JP2005002372A - Method for producing thick steel plate having small anisotropic characteristic and variation in material quality - Google Patents

Method for producing thick steel plate having small anisotropic characteristic and variation in material quality Download PDF

Info

Publication number
JP2005002372A
JP2005002372A JP2003164431A JP2003164431A JP2005002372A JP 2005002372 A JP2005002372 A JP 2005002372A JP 2003164431 A JP2003164431 A JP 2003164431A JP 2003164431 A JP2003164431 A JP 2003164431A JP 2005002372 A JP2005002372 A JP 2005002372A
Authority
JP
Japan
Prior art keywords
austenite
variation
steel plate
rolling
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003164431A
Other languages
Japanese (ja)
Inventor
Toshinaga Hasegawa
俊永 長谷川
Masanori Minagawa
昌紀 皆川
Hiroyuki Shirahata
浩幸 白幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003164431A priority Critical patent/JP2005002372A/en
Publication of JP2005002372A publication Critical patent/JP2005002372A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a thick steel plate containing one or more elements among Cu, Mo, W, V, Nb, Ta, Zr and B by working heat treatment, in which the variation and anisotropic characteristic of material quality are small and limitation on the hot-rolling is not large. <P>SOLUTION: In the steel which has the effect to the restraint of austenite recrystallization and the improvement of strength, and contains one or more elements among Cu, Mo, W, V, Nb, Ta, Zr and B and suitabilizes chemical composition containing the above elements, after finish-rolling steel formed of 0-60% austenite recrystallizing ratio, the anisotropic characteristic and the variation of the metallic quality can extremely be reduced by containing a process for holding at ≥Ac<SB>3</SB>transformation point to ≤950°C for 10-1000 s heating without lowering to not higher than Ac<SB>3</SB>transformation point in the temperature of the steel billet. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、制御圧延や熱間圧延後の加速冷却に代表される加工熱処理によって製造される強度・靱性に優れ、かつ、材質の異方性やばらつきの小さい厚鋼板の製造方法に関するものであり、得られた鋼板は、例えば、建築構造物、海洋構造物、船舶、橋梁、ラインパイプ等の溶接構造物などに用いることができる。
