JP2005005286A - FINE COMPOSITE STRUCTURE MAGNETIC SUBSTANCE ABSORBING GHz BAND RADIO WAVE AND RADIO WAVE ABSORBING MATERIAL - Google Patents

FINE COMPOSITE STRUCTURE MAGNETIC SUBSTANCE ABSORBING GHz BAND RADIO WAVE AND RADIO WAVE ABSORBING MATERIAL Download PDF

Info

Publication number
JP2005005286A
JP2005005286A JP2003163587A JP2003163587A JP2005005286A JP 2005005286 A JP2005005286 A JP 2005005286A JP 2003163587 A JP2003163587 A JP 2003163587A JP 2003163587 A JP2003163587 A JP 2003163587A JP 2005005286 A JP2005005286 A JP 2005005286A
Authority
JP
Japan
Prior art keywords
radio wave
composite structure
powder
ghz band
fine composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003163587A
Other languages
Japanese (ja)
Inventor
Kenichi Machida
町田憲一
Masahiro Ito
伊東正浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003163587A priority Critical patent/JP2005005286A/en
Publication of JP2005005286A publication Critical patent/JP2005005286A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic substance absorbing electromagnetic wave exhibiting high absorption performance and a wideband specification for a region from several GHz to several tens GHz in order to reduce an electromagnetic interference and health troubles in the frequency band of GHz. <P>SOLUTION: Fine composite structure magnetic substance powder for a GHz band radio wave absorber where fine particles of a magnetic substance principally comprising a metal or an alloy of Fe or Co or a compound of B or N are combined uniformly with fine particles of a rare earth oxide is produced using a melt quenching method. It is then mixed with resin or the like to manufacture a radio wave absorber in the form of a sheet, a board or a cube. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、携帯電話、自動料金支払システム、デジタル放送、室内の無線LAN等々で、近年その使用が拡大しているGHz帯域の電磁波により引き起される電磁干渉および健康障害に対し、該電磁波を高効率で吸収する微細複合構造磁性体粉末およびこれら粉末から製造される電波吸収体に関する。
【0002】
【従来の技術】
従来、GHz帯域の電波吸収体には、導体および誘電体以外にフェライト硬磁性体もしくは形状異方性を付与した金属系磁性体が用いられている。前者は磁化が低く吸収割合は小さいものの、5 GHzから20 GHzの領域に吸収能をもち、該吸収材として供給されている(特許文献1および論文文献1参照)。他方、後者は鉄金属を中心として扁平化等の加工を施すことで形状による磁気異方性を付与し、GHz領域の電磁波吸収能を有する電波吸収体として製造販売されている(特許文献2参照)。
【0003】
一方、最近杉本らは、溶融鋳造された希土類−鉄系金属間化合物を粉砕後、水素化および酸化による不均化処理によりナノ複合粒子、すなわちα−Fe/RO(X=1または1.5)とすることで、1〜3 GHz帯域に良好な電磁波吸収能を有することを報告している(論文文献2および論文文献3参照)。
【0004】
【特許文献1】
特開2000−331816
【0005】
【特許文献2】
特開平11−354973
【0006】
【論文文献1】
S. Sugimoto, K. Okayama, S. Kondo, H. Ota, M. Kimura, Y. Yoshida, H. Nakamura, D. Book, T. Kagotani, and M. Homma, Mater. Trans. JIM, 39, 1080 (1998).
【0007】
【論文文献2】
T. Maeda, S. Sugimoto, T. Kagotani, D. Book, M. Homma, H. Ota, and Y. Houjou, Mater. Trans. JIM, 41, 1172 (2000).
【0008】
【論文文献3】
S. Sugimoto, T. Maeda, D. Book, T. Kagotani, K. Inomata, M. Homma, H. Ota, Y. Houjou, and R. Sato, J. Alloys Comp., 330−332, 301 (2002).
【0009】
【発明が解決しようとする課題】
まず、特許文献1および論文文献1記載のフェライト硬磁性体の場合は、自身の伝導性が低くEddy電流の影響は小さい反面、本来の磁化が低く、薄型高性能電波吸収体の作製には不向きである。他方、特許文献2に記載されている形状異方化した鉄粉の場合は、高い電磁波吸収能を有するものの、本来導体であるためEddy電流に基づく吸収損失に加え、扁平化処理等による加工等のために製産の効率上問題があり、低コスト化の障害となっている。
【0010】
