JP2005003043A - Linear motion guide bearing device - Google Patents

Linear motion guide bearing device Download PDF

Info

Publication number
JP2005003043A
JP2005003043A JP2003165426A JP2003165426A JP2005003043A JP 2005003043 A JP2005003043 A JP 2005003043A JP 2003165426 A JP2003165426 A JP 2003165426A JP 2003165426 A JP2003165426 A JP 2003165426A JP 2005003043 A JP2005003043 A JP 2005003043A
Authority
JP
Japan
Prior art keywords
rolling element
rolling
bearing device
linear motion
guide bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003165426A
Other languages
Japanese (ja)
Inventor
Nobuhide Kurachi
信秀 倉知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2003165426A priority Critical patent/JP2005003043A/en
Publication of JP2005003043A publication Critical patent/JP2005003043A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bearings For Parts Moving Linearly (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a linear motion guide bearing device capable of embodying its slider body in a lightweight construction without lowering the device rigidity. <P>SOLUTION: The linear motion guide bearing device uses cylindrical rollers 6 as its rolling elements and is furnished with four rows of rolling grooves 3 and 5, two upper and two lower, on each side and four rolling element passages 8a, two upper and two lower, on each side. That portion of the slider body 2A which is located below a hole 7 where the upper one 8a of the two rolling element passages 8a is formed, is divided, and this portion is made from another member 30 having a smaller specific gravity than that of the slider body 2A. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば産業機械分野等に用いられる直動案内軸受装置に関する。
【0002】
【従来の技術】
従来のこの種の直動案内軸受装置としては、例えば図17に示すものが知られている。
この直動案内軸受装置は、軸方向に延びる案内レール1と、該案内レール1上に軸方向に相対移動可能に跨架されたスライダ2とを備えている。
案内レール1の幅方向の両側面にはそれぞれ軸方向に延びる転動体転動溝3が片側上下二条列ずつ、合計4条列形成されており、スライダ2のスライダ本体2Aには、その両袖部4の内側面にそれぞれ転動体転動溝3に対向する転動体転動溝5が形成されている。
【0003】
両転動体転動溝3,5の間には転動体としての多数の円筒ころ6が転動自在に装填され、これらの円筒ころ6の転動を介してスライダ2が案内レール1上を軸方向に沿って相対移動できるようになっている。
この移動につれて、案内レール1とスライダ2との間に介在する円筒ころ6は転動してスライダ2の軸方向の端部に移動するが、スライダ2を軸方向に継続移動させていくためには、これらの円筒ころ6を無限に循環させる必要がある。
【0004】
このため、スライダ本体2Aの両側の袖部4内にそれぞれ軸方向に貫通する上下二つ(合計4つ)の孔7を形成して該孔7に内部が円筒ころ6の通路(転動体通路)8aとされた循環チューブ8を嵌め込むと共に、スライダ本体2Aの軸方向の両端にそれぞれ転動体循環部品としての一対のエンドキャップ9をねじ等を介して固定し、このエンドキャップ9に上記両転動体転動溝3,5間と上記転動体通路8aとを連通する半円弧状に湾曲した方向転換路(図示せず)を形成することにより、円筒ころ6の無限循環軌道を形成している。
