JP2005007836A - Plastic molded article having antibacterial effect on its surface, and production method therefor - Google Patents

Plastic molded article having antibacterial effect on its surface, and production method therefor Download PDF

Info

Publication number
JP2005007836A
JP2005007836A JP2003177512A JP2003177512A JP2005007836A JP 2005007836 A JP2005007836 A JP 2005007836A JP 2003177512 A JP2003177512 A JP 2003177512A JP 2003177512 A JP2003177512 A JP 2003177512A JP 2005007836 A JP2005007836 A JP 2005007836A
Authority
JP
Japan
Prior art keywords
silver
particles
plastic
ultrafine
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003177512A
Other languages
Japanese (ja)
Inventor
Masahiro Nakamura
匡洋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKAMURA GIKEN KK
Original Assignee
NAKAMURA GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKAMURA GIKEN KK filed Critical NAKAMURA GIKEN KK
Priority to JP2003177512A priority Critical patent/JP2005007836A/en
Publication of JP2005007836A publication Critical patent/JP2005007836A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To sufficiently impart an antibacterial effect by silver ions onto the surface of a plastic molded article. <P>SOLUTION: A solution A is prepared by mixing ultrafine silver particles having a particle size of ≤0.01μm and fine ceramic particles having the particle size of ≤0.1μm in an aqueous ammonia, and a solution B is also prepared by blending isopropyl alcohol and a water-soluble urethane resin in water. After mixing the solutions A and B, the mixture is immediately applied to the inside of a mold, and then a plastic molding material melted at ≥380°C is injected into the mold. Thereby, an antibacterial thin film layer which holds fine ceramic particles including ultrafine silver particles on the surface of the molded article is formed by molding heat at the contact portion of the mold and the molding material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、表面に抗菌作用を有する薄膜を形成したプラスチック成型品とその製法に関し、特に、銀の抗菌作用を利用した薄膜を表面に形成したプラスチック成型品とその製法に関する。
【0002】
【従来の技術】
古くから、銀イオンに抗菌作用があることは知られていたし、また、体内に入る量によっては、人体に悪影響を及ぼすことも分かっていた。しかし、銀イオンが、人体に及ぼす影響に関する研究は少なく、特に、銀イオンが食品を介して体内に侵入したときの銀イオンの量と人体に対する影響の関係が明らかになっていなかったが、近年になって、人体に対する銀の影響が少ないことが分かり、抗菌製品に用いられるようになってきた。例えば、銀イオンの抗菌作用をプラスチック成型品に適用するため、微粒子をプラスチック射出成型材料の中に混合し、製品を射出成型した技術もあったが、金型内を可塑化されたプラスチックが流れるときに、練り込まれた抗菌剤の表面に流動性のあるプラスチックが被覆するので、抗菌効果の減少及び抗菌性の不均一化が発生すると言う不都合があったため、実用化はされていない。
【0003】
このような欠点を解消するため、銀材をプラスチック製品の表面に形成する技術として、例えば特開平06−246773号公報に記載されていて公知である。この技術は、平均粒子径0.3μm以下の銀系無機抗菌剤微粒子、分散剤、及び有機溶媒を含む噴霧液組成物を、直径が10〜300μmの範囲にある微細な液滴ができる2流体ノズルで樹脂成形用の型に予め噴霧塗布してから樹脂成形することにより、型の表面に付着した銀系無機抗菌剤微粒子を樹脂表面に転写せしめることを特徴とする抗菌性プラスチックの製造方法であるが、この技術は、金型内に噴霧するノズルの構成が2流体ノズルであるため、ノズル構造が複雑となるばかりか、噴霧液内に含まれる銀系無機抗菌剤微粒子の直径が0.3μmと大きく、これよりも小さくすることが該発明においては極めて困難なため、この微粒子が溶液内で分離して、均等な銀イオンの噴射が出来ないという不都合があった。
