of crystals.
FIG. 5 is a dense arrangement of crystals.
FIG. 6 is a dense arrangement of crystals.

Claims (2)

一般式がA[Mo 28MoVI 12646228(HO)]・nHO,ただしMoはV価のモリブデン原子、MoVIはVI価のモリブデン原子、AはLi,Na,K,NH、Hおよびアルキルアンモニウムのうちから選択した少なくとも一つの原子または原子団、xは0≦x≦14の範囲から選ばれた整数、mは1≦m≦200の範囲から選ばれた整数、nは100≦n≦200の範囲から選ばれた整数を示す
で表示される自動車タイヤ形状の一軸性微小中空構造を有するモリブデン酸化物。
General formula A x [Mo V 28 Mo VI 126 O 462 H 28 - x (H 2 O) m] · nH 2 O, however Mo V is V-valent molybdenum atoms, Mo VI is VI valent molybdenum atoms, A Is at least one atom or atomic group selected from Li, Na, K, NH 4 , H and alkylammonium, x is an integer selected from the range of 0 ≦ x ≦ 14, m is 1 ≦ m ≦ 200 An integer selected from a range, n is a molybdenum oxide having a uniaxial micro hollow structure of an automobile tire shape represented by an integer selected from a range of 100 ≦ n ≦ 200.
一般式がA[Mo 28MoVI 12645820−y(HO)]・nHO,ただしyは1≦y≦15の範囲から選ばれた整数、を示す
で表示されるユニットセルを長軸方向に連ねたナノメートル管形状の一軸性微小中空構造を有するモリブデン酸化物。
The general formula is A y [Mo V 28 Mo VI 126 O 458 H 20-y (H 2 O) m ] · nH 2 O, where y is an integer selected from the range of 1 ≦ y ≦ 15. Molybdenum oxide having a uniaxial micro hollow structure in the form of a nanometer tube in which unit cells are connected in the long axis direction.
JP2003171485A 2003-06-17 2003-06-17 Uniaxial microhollow molybdenum oxide Pending JP2005008441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003171485A JP2005008441A (en) 2003-06-17 2003-06-17 Uniaxial microhollow molybdenum oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003171485A JP2005008441A (en) 2003-06-17 2003-06-17 Uniaxial microhollow molybdenum oxide

Publications (1)

Publication Number Publication Date
JP2005008441A true JP2005008441A (en) 2005-01-13

Family

ID=34095908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003171485A Pending JP2005008441A (en) 2003-06-17 2003-06-17 Uniaxial microhollow molybdenum oxide

Country Status (1)

Country Link
JP (1) JP2005008441A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147205A1 (en) * 2009-06-19 2010-12-23 大日本印刷株式会社 Organic electronic device and method for producing the same
JP2015213176A (en) * 2009-06-19 2015-11-26 大日本印刷株式会社 Organic electronic device, and method for manufacturing the same
WO2016159195A1 (en) * 2015-03-31 2016-10-06 Jx金属株式会社 Metal polyoxometalate and production method for metal polyoxometalate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147205A1 (en) * 2009-06-19 2010-12-23 大日本印刷株式会社 Organic electronic device and method for producing the same
JP2011023711A (en) * 2009-06-19 2011-02-03 Dainippon Printing Co Ltd Organic electronic device, and method for producing the same
CN102460765A (en) * 2009-06-19 2012-05-16 大日本印刷株式会社 Organic electronic device and method for producing the same
JP2015213176A (en) * 2009-06-19 2015-11-26 大日本印刷株式会社 Organic electronic device, and method for manufacturing the same
US9252381B2 (en) 2009-06-19 2016-02-02 Dai Nippon Printing Co., Ltd. Organic electronic device and method for producing the same
WO2016159195A1 (en) * 2015-03-31 2016-10-06 Jx金属株式会社 Metal polyoxometalate and production method for metal polyoxometalate
US10647589B2 (en) 2015-03-31 2020-05-12 Jx Nippon Mining & Metals Corporation Polyoxometalate and method for producing polyoxometalate

Similar Documents

Publication Publication Date Title
Portoles-Gil et al. Crystalline curcumin bioMOF obtained by precipitation in supercritical CO2 and structural determination by electron diffraction tomography
KR20050107428A (en) Ferric organic compounds, uses thereof and methods of making same
CN1056827A (en) The multiple hydroxide of the stratiform that the polyacid root embeds
Tharani Green synthesis of zirconium dioxide (ZrO2) nano particles using Acalypha indica leaf extract
CN102641507B (en) Preparation method for methotrexate/layered double hydroxide nanocomposite
Hu et al. pH-controlled assembly of hybrid architectures based on Anderson-type polyoxometalates and silver coordination units
Anderson et al. An aqueous route to [Ta 6 O 19] 8− and solid-state studies of isostructural niobium and tantalum oxide complexes
US20120276170A1 (en) Injectable drug carrier comprising layered double hydroxide
Wang et al. Two-dimensional metal-organic frameworks: from synthesis to bioapplications
Dunuweera et al. Encapsulation of anticancer drug cisplatin in vaterite polymorph of calcium carbonate nanoparticles for targeted delivery and slow release
CN113753953B (en) Giant cup-shaped multi-niobium-oxygen acid compound constructed by mixed ring clusters
CN101785860B (en) Tegafur/layered duplex metal hydroxide nanometer hybrid and preparation method thereof
WO1995011033A1 (en) Polyoxometallates in the treatment of flavivirus infections
JP2005008441A (en) Uniaxial microhollow molybdenum oxide
Ghamami et al. New inorganic-based nanohybrids of layered zinc hydroxide/Parkinson’s disease drug and its chitosan biopolymer nanocarriers with controlled release rate
Gao et al. Solvent-controlled 3D lanthanide–polyoxometalate frameworks: reduction and stabilization of Ag nanocomposites and catalytic properties
CN110423252A (en) Krebs type polyacid compound and preparation method thereof
Yang et al. Host–Guest Chemistry in Discrete Polyoxo-12-Palladate (II) Cubes [MO8Pd12L8] n−(M= ScIII, CoII, CuII, L= AsO43–; M= CdII, HgII, L= PhAsO32–): Structure, Magnetism, and Catalytic Hydrogenation
Nocchetti et al. Synthesis, crystal structure, and antibacterial properties of silver-functionalized low-dimensional layered zirconium phosphonates
JP2004256370A (en) Boron atom-containing heteropolyacid and boron compound
US20220323356A1 (en) Metal (hydr)oxide composite comprising poorly soluble drug, method for preparing same, and pharmaceutical composition comprising same
Chakraborty et al. Drug delivery using nanosized layered double hydroxide, an anionic clay
KR20030014182A (en) Hybrid Materials For Stabilization And Delivery Of Drugs And Processes For Preparing The Same
Shivaiah et al. Coordination of lanthanide cation to an Anderson type polyoxometalate anion leads to isomorphous metal-oxide based one-dimensional inorganic solids: Synthesis, crystal structure and spectroscopy
Padmanabhan et al. The development of ZnO nanoparticle-embedded graphitic-carbon nitride towards triple-negative breast cancer therapy