JP2005002514A - Three-dimensional woven or knitted fabric or braid for composite material and method for producing the same and three-dimensional preform - Google Patents

Three-dimensional woven or knitted fabric or braid for composite material and method for producing the same and three-dimensional preform Download PDF

Info

Publication number
JP2005002514A
JP2005002514A JP2003168394A JP2003168394A JP2005002514A JP 2005002514 A JP2005002514 A JP 2005002514A JP 2003168394 A JP2003168394 A JP 2003168394A JP 2003168394 A JP2003168394 A JP 2003168394A JP 2005002514 A JP2005002514 A JP 2005002514A
Authority
JP
Japan
Prior art keywords
dimensional
composite material
dimensional woven
fiber
woven braid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003168394A
Other languages
Japanese (ja)
Inventor
Atsushi Nohara
敦 野原
Kazutami Mitani
和民 三谷
Tomoo Sano
智雄 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2003168394A priority Critical patent/JP2005002514A/en
Publication of JP2005002514A publication Critical patent/JP2005002514A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Woven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To develop a three-dimensional woven or knitted fabric or braid for composite materials for inexpensively producing a fiber-reinforced composite material having a complex shape having sufficient interlayer strength. <P>SOLUTION: In the three-dimensional woven or knitted fabric or braid composed of a reinforced fiber, all or a part of a loop yarn exposed on at least either one surface is cut. The three-dimensional preform is obtained by using the three-dimensional woven or knitted fabric or braid. The fiber-reinforced composite material is obtained by impregnating a three-dimensional preform with a resin and curing or solidifying the resin-impregnated preform. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、層間接着強度が向上した三次元繊維強化樹脂複合材料を低コストで製造するための三次元プリフォーム及びそれを用いて成形された三次元繊維強化樹脂系複合材料に関する。
【0002】
【従来の技術】
従来、複雑な形状の繊維強化複合材料は、強化繊維を一方向に並べるか或いは強化繊維の織物に半硬化状態の樹脂を含浸させてシート状にしたプリプレグを目的とする製品形状に合わせて積み重ねて成形する方法が行われてきた。
しかしながらこの成形方法では、プリプレグを所要の寸法に切り出して、製品形状を単純形状要素に分割した各要素を製品形状に積み重ねるレイアップ作業や、重ね合わせたプリプレグの間に取り込まれた空気を吸い出すデバルク作業等の予備成型工程を成形前に幾度も繰り返す必要がある。また、シート状中間材が積層されたものであるため、面方向に比べて層間(厚み方向)の強度が低くなるという問題がある。
【0003】
そこで、プリプレグの積層にかかる手間や、それにより成形した繊維強化複合材料の厚み方向の強度が発現し難いことを克服するために、プリプレグを用いない方法として、厚み方向を含めた立体的な方向に連続繊維を立体的に絡め合わせて製品形状の三次元織編組物を製造し、厚み方向の力学的強度をも補強するようにした三次元複合材料の開発が進められてきた。
しかし、このような三次元織編組物を用いた場合においても、複雑な立体形状を有する製品を製作するには、前記三次元織編組物を所要の寸法に切り出して、製品形状を単純形状要素に分割した要素毎の形状に積み重ねる作業が必要である。特に三次元織編組物を安価に製造するためには規格化が必要であり、その場合、どうしても接合部が生じてしまう。すなわち、三次元織編組物を用いた場合でも層間を生じ、その層間強度を上げるという課題があった。
【0004】
このような課題を解消し、製品の厚み方向の力学的強度を向上させるために、層間に加工を施す以下のような方法が知られている。その方法の一つは、繊維状熱可塑性樹脂を三次元織編組物に導入して層間の靭性を向上する方法である(例えば、特許文献1参照)。しかし、この方法では繊維状熱可塑性樹脂の導入に伴う製造コストの上昇という問題がある。また、他の方法は、二次元の炭素繊維シート表層面に炭素繊維を静電植毛したのち、該シートを積み重ねて三次元織編組物を形成する方法である(例えば、特許文献2参照)。この方法では、二次元の炭素繊維シートを積み重ね、ずれないように仮止めをした上で静電気を与えた別の炭素繊維短繊維を植毛しなければならず、その製造に時間と手間を要する。
【0005】
【特許文献1】
特開2001−303385号公報
【特許文献2】
特開平11−348160号公報
【0006】