【0004】
また、このような不都合を解消するため、特開平09−100205号公報には、銀ゼオライト 0.1〜5.0wt%に対して含水マグネシウム珪酸塩のセビオライト、又はスメクタイトを0.05〜2.0wt%の割合で加えて混合することにより合成樹脂コート剤中に銀ゼオライトが均一分散してなる抗菌性合成樹脂コート剤を用いる技術が記載されているが、この技術は、銀系無機抗菌剤微粒子を合成樹脂内に混和させてコート剤を構成するため銀系無機抗菌剤微粒子が合成樹脂の中に混和されているためこれの表出が少なく、このコート剤がプラスチック製品の表面に完全な抗菌作用を付与した薄膜を形成することが出来なかった。
【特許文献1】特開平06−246773号公報
【特許文献2】特開平09−100205号公報
【0005】
【発明が解決しようとする課題】
このような不都合を検討すると、整形時にコート剤に含まれるプラスチックが銀微粒子の表面を覆ってしまうため、プラスチック製品の表面に形成された抗菌膜の表面から完全に表出している銀微粒子の数が少ないことに原因することが分かった。
そこで、本発明は、上述のような従来の不都合を解消しようとするものである。そしてその目的は、銀イオンによる抗菌作用を十分に付与したプラスチックモールド品を提供しようとすると共に、該プラスチックモールド品に銀イオンによる抗菌作用を付与する方法を提供しようとする事にある。
【0006】
【課題を解決するための手段】
上述の如き本発明の目的を達成するため、本発明の請求項1に記載の発明は、アンモニア水の中に、粒径0.01μm以下の銀超微粒子と粒径0.1μm以下のセラミック微粒子を混入して、セラミック微粒子表面に銀超微粒子を付着保持せしめた溶液Aと、水の中にイソプロピルアルコールと水溶性ウレタン樹脂を混和した溶液Bを各々別個に用意し、前記溶液Aと溶液Bとを混合せしめた混合液Cを形成した後、直ちに該混合液Cを金型内のプラスチックが射出される必要部分表面に塗布してを形成した後、該金型内に溶融した温度摂氏380度以上のプラスチック成型材を射出し、該成型熱でプラスチック成型材とが接触した部分に銀超微粒子を含むセラミック微粒子をプラスチック成型品の表面に保持する抗菌薄膜層を合成形成することを特徴とする表面に抗菌作用を有するプラスチック成型品の製造方法を提供する。
本願の請求項2に記載の発明は、前記請求項1に記載の発明に加えて、前記銀超微粒子は、酸化銀の超微粒子であることを特徴とするプラスチック成型品の製造方法を提供する。
本願の請求項3に記載の発明は、前記請求項1に記載の発明に加えて、前記銀超微粒子は、金属銀の超微粒子であることを特徴とするプラスチック成型品の製造方法を提供する。
本願の請求項4に記載の発明は、表面に粒径0.01μm以下の銀超微粒子を付着させた粒径0.1μm以下のセラミック微粒子の一部を表出させて、抗菌薄膜層によりプラスチック成型品の表面に前記セラミック微粒子を保持せしめたことを特徴とするプラスチック成型品を提供する。
本願の請求項5に記載の発明は、前記請求項4に記載の発明に加えて、前記銀超微粒子は、酸化銀の超微粒子であることを特徴とするプラスチック成型品を提供する。
本願の請求項6に記載の発明は、前記請求項4に記載の発明に加えて、前記銀超微粒子は、金属銀の超微粒子であることを特徴とするプラスチック成型品を提供する。
【0007】
【発明の実施の形態】
次に本発明の一実施の形態を、図面を用いて詳細に説明する。
プラスチック成型体の表面で抗菌作用を果たす物質を銀として、本発明の実施の形態では、銀超微粒子を用いる。この銀超微粒子の直径は、7nmと極めて小さいが、周知の化学的形成方法、たとえば、噴霧熱分解法などを用いれば、簡単に微粒子化を図ることが出来る。この銀超微粒子を用いてプラスチック製品の表面で効率よく抗菌作用を発揮させるため、本発明では、これをセラミック微粒子の表面に付着させたものをプラスチック製品の表面に付着させて、その銀超微粒子の表面が出来るだけ多く空気中に表出するように構成する。
【0008】
まず、銀超微粒子のキャリアとなるセラミック微粒子を形成する。この発明の実施の形態では、セラミックスとして、ゼオライトを選び、このゼオライドを従来から用いられている粉砕機を用い、直径0.1mm程度のゼオライト粉末を作り出し、このゼオライト粉末を2つの空気流に乗せて双方の気流を交差させ、この2つの気流に含まれる粉末を相互に衝突させ、これらに衝撃を与えることによって簡単に微粒子化を図ることが出来、その微粒子の平均直径は0.1μm以下である。ゼオライト微粉末表面は、くるみ種、梅種の表面のように、多くのしわが形成されていて、その上多孔質であり、その表面積は、同一の直径を有する球体の表面積に比べて数十倍或いは数百倍あるとも言われている。
【0009】
銀超微粒子を、ゼオライトからなるセラミック微粒子の表面に付着させるため、その銀超微粒子4グラムと等量のセラミック微粒子を1リットルのアンモニア水(25%)に混入し、よく攪拌して均等に分散させておく。アンモニア水の中で、銀超微粒子は電離してカチオンであり、セラミック微粒子は、アニオンである。このため、粒径の大きいセラミック微粒子の表面に、銀超微粒子は極めて強固に付着する。
【0010】
銀超微粒子を分散させた上記アンモニア水中のセラミック微粒子の表面に銀超微粒子を良く接触させて、より多くの銀超微粒子をその表面に付着させるため、その溶液をよく攪拌した後、この水溶液を真空チャンバーに入れ、チャンバー内の空気を抜いて、セラミック微粒子の割れ目の中に存在する空気をよく抜き取る。これを溶液Aと称する。
【0011】
他方、ウレタン樹脂120グラム、イソプロピルアルコール100グラムを1リットルの水に溶解した溶液中に投入攪拌して、溶液Bを得る。
【0012】
図1に示す周知の射出成形機を用意する。図1において、1,2は金型である。金型1は、金型2に対して、接合したり、離れたりする可動型である。そして、金型2には、成型品が完成したときに金型2に付着している成型品を剥離する分離器3が付属している。4はシリンダーである。シリンダー4の中には、原動機5により回転され、押し引きされるスクリュー6が移動自在に設けられている。7はホッパーであり、その中には、成型するプラスチック原料(プラスチックチップ)8が満たされている。9はスクリュー6によってホッパー7内からシリンダー4内に運ばれたプラスチック原料8を溶融するヒータである。