なお、図において符号20は、円筒ころ同士の直接接触を防止してスライダ2の走行を滑らかにすると共に、走行中の騒音低減を図るべく、互いに隣り合う円筒ころ6間に介装されたセパレータ20である。
【0005】
【発明が解決しようとする課題】
ところで、上記従来の直動案内軸受装置においては、転動体としてころ6を用いているため、スライダ本体2Aに外部から上方向の引張荷重や下方向の圧縮荷重が加わった場合、図18及び図19に示すように、スライダ本体2Aが変形して袖部4が開いて逃げ、結果として装置剛性が低くなる。これは、ころ6はボールに比べ転動体剛性が高く、装置剛性に対して相対的にスライダ本体2Aの剛性の寄与率が高いためで、転動体としてころを用いた直動案内軸受装置に特に顕著な現象である。
【0006】
従って、装置剛性を高くするためには、スライダ本体2Aの剛性を高くする必要がある。そのため、従来においては、スライダ本体2Aの袖部4の肉厚を全体的に厚くしており、スライダ本体2Aの重量が転動体としてボールを用いた直動案内軸受装置のスライダ本体に比べて大きいという問題がある。
本発明はこのような不都合を解消するためになされたものであり、装置剛性を下げることなくスライダ本体の軽量化を図ることができる直動案内軸受装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る発明は、両側部に軸方向に延びる転動体転動溝を有して軸方向に延長された案内レールと、該案内レールの前記転動体転動溝に対向する転動体転動溝を有し、これらの両転動体転動溝間に挿入された転動体としての多数のころの転動を介して軸方向に沿って相対移動可能に前記案内レールに跨架されたスライダとを備え、前記スライダは、軸方向に貫通する孔内に転動体通路が設けられたスライダ本体と、前記両転動体転動溝間と前記転動体通路とを連通する湾曲状の方向転換路を有して前記スライダ本体の軸方向の両端面に固定された一対のエンドキャップとを具備し、更に、前記両転動体転動溝が片側上下二条列で合計4条列とされると共に前記転動体通路が片側上下二つずつで合計4つとされた直動案内軸受装置であって、
前記スライダ本体の上下二つの前記転動体通路の内の上側の転動体通路が設けられる前記孔より下側の部分を分割して該分割部分を該スライダ本体より比重の小さい別部材としたことを特徴とする。
【0008】
請求項2に係る発明は、請求項1において、前記別部材に分割する位置を、前記上側の転動体通路が設けられる前記孔と前記下側の転動体通路が設けられる前記孔との中央位置より下側に配置したことを特徴とする。
請求項3に係る発明は、請求項1又は2において、前記別部材に分割する位置を、前記下側の転動体通路が設けられる前記孔の周方向の上側部より下側に配置したことを特徴とする。
請求項4に係る発明は、請求項1〜3のいずれか一項において、前記別部材を合成樹脂製としたことを特徴とする。
請求項5に係る発明は、請求項1〜4のいずれか一項において、前記別部材と前記エンドキャップを一体の部材としたことを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態の一例を図を参照して説明する。図1は本発明の実施の形態の一例である直動案内軸受装置を説明するための説明図、図2は図1の直動案内軸受装置のスライダ本体を示す分解図、図3は図2で別部材を取り付ける前のスライダ本体に上方向の荷重を加えたときの、該スライダ本体の変形とひずみ分布を示す説明図、図4は図2で別部材を取り付ける前のスライダ本体に下方向の荷重を加えたときの、該スライダ本体の変形とひずみ分布を示す説明図、図5〜図10は本発明の他の実施の形態である直動案内軸受装置のスライダ本体を示す図、図11は別部材に分割する位置を変えたときのスライダ本体の袖部の開き方向の変位を示すグラフ図、図12〜図16は別部材の分割位置を変えたときのスライダ本体の形状を示す説明図である。なお、この実施の形態では、既に図17で説明した従来の直動案内軸受装置との相違点についてのみ説明し、図17と重複する部分等については符号を流用する。
【0010】
先に図18で述べたように、スライダ本体2Aに上方向の荷重が加わるとき、スライダ本体2Aの上側の転動体転動溝5でこの荷重を受け、スライダ本体2Aの袖部4が外側に開いて逃げ、装置剛性は低くなる。このとき、スライダ本体2Aの変形とひずみ分布は、上側の孔7の周辺の変形やひずみが大きく、下側の孔7付近は変形に関与していない。
【0011】
一方、図19で述べたように、スライダ本体2Aに下方向の荷重が加わるとき、スライダ本体2Aの下側の転動体転動溝5でこの荷重を受け、スライダ本体2Aの袖部4が外側に開いて逃げ、装置剛性は低くなる。このとき、スライダ本体2Aの変形とひずみ分布は、上側の孔7の周辺の変形やひずみが大きく、下側の孔7付近は変形に関与していない。
【0012】
従って、図3及び図4に示すように、スライダ本体2Aの下側の孔7付近の肉部を切除しても、スライダ本体2Aの剛性はほとんど変化せず、装置剛性も低くならない。
そこで、この実施の形態では、図1及び図2に示すように、スライダ本体2Aの上下二つの転動体通路8aの内の上側の転動体通路8aが設けられる孔7より下側の部分を分割して該分割部分を該スライダ本体2Aより比重の小さい例えば合成樹脂製の別部材30とし、該別部材30に下側の孔7を形成している。この場合、別部材30に分割する位置は、上側の孔7と下側の孔7との中央位置より下側に配置するのが好ましく、下側の孔7の周方向の上側部より下側に配置すると更に好ましい。
【0013】