【発明が解決しようとする課題】
本発明の目的は、三次元織編組物を用いた成形法において、三次元織編組物層間の補強をするための、層間補強材の導入コスト、時間、手間を低減させ、且つ、充分な三次元織編組物層間強度を有する複雑な形状の繊維強化複合材料を安価に製造することができる複合材料用三次元織編組物及びこの織編組物を用いて形成される成形品を開発することにある。
【0007】
【課題を解決するための手段】
すなわち、本発明は、下記1)〜4)項記載の複合材料用三次元織編組物、5)〜7)項記載の三次元プリフォームを提供するものであり、また、該三次元プリフォームに熱硬化性もしくは熱可塑性樹脂を含浸して、硬化もしくは固化した繊維強化複合材料を提供するものであり、さらには、ループ糸の切断による上記複合材料用三次元織編組物を製造する方法を提供するものである。
【0008】
1)強化繊維からなる複合材料用三次元織編組物であって、少なくともその一方の表面に露出しているループ糸の全部または一部が切断されたものであることを特徴とする複合材料用三次元織編組物。
2)式(1)で示される100mmあたりの切断されたループ糸の総断面積Sが、0.01mm以上のものである1)項記載の複合材料用三次元織編組物。
S(mm)=2×A×B×C・・・(1)
(A:強化繊維を構成するフィラメントの断面積(mm/本)、B:強化繊維のフィラメント数(本)、C:複合材料用三次元織編組物100mmあたりの切断されたループ糸の数)
【0009】
3)上記Sが、0.1mm以上のものである1)項または2)項に記載の複合材料用三次元織編組物。
4)強化繊維が、炭素繊維、黒鉛繊維、アラミド繊維、ガラス繊維、ボロン繊維又はPBO繊維から選ばれた少なくとも1種以上の繊維からなる1)項〜3)項記載の複合材料用三次元織編組物。
【0010】
5)上記複合材料用三次元織編組物のループ糸の切断された部分同士を接触させて、複合材料用三次元織編組物の相互位置を固定した三次元プリフォーム。
6)上記複合材料用三次元織編組物の、ループ糸が切断された部分とループ糸が切断されていない部分とを接触させて、複合材料用三次元織編組物の相互位置を固定した三次元プリフォーム。
7)ループ糸が切断されていない複合材料用三次元織編組物のループ糸部分と上記複合材料用三次元織編組物のループ糸が切断された部分とを接触させて、複合材料用三次元織編組物の相互位置を固定した三次元プリフォーム。
本発明により、外部から新たに層間補強材を導入するコストを必要とせずに、層間の補強された繊維強化複合材料からなる成形品を安価に提供することができる。
【0011】
【発明の実施の形態】
以下、本発明を詳細に説明する。
複合材料用三次元織編組物の構成:本発明で用いることができる三次元型の織編組物の形態はいかなるものも用いることができる。その一例として、図1に、3軸三次元型の織編組物の断面図を示した。3軸三次元型の織編組物の場合、X軸方向、Y軸方向およびZ軸方向に、強化繊維が並んでおり、X軸方向およびY軸方向の強化繊維は、通常の平織または綾織等の製織方法で製織された2次元織物と同じ構造をとっている。一方、Z軸方向の強化繊維は、X軸およびY軸に対して垂直方向に貫通して端部で往復して複数の積み重なった2次元織物を繋ぎ止める役割をはたしている。
また、5軸三次元型の織編組物の場合は、X軸方向およびY軸方向には3軸三次元型の織編組物と同様に2次元織物が配されているが、あとの強化繊維はX軸方向およびY軸方向の強化繊維を貫くようにZX軸方向、Z(−X)軸方向、ZY軸方向の3方向に並んでいる。
そして、これら2次元織物を貫く強化繊維は、いずれも端部で往復しており、三次元織編組物の表面付近でループ糸(輪)を形成している。
【0012】
強化繊維:本発明で好適に用いることのできる強化繊維としては、炭素繊維、黒鉛繊維、アラミド繊維、ガラス繊維、ボロン繊維又はPBO繊維等が挙げられる。また、これら強化繊維の複数を組み合わせて用いてもよい。特に、比強度、比弾性率が高い炭素繊維又は黒鉛繊維が好適に用いられる。弾性率200GPa以上、引張強度3500MPa以上、伸度1.7%以上の強化繊維が好ましい。
特に、引張強度4500MPa以上、伸度1.9%以上の高強度・高伸度の炭素繊維は充分な強度特性を発現する、という点で好ましい。ただし、ループ糸を構成する強化繊維は、表面で屈曲させる点からあまり高弾性率のものは好ましくなく、弾性率200GPa以上245GPa以下の繊維が好ましい。
【0013】
ループ糸の切断方法:ループ糸を切断して毛羽立たせた三次元織編組物を用いることにより、製品形状に合わせた後、マトリックス樹脂で固め、繊維強化複合材に形成された三次元織編組物の接合層間における強度を向上させる。ループ糸を切断する方法には特に制限が無いが、好適な例として、予め形成された三次元織物組物のループ糸をカッターで切断し起毛する方法、ループ糸をサンドペーパー等で研削して切断することで突出させる方法あるいはループ糸を回転刃で切断する方法等が考えられる。
ただし、100mmあたりの切断されたループ糸の切断側先端部の断面積が0.01mm未満では絡み合いが弱く、層間の接着強度の向上への寄与が少なくなるため、切断されたループ糸の切断側端部の総断面積は0.01mm以上、より好ましくは0.1mm以上であることが好ましい。
【0014】
ループ糸の切断面の総断面積の測定方法:ループ糸の切断面の総断面積Sは、光学顕微鏡を用いて、ループ糸を切断加工した三次元織編組物の表面を観察し、複合材料用三次元織編組物の表面積100mmあたりのループ糸の数を数え、その値から、次式(1)を用いて算出する。
S(mm)=2×A×B×C・・・(1)
(A:強化繊維を構成するフィラメントの断面積(mm/本)、B:強化繊維のフィラメント数(本)、C:複合材料用三次元織編組物100mmあたりの切断されたループ糸の数)
【0015】
三次元プリフォーム:本発明の三次元プリフォームは、上述の複合材料用三次元織編組物を用いて製造できる。本発明の三次元プリフォームの製造には、加熱や高圧を必要としない。複数個の複合材料用三次元織編組物のうち、一方の複合材料用三次元織編組物の切断加工されたループ糸が露出した部分を、他方の複合材料用三次元織編組物に手などで押し付けることで、切断されたループ糸が、他方の複合材料用三次元織編組物のループ糸と絡み合い、互いに相互位置が固定されて三次元プリフォームとなる。
【0016】
このとき、絡み合いによる層間接着強度が向上するので、一方の複合材料用三次元織編組物の切断加工されたループ糸が露出した面の切断側先端部の総表面積は、0.01mm以上、より好ましくは、0.1mm以上であることが好ましい。なお、複合材料用三次元織編組物に、別の複合材料用三次元織編組物が押し付けられる面のループ糸は、切断加工されていてもよく、切断加工されていなくとも問題はない。さらに、他方の複合材料用三次元織編組物として、本発明の複合材料用三次元織編組物とは異なる、ループ糸を有し、切断加工が施されていない複合材料用三次元織編組物を用いることも可能である。