【0013】
次に、本発明に係る、成型品の製法について説明する。
まず、上記で説明した溶液Aと溶液Bとを混合して、スプレー溶液を形成した後、これを満たしたスプレー10を用意する。このスプレー10は、図2に示すように、開かれた金型1,2の間を上下動すると共に、吹き出し口すなわちノズル11が左右方向に向きを変えることが出来るように構成されている。金型1,2を開いた状態で、該スプレー10のノズル11から噴霧状にしたスプレー溶液12を金型1,2の面に吹き付けて液層12’を形成する。このスプレー溶液12の金型キャビティ内への吹きつけに際して、静電塗装の技術を応用すれば、金型の隅々までスプレー溶液12の塗布を可能とする。なお、図3は、金型1,2の表面にスプレー溶液12を吹き付けて、液層12’を形成した状態を拡大して示した拡大断面図である。図3の中で21は、キャリアーであるセラミック微粒子、22は、銀超微粒子である。
【0014】
この状態から、スプレー10を金型1,2の間から引っ込め、金型1,2同士を強く合体させた後、シリンダー4から溶融したプラスチックを金型1,2内に形成されたキャビティー13内に噴射する。この噴射により、金型表面に付着したスプレー溶液12からなる液層12’と、高温で溶融している射出されたプラスチック23とが接触し、この時、液層12’は、図4に示すごとく、プラスチック23と接触して温度が高くなった側から、セラミック微粉末に含まれる銀超微粒子の触媒作用を得て、液層12’は、ナッター・チーグラー法による重合反応を始め、プラスチック23と接触している部分からアクリル樹脂からなる抗菌薄膜層24が形成され、このアクリル樹脂が、スプレー溶液12に含まれるセラミック微粉子21のプラスチック表面への接着効果を果たし、これをその表面に旦持する。一方、金型表面に近い液層12’は、金型表面に熱を奪われ、プラスチックと接触している部分よりも温度が上がらず、このため、上記のような重合反応は起こりにくい。
【0015】
このような状態で、図4に示すように、十分にキャビティー13内に溶融したプラスチック原料が満たされたならば、金型1,2が適当な温度になるまで冷却する。その後、図6に示すように金型1,2を開き、分離器3により完成品14を金型1から分離する。この時、成型品の表面に付着しているスプレー溶液12のうち、十分に重合しなかった表面部分は、外気に触れて蒸発し、このため、図7に示すように、プラスチック27側に保持されているセラミック微粒子21の上半分は形成された抗菌薄膜層24は表出する。
【0016】
図7,8は、完成した射出成型品の断面図を示す。<BR>
図7,8から分かるように、本発明を適用して成型された完成品14は、芯部15に、射出成形機から射出されたプラスチックのみの芯が形成され、その表面16、裏面17には、型1,2に噴霧により塗装され、表面に銀超微粒子が表出した抗菌層が完成品に形成される。
【0017】
以上、本発明を上述の実施の形態により説明したが、モールド成型品は押し出し成型法の外に中空成型法や真空成型法などにも適用できる。銀超微粒子も金属の銀を用いることなく、酸化銀を超微粒子化したものを用いることも出来る。また、プラスチック成型品の芯部は発泡プラスチックにより形成してもよいなど、本発明の主旨の範囲内で種々の変形や応用が可能であり、これらの変形や応用を本発明の範囲から排除するものではない。
【0018】
【発明の効果】
これまでに、本発明を詳細に説明したが、本願の請求項1に記載の発明は、プラスチック成型品において、該成型品の表出面の少なくとも一部に銀を含む抗菌薄膜層を形成したことを特徴とする抗菌作用を有するプラスチックモールド品を提供しているので、銀を含む抗菌薄膜層がプラスチック成型品の表面の必要部分にのみ形成されるので、抗菌薄膜層が常に表面に晒される事となり、抗菌作用が従来のものと比較して極めて顕著であると共にその効果に場所のむらがない。また従来のように抗菌薄膜層を形成する原料が少なくて済む。
本願の請求項2に記載の発明は、請求項1に記載の発明に加えて、前記抗菌薄膜層は銀微粒子を抱合させたセラミック微粒子を含ませたので、セラミック微粒子が抗菌薄膜層を形成するプラスチックと極めてよく接着し、セラミック微粒子が抗菌薄膜層から剥がれ難く、抗菌作用が極めて長期に保持される。
本願の請求項3に記載の発明は、抗菌作用を有するプラスチックモールド品の製法において、金型のキャビティの必要部分に、予め銀を含む抗菌薄膜層を形成した後、該キャビティ内にプラスチック成型品を形成したとき、該抗菌薄膜層をプラスチック成型品の表面に転写することを特徴とする抗菌作用を有するプラスチックモールド品の製法を提供しているので、プラスチック成型品の表出面にのみ抗菌薄膜層を形成しやすく、また抗菌薄膜層を形成する材料も少なくて済む。
【図面の簡単な説明】
【図1】図1は、本発明の射出成型機構を示す概念図である。
【図2】図2は、本発明の射出成型の工程を示す工程図である。
【図3】図3は、金型1,2の表面にスプレー液12を吹き付けて、液層12’を形成した状態を拡大して示した拡大断面図である。
【図4】図4は、金型1,2の表面にスプレー液12を吹き付けて、液層12’を形成した後、プラスチックを射出した状態を拡大して示した拡大断面図である。
【図5】図5、本発明の射出成型の工程を示す工程図である。
【図6】図6は、本発明の射出成型の工程を示す工程図である。
【図7】図7は、本発明に係る成型品の拡大断面図である。
【図8】図8は、本発明に係る成型品の断面図である。
【符号の説明】
1・・・・・金型
2・・・・・金型
3・・・・・分離器
4・・・・・シリンダー
5・・・・・原動機
6・・・・・スクリュー
7・・・・・ホッパー
8・・・・・プラスチック原料
9・・・・・ヒータ
10・・・・・スプレー
11・・・・・ノズル
12・・・・・スプレー溶液
12’・・・・液層
13・・・・・キャビティー
14・・・・・完成品
15・・・・・芯部
16・・・・・表面
17・・・・・裏面
21・・・・・セラミック微粒子
22・・・・・銀超微粒子
23・・・・・プラスチック
24・・・・・抗菌薄膜層
[0001]
[Technical field to which the invention belongs]