一方、希土類金属間化合物を水素化および酸化分解し、金属鉄と希土類酸化物との複合磁性体粉末とすることで、金属磁性体の利点をもつとともに、渦電流損失の欠点を補う電波吸収体が報告された(論文文献2および3参照)。しかしながら、遊離する鉄金属の小さい異方性磁界のため吸収できる電磁波周波数が低いこと、また、試料作製の原料として通常の溶融法により得られた金属間化合物のインゴットを使用するため、より微細且つ均一な組織を有する融合体の作製には不適である、等の欠点があった。
【0011】
【課題を解決するための手段及び作用・効果】
上記金属と鉄等の金属磁性体と希土類酸化物等の絶縁体との複合体磁性粉末において、金属磁性体の渦電流損を低減するために、更に微細且つ均一な複合体とすることで、磁性金属の電気抵抗値の増加および酸化物による絶縁効果の向上を図る。また、将来的に利用の拡大が予測される数GHz〜10GHzの帯域の電波に対応するため、上記の金属磁性体に磁性体粒子の扁平化以外の方法で磁気異方性を付与し該電磁波を高効率で吸収する磁性体粉末とする。
【0012】
具体的には、微細且つ均一な金属薄帯またはアモルファス金属薄帯の作製が容易な液体急冷法を用いることで、鉄、ニッケル、コバルト等の磁性金属と希土類金属、または、鉄、ニッケル、コバルト等の磁性金属と希土類金属と硼素等の典型元素との金属間化合物または合金の金属薄帯を作製し、これを不均化することで、微細且つ均一な組織を有する微細複合構造磁性体粉末を得る。また、上記の一部の金属間化合物または合金系の金属薄帯においてアモルファス形態の物が得られるためこれらを不均化することで更に微細且つ均一な組織を有する複合体の作製が可能となる。
【0013】
上記の微細複合構造磁性体粉末の金属成分は、Fe等の遷移金属またはこれの合金で構成されており、異方性磁界の低さから高周波域の電波吸収には不適である。本発明では、微細複合構造磁性体粉末の金属成分を、アンモニア等の窒素源またはメタン等の炭素源により窒化または炭化処理することで結晶構造を異方化させ、これに付随する結晶磁気異方性を発現せしめることで高周波帯域の電磁波に対し吸収能をもつ微細複合構造磁性体粉末とする。ここで、窒素等の軽元素は微細複合構造磁性体粉末の原料となる金属薄帯の作製時に添加することも可能である。
【0014】
【発明の実施の形態】
本発明に関わるGHz帯域対応電波吸収体用微細複合構造磁性体粉末、およびこれらを用いた電波吸収体の製造工程図を図1に示す。まず、R−TM系またはR−TM−LM系合金または金属間化合物となるように秤量した原料金属を溶融し、これらを液体急冷法を用いてアモルファスもしくは一部または全部結晶化した合金または金属間化合物の薄帯、薄片または微粉末とすることで、原料金属が均一に混合した合金または金属間化合物素材とする。
【0015】
次に、上述のアモルファス状または一部もしくは全部結晶化した合金または金属間化合物の薄帯、薄片または微粉末に対し、水素化または酸化による不均化反応を誘発せしめ、多様な組成領域で遷移金属の単体、合金または金属間化合物と希土類の酸化物が複合化した、GHz帯域対応電波吸収体用微細複合構造磁性体粉末が得られる。また、この際、合金または金属間化合物素材を窒素またはアンモニアガス中で加熱することで一部化合物化、すなわち窒化することでこれら磁性体複合体粉末の異方性磁界を大幅に増大させることができ、これにより電磁波の吸収可能周波数領域を効果的に高めることが可能となる。
【0016】
他方、水素化または酸化による不均化反応に先立ち、上述のアモルファス状または一部もしくは全部結晶化した合金または金属間化合物の薄帯、薄片または微粉末を、真空中もしくは不活性ガス中で、300から1,000℃、1秒から100時間の結晶化処理を行い、上記合金または金属間化合物それ自身もしくはこれらから析出される成分金属単体、関連合金または金属間化合物の微細な結晶粒子を前もって得ることも可能である。これにより、これらの材料に対しより効果的に水素化または酸化に基づく不均化反応を誘発せしめることができ、窒化やホウ化などの一部化合物化を促すことでGHz帯域対応電波吸収体用微細複合構造磁性体粉末とすることができる。
【0017】
得られた微細複合構造磁性体粉末は、適当量の有機樹脂バインダーを混練され、シート、ボードもしくはその他立体形状へと成形され、所望の周波数域の電磁波を効率よく吸収する電波吸収体として利用できる。
【0018】
(実施例1)
以下に本発明の実施例を示すが、本発明はこれに限定されるものではない。記載項1に基づき液体急冷法により得られるYFe17薄帯からα−Fe/Y微細複合構造磁性体粉末を作製した。すなわち、溶融したYFe17をロール周速度20 m/sで急冷することで急冷薄帯を得、これに対し水素気流中、600℃で1時間不均化処理を行い、引き続き酸素気流中、250℃で2時間酸化処理をすることでα−Fe/Yナノ複合体を得た。ここで得られる複合磁性体粉末の鉄金属と酸化イットリウムの組成は、急冷薄帯作製時の鉄とイットリウムの仕込み比を変えることで、任意に選ぶことが出来る。
【0019】
図2に得られた試料の粉末X線回折の結果を示す。回折ピークの半値幅から、α−−Fe、Yの結晶子のサイズはそれぞれ20および10 nmと見積もられ、作製したナノ複合体が急冷薄帯を出発原料とすることで、非常に微細な組織を有することを確認した。
【0020】
上記ナノ複合体に20 wt%のエポキシ樹脂を混合し作製した成形体について1〜8 GHzの領域での電波吸収特性を評価した結果を図3に示す。厚さ3〜5 mmの試料において2.0〜3.5 GHzの領域に、電波吸収材の性能として要求される−20 dB以下の反射損失が見られた。ここで得られた良好な電波吸収特性は、急冷法により均一な微細組織を有する金属薄帯が得られたこと、さらに、不均化処理後の鉄金属組織の微細化により電磁界による渦電流の発生が抑制されたためと考えられる。
【0021】
(実施例2)
実施項1と同様の手法でY(Fe0.5Co0.517薄帯を得た。これに対し、水素気流中、600℃で3時間不均化処理を行い、引き続き酸素気流中、250℃で2時間酸化処理をすることでFeCo/Y微細複合構造磁性体粉末を得た。
【0022】
図4に作製した試料の粉末X線回折測定の結果を示す。回折ピークの半値幅から見積もられたFeCo、Yの結晶子サイズはそれぞれ30および10 nmであった。このことから、実施例1と同様に作製したナノ複合体が非常に微細な組織を有することに加えて、本発明の作製手法により微細複合構造磁性体粉末中の金属成分は単体の金属だけでなく、複数の金属からなる合金系についても適用可能であることを見出した。
【0023】
上記のFeCo/Y微細複合構造磁性体粉末にエポキシ樹脂を20 wt%混合し、これを硬化することでペレット成形体を得た。作製した電波吸収の特性を図5に示す。電波吸収媒体となるFeCoはFeと同様に立方晶の化合物であるが、その吸収領域が大きく高周波側へシフトすることが分かった。作製したFeCo/Y複合体において、FeCoの粒径サイズは約30 nmと微細であり、サイズ効果による磁気異方性の発現のために上記試料が高周波領域の電波に対し良好な吸収特性を示したものと考えられる。
【0024】
(実施例3)
実施項1のα−Fe/Y複合体に対して、NH気流中、350℃で7時間処理することで複合体中に含まれる鉄成分を窒化し、ε−FeN/Y複合体とした。