図11は、別部材30に分割する位置を変えたときのスライダ本体2Aの袖部4の開き方向の変位を示したものである。図中横軸の分割位置は、上側の孔7と下側の孔7との中央位置を分割位置0(図14参照)、上側の孔7の周方向の下側部を分割位置1(図15参照)、下側の孔7の周方向の上側部を分割位置−1(図13参照)として無次元化している。なお、図12は分割位置が−5.44、図16は分割位置が4.85でいずれも本発明外である。
【0014】
一方、図11の縦軸の変位は、下側の孔7部分を分割しないスライダ本体2A(図12参照)に所定の荷重を加えたときの袖部4の上側転動体転動溝5の開き方向変位量を1として無次元化している。この上側転動体転動溝5の開き方向変位はスライダ本体2Aに引張荷重が作用したときの装置剛性に関わり、下側転動体転動溝5の開き方向変位はスライダ本体2Aに圧縮荷重が作用したときの装置剛性に関わる。
【0015】
図11から判るように、上側転動体転動溝5の開き方向変位は、分割位置が上側の孔7と下側の孔7との中央位置(分割位置0)より上側にあると値が大きくなるが、分割位置が上側の孔7と下側の孔7との中央位置(分割位置0)より下側にあるとき、値が小さいので、引張荷重に対して装置剛性の低下が小さい。
一方、下側転動体転動溝5の開き方向変位は、分割位置が下側の孔7の周方向の上側部(分割位置−1)より上側にあると値が大きくなるが、分割位置が下側の孔7の周方向の上側部(分割位置−1)より下側にあるとき、値が小さいので、圧縮荷重に対して装置剛性の低下が小さい。
【0016】
このようにこの実施の形態では、スライダ本体2Aの上下二つの転動体通路8aの内の上側の転動体通路8aが設けられる孔7より下側の部分を分割して該分割部分を該スライダ本体2Aより比重の小さい例えば合成樹脂製の別部材30としているので、装置剛性を下げることなくスライダ本体2Aの軽量化を図ることができる。
【0017】
また、別部材30を合成樹脂製とすることで、鋼材への孔7の長穴加工をなくすことができるのでコストダウンを図ることができる。
なお、本発明の直動案内軸受装置は上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。
例えば、上記実施の形態では、角形のスライダ本体2Aを例に採ったが、これに代えて、図5〜図7、或いは図8〜図10に示すように、フランジ形のスライダ本体2Aに本発明を適用してもよいのは勿論である。なお、図7及び図10は別部材30を小さくしてより軽量化を図った例である。
また、別部材30とエンドキャップ9を一体の部材とすることで、部品点数を削減して取付作業の効率化を図ることができる。
【0018】
【発明の効果】
上記の説明から明らかなように、請求項1〜3の発明によれば、スライダ本体の上下二つの転動体通路の内の上側の転動体通路が設けられる孔より下側の部分を分割して該分割部分を該スライダ本体より比重の小さい別部材としているので、装置剛性を下げることなくスライダ本体の軽量化を図ることができる。
請求項4の発明では、請求項1〜3のいずれか一項の発明に加えて、前記別部材を合成樹脂製とすることで、鋼材への孔の長穴加工をなくすことができるのでコストダウンを図ることができる。
請求項5の発明では、請求項1〜4のいずれか一項の発明に加えて、前記別部材と前記エンドキャップを一体の部材とすることで、部品点数を削減して取付作業の効率化を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例である直動案内軸受装置を説明するための説明図である。
【図2】図1の直動案内軸受装置のスライダ本体を示す分解図である。
【図3】図2で別部材を取り付ける前のスライダ本体に上方向の荷重を加えたときの、該スライダ本体の変形とひずみ分布を示す説明図である。
【図4】図2で別部材を取り付ける前のスライダ本体に下方向の荷重を加えたときの、該スライダ本体の変形とひずみ分布を示す説明図である。
【図5】本発明の他の実施の形態である直動案内軸受装置のスライダ本体を示す説明図である。
【図6】図5のスライダ本体の分解図である。
【図7】図6の別部材の変形例を示す説明図である。
【図8】本発明の他の実施の形態である直動案内軸受装置のスライダ本体を示す説明図である。
【図9】図8のスライダ本体の分解図である。
【図10】図9の別部材の変形例を示す説明図である。
【図11】別部材に分割する位置を変えたときのスライダ本体の袖部の開き方向の変位を示すグラフ図である。
【図12】別部材の分割位置が−5.44の場合のスライダ本体の形状を示す説明図である。
【図13】別部材の分割位置が−1の場合のスライダ本体の形状を示す説明図である。
【図14】別部材の分割位置が0の場合のスライダ本体の形状を示す説明図である。
【図15】別部材の分割位置が1の場合のスライダ本体の形状を示す説明図である。
【図16】別部材の分割位置が4.85の場合のスライダ本体の形状を示す説明図である。
【図17】従来の直動案内軸受装置の一例を説明するための一部を切り欠いた図である。
【図18】従来の直動案内軸受装置のスライダ本体に上方向の荷重を加えたときの、該スライダ本体の変形とひずみ分布を示す説明図である。
【図19】従来の直動案内軸受装置のスライダ本体に下方向の荷重を加えたときの、該スライダ本体の変形とひずみ分布を示す説明図である。
【符号の説明】
1…案内レール
2…スライダ
2A…スライダ本体
3…転動体転動溝(案内レール側)
5…転動体転動溝(スライダ側)
6…円筒ころ
7…孔
8a…転動体通路
9…エンドキャップ