The present invention relates to a plastic molded article having a thin film having an antibacterial action on the surface and a method for producing the same, and more particularly to a plastic molded article having a thin film utilizing the antibacterial action of silver on the surface and a process for producing the same.
[0002]
[Prior art]
It has been known for a long time that silver ions have an antibacterial effect, and depending on the amount of silver ions entering the body, it has also been found to have a negative effect on the human body. However, there are few studies on the effects of silver ions on the human body, and in particular, the relationship between the amount of silver ions and the effects on the human body when silver ions enter the body through food has not been clarified. As a result, it has been found that silver has little influence on the human body, and has been used in antibacterial products. For example, in order to apply the antibacterial action of silver ions to plastic molded products, there was a technology in which fine particles were mixed into a plastic injection molding material and the product was injection molded, but plasticized plastic flows in the mold. Occasionally, since the fluid plastic covers the surface of the kneaded antibacterial agent, there is a disadvantage that the antibacterial effect is reduced and the antibacterial non-uniformity occurs, so that it has not been put into practical use.
[0003]
In order to eliminate such drawbacks, a technique for forming a silver material on the surface of a plastic product is described in, for example, Japanese Patent Application Laid-Open No. 06-246773, and is well known. This technique is a two-fluid that can form fine droplets having a diameter in the range of 10 to 300 μm from a spray liquid composition containing silver-based inorganic antibacterial fine particles having an average particle diameter of 0.3 μm or less, a dispersant, and an organic solvent. A method for producing an antibacterial plastic characterized by transferring silver-based inorganic antibacterial fine particles adhering to the surface of the mold onto the resin surface by spraying the resin mold with a nozzle in advance and then molding the resin. However, in this technique, since the structure of the nozzle sprayed into the mold is a two-fluid nozzle, not only the nozzle structure is complicated, but also the diameter of the silver-based inorganic antibacterial agent fine particles contained in the spray liquid is 0.1. Since it is extremely difficult in the present invention to make it as large as 3 μm and smaller than this, there is a disadvantage that the fine particles are separated in the solution and uniform silver ions cannot be ejected.