【0025】
得られたε−FeN/Yの粉末X線回折のデータを図6に示す。得られた複合体のXRDパターンは、ε−FeNとYのパターンと一致し、また各相のピークの半値幅よりε−FeNとYの結晶子サイズはそれぞれ30および10 nmと見積もられた。
【0026】
上記の粉末にエポキシ樹脂を混合することでペレット成形体を作製し、その電波吸収特性を評価した。結果を図7に示す。厚さ3.3〜19.3 mmの試料において0.6〜4.4 GHzの領域の電波に対し−20dB以下の損失が得られた。α−Fe/Yに比べε−FeN/Yにおける吸収周波数は高周波側に移行しており、これは、立方晶である鉄が窒化されることで六方晶のFeNとなり、磁気異方性定数がα−Feの44 kA/Mからε−FeNの150 kA/Mに増加することで磁気的な異方性が増加したことによる。
【0027】
(実施例4)
実施例3に述べたFeNと同様に結晶磁気異方性を有するFeBを含有するα−Fe/FeB/Y複合体を作製した。ここでは、試料作製時にホウ素の添加を行い、ホウ素添加により急冷薄帯が容易にアモルファス化する現象を利用して、このアモルファス材料から、より均一な金属組織を有するナノ複合体電波吸収材料の評価を行った。
【0028】
作製したYFe77.517.5急冷薄帯の粉末X線回折測定の結果を図8に示す。回折パターンには、アモルファスに特有のブロードなピークのみが見られた。このアモルファス薄帯をヘリウム雰囲気中、680℃で10分間処理し結晶化させた後、酸素気流中、300℃で2時間加熱し、酸化不均化処理を施した。得られた試料の粉末X線回折パターンはα−Fe、FeBおよびYのパターンと一致した。回折ピークの半値幅から見積もったα−Fe、FeBおよびYの結晶子サイズはそれぞれ30、30および10 nmであった。
【0029】
上記の複合体に樹脂を混合することでペレット成形体とし、その電波吸収能を測定した。結果を図9に示す。厚さ3〜5 mmの試料について、3〜5.5GHzの電磁波に対し−20dB以下の損失が得られた。α−Fe/FeB/Yの電波吸収能はε−FeN/Yに比べ高周波側にシフトしており、これは、FeBの大きな結晶磁気異方性(H = 400 kA/m)によるものと考えられる。また、実施例1、2、3に述べた複合体に比べ、α−Fe/FeB/Yナノ複合体では絶縁層となるYの含有量が少ないにも関わらず、良好な吸収特性が得られたことから、アモルファス薄体から複合体を作製することで、高い均一性が得られたことが考えられる。
【0030】
【発明の効果】
以上説明をしたように本発明では、均一且つ微細な組織を有する金属薄帯に水素化、酸化等の不均化処理を施すことにより、遷移金属、希土類酸化物等から構成される微細複合構造磁性体粉末を得ることができ、これを樹脂等と混合することで数GHzの電波に対応する高性能な電波吸収体が得られる。特に、窒素、硼素、炭素等の遷移金属磁性体への混入による異方性磁界の増大に伴う吸収周波数の高周波域への移行により、従来の電波吸収体用磁性粉末に比べ高い周波数領域の電磁を効果的に吸収すること可能となる。
【図面の簡単な説明】
【図1】複合磁性体および電波吸収体の製造工程図である。
【図2】α−Fe/Y微細複合構造磁性体粉末の粉末X線回折パターンである。(a)無処理、(b) 水素気流中、600℃、1時間 (c) 酸素気流中、250℃、2時間。
【図3】α−Fe/Y微細複合構造磁性体粉末の電波吸収特性である。
【図4】FeCo/Y微細複合構造磁性体粉末の粉末X線回折パターンである。(a)無処理、(b) 水素気流中、600℃、3時間 (c) 酸素気流中、250℃、2時間。
【図5】FeCo/Y微細複合構造磁性体粉末の電波吸収特性である。
【図6】ε−FeN/Y微細複合構造磁性体粉末の粉末X線回折パターンである。(a)無処理、(b) 水素気流中、600℃、1時間、 (c) 酸素気流中、250℃、2時間、 (d) アンモニア気流中、350℃、7時間。
【図7】ε−FeN/Y微細複合構造磁性体粉末の電波吸収特性である。
【図8】α−Fe/FeB/Y微細複合構造磁性体粉末の粉末X線回折パターンである。(a)無処理、(b) ヘリウム雰囲気、680℃、10分間、 (c) 酸素気流中、300℃、2時間。
【図9】α−Fe/FeB/Y微細複合構造磁性体粉末の電波吸収特性である。
[0001]
BACKGROUND OF THE INVENTION
The present invention is applied to electromagnetic interference and health problems caused by electromagnetic waves in the GHz band whose use has been increasing in recent years in mobile phones, automatic fee payment systems, digital broadcasting, indoor wireless LANs, and the like. The present invention relates to a fine composite structure magnetic powder that absorbs with high efficiency and a radio wave absorber manufactured from these powders.
[0002]
[Prior art]
Conventionally, for a radio wave absorber in the GHz band, in addition to a conductor and a dielectric, a ferrite hard magnetic material or a metallic magnetic material imparted with shape anisotropy has been used. Although the former has a low magnetization and a low absorption ratio, it has an absorptivity in the region from 5 GHz to 20 GHz and is supplied as the absorber (see Patent Document 1 and Paper Document 1). On the other hand, the latter is manufactured and sold as a radio wave absorber having electromagnetic wave absorption ability in the GHz region by imparting magnetic anisotropy depending on the shape by performing processing such as flattening around iron metal (see Patent Document 2). ).