30…別部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a linear motion guide bearing device used, for example, in the industrial machine field.
[0002]
[Prior art]
As a conventional linear motion guide bearing device of this type, for example, the one shown in FIG. 17 is known.
This linear motion guide bearing device includes a guide rail 1 extending in the axial direction and a slider 2 straddling the guide rail 1 so as to be relatively movable in the axial direction.
On both side surfaces of the guide rail 1 in the width direction, rolling element rolling grooves 3 extending in the axial direction are formed in two rows on the upper and lower sides, for a total of four rows, and the slider body 2A of the slider 2 has both sleeves. The rolling element rolling grooves 5 that face the rolling element rolling grooves 3 are formed on the inner surface of the portion 4.
[0003]
A large number of cylindrical rollers 6 as rolling elements are movably loaded between the rolling grooves 3 and 5 of the rolling elements, and the slider 2 pivots on the guide rail 1 through the rolling of these cylindrical rollers 6. Relative movement along the direction is possible.
Along with this movement, the cylindrical roller 6 interposed between the guide rail 1 and the slider 2 rolls and moves to the end of the slider 2 in the axial direction, but the slider 2 continues to move in the axial direction. Needs to circulate these cylindrical rollers 6 indefinitely.
[0004]
For this reason, two upper and lower (total four) holes 7 penetrating in the axial direction are formed in the sleeves 4 on both sides of the slider body 2A, and the inside of the hole 7 is a path of the cylindrical roller 6 (rolling element path). And a pair of end caps 9 as rolling element circulation parts are fixed to both ends of the slider body 2A in the axial direction by screws or the like, and both the end caps 9 are fixed to the end cap 9 with the above-mentioned both ends. By forming a direction change path (not shown) curved in a semicircular arc shape that communicates between the rolling element rolling grooves 3 and 5 and the rolling element passage 8a, an infinite circulation track of the cylindrical roller 6 is formed. Yes.
In the figure, reference numeral 20 denotes a separator interposed between the cylindrical rollers 6 adjacent to each other in order to prevent the direct contact between the cylindrical rollers to smooth the traveling of the slider 2 and to reduce noise during traveling. 20.