[0004]
In order to eliminate such inconvenience, Japanese Patent Application Laid-Open No. 09-100205 discloses that 0.05 to 2.50% of hydrated magnesium silicate ceviolite or smectite is contained in 0.1 to 5.0 wt% of silver zeolite. A technique using an antibacterial synthetic resin coating agent in which silver zeolite is uniformly dispersed in a synthetic resin coating agent by adding and mixing at a ratio of 0 wt% is described. Since the fine inorganic particles are mixed in the synthetic resin to form the coating agent, the silver-based inorganic antibacterial agent fine particles are mixed in the synthetic resin, so there is little exposure, and this coating agent is completely applied to the surface of the plastic product. A thin film imparted with antibacterial action could not be formed.
[Patent Document 1] Japanese Patent Laid-Open No. 06-246773 [Patent Document 2] Japanese Patent Laid-Open No. 09-100205
[Problems to be solved by the invention]
Considering such inconvenience, the plastic contained in the coating agent covers the surface of the silver fine particles during shaping, so the number of silver fine particles completely exposed from the surface of the antibacterial film formed on the surface of the plastic product It has been found that this is due to the fact that there are few.
Therefore, the present invention is intended to eliminate the above-described conventional disadvantages. And the objective is to provide the plastic mold product which fully provided the antimicrobial effect by silver ion, and to provide the method of providing the antimicrobial effect by silver ion to this plastic mold product.
[0006]
[Means for Solving the Problems]
In order to achieve the object of the present invention as described above, the invention according to claim 1 of the present invention is characterized in that, in ammonia water, silver ultrafine particles having a particle size of 0.01 μm or less and ceramic fine particles having a particle size of 0.1 μm or less. A solution A in which silver ultrafine particles are adhered and held on the surface of ceramic fine particles and a solution B in which isopropyl alcohol and a water-soluble urethane resin are mixed in water are prepared separately, and the solutions A and B are prepared separately. After the liquid mixture C is formed, the liquid mixture C is immediately applied to the surface of the necessary portion where the plastic in the mold is injected, and then melted in the mold at a temperature of 380 degrees Celsius. Injecting a plastic molding material at a temperature higher than the required temperature, and synthesizing and forming an antibacterial thin film layer that retains ceramic fine particles containing silver ultrafine particles on the surface of the plastic molded product at the part where the plastic molding material is in contact with the molding heat. And a method for producing a plastic molded product having an antibacterial action on the surface.
The invention according to claim 2 of the present application provides the method for producing a plastic molded product, characterized in that, in addition to the invention according to claim 1, the ultrafine silver particles are ultrafine particles of silver oxide. .
The invention according to claim 3 of the present application provides the method for producing a plastic molded product, characterized in that, in addition to the invention according to claim 1, the ultrafine silver particles are ultrafine particles of metallic silver. .
In the invention according to claim 4 of the present application, a part of ceramic fine particles having a particle size of 0.1 μm or less, in which ultrafine particles of silver particle having a particle size of 0.01 μm or less are attached to the surface, is exposed to a plastic by an antibacterial thin film layer. Provided is a plastic molded product characterized in that the ceramic fine particles are held on the surface of the molded product.
The invention according to claim 5 of the present application provides a plastic molded product characterized in that, in addition to the invention according to claim 4, the ultrafine silver particles are ultrafine particles of silver oxide.
The invention according to claim 6 of the present application provides the plastic molded product characterized in that, in addition to the invention according to claim 4, the silver ultrafine particles are ultrafine particles of metallic silver.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described in detail with reference to the drawings.
In the embodiment of the present invention, silver ultrafine particles are used in the embodiment of the present invention, assuming that the substance that has an antibacterial action on the surface of the plastic molding is silver. Although the diameter of the silver ultrafine particles is as small as 7 nm, fine particles can be easily formed by using a well-known chemical formation method such as spray pyrolysis. In order to efficiently exhibit the antibacterial action on the surface of the plastic product using the ultrafine silver particles, in the present invention, the ultrafine silver particles are adhered to the surface of the plastic product by attaching the fine particles to the surface of the ceramic fine particles. It is configured so that as many surfaces as possible are exposed to the air.
[0008]
First, ceramic fine particles serving as carriers of silver ultrafine particles are formed. In the embodiment of the present invention, zeolite is selected as the ceramic, and the zeolite is produced using a conventional grinder to produce a zeolite powder having a diameter of about 0.1 mm, and the zeolite powder is placed on two air streams. By crossing both airflows, the powders contained in the two airflows collide with each other, and impact is applied to them, so that the fine particles can be easily formed. The average diameter of the fine particles is 0.1 μm or less. is there. The surface of the fine zeolite powder has many wrinkles formed on it, like the surface of walnut and plum seeds, and is porous, and its surface area is several tens compared with the surface area of spheres having the same diameter. It is said that there are double or several hundred times.