【0002】
【従来の技術】
鋼の材質は不可避的にばらつきを有しているが、構造物の強度部材として用いられる厚鋼板においては、安全性の観点から、可能な限りばらつきの小さいものが好ましい。一方、最近良好な溶接性と高強度化を両立できることから、高張力厚鋼板においては、制御圧延や熱間圧延後の加速冷却に代表される加工熱処理によって製造される場合が増えているが、未再結晶域圧延や熱間圧延後の水冷等による加速冷却を行うことで、異方性、鋼板位置による材質変動、鋼板間の材質ばらつき、等の材質ばらつきが、既存の、通常の熱間圧延や焼きならし処理、再加熱焼入・焼戻し材に比較して大きくなる傾向にある。
【0003】
加工熱処理により製造される厚鋼板の材質異方性や材質ばらつきの主な原因は、圧延によって生じたオーステナイト粒の不均一性に帰するといえる。すなわち、低温圧延することにより、あるいは/及び、強度元素として添加される、Cu,Mo,W,V,Nb,Ta,Zr,Bがオーステナイトの再結晶温度を高めることによって、変態前のオーステナイトが未再結晶あるいは部分再結晶状態になると、変態組織にも方向性、ばらつきが生じ、かつ、他のプロセス因子のわずかな変動による組織変化も大きくなる。
【0004】
熱間圧延を完全再結晶域で完了させれば、上記の問題はないが、実際の厚鋼板の製造においては、溶接性と強度との両立の必要性から、強度元素であり、かつ、未再結晶温度も上昇させるためのCu,Mo,W,V,Nb,Ta,Zr,Bを添加せざるを得ない場合も多く、また、厚鋼板の板厚が小さい場合には、連続的に熱間圧延をを行っても温度低下が大きいために完全再結晶域で圧延を完了することが困難な場合も多い。一方、確実に完全再結晶温度域で圧延を完了しようとすると、上記再結晶抑制元素が添加されていない場合でも圧延終了温度は高温にせざるを得ず、通常の設備操業では困難な上、圧延終了温度が高い分、オーステナイト粒径が粗大となるため、靱性が劣化する恐れが大となる。
【0005】
従来から材質ばらつきを小さくするための方法は種々提案されている。例えば、特許文献1においては、スラブを低温均一加熱することによって、板厚方向の材質を均一化する方法が開示されている。また、例えば、特許文献2においては、熱間圧延におけるパス間時間や鋼材温度偏差を規定して、オーステナイト粒径や残留転位密度の均一化を図ることによる降伏点のばらつきの低減が開示されている。
【0006】
【特許文献1】
特開昭63−50422号公報
【特許文献2】
特開2002−249822号公報
【0007】
【発明が解決しようとする課題】
上記、特許文献1及び特許文献2に提案の方法は、主として熱間圧延における加熱温度や圧延条件に制限を加えることになるが、加熱温度の低下は強度の向上のために添加される析出強化元素の均一溶体化を困難として強度上昇に不利となる問題を有しており、また、圧延パス間時間を規定することは生産性を低下させたり、操業に負荷をかける場合も多い。
本発明においては、材質ばらつきが問題となる、Cu,Mo,W,V,Nb,Ta,Zr,Bの1種または2種以上を含有し、加工熱処理によって製造される厚鋼板に対して、上記従来技術における熱間圧延上の制限が大きくなく、汎用性が高い、材質の異方性及びばらつきの小さい製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、強化元素であり且つ再結晶抑制元素である、Cu,Mo,W,V,Nb,Ta,Zr,Bを含有する高張力厚鋼板を加工熱処理により製造する場合の強度・靱性の異方性、板内、板間のばらつきとオーステナイト組織、変態組織との関係で詳細に検討し、強度・靱性の異方性、ばらつきの原因と異方性、ばらつきを低減するための新たな手段を見出した。即ち、先ず、異方性が大きくなるのは、オーステナイト粒が未再結晶域圧延によって圧延方向に伸張していると、変態組織にも方向性を生じるためであり、組織材質の方向性を解消するためにはほぼ90〜100%オーステナイトを整細粒に再結晶させる必要がある。