[0003]
On the other hand, Sugimoto et al. Recently pulverized a melt-cast rare earth-iron-based intermetallic compound, followed by disproportionation treatment by hydrogenation and oxidation, that is, α-Fe / RO x (X = 1 or 1.. 5), it has been reported that it has a good electromagnetic wave absorption ability in the 1 to 3 GHz band (see Paper 2 and Paper 3).
[0004]
[Patent Document 1]
JP 2000-331816 A
[0005]
[Patent Document 2]
JP 11-354773 A
[0006]
[Paper Reference 1]
S. Sugimoto, K. et al. Okayama, S .; Kondo, H .; Ota, M.M. Kimura, Y .; Yoshida, H .; Nakamura, D.A. Book, T.W. Kagotani, and M.K. Homma, Mater. Trans. JIM, 39 , 1080 (1998).
[0007]
[Paper Reference 2]
T.A. Maeda, S .; Sugimoto, T .; Kagotani, D.H. Book, M.M. Hamma, H .; Ota, and Y.J. Houjou, Mater. Trans. JIM, 41 , 1172 (2000).
[0008]
[Paper Reference 3]
S. Sugimoto, T .; Maeda, D.H. Book, T.W. Kagotani, K. et al. Inomata, M .; Hamma, H .; Ota, Y .; Houjou, and R.A. Sato, J .; Alloys Comp. , 330-332 , 301 (2002).
[0009]
[Problems to be solved by the invention]
First, in the case of the ferrite hard magnetic material described in Patent Document 1 and Paper Document 1, although its own conductivity is low and the influence of the Eddy current is small, the original magnetization is low and it is not suitable for the production of a thin high-performance electromagnetic wave absorber. It is. On the other hand, in the case of the iron powder having an anisotropic shape described in Patent Document 2, although it has a high electromagnetic wave absorption ability, it is an original conductor, so in addition to absorption loss based on Eddy current, processing by flattening treatment, etc. For this reason, there is a problem in production efficiency, which is an obstacle to cost reduction.
[0010]
On the other hand, by absorbing and oxidatively decomposing rare earth intermetallic compounds to form composite magnetic powders of metallic iron and rare earth oxides, the radio wave absorber has the advantages of metal magnetic materials and compensates for the disadvantages of eddy current loss. Has been reported (see papers 2 and 3). However, since the electromagnetic wave frequency that can be absorbed is low due to the small anisotropic magnetic field of the free iron metal, and since the ingot of the intermetallic compound obtained by the usual melting method is used as a raw material for sample preparation, There were disadvantages such as being unsuitable for the production of a fusion product having a uniform tissue.
[0011]
[Means for solving the problems and actions / effects]
In the composite magnetic powder of the above metal and a metal magnetic material such as iron and an insulator such as rare earth oxide, in order to reduce the eddy current loss of the metal magnetic material, by making it a more fine and uniform composite, The electrical resistance value of magnetic metal is increased and the insulation effect by oxides is improved. In addition, in order to cope with radio waves in a band of several GHz to 10 GHz, which is expected to expand in the future, the above-mentioned metal magnetic material is given magnetic anisotropy by a method other than flattening of the magnetic particles, and the electromagnetic wave Is a magnetic powder that absorbs water with high efficiency.
[0012]
Specifically, magnetic and rare earth metals such as iron, nickel and cobalt, or iron, nickel and cobalt can be obtained by using a liquid quenching method that facilitates the production of fine and uniform metal or amorphous metal ribbons. A fine composite structure magnetic powder having a fine and uniform structure by producing a metal ribbon of an intermetallic compound or alloy of a magnetic metal such as rare earth metal and a typical element such as boron and disproportionating it Get. In addition, since some of the above-mentioned intermetallic compounds or alloy-based metal ribbons can be obtained in an amorphous form, it is possible to produce a composite having a finer and more uniform structure by disproportionating them. .
[0013]
The metal component of the fine composite structure magnetic powder is composed of a transition metal such as Fe or an alloy thereof, and is unsuitable for radio wave absorption in a high frequency range because of its low anisotropic magnetic field. In the present invention, the metal component of the fine composite structure magnetic powder is anisotropically crystallized by nitriding or carbonizing with a nitrogen source such as ammonia or a carbon source such as methane. By exhibiting the property, a fine composite structure magnetic powder having an ability to absorb electromagnetic waves in a high frequency band is obtained. Here, a light element such as nitrogen can be added at the time of producing a metal ribbon used as a raw material for the fine composite structure magnetic powder.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a manufacturing process diagram of a fine composite structure magnetic powder for a radio wave absorber for a GHz band according to the present invention, and a radio wave absorber using these. First, an alloy or metal obtained by melting a raw material metal weighed so as to be an R-TM system, an R-TM-LM system alloy, or an intermetallic compound, and crystallizing them amorphous or partly or wholly using a liquid quenching method. An intermetallic compound ribbon, flake, or fine powder is used to obtain an alloy or intermetallic compound material in which the raw metal is uniformly mixed.
[0015]
Next, the above-mentioned amorphous or partially or fully crystallized alloy or intermetallic compound ribbon, flake or fine powder is induced to disproportionate by hydrogenation or oxidation and transition in various compositional regions. A fine composite structure magnetic powder for a radio wave absorber for GHz band, in which a simple substance of metal, an alloy or an intermetallic compound, and a rare earth oxide are combined is obtained. At this time, the alloy or intermetallic compound material is partially compounded by heating in nitrogen or ammonia gas, that is, nitriding can greatly increase the anisotropic magnetic field of these magnetic composite powders. This makes it possible to effectively increase the frequency region where electromagnetic waves can be absorbed.