[0009]
In order to attach silver ultrafine particles to the surface of ceramic fine particles made of zeolite, ceramic fine particles equivalent to 4 grams of silver ultrafine particles are mixed in 1 liter of ammonia water (25%), and stirred well to disperse evenly. Let me. In ammonia water, silver ultrafine particles are ionized to become cations, and ceramic fine particles are anions. For this reason, silver ultrafine particles adhere extremely firmly to the surface of ceramic fine particles having a large particle size.
[0010]
In order to bring the silver ultrafine particles into good contact with the surface of the ceramic fine particles in the ammonia water in which the silver ultrafine particles are dispersed and to adhere more silver ultrafine particles to the surface, the solution is stirred well, It puts into a vacuum chamber, the air in a chamber is extracted, and the air which exists in the crack of a ceramic fine particle is extracted well. This is referred to as Solution A.
[0011]
On the other hand, 120 g of urethane resin and 100 g of isopropyl alcohol are added to and stirred in a solution of 1 liter of water to obtain solution B.
[0012]
A known injection molding machine shown in FIG. 1 is prepared. In FIG. 1, reference numerals 1 and 2 denote molds. The mold 1 is a movable mold that can be joined to or separated from the mold 2. The mold 2 is attached with a separator 3 that peels off the molded product attached to the mold 2 when the molded product is completed. 4 is a cylinder. A screw 6 that is rotated and pushed by a prime mover 5 is movably provided in the cylinder 4. A hopper 7 is filled with a plastic raw material (plastic chip) 8 to be molded. Reference numeral 9 denotes a heater that melts the plastic raw material 8 conveyed from the hopper 7 into the cylinder 4 by the screw 6.
[0013]
Next, the manufacturing method of the molded product based on this invention is demonstrated.
First, the solution A and the solution B described above are mixed to form a spray solution, and then a spray 10 filling the spray solution is prepared. As shown in FIG. 2, the spray 10 is configured to move up and down between the opened molds 1 and 2 and to change the direction of the outlet, that is, the nozzle 11, in the left-right direction. With the molds 1 and 2 opened, a spray solution 12 sprayed from the nozzle 11 of the spray 10 is sprayed on the surfaces of the molds 1 and 2 to form a liquid layer 12 ′. When spraying the spray solution 12 into the mold cavity, the spray solution 12 can be applied to every corner of the mold by applying an electrostatic coating technique. FIG. 3 is an enlarged cross-sectional view illustrating a state in which the spray layer 12 is sprayed on the surfaces of the molds 1 and 2 to form a liquid layer 12 ′. In FIG. 3, 21 is a ceramic fine particle as a carrier, and 22 is a silver ultrafine particle.
[0014]
From this state, the spray 10 is retracted between the molds 1 and 2, the molds 1 and 2 are strongly combined, and then the plastic melted from the cylinder 4 is formed in the cavities 13 formed in the molds 1 and 2. Inject into. By this injection, the liquid layer 12 ′ made of the spray solution 12 adhered to the mold surface comes into contact with the injected plastic 23 melted at a high temperature. At this time, the liquid layer 12 ′ is shown in FIG. As described above, the catalytic action of the silver ultrafine particles contained in the ceramic fine powder is obtained from the side where the temperature is increased due to contact with the plastic 23, and the liquid layer 12 ′ starts the polymerization reaction by the Natta-Ziegler method. An antibacterial thin film layer 24 made of an acrylic resin is formed from a portion in contact with the acrylic resin, and this acrylic resin exerts an adhesive effect on the plastic surface of the ceramic fine powder 21 contained in the spray solution 12, and this is applied to the surface. Hold it. On the other hand, the liquid layer 12 'close to the mold surface is deprived of heat by the mold surface, and the temperature does not rise higher than the part in contact with the plastic, and therefore the polymerization reaction as described above hardly occurs.
[0015]
In this state, as shown in FIG. 4, when the melted plastic raw material is sufficiently filled in the cavity 13, the molds 1 and 2 are cooled to an appropriate temperature. Thereafter, the molds 1 and 2 are opened as shown in FIG. 6, and the finished product 14 is separated from the mold 1 by the separator 3. At this time, of the spray solution 12 adhering to the surface of the molded product, the surface portion that is not sufficiently polymerized is evaporated by touching the outside air. Therefore, as shown in FIG. The formed antibacterial thin film layer 24 is exposed on the upper half of the ceramic fine particles 21 formed.
[0016]
7 and 8 show sectional views of the completed injection molded product. <BR>
As can be seen from FIGS. 7 and 8, the finished product 14 molded by applying the present invention has a core 15 formed of a plastic-only core injected from an injection molding machine, and has a front surface 16 and a back surface 17. Is applied to the molds 1 and 2 by spraying to form an antibacterial layer with the ultrafine silver particles on the surface.