[0005]
[Problems to be solved by the invention]
By the way, in the above-mentioned conventional linear motion guide bearing device, since the roller 6 is used as a rolling element, when an upward tensile load or a downward compression load is applied to the slider body 2A from the outside, FIG. 18 and FIG. As shown in FIG. 19, the slider main body 2A is deformed and the sleeve portion 4 is opened and escaped, resulting in a decrease in apparatus rigidity. This is because the roller 6 has a higher rolling element rigidity than the ball, and the contribution ratio of the rigidity of the slider body 2A is relatively high with respect to the apparatus rigidity. It is a remarkable phenomenon.
[0006]
Therefore, in order to increase the apparatus rigidity, it is necessary to increase the rigidity of the slider body 2A. Therefore, conventionally, the thickness of the sleeve portion 4 of the slider body 2A is generally increased, and the weight of the slider body 2A is larger than that of the slider body of the linear motion guide bearing device using balls as rolling elements. There is a problem.
The present invention has been made in order to eliminate such inconveniences, and an object of the present invention is to provide a linear motion guide bearing device capable of reducing the weight of the slider body without lowering the rigidity of the device.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is directed to a guide rail having axially extending rolling element rolling grooves extending on both sides, and the rolling element rolling of the guide rail. A rolling element rolling groove opposed to the rolling groove, and capable of relative movement along the axial direction through the rolling of a large number of rollers as rolling elements inserted between these rolling element rolling grooves. A slider straddling a guide rail, and the slider includes a slider body provided with a rolling element passage in a hole penetrating in the axial direction, and between the rolling element rolling grooves and the rolling element passage. A pair of end caps that have curved direction change paths that communicate with each other and are fixed to both end faces in the axial direction of the slider body. The rolling element passages are divided into 4 rows and 4 on each side. It was a linear motion guide bearing device,
Of the two upper and lower rolling element passages of the slider body, a portion below the hole in which the upper rolling element passage is provided is divided to make the divided portion a separate member having a specific gravity smaller than that of the slider body. Features.
[0008]
The invention according to claim 2 is the center position of the hole in which the upper rolling element passage is provided and the hole in which the lower rolling element passage is provided in the first part. It is arranged on the lower side.
The invention according to claim 3 is that, in claim 1 or 2, the position to be divided into the separate members is arranged below the upper side in the circumferential direction of the hole in which the lower rolling element passage is provided. Features.
The invention according to claim 4 is characterized in that, in any one of claims 1 to 3, the separate member is made of a synthetic resin.
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the separate member and the end cap are an integral member.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view for explaining a linear motion guide bearing device as an example of an embodiment of the present invention, FIG. 2 is an exploded view showing a slider main body of the linear motion guide bearing device of FIG. 1, and FIG. FIG. 4 is an explanatory view showing the deformation and strain distribution of the slider body when an upward load is applied to the slider body before attaching another member in FIG. 4, FIG. 4 shows the slider body before attaching another member in FIG. FIG. 5 to FIG. 10 are diagrams showing a slider main body of a linear motion guide bearing device according to another embodiment of the present invention, FIG. 11 is a graph showing the displacement in the opening direction of the sleeve portion of the slider main body when the position for dividing the separate member is changed, and FIGS. 12 to 16 show the shape of the slider main body when the dividing position of the separate member is changed. It is explanatory drawing. In this embodiment, only differences from the conventional linear motion guide bearing device already described with reference to FIG. 17 will be described, and reference numerals will be used for portions that overlap with FIG.
[0010]
As described above with reference to FIG. 18, when an upward load is applied to the slider body 2A, the load is received by the rolling element rolling groove 5 on the upper side of the slider body 2A, and the sleeve 4 of the slider body 2A is moved outward. It opens and runs away, and the rigidity of the device decreases. At this time, the deformation and strain distribution of the slider main body 2A are large in the deformation and strain around the upper hole 7, and the vicinity of the lower hole 7 is not involved in the deformation.
[0011]
On the other hand, as described in FIG. 19, when a downward load is applied to the slider body 2A, the load is received by the rolling element rolling groove 5 on the lower side of the slider body 2A, and the sleeve 4 of the slider body 2A is moved outward. Open and escape, and the rigidity of the device is lowered. At this time, the deformation and strain distribution of the slider main body 2A are large in the deformation and strain around the upper hole 7, and the vicinity of the lower hole 7 is not involved in the deformation.