[0016]
On the other hand, prior to the disproportionation reaction by hydrogenation or oxidation, the above-mentioned amorphous or partially or fully crystallized alloy or intermetallic thin ribbon, flakes or fine powder is subjected to vacuum or inert gas, Crystallization treatment is performed at 300 to 1,000 ° C. for 1 second to 100 hours, and fine crystal particles of the above-described alloy or intermetallic compound itself or a component metal simple substance, related alloy or intermetallic compound precipitated from these are preliminarily formed. It is also possible to obtain. As a result, disproportionation reactions based on hydrogenation or oxidation can be induced more effectively for these materials, and by promoting partial compounding such as nitriding and boride, it is possible for a radio wave absorber for GHz band. A fine composite structure magnetic powder can be obtained.
[0017]
The obtained fine composite structure magnetic powder is kneaded with an appropriate amount of an organic resin binder, molded into a sheet, board or other three-dimensional shape, and can be used as a radio wave absorber that efficiently absorbs electromagnetic waves in a desired frequency range. .
[0018]
(Example 1)
Examples of the present invention are shown below, but the present invention is not limited thereto. An α-Fe / Y 2 O 3 fine composite structure magnetic powder was produced from a Y 2 Fe 17 ribbon obtained by a liquid quenching method based on the item 1. That is, a rapidly cooled ribbon is obtained by quenching molten Y 2 Fe 17 at a roll peripheral speed of 20 m / s, and then subjected to disproportionation treatment at 600 ° C. for 1 hour in a hydrogen stream, and then in an oxygen stream. The α-Fe / Y 2 O 3 nanocomposite was obtained by oxidation treatment at 250 ° C. for 2 hours. The composition of the iron metal and yttrium oxide of the composite magnetic powder obtained here can be arbitrarily selected by changing the charging ratio of iron and yttrium at the time of quenching ribbon production.
[0019]
FIG. 2 shows the result of powder X-ray diffraction of the obtained sample. From the full width at half maximum of the diffraction peak, the crystallite sizes of α--Fe and Y 2 O 3 are estimated to be 20 and 10 nm, respectively. It was confirmed to have a fine structure.
[0020]
FIG. 3 shows the results of evaluating the radio wave absorption characteristics in the region of 1 to 8 GHz for a molded body prepared by mixing the nanocomposite with 20 wt% epoxy resin. In a sample having a thickness of 3 to 5 mm, a reflection loss of −20 dB or less required as the performance of the radio wave absorber was observed in the range of 2.0 to 3.5 GHz. The good electromagnetic wave absorption characteristics obtained here were that a thin metal strip with a uniform microstructure was obtained by the rapid cooling method, and further, eddy currents due to electromagnetic fields were obtained by the refinement of the iron metal structure after disproportionation treatment. This is thought to be due to the suppression of the occurrence of.
[0021]
(Example 2)
A Y 2 (Fe 0.5 Co 0.5 ) 17 ribbon was obtained in the same manner as in Example 1. On the other hand, a FeCo / Y 2 O 3 fine composite structure magnetic powder is obtained by performing disproportionation treatment at 600 ° C. for 3 hours in a hydrogen stream, and subsequently oxidizing treatment at 250 ° C. for 2 hours in an oxygen stream. It was.
[0022]
FIG. 4 shows the result of the powder X-ray diffraction measurement of the prepared sample. The crystallite sizes of FeCo and Y 2 O 3 estimated from the half width of the diffraction peak were 30 and 10 nm, respectively. Therefore, in addition to the nanocomposite produced in the same manner as in Example 1 having a very fine structure, the metal component in the fine composite structure magnetic powder is only a single metal by the production method of the present invention. It was also found that the present invention can be applied to an alloy system composed of a plurality of metals.
[0023]
The FeCo / Y 2 O 3 fine composite structure magnetic powder was mixed with 20 wt% of an epoxy resin and cured to obtain a pellet molded body. The produced radio wave absorption characteristics are shown in FIG. FeCo, which is a radio wave absorbing medium, is a cubic compound like Fe, but it has been found that the absorption region is greatly shifted to the high frequency side. In the prepared FeCo / Y 2 O 3 composite, the particle size of FeCo is as small as about 30 nm, and the above sample absorbs radio waves in the high frequency region because of the magnetic anisotropy due to the size effect. It is thought that it showed the characteristic.
[0024]
Example 3
The iron component contained in the composite is nitrided by treating the α-Fe / Y 2 O 3 composite of Example 1 for 7 hours at 350 ° C. in an NH 3 stream, and ε-Fe 3 N / A Y 2 O 3 complex was obtained.
[0025]
FIG. 6 shows powder X-ray diffraction data of the obtained ε-Fe 3 N / Y 2 O 3 . The resulting XRD pattern of the complex, the crystallite size of the epsilon-Fe 3 N and Y 2 coincides with O 3 pattern, also Fe epsilon-from the half bandwidth of each phase of the peak 3 N and Y 2 O 3 is Estimated to be 30 and 10 nm, respectively.
[0026]
A pellet molded body was prepared by mixing an epoxy resin with the above powder, and its radio wave absorption characteristics were evaluated. The results are shown in FIG. In a sample having a thickness of 3.3 to 19.3 mm, a loss of -20 dB or less was obtained with respect to radio waves in the region of 0.6 to 4.4 GHz. Compared with α-Fe / Y 2 O 3 , the absorption frequency in ε-Fe 3 N / Y 2 O 3 has shifted to the high frequency side, which is because hexagonal Fe is nitrided by nitriding iron that is cubic. This is because the magnetic anisotropy increased by increasing the magnetic anisotropy constant from 44 kA / M of α-Fe to 150 kA / M of ε-Fe 3 N.