【0009】
材質のばらつきに対しても、同様に未再結晶状態のオーステナイトが大きな影響を及ぼしている。即ち、変態はオーステナイトの粒界あるいは双晶、変形帯から不均一に生じ、未再結晶オーステナイトの粒内とオーステナイトの粒界あるいは双晶、変形帯とでは変態組織の微細さに大きな差が生じるため材質ばらつきの原因となる。また、未再結晶オーステナイトは化学組成によっては不安定であり、加熱オーステナイト粒径、累積圧下率、温度のわずかな変動によって、未再結晶粒の転位密度が大きく変化したり、再結晶が一部生じ、その再結晶率がやはり大きく変化するために変態組織の板内及び板間ばらつきの大きな原因となる。
【0010】
オーステナイトが100%再結晶する温度で熱間圧延を終了することが一般的に可能であれば上記材質のばらつきは大幅に低減できるが、強度元素であるCu,Mo,W,V,Nb,Ta,Zr,Bは同時にオーステナイトの再結晶を抑制する元素でもあるため、これらの元素を含有する鋼においては100%再結晶温度が高温となる。そのような高温で圧延を終了するとオーステナイト粒径が不可避的に粗大となって靱性確保が困難となる場合がある。また、鋼板板厚が薄い場合には、圧延中の温度低下が大きいために、これら再結晶抑制元素を含まない場合でも通常の熱間圧延ではオーステナイトを100%再結晶させることが困難な場合も多い。
【0011】
そこで、本発明者らは、熱間圧延においてオーステナイトの制御をするのではなく、圧延を終了した後の温度履歴を制御することによって、一旦形成された未再結晶〜部分再結晶オーステナイトを再結晶させて、整細粒オーステナイトを形成せしめることによって、圧延工程の負荷を高めることなく、板厚や化学組成の制限なく、Cu,Mo,W,V,Nb,Ta,Zr,Bを含有し、加工熱処理によって製造する厚鋼板の材質の異方性、ばらつきを小さくできることを初めて知見した。その要旨とするところは以下のとおりである。
【0012】
(1)質量%で、
C :0.02〜0.3%、 Si:0.01〜2%、
Mn:0.1〜2%、 Al:0.001〜0.1%、
N :0.001〜0.01%
を含有し、不純物として、
P :0.02%以下、 S :0.01%以下
を含有し、さらに、オーステナイト再結晶抑制及び強度向上に効果のある、Cu,Mo,W,V,Nb,Ta,Zr,Bの1種または2種以上を、
Cu:0.01〜1.5%、 Mo:0.01〜2%、
W :0.01〜2%、 V :0.005〜0.5%、
Nb:0.003〜0.2%、 Ta:0.005〜0.2%、
Zr:0.003〜0.1%、 B :0.0002〜0.005%
の範囲で含有し、残部が鉄及び不可避不純物からなる鋼片を下記の▲1▼〜▲3▼の工程を含む加工熱処理を施すことを特徴とする、材質の異方性及びばらつきの小さい厚鋼板の製造方法。
▲1▼鋼片を1000〜1300℃に加熱する工程
▲2▼オーステナイトの未再結晶域〜部分再結晶域で累積圧下率が30〜90%の圧延を施し、再結晶率が0〜60%のオーステナイトを形成する仕上げ圧延する工程
▲3▼仕上げ圧延後、鋼片の温度をAr3 変態点未満に低下させることなく、Ac3 変態点以上、950℃以下に10〜1000秒間加熱・保持する工程。
【0013】
(2)前記加工・保持した鋼板に加熱温度が450℃以上、Ac1 変態点以下の焼戻し処理を施すことを特徴とする、前記(1)に記載の材質の異方性及びばらつきの小さい厚鋼板の製造方法。
【0014】
(3)鋼がさらに、質量%で、
Ni:0.01〜6%、 Cr:0.01〜2%、
Ti:0.003〜0.1%
の1種または2種以上を含有することを特徴とする前記(1)または(2)に記載の材質の異方性及びばらつきの小さい厚鋼板の製造方法。
【0015】
(4)鋼がさらに、質量%で、
Mg:0.0001〜0.01%、Ca:0.0005〜0.01%、
Y :0.001〜0.1%、 La:0.005〜0.1%、
Ce:0.005〜0.1%
のうち1種または2種以上を含有することを特徴とする前記(1)〜(3)のいずれかに記載の材質の異方性及びばらつきの小さい厚鋼板の製造方法。
【0016】
【発明の実施の形態】