[0012]
Therefore, as shown in FIGS. 3 and 4, even if the meat portion near the lower hole 7 of the slider main body 2A is cut, the rigidity of the slider main body 2A hardly changes and the apparatus rigidity does not decrease.
Therefore, in this embodiment, as shown in FIGS. 1 and 2, the portion below the hole 7 in which the upper rolling element passage 8a of the two upper and lower rolling element paths 8a of the slider body 2A is provided is divided. Then, the divided portion is a separate member 30 made of, for example, synthetic resin having a specific gravity smaller than that of the slider body 2A, and the lower hole 7 is formed in the separate member 30. In this case, it is preferable that the position of dividing into the separate member 30 is located below the center position of the upper hole 7 and the lower hole 7, and is lower than the circumferential upper part of the lower hole 7. It is more preferable to arrange in the above.
[0013]
FIG. 11 shows the displacement in the opening direction of the sleeve portion 4 of the slider main body 2A when the position of dividing into the separate member 30 is changed. In the drawing, the horizontal axis is divided into a division position 0 (see FIG. 14) at the center position of the upper hole 7 and the lower hole 7, and a lower position in the circumferential direction of the upper hole 7 (see FIG. 14). 15), the upper part in the circumferential direction of the lower hole 7 is made dimensionless as division position -1 (see FIG. 13). In FIG. 12, the division position is −5.44, and FIG. 16 is the division position 4.85, both of which are outside the present invention.
[0014]
On the other hand, the displacement of the vertical axis in FIG. 11 indicates that the upper rolling element rolling groove 5 of the sleeve 4 is opened when a predetermined load is applied to the slider body 2A (see FIG. 12) that does not divide the lower hole 7 portion. The direction displacement amount is set to 1 to make it dimensionless. The opening direction displacement of the upper rolling element rolling groove 5 is related to the rigidity of the apparatus when a tensile load is applied to the slider body 2A, and the opening direction displacement of the lower rolling element rolling groove 5 is a compression load acting on the slider body 2A. This is related to the rigidity of the device.
[0015]
As can be seen from FIG. 11, the opening direction displacement of the upper rolling element rolling groove 5 is large when the dividing position is above the center position (dividing position 0) between the upper hole 7 and the lower hole 7. However, since the value is small when the division position is below the center position (division position 0) between the upper hole 7 and the lower hole 7, the decrease in the apparatus rigidity against the tensile load is small.
On the other hand, the displacement in the opening direction of the lower rolling element rolling groove 5 increases when the dividing position is above the circumferential upper portion (dividing position-1) of the lower hole 7, but the dividing position is larger. Since the value is small when it is below the upper side portion (division position-1) in the circumferential direction of the lower hole 7, the decrease in the apparatus rigidity with respect to the compressive load is small.
[0016]
As described above, in this embodiment, the lower portion of the upper and lower two rolling element passages 8a of the slider body 2A is divided from the hole 7 provided with the upper rolling element passage 8a, and the divided portion is divided into the slider main body. Since the separate member 30 made of, for example, a synthetic resin having a specific gravity smaller than 2A is used, the weight of the slider body 2A can be reduced without lowering the apparatus rigidity.
[0017]
Moreover, since the separate member 30 is made of a synthetic resin, it is possible to eliminate the long hole processing of the hole 7 in the steel material, so that the cost can be reduced.
The linear guide bearing device of the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention.
For example, in the above embodiment, the rectangular slider body 2A is taken as an example, but instead of this, as shown in FIG. 5 to FIG. 7 or FIG. 8 to FIG. Of course, the invention may be applied. 7 and 10 are examples in which the separate member 30 is made smaller to reduce the weight.
Further, by making the separate member 30 and the end cap 9 as an integral member, the number of parts can be reduced and the efficiency of the mounting work can be improved.
[0018]
【The invention's effect】
As is apparent from the above description, according to the first to third aspects of the invention, the lower part of the upper and lower two rolling element passages of the slider body is divided from the hole provided with the upper rolling element passage. Since the divided portion is a separate member having a specific gravity smaller than that of the slider body, the slider body can be reduced in weight without reducing the rigidity of the apparatus.