[0017]
As mentioned above, although this invention was demonstrated by the above-mentioned embodiment, a molded product can be applied to a hollow molding method, a vacuum molding method, etc. besides the extrusion molding method. Silver ultrafine particles can also be obtained by making silver oxide ultrafine particles without using metallic silver. In addition, various modifications and applications are possible within the scope of the present invention, such as the core of the plastic molded product may be formed of foamed plastic, and these modifications and applications are excluded from the scope of the present invention. It is not a thing.
[0018]
【The invention's effect】
Although the present invention has been described in detail so far, in the invention according to claim 1 of the present application, an antibacterial thin film layer containing silver is formed on at least a part of the exposed surface of the molded product. The antibacterial thin film layer containing silver is formed only on the necessary part of the surface of the plastic molded product, so that the antibacterial thin film layer is always exposed to the surface. Thus, the antibacterial action is extremely remarkable as compared with the conventional one, and there is no unevenness in the effect. Moreover, the amount of raw materials for forming the antibacterial thin film layer can be reduced as in the prior art.
The invention according to claim 2 of the present application, in addition to the invention according to claim 1, includes ceramic fine particles conjugated with silver fine particles, so that the ceramic fine particles form the antibacterial thin film layer. It adheres very well to plastics, and the ceramic fine particles are hardly peeled off from the antibacterial thin film layer, so that the antibacterial action is maintained for a very long time.
According to a third aspect of the present invention, in the method of manufacturing a plastic mold product having an antibacterial effect, an antibacterial thin film layer containing silver is formed in advance in a necessary portion of a cavity of a mold, and then a plastic molded product is formed in the cavity. The antibacterial thin film layer is provided only on the exposed surface of the plastic molded product because a method for producing a plastic molded product having an antibacterial action is provided by transferring the antibacterial thin film layer to the surface of the plastic molded product. The amount of material for forming the antibacterial thin film layer is small.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an injection molding mechanism of the present invention.
FIG. 2 is a process diagram showing an injection molding process of the present invention.
FIG. 3 is an enlarged cross-sectional view showing an enlarged view of a state in which a spray liquid 12 is sprayed on the surfaces of molds 1 and 2 to form a liquid layer 12 ′.
FIG. 4 is an enlarged cross-sectional view showing an enlarged state in which plastic is injected after spray liquid 12 is sprayed on the surfaces of molds 1 and 2 to form a liquid layer 12 ′.
FIG. 5 is a process diagram showing the injection molding process of the present invention.
FIG. 6 is a process diagram showing an injection molding process of the present invention.
FIG. 7 is an enlarged cross-sectional view of a molded product according to the present invention.
FIG. 8 is a cross-sectional view of a molded product according to the present invention.
[Explanation of symbols]
1 ... Mold 2 ... Mold 3 ... Separator 4 ... Cylinder 5 ... Motor 6 ... Screw 7 ... · Hopper 8 ··· Plastic raw material 9 ··· Heater 10 ··· Spray 11 ··· Nozzle 12 · · · Spray solution 12 '··· Liquid layer 13 ··· ... Cavity 14 ... Finished product 15 ... Core 16 ... Front 17 ... Back 21 ... Ceramic fine particles 22 ... Silver Ultrafine particles 23 ... Plastic 24 ... Antibacterial thin film layer

Claims (6)

アンモニア水の中に、粒径0.01μm以下の銀超微粒子と粒径0.1μm以下のセラミック微粒子を混入して、セラミック微粒子表面に銀超微粒子を付着保持せしめた溶液Aと、水の中にイソプロピルアルコールと水溶性ウレタン樹脂を混和した溶液Bを各々別個に用意し、
前記溶液Aと溶液Bとを混合せしめた混合液Cを形成した後、直ちに該混合液Cを金型内のプラスチックが射出される必要部分表面に塗布して反応層を形成した後、該金型内に溶融した温度摂氏380度以上のプラスチック成型材を射出し、該成型熱で該反応層とプラスチック成型材とが接触した部分に銀超微粒子を含むセラミック微粒子をプラスチック成型品の表面に保持する抗菌薄膜層を合成形成することを特徴とする表面に抗菌作用を有するプラスチック成型品の製造方法。
A solution A in which ultrafine silver particles having a particle size of 0.01 μm or less and ceramic fine particles having a particle size of 0.1 μm or less are mixed in ammonia water, and the ultrafine silver particles are adhered and held on the surface of the ceramic particles, and in water Prepared separately in solution B in which isopropyl alcohol and water-soluble urethane resin are mixed,
After forming the mixed solution C in which the solution A and the solution B are mixed, the mixed solution C is immediately applied to the surface of the necessary portion where the plastic in the mold is injected to form a reaction layer, A plastic molding material having a temperature of 380 degrees Celsius or higher is injected into the mold, and ceramic fine particles containing silver ultrafine particles are held on the surface of the plastic molding product at the portion where the reaction layer and the plastic molding material are in contact with each other by the molding heat. A method for producing a plastic molded product having an antibacterial action on a surface, characterized by synthetically forming an antibacterial thin film layer.