【0017】
また、本発明の三次元プリフォームは、2個の複合材料用三次元織編組物の組合せに限定されるものではなく、3個以上組み合わせて所定の形状としたものであってもよい。例えば、本発明の複合材料用三次元織編組物Aの切断加工が施された部分を、本発明の複合材料用三次元織編組物Bの切断加工が施されていない部分に押し付けて相互位置を固定し、さらに、本発明の複合材料用三次元織編組物Bの切断加工が施された部分を複合材料用三次元織編組物Cに押し付ける、などを繰返して三次元プリフォームとすることもできる。
さらに応用として、1個の複合材料用三次元織編組物を折り曲げて、その複合材料用三次元織編組物の切断加工が施された部分を、同じ複合材料用三次元織編組物に押し付けて、折り曲げ形状に固定して、プリフォームとなすこともできる。
【0018】
繊維強化複合材料の製造方法:上記三次元プリフォームに樹脂を含浸して、金型内で硬化または固化することで、繊維強化複合材料を得ることができる。
三次元プリフォームにマトリックス樹脂を含浸する方法はいかなる方法でもよく、例えば、三次元プリフォームを金型内に配置して、金型内を減圧してから、金型内に低粘度化または融解したマトリックス樹脂を流し込む方法などがある。
【0019】
マトリックス樹脂:本発明の三次元織編組物またはプリフォームを用いて繊維強化複合材料を製造する際、そのマトリックス樹脂としては熱硬化性樹脂あるいは熱可塑性樹脂のいずれも用いることができる。繊維強化複合材料の成形を考慮すると、三次元プリフォームへの含浸のしやすさから、低粘度で含浸可能な熱硬化性樹脂からなるものが適している。
【0020】
熱硬化性樹脂組成物の主成分としては、アミン類、フェノール類を前駆体とするエポキシ系の樹脂や多官能性マレイミド系の樹脂が好ましく用いられる。具体的には、エポキシ系の樹脂としてはビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン、トリグリシジル−p−アミノフェノール、トリグリシジル−m−アミノフェノール、トリグリシジルアミノクレゾールの各種異性体、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂及びこれらの2種以上の混合物等を挙げることができる。
【0021】
また、多官能性マレイミド系の樹脂としては、1,2−ビスマレイミドエタン、1,6−ビスマレイミドヘキサン、1,12−ビスマレイミドドデカン、1,6−ビスマレイミド−(2,2,4−トリメチル)ヘキサン、1,6−ビスマレイミド−(2,4,4−トリメチル)ヘキサン、1,3―ビスマレイミドベンゼン、1,4−ビスマレイミドベンゼン、3,3´−または4,4´−ビスマレイミドジフェニルメタン、及びこれらの2種以上の混合物等が挙げられる。また用途によっては、不飽和ポリエステル樹脂やビニルエステル樹脂を用いることもできる。
【0022】
硬化剤の例としては、4,4−ジアミノジフェニルスルフォン、ジシアンジアミドをはじめとするアミン系硬化剤、またはメチルナジック酸、無水フタル酸などの酸無水物系硬化剤を挙げることができる。
さらに、これら熱硬化性樹脂組成物中には、硬化物に所望の特性を付与する変性剤、添加剤、あるいは硬化特性を調整する目的で硬化促進剤などを添加してもよい。
【0023】
一方、熱可塑性樹脂としては、ポリアミド樹脂、ポリエステル樹脂、ポリイミド、ポリエーテルスルフォン、ポリカーボネート、ポリプロピレン樹脂などを挙げることができる。
【0024】
【実施例】
次に、本発明を実施例によりさらに詳しく説明するが、本発明は、これらの実施例により限定されるものではない。
【0025】
<剥離強度試験>
実施例、比較例にて製造した複合材料用三次元織物の試験片について、SACMASRM8R−94法に則り、それぞれ剥離強度試験を実施した。
ショートビーム法(L/d=4 ノーズ3.2R サポート1.6R CHS1.27mm/min.)
試験装置:UTM−25T
具体的には図2に示すように、各評価用試験板を長さ25.4mm、幅6.4mm、厚み2.0mmに切り出したものを用いた。
【0026】
試験は、図2に示すように試験板4を台座部5で支持した後、反対側の中心位置に設けた負荷点8より荷重9を加え、試験板4の中間層が剥離する時の最大荷重を剥離強度として計測した。
剥離強度の計算には下記式(2)を用いた。
S=0.75・P/(b・d)・・・(2)
ここでS:剥離強度(MPa)、P:荷重(kN)、b:試験片の幅(mm)、d:試験板の厚み(mm)を意味する。
【0027】
実施例1:
経糸、緯糸用強化繊維として三菱レイヨン製炭素繊維、MR50K−5M(フィラメント数4500本、フィラメント径6μm、引張強度5490MPa、弾性率295GPa、伸度1.8%)、垂直糸用強化繊維として三菱レイヨン製炭素繊維TR40−1L(フィラメント数1000本、フィラメント径7μm、引張強度4700MPa、弾性率235GPa、伸度2%)を用い、三次元織物(5軸三次元構造)を製造した。この三次元織物100mmあたりのループ糸の数は平均で9個であった。この三次元織物の表面ループ糸を回転刃で切断し、切断加工されたループ糸の総断面積が0.24mmの三次元織物を得た
【0028】
この三次元織物2組を、切断加工した面同士を押し合わせてプリフォーミングして三次元プリフォームを得た。この三次元プリフォームを、三菱レイヨン(株)製ビスマレイミド系マトリックス樹脂(#2050)を用いて、側面に排気口を備えた外枠と底板からなる下金型内に、未反応樹脂の板を形成し、その上に補強用三次元織物を積層した三次元織編組物を置き、滑り可能な落とし蓋型の上金型を閉じて、三次元織編組物内の空気を側面の排気口から排出し、三次元織編組物内を真空に保持したまま100℃に加熱することで、液状樹脂を三次元織編組物の厚さ方向に流して含浸した。その後金型を180℃に加熱し、6時間かけて液状樹脂を硬化し、金型から複合材料を取り出した。その後232℃、6時間の熱風加熱を行なった後硬化し、繊維強化複合材料からなる評価用試験板を得た。
【0029】
実施例2:
実施例1の複合材料用三次元織編組物の表面ループ糸を切断し、切断された総断面積が1.12mmとなった三次元織編組物を得た。この三次元織編組物を用いて実施例1と同様にして繊維強化複合材料からなる評価用試験板を得た。
【0030】
実施例3:
実施例1の複合材料用三次元織編組物の表面ループ糸を切断し、切断された総断面積が1.38mmとなった三次元織編組物を得た。この三次元織編組物を用いて実施例1と同様にして繊維強化複合材料からなる評価用試験板を得た。
【0031】
比較例:
ループ糸の切断加工を行わない以外は、実施例1と同様にして、繊維強化複合材料からなる評価用試験板を得た。
実施例および比較例の各評価用試験板について行なった層間剥離強度試験の結果を表1に示す。
【0032】
【表1】