[0027]
(Example 4)
An α-Fe / Fe 3 B / Y 2 O 3 composite containing Fe 3 B having crystal magnetic anisotropy similar to Fe 3 N described in Example 3 was produced. Here, boron is added at the time of sample preparation, and a nanocomposite wave absorbing material having a more uniform metal structure is evaluated from this amorphous material by utilizing the phenomenon that the quenched ribbon easily becomes amorphous by adding boron. Went.
[0028]
FIG. 8 shows the result of powder X-ray diffraction measurement of the produced Y 5 Fe 77.5 B 17.5 quenched ribbon. Only a broad peak peculiar to amorphous was seen in the diffraction pattern. The amorphous ribbon was treated and crystallized at 680 ° C. for 10 minutes in a helium atmosphere, and then heated at 300 ° C. for 2 hours in an oxygen stream to give an oxidative disproportionation treatment. The powder X-ray diffraction pattern of the obtained sample coincided with the pattern of α-Fe, Fe 3 B and Y 2 O 3 . The crystallite sizes of α-Fe, Fe 3 B, and Y 2 O 3 estimated from the half width of the diffraction peak were 30, 30 and 10 nm, respectively.
[0029]
A pellet molded body was obtained by mixing the resin with the above composite, and the radio wave absorption ability was measured. The results are shown in FIG. With respect to the sample having a thickness of 3 to 5 mm, a loss of −20 dB or less was obtained with respect to the electromagnetic wave of 3 to 5.5 GHz. The radio wave absorptivity of α-Fe / Fe 3 B / Y 2 O 3 is shifted to a higher frequency side than that of ε-Fe 3 N / Y 2 O 3 , which is the large magnetocrystalline anisotropy of Fe 3 B. (H A = 400 kA / m). In addition, the α-Fe / Fe 3 B / Y 2 O 3 nanocomposite has a smaller content of Y 2 O 3 serving as an insulating layer than the composites described in Examples 1, 2, and 3. Since good absorption characteristics were obtained, it is considered that high uniformity was obtained by producing a composite from an amorphous thin body.
[0030]
【The invention's effect】
As described above, in the present invention, a fine composite structure composed of a transition metal, a rare earth oxide, etc. is obtained by subjecting a metal ribbon having a uniform and fine structure to a disproportionation treatment such as hydrogenation and oxidation. Magnetic powder can be obtained, and by mixing this with a resin or the like, a high-performance radio wave absorber that can handle radio waves of several GHz can be obtained. In particular, due to the transition of the absorption frequency to the high frequency range accompanying the increase in the anisotropic magnetic field due to the incorporation of nitrogen, boron, carbon, etc. into transition metal magnetic materials, electromagnetic waves in a higher frequency range than conventional magnetic absorber magnetic powders. Can be effectively absorbed.
[Brief description of the drawings]
FIG. 1 is a manufacturing process diagram of a composite magnetic body and a radio wave absorber.
FIG. 2 is a powder X-ray diffraction pattern of α-Fe / Y 2 O 3 fine composite structure magnetic powder. (A) No treatment, (b) In a hydrogen stream, 600 ° C., 1 hour (c) In an oxygen stream, 250 ° C., 2 hours.
FIG. 3 is a radio wave absorption characteristic of α-Fe / Y 2 O 3 fine composite structure magnetic powder.
FIG. 4 is a powder X-ray diffraction pattern of FeCo / Y 2 O 3 fine composite structure magnetic powder. (A) No treatment, (b) In a hydrogen stream, 600 ° C., 3 hours (c) In an oxygen stream, 250 ° C., 2 hours.
FIG. 5 is a radio wave absorption characteristic of FeCo / Y 2 O 3 fine composite structure magnetic powder.
FIG. 6 is a powder X-ray diffraction pattern of ε-Fe 3 N / Y 2 O 3 fine composite structure magnetic powder. (A) No treatment, (b) In a hydrogen stream, 600 ° C., 1 hour, (c) In an oxygen stream, 250 ° C., 2 hours, (d) In an ammonia stream, 350 ° C., 7 hours.
FIG. 7 shows radio wave absorption characteristics of ε-Fe 3 N / Y 2 O 3 fine composite structure magnetic powder.
FIG. 8 is a powder X-ray diffraction pattern of α-Fe / Fe 3 B / Y 2 O 3 fine composite structure magnetic powder. (A) No treatment, (b) Helium atmosphere, 680 ° C., 10 minutes, (c) Oxygen stream, 300 ° C., 2 hours.
FIG. 9 shows radio wave absorption characteristics of α-Fe / Fe 3 B / Y 2 O 3 fine composite structure magnetic powder.