In the invention of claim 4, in addition to the invention of any one of claims 1 to 3, since the separate member is made of a synthetic resin, it is possible to eliminate the oblong processing of the hole in the steel material. You can go down.
In the invention of claim 5, in addition to the invention of any one of claims 1 to 4, the separate member and the end cap are formed as an integral member, thereby reducing the number of parts and improving the efficiency of the mounting work. Can be achieved.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram for explaining a linear motion guide bearing device which is an example of an embodiment of the present invention.
2 is an exploded view showing a slider body of the linear guide bearing device of FIG. 1; FIG.
FIG. 3 is an explanatory diagram showing deformation and strain distribution of the slider body when an upward load is applied to the slider body before attaching another member in FIG. 2;
4 is an explanatory diagram showing deformation and strain distribution of the slider main body when a downward load is applied to the slider main body before attaching another member in FIG. 2. FIG.
FIG. 5 is an explanatory view showing a slider body of a linear guide bearing device according to another embodiment of the present invention.
6 is an exploded view of the slider main body of FIG. 5. FIG.
7 is an explanatory view showing a modified example of another member of FIG. 6. FIG.
FIG. 8 is an explanatory view showing a slider body of a linear guide bearing device according to another embodiment of the present invention.
9 is an exploded view of the slider main body of FIG. 8. FIG.
10 is an explanatory view showing a modified example of another member of FIG. 9. FIG.
FIG. 11 is a graph showing the displacement in the opening direction of the sleeve portion of the slider body when the position for dividing into different members is changed.
FIG. 12 is an explanatory diagram showing the shape of the slider body when the division position of another member is −5.44.
FIG. 13 is an explanatory diagram showing the shape of the slider body when the division position of another member is −1.
FIG. 14 is an explanatory diagram showing the shape of the slider body when the division position of another member is zero.
FIG. 15 is an explanatory diagram showing the shape of the slider body when the division position of another member is 1. FIG.
FIG. 16 is an explanatory diagram showing the shape of the slider body when the division position of another member is 4.85.
FIG. 17 is a partially cutaway view for explaining an example of a conventional linear motion guide bearing device.
FIG. 18 is an explanatory diagram showing deformation and strain distribution of a slider body when an upward load is applied to the slider body of a conventional linear motion guide bearing device.
FIG. 19 is an explanatory diagram showing deformation and strain distribution of the slider body when a downward load is applied to the slider body of the conventional linear motion guide bearing device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Guide rail 2 ... Slider 2A ... Slider main body 3 ... Rolling body rolling groove (guide rail side)
5. Rolling element rolling groove (slider side)
6 ... Cylindrical roller 7 ... Hole 8a ... Rolling element passage 9 ... End cap 30 ... Separate member

Claims (5)

両側部に軸方向に延びる転動体転動溝を有して軸方向に延長された案内レールと、該案内レールの前記転動体転動溝に対向する転動体転動溝を有し、これらの両転動体転動溝間に挿入された転動体としての多数のころの転動を介して軸方向に沿って相対移動可能に前記案内レールに跨架されたスライダとを備え、前記スライダは、軸方向に貫通する孔内に転動体通路が設けられたスライダ本体と、前記両転動体転動溝間と前記転動体通路とを連通する湾曲状の方向転換路を有して前記スライダ本体の軸方向の両端面に固定された一対のエンドキャップとを具備し、更に、前記両転動体転動溝が片側上下二条列で合計4条列とされると共に前記転動体通路が片側上下二つずつで合計4つとされた直動案内軸受装置であって、
前記スライダ本体の上下二つの前記転動体通路の内の上側の転動体通路が設けられる前記孔より下側の部分を分割して該分割部分を該スライダ本体より比重の小さい別部材としたことを特徴とする直動案内軸受装置。
A guide rail extending in the axial direction with rolling element rolling grooves extending in the axial direction on both sides, and a rolling element rolling groove facing the rolling element rolling groove of the guide rail, and A slider straddling the guide rail so as to be relatively movable along the axial direction through rolling of a large number of rollers as rolling elements inserted between both rolling element rolling grooves, A slider main body provided with a rolling element passage in a hole penetrating in the axial direction; and a curved direction changing passage that communicates between the rolling element rolling grooves and the rolling element passage. A pair of end caps fixed to both end faces in the axial direction, and further, the rolling element rolling grooves are arranged in four rows in one upper and lower two rows, and the rolling element passage is two in the upper and lower sides. It is a linear motion guide bearing device that is made up to four in total,
Of the two upper and lower rolling element passages of the slider body, a portion below the hole in which the upper rolling element passage is provided is divided to make the divided portion a separate member having a specific gravity smaller than that of the slider body. A linear motion guide bearing device.