Figure 2005002514
【0033】
表1から明らかなように、台座部2と突起部3との間に切削加工を施さないものの場合では層間剥離強度は約65.9MPaであったが、パイル先端の総断面積が0.24mmのものは72.8MPa、パイル先端の総断面積が1.12mmでは84.1MPaという値を得、約31%の層間剥離強度の向上が確認された。パイル先端の総断面積が1.38mmのものは、86.6MPaと最も高い層間剥離強度を示した。
【0034】
【発明の効果】
以上詳細に説明したように、本発明により、強化繊維からなる複合材料用三次元織編組物において、少なくともその一方の表面の露出しているループ糸の一部、もしくは全部が切断加工した複合材料用三次元織編組物を用いることによって、低い加工コストによって層間を補強した繊維強化複合材料が提供される。
【図面の簡単な説明】
【図1】三次元織編組物及びループ糸切断加工例の断面図である。
【図2】剥離強度試験装置(UTM−25T)の概要図である。
【符号の説明】
1.三次元織編組物
2.回転刃
3.切断されたループ糸
4.試験板
5.台座部
6.圧子部
7.剥離点
8.負荷点
9.荷重の方向[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a three-dimensional preform for producing a three-dimensional fiber reinforced resin composite material having improved interlayer adhesive strength at a low cost, and a three-dimensional fiber reinforced resin composite material molded using the same.
[0002]
[Prior art]
Conventionally, fiber reinforced composite materials with complex shapes are stacked according to the product shape for which the prepregs are laid out in a sheet form by arranging reinforcing fibers in one direction or impregnating a semi-cured resin into a reinforcing fiber fabric. The molding method has been carried out.
However, in this molding method, the prepreg is cut out to the required dimensions, and the product shape is divided into simple shape elements, and the laid-up work of stacking the elements into the product shape, or the debulk that sucks out the air taken in between the superimposed prepregs It is necessary to repeat the preforming process such as work many times before molding. Further, since the sheet-like intermediate material is laminated, there is a problem that the strength of the interlayer (thickness direction) is lower than that in the plane direction.
[0003]
Therefore, in order to overcome the labor involved in the lamination of prepregs and the difficulty of expressing the strength in the thickness direction of the fiber-reinforced composite material formed thereby, a three-dimensional direction including the thickness direction is used as a method not using the prepreg. Development of a three-dimensional composite material in which continuous fibers are entangled three-dimensionally to produce a three-dimensional woven braid having a product shape and to reinforce the mechanical strength in the thickness direction has been promoted.
However, even when such a three-dimensional woven braid is used, in order to produce a product having a complicated three-dimensional shape, the three-dimensional woven braid is cut into a required dimension and the product shape is changed to a simple shape element. It is necessary to stack them in the shape of each element divided into two. In particular, in order to manufacture a three-dimensional woven braid at a low cost, standardization is necessary, and in that case, a joint portion is inevitably produced. That is, even when a three-dimensional woven braid is used, there is a problem that an interlayer is formed and the interlayer strength is increased.
[0004]
In order to solve such problems and improve the mechanical strength in the thickness direction of the product, the following methods for processing between layers are known. One of the methods is a method of improving the toughness between layers by introducing a fibrous thermoplastic resin into a three-dimensional woven braid (see, for example, Patent Document 1). However, this method has a problem of an increase in manufacturing cost accompanying the introduction of the fibrous thermoplastic resin. Another method is a method of electrostatically flocking carbon fibers on the surface of a two-dimensional carbon fiber sheet, and then stacking the sheets to form a three-dimensional woven braid (see, for example, Patent Document 2). In this method, two-dimensional carbon fiber sheets are stacked, temporarily fixed so as not to be displaced, and then another short carbon fiber having been charged with static electricity must be planted, which takes time and labor.
[0005]
[Patent Document 1]
JP 2001-303385 A [Patent Document 2]
Japanese Patent Laid-Open No. 11-348160
[Problems to be solved by the invention]
An object of the present invention is to reduce the introduction cost, time and labor of an interlayer reinforcing material for reinforcing a layer between three-dimensional woven braid layers in a molding method using a three-dimensional woven braid, and a sufficient third order To develop a three-dimensional woven braid for a composite material and a molded article formed using the woven braid, which can inexpensively manufacture a fiber-reinforced composite material having a complex shape having interlaminar strength of the original woven braid. is there.
[0007]
[Means for Solving the Problems]
That is, the present invention provides the three-dimensional woven braid for composite materials described in the following items 1) to 4), and the three-dimensional preform described in items 5) to 7). A fiber reinforced composite material impregnated with a thermosetting or thermoplastic resin to provide a cured or solidified fiber reinforced composite material, and further a method for producing a three-dimensional woven braid for a composite material by cutting a loop yarn. It is to provide.
[0008]
1) A three-dimensional woven braid for composite materials comprising reinforcing fibers, wherein all or part of the loop yarn exposed on at least one surface thereof is cut. 3D woven braid.
2) The three-dimensional woven braid for composite material according to 1), wherein the total cross-sectional area S of the looped yarn per 100 mm 2 represented by the formula (1) is 0.01 mm 2 or more.
S (mm 2 ) = 2 × A × B × C (1)
(A: Cross-sectional area of filaments constituting reinforcing fiber (mm 2 / piece), B: Number of filaments of reinforcing fiber (pieces), C: Cut loop yarn per 100 mm 2 of three-dimensional woven braid for composite material number)
[0009]
3) The three-dimensional woven braid for composite materials according to 1) or 2), wherein S is 0.1 mm 2 or more.
4) The three-dimensional weave for composite materials according to 1) to 3), wherein the reinforcing fiber is composed of at least one fiber selected from carbon fiber, graphite fiber, aramid fiber, glass fiber, boron fiber or PBO fiber. Braided.
[0010]
5) A three-dimensional preform in which the cut portions of the loop yarn of the three-dimensional woven braid for composite material are brought into contact with each other to fix the mutual position of the three-dimensional woven braid for composite material.
6) The tertiary of the three-dimensional woven braid for composite material in which the portion where the loop yarn is cut and the portion where the loop yarn is not cut are brought into contact with each other to fix the mutual position of the three-dimensional woven braid for composite material Former preform.
7) The loop yarn portion of the three-dimensional woven braid for composite material, in which the loop yarn is not cut, and the portion of the three-dimensional woven braid for composite material, where the loop yarn is cut, are brought into contact with each other. A three-dimensional preform that fixes the position of the woven braid.
According to the present invention, a molded article made of a fiber-reinforced composite material reinforced between layers can be provided at low cost without requiring the cost of newly introducing an interlayer reinforcement from the outside.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