前記銀超微粒子は、酸化銀の超微粒子であることを特徴とする請求項1に記載のプラスチック成型品の製造方法。The method for producing a plastic molded product according to claim 1, wherein the silver ultrafine particles are ultrafine particles of silver oxide. 前記銀超微粒子は、金属銀の超微粒子であることを特徴とする請求項1に記載のプラスチック成型品の製造方法。The method for producing a plastic molded product according to claim 1, wherein the silver ultrafine particles are ultrafine particles of metallic silver. 表面に粒径0.01μm以下の銀超微粒子を付着させた粒径0.1μm以下のセラミック微粒子の一部を表出させて、抗菌薄膜層によりプラスチック成型品の表面に前記セラミック微粒子を保持せしめたことを特徴とするプラスチック成型品。A part of ceramic fine particles with a particle size of 0.1 μm or less, which are made by adhering ultrafine silver particles with a particle size of 0.01 μm or less to the surface, are exposed, and the ceramic fine particles are held on the surface of the plastic molded product by the antibacterial thin film layer Plastic molded product characterized by that. 前記銀超微粒子は、酸化銀の超微粒子であることを特徴とする請求項4に記載のプラスチック成型品。The plastic molded product according to claim 4, wherein the silver ultrafine particles are ultrafine particles of silver oxide. 前記銀超微粒子は、金属銀の超微粒子であることを特徴とする請求項1に記載のプラスチック成型品。The plastic molded article according to claim 1, wherein the silver ultrafine particles are ultrafine particles of metallic silver.
JP2003177512A 2003-06-23 2003-06-23 Plastic molded article having antibacterial effect on its surface, and production method therefor Pending JP2005007836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003177512A JP2005007836A (en) 2003-06-23 2003-06-23 Plastic molded article having antibacterial effect on its surface, and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003177512A JP2005007836A (en) 2003-06-23 2003-06-23 Plastic molded article having antibacterial effect on its surface, and production method therefor

Publications (1)

Publication Number Publication Date
JP2005007836A true JP2005007836A (en) 2005-01-13

Family

ID=34100050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003177512A Pending JP2005007836A (en) 2003-06-23 2003-06-23 Plastic molded article having antibacterial effect on its surface, and production method therefor

Country Status (1)

Country Link
JP (1) JP2005007836A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012176593A (en) * 2011-02-28 2012-09-13 Enplas Corp Method for manufacturing resin molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012176593A (en) * 2011-02-28 2012-09-13 Enplas Corp Method for manufacturing resin molding

Similar Documents

Publication Publication Date Title
CN105885268B (en) A kind of preparation method of magnetic graphene 3D printing consumptive material
CN104002474B (en) There is the super-hydrophobic of micro-nano compound structure and adhere to preparation method and the application thereof on adjustable surface
CN104629161A (en) Low-melting-point 3D printing material and preparation method thereof
JP2009534235A (en) Method for manufacturing a composite structure
KR101780475B1 (en) Method of 3D Printing by Formation of Filaments
CN102470558B (en) Molded resin containing filler and glass
US20100047557A1 (en) Ceramic and/or powder-metallurgical composite shaped body and method for the production thereof
JP2005119302A (en) Organic-inorganic hybrid composition for solid-molding
TW200905249A (en) Optical member manufacturing method, optical member manufacturing apparatus and optical member
JP2005007836A (en) Plastic molded article having antibacterial effect on its surface, and production method therefor
CN107424714A (en) The preparation method of 3D printing magnetic material
TW201041717A (en) In-mold coating article forming die and method of manufacturing in-mold coating article
JP6919229B2 (en) Composition for manufacturing three-dimensional modeled object and manufacturing method of three-dimensional modeled object
PT1323769E (en) PROCESS FOR THE APPLICATION OF FUNCTIONAL MATERIALS IN THERMOPLASTIC POLYURETHANE
CN203779774U (en) Injection molding and spraying integrated device
KR100746302B1 (en) Method of manufacturing anti-bacteria packing sheet with nano-silver and vessel thereof
JP2004188616A (en) Plastic molded product having antibacterial action and its manufacturing method
CN100522538C (en) Method for manufacturing hollow silica gel toy and semi-finished product of toy
JP5474443B2 (en) Additive particle and additive particle connected body
JPH0319897A (en) Ink reservoir tube for ball-point pen
JP2647358B2 (en) Method of injection molding a molded body from synthetic resin
JPH04325604A (en) Production of porous sintered body
EP1481783A3 (en) Method for producing an injection-molded material with an antibacterial function
CN108395560A (en) A kind of method and its SMC products for improving SMC product surface performances
TWI632999B (en) Molded article manufacturing method with surface coating