Claims (5)

希土類(R)−遷移金属(TM)系または希土類(R)―遷移金属(TM)−軽典型元素(LM)系合金または金属間化合物の融液を介して、液体急冷法により薄帯となし、これらを水素あるいは酸素を別々に含む雰囲気中、室温から1,000℃で1分から100時間処理することで、水素化または酸化による不均化処理により形成される単体の遷移金属または遷移金属間の合金、もしくは遷移金属−軽典型元素間の化合物を主成分とするナノサイズ磁性体と希土類酸化物等から成る、GHz帯域対応電波吸収体用微細複合構造磁性体粉末。但し、R= Y; TM=Fe, Co; LM=Bとし、各元素群よりそれぞれ1種以上含むことを特徴とする。A ribbon is formed by a liquid quenching method through a melt of rare earth (R) -transition metal (TM) or rare earth (R) -transition metal (TM) -light typical element (LM) alloy or intermetallic compound. In the atmosphere containing hydrogen or oxygen separately, these are treated at room temperature to 1,000 ° C. for 1 minute to 100 hours to form a single transition metal or transition metal formed by disproportionation treatment by hydrogenation or oxidation A fine composite structure magnetic substance powder for a radio wave absorber for a GHz band, comprising a nano-size magnetic substance mainly composed of a compound of the above or a transition metal-light typical element compound and a rare earth oxide. However, R = Y; TM = Fe, Co; LM = B, and one or more elements are included from each element group. 前記磁性体粉末の作製において、液体急冷法により作製される薄帯が一部もしくは全体としてアモルファス状であり、これに続く真空もしくは不活性雰囲気中での300から1,000℃、1秒から100時間の結晶化処理、または請求項1記載の不均化処理により形成された均一な粒径数百nm以下の粒子から構成される、GHz帯域対応電波吸収体用微細複合構造磁性体粉末。In the production of the magnetic powder, a thin ribbon produced by a liquid quenching method is partly or entirely amorphous, and is subsequently subjected to 300 to 1,000 ° C. in a vacuum or an inert atmosphere, from 1 second to 100. A fine composite structure magnetic powder for a radio wave absorber for a GHz band, which is composed of particles having a uniform particle size of several hundred nm or less formed by a time crystallization treatment or a disproportionation treatment according to claim 1. 請求項1および2記載の微細複合構造磁性体粉末を、窒素もしくはアンモニアを含む気体雰囲気中で加熱処理することで、上記複合体中の金属または合金成分と窒素とを化合せしめたGHz帯域対応電波吸収体用高異方性磁化型微細複合構造磁性体粉末。A radio wave corresponding to a GHz band obtained by combining the metal or alloy component in the composite and nitrogen by heat-treating the fine composite structure magnetic powder according to claim 1 and 2 in a gas atmosphere containing nitrogen or ammonia. Highly anisotropic magnetic fine composite structure magnetic powder for absorber. 上記の磁性体のうち少なくも1種以上を単独、もしくは複数を、エボキシ等の有機樹脂またはゴムコンパウンドと混合し、所定のGHz帯域において吸収能を付与せしめたシート、ボードもしくはその他立体形状の電波吸収体。A sheet, board, or other three-dimensional radio wave in which at least one or more of the above magnetic materials are mixed with an organic resin such as eboxy or a rubber compound to give absorption capability in a predetermined GHz band. Absorber. 請求項4において、本発明によって製造されるGHz帯域対応電波吸収体用微細複合構造磁性体粉末のうち、少なくとも1種以上の磁性体粉末に加えて、既製の鉄粉、炭素粉、誘電体粉等を加え、所定のGHz帯域において吸収能を付与せしめたシート、ボードもしくはその他立体形状の電波吸収体。5. In addition to at least one kind of magnetic powder among the fine composite structure magnetic powder for a radio wave absorber for GHz band manufactured by the present invention according to claim 4, a ready-made iron powder, carbon powder, dielectric powder Etc., and a sheet, board or other three-dimensional wave absorber that has been given absorption capability in a predetermined GHz band.
JP2003163587A 2003-06-09 2003-06-09 FINE COMPOSITE STRUCTURE MAGNETIC SUBSTANCE ABSORBING GHz BAND RADIO WAVE AND RADIO WAVE ABSORBING MATERIAL Pending JP2005005286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003163587A JP2005005286A (en) 2003-06-09 2003-06-09 FINE COMPOSITE STRUCTURE MAGNETIC SUBSTANCE ABSORBING GHz BAND RADIO WAVE AND RADIO WAVE ABSORBING MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003163587A JP2005005286A (en) 2003-06-09 2003-06-09 FINE COMPOSITE STRUCTURE MAGNETIC SUBSTANCE ABSORBING GHz BAND RADIO WAVE AND RADIO WAVE ABSORBING MATERIAL

Publications (1)

Publication Number Publication Date
JP2005005286A true JP2005005286A (en) 2005-01-06

Family

ID=34090664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003163587A Pending JP2005005286A (en) 2003-06-09 2003-06-09 FINE COMPOSITE STRUCTURE MAGNETIC SUBSTANCE ABSORBING GHz BAND RADIO WAVE AND RADIO WAVE ABSORBING MATERIAL

Country Status (1)

Country Link
JP (1) JP2005005286A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070718A (en) * 2005-09-06 2007-03-22 Santoku Corp Porous iron powder, method for producing porous iron powder, and radio wave absorber
WO2008029861A1 (en) * 2006-09-01 2008-03-13 The University Of Tokyo Magnetic crystal for radio wave absorbing material and radio wave absorbent
JP2008258601A (en) * 2007-03-09 2008-10-23 Toshiba Corp Core-shell type magnetic particle, high-frequency magnetic material and magnetic sheet
WO2008136391A1 (en) 2007-04-27 2008-11-13 Asahi Kasei Kabushiki Kaisha Magnetic material for high frequency wave, and method for production thereof
JP2009224414A (en) * 2008-02-20 2009-10-01 Univ Of Tokyo Radio wave absorption material, radio wave absorber using the same, and electromagnetic wave absorption rate measurement method
JP2009239153A (en) * 2008-03-28 2009-10-15 Toshiba Corp High-frequency magnetic material and method of manufacturing the same
WO2013183913A1 (en) * 2012-06-04 2013-12-12 주식회사 아모센스 Magnetic field shielding sheet for digitizer, method for manufacturing same, and portable terminal device using same
CN105837874A (en) * 2016-04-08 2016-08-10 苏州捷德瑞精密机械有限公司 A nanometer magnetic iron-based absorbing material and a preparing method thereof