Configuration of three-dimensional woven braid for composite material: Any three-dimensional woven braid can be used in the present invention. As an example, FIG. 1 shows a cross-sectional view of a three-axis three-dimensional woven braid. In the case of a three-axis three-dimensional woven braid, the reinforcing fibers are arranged in the X-axis direction, the Y-axis direction, and the Z-axis direction, and the reinforcing fibers in the X-axis direction and the Y-axis direction are ordinary plain weave or twill weave, etc. It has the same structure as a two-dimensional fabric woven by the weaving method. On the other hand, the reinforcing fibers in the Z-axis direction play a role of penetrating in the direction perpendicular to the X-axis and the Y-axis and reciprocating at the end portions to connect a plurality of stacked two-dimensional fabrics.
In the case of a five-axis three-dimensional woven braid, a two-dimensional fabric is arranged in the X-axis direction and the Y-axis direction in the same manner as the three-axis three-dimensional woven braid. Are arranged in three directions of ZX axis direction, Z (−X) axis direction, and ZY axis direction so as to penetrate the reinforcing fibers in the X axis direction and the Y axis direction.
The reinforcing fibers penetrating through these two-dimensional fabrics reciprocate at the ends, forming a loop yarn (ring) near the surface of the three-dimensional woven braid.
[0012]
Reinforcing fibers: Examples of the reinforcing fibers that can be suitably used in the present invention include carbon fibers, graphite fibers, aramid fibers, glass fibers, boron fibers, and PBO fibers. A plurality of these reinforcing fibers may be used in combination. In particular, carbon fibers or graphite fibers having high specific strength and specific elastic modulus are preferably used. Reinforcing fibers having an elastic modulus of 200 GPa or more, a tensile strength of 3500 MPa or more, and an elongation of 1.7% or more are preferable.
In particular, high strength and high elongation carbon fibers having a tensile strength of 4500 MPa or more and an elongation of 1.9% or more are preferable in that they exhibit sufficient strength characteristics. However, the reinforcing fiber constituting the loop yarn is not preferably one having a very high elastic modulus from the viewpoint of bending on the surface, and a fiber having an elastic modulus of 200 GPa to 245 GPa is preferable.
[0013]
Loop yarn cutting method: 3D woven braid formed into a fiber reinforced composite material by using a 3D woven braid that is cut and fluffed to match the shape of the product, then solidified with matrix resin The strength between the bonding layers is improved. There is no particular limitation on the method of cutting the loop yarn, but as a suitable example, a method of cutting and raising the loop yarn of a three-dimensional fabric assembly formed in advance with a cutter, grinding the loop yarn with sandpaper etc. A method of projecting by cutting or a method of cutting a loop yarn with a rotary blade can be considered.
However, the cross-sectional area of the cutting side tip of the loop yarn is cut per 100 mm 2 is weak entanglement is less than 0.01 mm 2, since the contribution to the improvement of the adhesion strength between the layers is reduced, the cutting loop yarn The total cross-sectional area of the cut side end is preferably 0.01 mm 2 or more, more preferably 0.1 mm 2 or more.
[0014]
Method for measuring the total cross-sectional area of the cut surface of the loop yarn: The total cross-sectional area S of the cut surface of the loop yarn is obtained by observing the surface of the three-dimensional woven braid obtained by cutting the loop yarn using an optical microscope. The number of loop yarns per surface area of 100 mm 2 of the three-dimensional woven braid for use is counted, and the value is calculated using the following equation (1).
S (mm 2 ) = 2 × A × B × C (1)
(A: Cross-sectional area of filaments constituting reinforcing fiber (mm 2 / piece), B: Number of filaments of reinforcing fiber (pieces), C: Cut loop yarn per 100 mm 2 of three-dimensional woven braid for composite material number)
[0015]
Three-dimensional preform: The three-dimensional preform of the present invention can be manufactured using the above-described three-dimensional woven braid for composite materials. The production of the three-dimensional preform of the present invention does not require heating or high pressure. Of a plurality of three-dimensional woven braids for composite materials, a portion of one of the three-dimensional woven braids for composite material exposed to the cut loop yarn is handed to the other three-dimensional woven braid for composite materials. , The cut loop yarn is entangled with the loop yarn of the other three-dimensional woven braid for composite material, and the mutual position is fixed to form a three-dimensional preform.
[0016]
At this time, since the interlayer adhesion strength due to the entanglement is improved, the total surface area of the cut-side tip portion of the surface where the cut yarn of the three-dimensional woven braid for composite material is exposed is 0.01 mm 2 or more, More preferably, it is preferably 0.1 mm 2 or more. The loop yarn on the surface on which another three-dimensional woven braid for composite material is pressed against the three-dimensional woven braid for composite material may or may not be cut. Further, the other three-dimensional woven braid for composite material is different from the three-dimensional woven braid for composite material of the present invention, and has a loop yarn and is not cut. It is also possible to use.
[0017]
In addition, the three-dimensional preform of the present invention is not limited to the combination of two three-dimensional woven braids for composite materials, but may be a combination of three or more to have a predetermined shape. For example, the portion where the cutting process of the three-dimensional woven braid A for composite material according to the present invention is performed is pressed against the portion where the cutting process of the three-dimensional woven braid B for composite material according to the present invention is not performed. And, further, pressing the portion of the three-dimensional woven braid B for composite material according to the present invention that has been subjected to the cutting process against the three-dimensional woven braid C for composite material, etc. You can also.
Furthermore, as an application, a single three-dimensional woven braid for composite material is folded, and the cut portion of the three-dimensional woven braid for composite material is pressed against the same three-dimensional woven braid for composite material. Alternatively, it can be fixed in a bent shape to form a preform.
[0018]
Method for producing fiber-reinforced composite material: A fiber-reinforced composite material can be obtained by impregnating the above-mentioned three-dimensional preform with a resin and curing or solidifying the resin in a mold.
Any method may be used to impregnate the three-dimensional preform with the matrix resin. For example, the three-dimensional preform is placed in the mold, the pressure in the mold is reduced, and the viscosity is reduced or melted in the mold. There is a method of pouring the matrix resin.
[0019]