以下に本発明の実施の形態について詳細に述べる。加工熱処理によって製造する厚鋼板は構造用鋼としての特性を確保するために、また、オーステナイトの再結晶挙動を本発明の製造方法の下で制御するためには、化学組成の適正化も必須である。そこで、先ず、化学組成の限定理由とその作用を述べ、次いで、製造方法の限定理由を述べる。
【0017】
Cは、構造用鋼として必要な強度を確保する上で必要な元素であり、そのためには0.02%以上含有させる必要がある。一方、0.3%を超えて含有すると、母材及び溶接部の靭性や耐溶接割れ性を低下させる。従って、本発明においては、C含有量を0.02〜0.3%と定める。
【0018】
Siは、脱酸元素として必要であり、脱酸効果を発揮するためには、0.01%以上必要である。Siは固溶強化により強度を高める元素であり、高強度化にも有用であるが、Siを2%を超えて過度に含有させると、母材やHAZの靱性を劣化させるため、本発明においては上限を2%とする。
【0019】
Mnは、鋼の強度確保のために0.1%以上必要である。一方、2%超になると、溶接性の劣化や、粒界脆化感受性を高めて好ましくないため、本発明においてはMnの範囲を0.1〜2%に限定する。
【0020】
Alは脱酸に有用な元素であり、またAlNにより母材の加熱オーステナイト粒径微細化に有効な元素である。効果を発揮するためには0.001%以上含有する必要がある。一方、0.1%を超えて過剰に含有すると、粗大な酸化物を形成して延性を劣化させるため、0.001%〜0.1%の範囲に限定する必要がある。
【0021】
Nは固溶状態では延性、靭性に悪影響を及ぼすため、好ましくないが、V,AlやTi、等の窒化物形成元素と結びついてオーステナイト粒微細化や析出強化に有効に働くため、微量であれば機械的特性向上に有効である。また、工業的に鋼中のNを完全に除去することは不可能であり、必要以上に低減することは製造工程に過大な負荷をかけるため好ましくない。そのため、延性、靭性への悪影響が許容できる範囲で、かつ、工業的に制御が可能で、製造工程への負荷が許容できる範囲として下限を0.001%とする。過剰に含有すると、固溶Nが増加し、延性や靭性に悪影響を及ぼす可能性があるため、許容できる範囲として上限を0.01%とする。
【0022】
Pは不純物元素であり、0.02%を超えると、靱性や溶接性を劣化させるため、0.02%以下に限定する。
Sも不純物元素であり、0.01%を超えると、延性、靭性に悪影響があるため、0.01%を上限とする。
【0023】
本発明は、強化元素であり、且つ、オーステナイトの再結晶抑制元素である、Cu,Mo,W,V,Nb,Ta,Zr,Bの1種または2種以上を含有する厚鋼板を対象としているが、各々、下記に示す理由による含有量を限定する。
Cuは固溶強化、変態強化、析出強化による強化が可能な元素であり、靱性への悪影響も小さいため、強化元素として有用である。効果を発揮するためには0.01%以上含有させる必要がある。一方、1.5%を超えて含有させると鋼片の表面割れの助長、継手靭性の劣化等、悪影響が顕在化するため、本発明では上限を1.5%とする。
【0024】
Moは固溶強化、変態強化、析出強化を介した強度向上の他に、耐焼戻し脆化、耐SR脆化にも有効な元素でもあるが、その効果を発揮するためには0.01%以上の含有が必要であり、一方、2%を超える含有では逆に靱性、溶接性が劣化するため、0.01〜2%に限定する。
【0025】
WはMoと同様の効果を有する元素であり、効果を発揮でき、かつ材質劣化を生じない範囲として、0.01〜2%の範囲に限定する。
【0026】
VはVNを形成して強度向上に有効な元素であるが、過剰の含有では析出脆化により靭性が劣化する。従って、靭性の大きな劣化を招かずに、効果を発揮できる範囲として、0.005〜0.5%の範囲に限定する。
【0027】
Nbは、再結晶抑制に最も有効な元素であると同時に、変態時あるいは焼戻し時にNb(C,N)を形成することで強度の向上に有効な元素であるが、過剰の含有では析出脆化により靭性が劣化する。従って、靭性の劣化を招かずに、効果を発揮できる範囲として、0.003〜0.2%の範囲に限定する。
【0028】
Taも、Nbと同一の機構によりオーステナイトの再結晶抑制、強化に有効な元素である。その効果を発揮するためには0.005%以上の含有が必要である。一方、0.2%を超えると、析出脆化や粗大な析出物、介在物による靭性劣化を生じるため、上限を0.2%とする。