前記別部材に分割する位置を、前記上側の転動体通路が設けられる前記孔と前記下側の転動体通路が設けられる前記孔との中央位置より下側に配置したことを特徴とする請求項1記載の直動案内軸受装置。The position of dividing into the separate members is arranged below a central position between the hole in which the upper rolling element passage is provided and the hole in which the lower rolling element passage is provided. The linear motion guide bearing device according to 1. 前記別部材に分割する位置を、前記下側の転動体通路が設けられる前記孔の周方向の上側部より下側に配置したことを特徴とする請求項1又は2記載の直動案内軸受装置。The linear motion guide bearing device according to claim 1 or 2, wherein a position where the lower rolling member passage is provided is located below the upper portion in the circumferential direction of the hole where the lower rolling member passage is provided. . 前記別部材を合成樹脂製としたことを特徴とする請求項1〜3のいずれか一項に記載の直動案内軸受装置。The linear motion guide bearing device according to any one of claims 1 to 3, wherein the separate member is made of a synthetic resin. 前記別部材と前記エンドキャップを一体の部材としたことを特徴とする請求項1〜4のいずれか一項に記載の直動案内軸受装置。The linear motion guide bearing device according to any one of claims 1 to 4, wherein the separate member and the end cap are formed as an integral member.
JP2003165426A 2003-06-10 2003-06-10 Linear motion guide bearing device Pending JP2005003043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003165426A JP2005003043A (en) 2003-06-10 2003-06-10 Linear motion guide bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003165426A JP2005003043A (en) 2003-06-10 2003-06-10 Linear motion guide bearing device

Publications (1)

Publication Number Publication Date
JP2005003043A true JP2005003043A (en) 2005-01-06

Family

ID=34091909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003165426A Pending JP2005003043A (en) 2003-06-10 2003-06-10 Linear motion guide bearing device

Country Status (1)

Country Link
JP (1) JP2005003043A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173648A (en) * 2013-03-07 2014-09-22 Nsk Ltd Linear guide device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173648A (en) * 2013-03-07 2014-09-22 Nsk Ltd Linear guide device

Similar Documents

Publication Publication Date Title
JP5686910B2 (en) Exercise guidance device
US7401978B2 (en) Linear motion guiding apparatus
JPH05280537A (en) Rolling guide unit
JP2006316886A (en) Linear guide device
JP2010106934A (en) Mono carrier
KR100814923B1 (en) Track roller guide
JP2005003043A (en) Linear motion guide bearing device
US7465093B2 (en) Linear guide apparatus
JP2005003044A (en) Linear motion guide bearing device
JP2005226761A5 (en)
JP4372320B2 (en) Combination of rollers, roller screw using the combination, and rolling guide device
JP5909848B2 (en) Linear motion guide bearing device
JP5327015B2 (en) Temporary shaft for linear motion guide device
JP2008223878A (en) Linear motion guide
TW200613655A (en) Linear guide
JP5909866B2 (en) Return guide and linear motion guide bearing device having the same
JP2009030718A (en) Linear guide
CN100416118C (en) Separator, linear guide using the separator and linear motion apparatus
JP2007107683A (en) Linear motion guide device
JP2005016553A (en) Linear motion guide bearing device
JP2005003157A (en) Linear motion guide device
JP2005201361A (en) Linear guide device
JP5566128B2 (en) Finite stroke type motion guide device
JP2006138386A (en) Linear motion guide bearing device
JP2013092216A (en) Guide device