Matrix resin: When a fiber-reinforced composite material is produced using the three-dimensional woven braid or preform of the present invention, either a thermosetting resin or a thermoplastic resin can be used as the matrix resin. In consideration of the molding of the fiber reinforced composite material, those made of a thermosetting resin that can be impregnated with a low viscosity are suitable from the viewpoint of easy impregnation into the three-dimensional preform.
[0020]
As the main component of the thermosetting resin composition, an epoxy resin or a polyfunctional maleimide resin having amines or phenols as precursors is preferably used. Specifically, as an epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, tetraglycidyl diaminodiphenylmethane, triglycidyl-p-aminophenol, triglycidyl-m-aminophenol, Examples thereof include various isomers of triglycidylaminocresol, phenol novolac type epoxy resin, cresol novolac type epoxy resin, and mixtures of two or more thereof.
[0021]
Polyfunctional maleimide resins include 1,2-bismaleimide ethane, 1,6-bismaleimide hexane, 1,12-bismaleimide dodecane, 1,6-bismaleimide- (2,2,4- Trimethyl) hexane, 1,6-bismaleimide- (2,4,4-trimethyl) hexane, 1,3-bismaleimidebenzene, 1,4-bismaleimidebenzene, 3,3'- or 4,4'-bis Maleimide diphenylmethane, a mixture of two or more of these, and the like. Moreover, unsaturated polyester resin and vinyl ester resin can also be used depending on a use.
[0022]
Examples of the curing agent include amine curing agents such as 4,4-diaminodiphenylsulfone and dicyandiamide, or acid anhydride curing agents such as methyl nadic acid and phthalic anhydride.
Furthermore, in these thermosetting resin compositions, a modifier, an additive that imparts desired properties to the cured product, or a curing accelerator may be added for the purpose of adjusting the curing properties.
[0023]
On the other hand, examples of the thermoplastic resin include polyamide resin, polyester resin, polyimide, polyether sulfone, polycarbonate, and polypropylene resin.
[0024]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited by these Examples.
[0025]
<Peel strength test>
About the test piece of the three-dimensional fabric for composite materials manufactured by the Example and the comparative example, the peel strength test was each implemented according to SACMARM8R-94 method.
Short beam method (L / d = 4 nose 3.2R support 1.6R CHS 1.27 mm / min.)
Test equipment: UTM-25T
Specifically, as shown in FIG. 2, each evaluation test plate was cut into a length of 25.4 mm, a width of 6.4 mm, and a thickness of 2.0 mm.
[0026]
As shown in FIG. 2, after the test plate 4 is supported by the pedestal portion 5 as shown in FIG. 2, a load 9 is applied from the load point 8 provided at the center position on the opposite side, and the maximum when the intermediate layer of the test plate 4 peels off. The load was measured as peel strength.
The following formula (2) was used for calculation of peel strength.
S = 0.75 · P / (b · d) (2)
Here, S: Peel strength (MPa), P: Load (kN), b: Width (mm) of test piece, d: Thickness (mm) of test plate.
[0027]
Example 1:
Mitsubishi Rayon carbon fiber as reinforcing fiber for warp and weft, MR50K-5M (4500 filaments, filament diameter 6μm, tensile strength 5490MPa, elastic modulus 295GPa, elongation 1.8%), Mitsubishi Rayon as reinforcing fiber for vertical yarn A three-dimensional fabric (5-axis three-dimensional structure) was manufactured using carbon fiber TR40-1L (1000 filaments, filament diameter 7 μm, tensile strength 4700 MPa, elastic modulus 235 GPa, elongation 2%). The number of loop yarns per 100 mm 2 of the three-dimensional fabric was 9 on average. The surface loop yarn of this three-dimensional fabric was cut with a rotary blade, and a three-dimensional fabric having a total cross-sectional area of the cut loop yarn of 0.24 mm 2 was obtained.
Two sets of the three-dimensional woven fabric were pre-formed by pressing the cut surfaces together to obtain a three-dimensional preform. Using this bismaleimide matrix resin (# 2050) manufactured by Mitsubishi Rayon Co., Ltd., this three-dimensional preform is placed in an unreacted resin plate in a lower mold consisting of an outer frame having a vent on the side and a bottom plate. A three-dimensional woven braid laminated with a three-dimensional woven fabric for reinforcement is placed on it, the upper mold of the slidable drop lid type is closed, and the air inside the three-dimensional woven braid is vented to the side The liquid resin was heated to 100 ° C. while keeping the inside of the three-dimensional woven braid in a vacuum, so that the liquid resin was impregnated by flowing in the thickness direction of the three-dimensional woven braid. Thereafter, the mold was heated to 180 ° C., the liquid resin was cured over 6 hours, and the composite material was taken out of the mold. Thereafter, the plate was cured after heating with hot air at 232 ° C. for 6 hours to obtain an evaluation test plate made of a fiber-reinforced composite material.
[0029]
Example 2:
The surface loop yarn of the three-dimensional woven braid for composite material of Example 1 was cut to obtain a three-dimensional woven braid having a cut total cross-sectional area of 1.12 mm 2 . Using this three-dimensional woven braid, an evaluation test plate made of a fiber-reinforced composite material was obtained in the same manner as in Example 1.
[0030]
Example 3:
The surface loop yarn of the three-dimensional woven braid for composite material of Example 1 was cut to obtain a three-dimensional woven braid having a total cross-sectional area of 1.38 mm 2 . Using this three-dimensional woven braid, an evaluation test plate made of a fiber-reinforced composite material was obtained in the same manner as in Example 1.
[0031]
Comparative example:
An evaluation test plate made of a fiber-reinforced composite material was obtained in the same manner as in Example 1 except that the loop yarn was not cut.
Table 1 shows the results of delamination strength tests performed on the test plates for evaluation of Examples and Comparative Examples.
[0032]
[Table 1]
Figure 2005002514
[0033]
As is clear from Table 1, the delamination strength was about 65.9 MPa in the case of not cutting between the pedestal portion 2 and the projection portion 3, but the total cross-sectional area of the pile tip was 0.24 mm. The value of 2 was 72.8 MPa, and when the total cross-sectional area at the tip of the pile was 1.12 mm 2 , a value of 84.1 MPa was obtained, confirming an improvement in delamination strength of about 31%. The one with a total cross-sectional area of 1.38 mm 2 at the tip of the pile showed the highest delamination strength of 86.6 MPa.
[0034]
【The invention's effect】
As described above in detail, according to the present invention, in the three-dimensional woven braid for composite materials made of reinforcing fibers, at least a part of or the entire exposed loop yarn of one surface of the composite material is cut. By using the three-dimensional woven braid for a fiber, a fiber reinforced composite material in which the layers are reinforced at a low processing cost is provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a three-dimensional woven braid and loop yarn cutting processing example.
FIG. 2 is a schematic view of a peel strength test apparatus (UTM-25T).
[Explanation of symbols]
1. Three-dimensional woven braid 2. 2. Rotary blade 3. Cut loop yarn Test plate 5. Base part 6. Indenter 7. Release point 8. Load point 9. Load direction