CN106028768A (en) * 2016-05-17 2016-10-12 国网重庆市电力公司电力科学研究院 Iron-plated graphene and preparation method
JP2019110181A (en) * 2017-12-18 2019-07-04 国立大学法人室蘭工業大学 Electromagnetic wave absorbing powder, electromagnetic wave absorbing composition, electromagnetic wave absorber, and paint
CN116154481A (en) * 2022-11-22 2023-05-23 北京七星飞行电子有限公司 Preparation method of wave-absorbing material coating

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070718A (en) * 2005-09-06 2007-03-22 Santoku Corp Porous iron powder, method for producing porous iron powder, and radio wave absorber
WO2008029861A1 (en) * 2006-09-01 2008-03-13 The University Of Tokyo Magnetic crystal for radio wave absorbing material and radio wave absorbent
JP2008277726A (en) * 2006-09-01 2008-11-13 Univ Of Tokyo Magnetic crystal for radio wave absorbing material and radio wave absorber
CN103956246B (en) * 2006-09-01 2016-11-23 国立大学法人东京大学 Electric wave absorbing materials magnetic crystal and wave absorber
US8072365B2 (en) 2006-09-01 2011-12-06 The University Of Tokyo Magnetic crystal for electromagnetic wave absorbing material and electromagnetic wave absorber
US8703282B2 (en) 2007-03-09 2014-04-22 Kabushiki Kaisha Toshiba Core-shell type magnetic particle and high-frequency magnetic material
JP2008258601A (en) * 2007-03-09 2008-10-23 Toshiba Corp Core-shell type magnetic particle, high-frequency magnetic material and magnetic sheet
WO2008136391A1 (en) 2007-04-27 2008-11-13 Asahi Kasei Kabushiki Kaisha Magnetic material for high frequency wave, and method for production thereof
JP2009224414A (en) * 2008-02-20 2009-10-01 Univ Of Tokyo Radio wave absorption material, radio wave absorber using the same, and electromagnetic wave absorption rate measurement method
US8354037B2 (en) 2008-03-28 2013-01-15 Kabushiki Kaisha Toshiba High-frequency magnetic material and method of manufacturing the same
JP2009239153A (en) * 2008-03-28 2009-10-15 Toshiba Corp High-frequency magnetic material and method of manufacturing the same
WO2013183913A1 (en) * 2012-06-04 2013-12-12 주식회사 아모센스 Magnetic field shielding sheet for digitizer, method for manufacturing same, and portable terminal device using same
US9392735B2 (en) 2012-06-04 2016-07-12 Amosense Co., Ltd. Magnetic field shielding sheet for digitizer and method of manufacturing the same and portable terminal device using the same
CN105837874A (en) * 2016-04-08 2016-08-10 苏州捷德瑞精密机械有限公司 A nanometer magnetic iron-based absorbing material and a preparing method thereof
CN106028768A (en) * 2016-05-17 2016-10-12 国网重庆市电力公司电力科学研究院 Iron-plated graphene and preparation method
JP2019110181A (en) * 2017-12-18 2019-07-04 国立大学法人室蘭工業大学 Electromagnetic wave absorbing powder, electromagnetic wave absorbing composition, electromagnetic wave absorber, and paint
JP7176714B2 (en) 2017-12-18 2022-11-22 国立大学法人室蘭工業大学 Electromagnetic wave absorbing powder, electromagnetic wave absorbing composition, electromagnetic wave absorber and paint
CN116154481A (en) * 2022-11-22 2023-05-23 北京七星飞行电子有限公司 Preparation method of wave-absorbing material coating
CN116154481B (en) * 2022-11-22 2023-08-18 北京七星飞行电子有限公司 Preparation method of wave-absorbing material coating

Similar Documents

Publication Publication Date Title
JP6472939B2 (en) Soft magnetic powder, Fe-based nanocrystalline alloy powder, magnetic parts and dust core
JP5831866B2 (en) Ferromagnetic particle powder and method for producing the same, anisotropic magnet, bonded magnet, and compacted magnet
CN108376598B (en) Soft magnetic alloy and magnetic component
CN109273185B (en) Method for preparing magnetic powder core by using iron-based nanocrystalline alloy powder
CN108376597B (en) Soft magnetic alloy and magnetic component
JP5924657B2 (en) Method for producing ferromagnetic iron nitride particle powder, anisotropic magnet, bonded magnet and dust magnet
JP2004349585A (en) Method of manufacturing dust core and nanocrystalline magnetic powder
TWI697571B (en) Soft magnetic alloys and magnetic parts
CN108461245B (en) Soft magnetic alloy and magnetic component
JP6530164B2 (en) Nanocrystalline soft magnetic alloy powder and dust core using the same
CN108022709B (en) Soft magnetic alloy and magnetic component
TW201817896A (en) Soft magnetic alloy and magnetic device
JP6632702B2 (en) Method for producing Fe-Co alloy powder
JP2005005286A (en) FINE COMPOSITE STRUCTURE MAGNETIC SUBSTANCE ABSORBING GHz BAND RADIO WAVE AND RADIO WAVE ABSORBING MATERIAL
TW201930609A (en) Soft magnetic alloy and magnetic device
CN109628845B (en) Soft magnetic alloy and magnetic component
JPWO2020196608A1 (en) Amorphous alloy strip, amorphous alloy powder, nanocrystalline alloy dust core, and nanocrystal alloy dust core manufacturing method
JP2002294413A (en) Magnet material and manufacturing method therefor
JP3779404B2 (en) Permanent magnet materials, bonded magnets and motors
JP2006156543A (en) Manufacture of nano complex magnetic particle by physical mixture, and electromagnetic wave absorber obtained thereby
KR20190119260A (en) Fe-Al-X SYSTEM ALLOY FOR ELECTROMAGENTIC WAVE ABSORPTION WITH HIGH THERMAL CONDUCTIVITY AND MAGNETISM, AND METHOD FOR MANUFACTURING POWDER OF SAID ALLOY
JP4421185B2 (en) Magnet materials and bonded magnets using them
CN110033917B (en) Soft magnetic alloy and magnetic component
CN116356221A (en) In-situ synthesized iron-based amorphous nanocrystalline alloy ribbon
WO2020137542A1 (en) Sintered body and method for producing same