Claims (11)

強化繊維からなる複合材料用三次元織編組物であって、少なくともその一方の表面に露出しているループ糸の全部または一部が切断されたものであることを特徴とする複合材料用三次元織編組物。A three-dimensional woven braid for composite materials composed of reinforcing fibers, wherein all or part of the loop yarn exposed on at least one surface thereof is cut off. Woven braid. 式(1)で示される100mmあたりの切断されたループ糸の総断面積Sが、0.01mm以上のものである請求項1に記載の複合材料用三次元織編組物。
S(mm)=2×A×B×C・・・(1)
(A:強化繊維を構成するフィラメントの断面積(mm/本)、B:強化繊維のフィラメント数(本)、C:複合材料用三次元織編組物100mmあたりの切断されたループ糸の数)
The three-dimensional woven braid for composite material according to claim 1, wherein the total cross-sectional area S of the looped yarn per 100 mm 2 represented by the formula (1) is 0.01 mm 2 or more.
S (mm 2 ) = 2 × A × B × C (1)
(A: Cross-sectional area of filaments constituting reinforcing fiber (mm 2 / piece), B: Number of filaments of reinforcing fiber (pieces), C: Cut loop yarn per 100 mm 2 of three-dimensional woven braid for composite material number)
上記総断面積Sが、0.1mm以上のものである請求項1または2に記載の複合材料用三次元織編組物。The three-dimensional woven braid for composite material according to claim 1 or 2, wherein the total cross-sectional area S is 0.1 mm 2 or more. 強化繊維が、炭素繊維、黒鉛繊維、アラミド繊維、ガラス繊維、ボロン繊維又はPBO繊維から選ばれた少なくとも1種以上の繊維である請求項1〜3のいずれか1項に記載の複合材料用三次元織編組物。The tertiary for composite materials according to any one of claims 1 to 3, wherein the reinforcing fiber is at least one fiber selected from carbon fiber, graphite fiber, aramid fiber, glass fiber, boron fiber, or PBO fiber. Original woven braid. 請求項1〜4のいずれか1項に記載の複合材料用三次元織編組物のループ糸が切断された部分同士を接触させて、複合材料用三次元織編組物の相互位置を固定した三次元プリフォーム。The tertiary which fixed the mutual position of the three-dimensional woven braid for composite materials by making the parts by which the loop thread | yarn of the three-dimensional woven braid for composite materials cut | disconnected of any one of Claims 1-4 contacted. Former preform. 請求項1〜4のいずれか1項に記載の複合材料用三次元織編組物のループ糸が切断された部分とループ糸が切断されていない部分とを接触させて、複合材料用三次元織編組物の相互位置を固定した三次元プリフォーム。The three-dimensional woven fabric for composite material by contacting a portion where the loop yarn is cut and a portion where the loop yarn is not cut of the three-dimensional woven braid for composite material according to any one of claims 1 to 4 A three-dimensional preform that fixes the mutual position of the braid. ループ糸が切断されていない複合材料用三次元織編組物のループ糸部分と請求項1〜4のいずれか1項に記載の複合材料用三次元織編組物のループ糸が切断された部分とを接触させて、複合材料用三次元織編組物の相互位置を固定した三次元プリフォーム。The loop yarn portion of the three-dimensional woven braid for composite material, in which the loop yarn is not cut, and the portion of the three-dimensional woven braid for composite material, wherein the loop yarn is cut, according to any one of claims 1 to 4 A three-dimensional preform in which the three-dimensional woven braids for composite materials are fixed in contact with each other. 請求項5〜7のいずれか1項に記載の三次元プリフォームに、熱硬化性樹脂組成物を含浸して硬化させた繊維強化複合材料。A fiber-reinforced composite material obtained by impregnating the three-dimensional preform according to any one of claims 5 to 7 with a thermosetting resin composition and curing it. 請求項5〜7のいずれか1項に記載の三次元プリフォームに、熱可塑性樹脂組成物を含浸して固化させた繊維強化複合材料。A fiber-reinforced composite material obtained by impregnating the three-dimensional preform according to any one of claims 5 to 7 with a thermoplastic resin composition and solidifying it. 強化繊維からなる複合材料用三次元織編組物の、少なくともその一つの面から露出しているループ糸の全部または一部を、カッターまたは回転刃で切断することを特徴とする少なくとも一部のループ糸が切断された複合材料用三次元織編組物の製造方法。At least a part of a loop of a three-dimensional woven braid for composite material made of reinforcing fibers, wherein all or part of the loop yarn exposed from at least one surface thereof is cut with a cutter or a rotary blade A method for producing a three-dimensional woven braid for composite materials in which yarn is cut. 強化繊維からなる複合材料用三次元織編組物の、少なくともその一つの面から露出しているループ糸の全部または一部を、研削により切断することを特徴とする少なくとも一部のループ糸が切断された複合材料用三次元織編組物の製造方法。At least a part of the loop yarn cut by grinding all or part of the loop yarn exposed from at least one surface of the three-dimensional woven braid for composite material made of reinforcing fibers is cut. For producing a three-dimensional woven braid for composite materials.
JP2003168394A 2003-06-12 2003-06-12 Three-dimensional woven or knitted fabric or braid for composite material and method for producing the same and three-dimensional preform Pending JP2005002514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003168394A JP2005002514A (en) 2003-06-12 2003-06-12 Three-dimensional woven or knitted fabric or braid for composite material and method for producing the same and three-dimensional preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003168394A JP2005002514A (en) 2003-06-12 2003-06-12 Three-dimensional woven or knitted fabric or braid for composite material and method for producing the same and three-dimensional preform

Publications (1)

Publication Number Publication Date
JP2005002514A true JP2005002514A (en) 2005-01-06

Family

ID=34093904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003168394A Pending JP2005002514A (en) 2003-06-12 2003-06-12 Three-dimensional woven or knitted fabric or braid for composite material and method for producing the same and three-dimensional preform

Country Status (1)

Country Link
JP (1) JP2005002514A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102926102A (en) * 2012-10-12 2013-02-13 北京航空航天大学 Composite material platform floor with netty three-dimensional whole multidirectional linking and weaving structure and preparation method of the composite material platform floor
CN104878507A (en) * 2015-05-29 2015-09-02 中材科技股份有限公司 Tubular facesheet-linked fabric with ribs additionally arranged in circumferential/axial direction and preparation method thereof
JP2016533437A (en) * 2013-10-01 2016-10-27 サフラン エアークラフト エンジンズ Fiber structure with float assembly
CN108468159A (en) * 2018-03-16 2018-08-31 西安工程大学 The preparation method of quasi-isotropic suture fabric in a kind of three-dimensional surface

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102926102A (en) * 2012-10-12 2013-02-13 北京航空航天大学 Composite material platform floor with netty three-dimensional whole multidirectional linking and weaving structure and preparation method of the composite material platform floor
JP2016533437A (en) * 2013-10-01 2016-10-27 サフラン エアークラフト エンジンズ Fiber structure with float assembly
CN104878507A (en) * 2015-05-29 2015-09-02 中材科技股份有限公司 Tubular facesheet-linked fabric with ribs additionally arranged in circumferential/axial direction and preparation method thereof
CN108468159A (en) * 2018-03-16 2018-08-31 西安工程大学 The preparation method of quasi-isotropic suture fabric in a kind of three-dimensional surface
CN108468159B (en) * 2018-03-16 2021-03-02 西安工程大学 Preparation method of quasi-isotropic sewing fabric in three-dimensional plane

Similar Documents

Publication Publication Date Title
EP1027206B1 (en) Unidirectional fiber-random mat preform
EP3180467B1 (en) Hybrid woven textile for composite reinforcement
JP2001064406A (en) Preform for fiber-reinforced preform and fiber- reinforced composite material using the same and production thereof
JP2014051555A (en) Fiber reinforced plastic molding substrate
JP2010196176A (en) Multiaxially stitched base and preform using the same
JP2017218688A (en) Reinforcing base material for composite material part, composite material part, and method for producing the same
US20220040935A1 (en) Method for manufacturing molded article of fiber-reinforced composite material, reinforcing fiber substrate and molded article of fiber-reinforced composite material
JP2010214704A (en) Base material for preform using binder including superfine fiber, and method of manufacturing the same
JP6956300B1 (en) Reinforced fiber stitch base material, preform material, and fiber reinforced composite material, and methods for manufacturing them.
JP5441437B2 (en) Partially impregnated prepreg, method for producing the same, and method for producing a fiber-reinforced composite material using the same
JP5966969B2 (en) Manufacturing method of prepreg
JP2005002514A (en) Three-dimensional woven or knitted fabric or braid for composite material and method for producing the same and three-dimensional preform
JP7382757B2 (en) Preform, fiber-reinforced resin composite material, and method for producing fiber-reinforced resin composite material
JP6046425B2 (en) Fiber reinforced plastic molding substrate and impact resistant fiber reinforced plastic
JP2510093B2 (en) Prepreg and molded products
JP3915614B2 (en) Fiber structure and composite material having deformed portion
JPH05269909A (en) Fiber reinforced resin molded product
JP2011202303A (en) Fiber structure and method for producing the same, and preform
JP4402252B2 (en) Three-dimensional woven braid for composite materials and composite materials
JP2008308626A (en) Sheet-like fiber-reinforced composite material and production method therefor
JP2020023182A (en) Reinforced-fiber base material, reinforced-fiber laminate, and fiber-reinforced resin
JP2004338270A (en) Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material
JP2011251446A (en) Continuous fiber composite material structure, method for manufacturing the same, and composite molded object using the continuous fiber composite material structure
JP2006168165A (en) Preform base material for frp and preform manufacturing method
WO2022149591A1 (en) Reinforcing fiber base material for resin transfer molding, method for producing same, reinforcing fiber laminate for resin transfer molding, and fiber-reinforced resin