【0029】
Zrも窒化物を形成する元素であり、他の析出物形成元素と同様の効果を有するが、その効果を発揮するためには0.003%以上の含有が必要である。一方、0.1%を超えると、粗大な析出物、介在物を形成して靭性や延性を劣化させるため、0.003〜0.1%の範囲に限定する。
【0030】
Bは、固溶状態でオーステナイト粒界に偏析することで、微量で焼入れ性を高めて高強度化に有効な可能な元素であるが、粒界に偏析した状態では、オーステナイトの再結晶抑制にも有効である。焼入性、再結晶抑制に効果を発揮するためには0.0002%以上の含有が必要であるが、一方、0.005%を超える過剰の添加では、BN,Fe23(C,B)等の粗大な析出物を生じて、靱性が劣化するため、0.0002〜0.005%に限定する。
【0031】
本発明においては、以上の基本成分の他に、強度、靱性の調整のために、必要に応じて、Ni,Cr,Tiの1種または2種以上を含有させることができる。Niは、靱性確保のために最も有効な元素であり、効果を発揮させるためには0.01%以上含有させる必要がある。含有量が多くなると強度、靭性は向上するが、6%を超えて含有させても効果が飽和する一方で、溶接性の劣化を招くため、上限を6%とする。
【0032】
Crは、焼入れ性向上、析出強化により母材の強度向上に有効な元素であるが、明瞭な効果を生じるためには0.01%以上必要であり、一方、2%を超えて添加すると、靭性及び溶接性が劣化する傾向を有するため、0.01〜2%の範囲とする。
【0033】
Tiは、析出強化により母材強度向上に寄与するとともに、高温でも安定なTiNの形成により加熱オーステナイト粒径微細化にも有効な元素であり、加工熱処理を基本とする本発明においては有効な元素である。効果を発揮するためには0.003%以上の含有が必要である。一方、0.1%を超えると、粗大な析出物、介在物を形成して靭性や延性を劣化させるため、上限を0.1%とする。
【0034】
またさらに、延性の向上、継手靭性の向上のために、必要に応じて、Mg,Ca,Y,La,Ceの1種または2種以上を含有することができる。本発明における各元素の含有量は効果が発現する下限から下限値が決定され、各々、Mgは0.0001%、Caは0.0005%、Yは0.001%、Laは0.005%、Ceは0.005%を下限値とする。一方、上限値は介在物が粗大化して、機械的性質、特に延性と靭性に悪影響を及ぼすか否かで決定され、本発明では、この観点から上限値を、Mg,Caは0.01%、Y,La,Ceは0.1%とする。
【0035】
以上が本発明おける化学組成に関する限定理由である。本発明においては、上記理由により化学組成を限定した上で、加工熱処理における製造条件を限定し、さらに圧延後に直ちに特定の熱履歴を加えることによってオーステナイト組織を均一化することを通して、厚鋼板の材質の異方性及びばらつきを極小化する。なお、本発明における加工熱処理とは、オーステナイト粒径、転位密度を材質制御に用いるために意図的に制御する工程を含む製造方法を全て指す。すなわち、圧延としては、再結晶オーステナイト域でオーステナイト粒径を制御する工程から未再結晶域圧延工程を含み、また、冷却方法としては空冷から加速冷却までを包含する。さらに、強度、靱性レベルの調整や形状調整のために行う焼戻し工程を行う場合も含む。
【0036】
本発明においては、鋼片(連続鋳造スラブ、インゴット、及び該スラブ、インゴットを若干の形状調整のために圧延または鍛造を加えたものを包含する)を、加工熱処理によって厚鋼板に製造する工程において、下記の▲1▼〜▲4▼の工程を含むことを要件とする。なお、工程は▲1▼から▲4▼の工程の順に行う必要があるが、▲1▼の工程の前の拡散熱処理等の熱処理、分塊圧延を加えることや、▲2▼の工程の前にサイズ調整のための幅出し圧延や粗圧延を施すことや、▲3▼の工程の後に脱水素処理等の目的のために加熱温度が▲4▼の焼戻し処理温度未満の熱処理を行うことや、▲4▼の焼戻しを本発明の範囲内で繰り返すこと、は本発明の効果を損なうものではない。
【0037】
▲1▼鋼片を1000〜1300℃に加熱する工程
▲2▼オーステナイトの未再結晶域〜部分再結晶域で累積圧下率が30〜90%の圧延を施し、再結晶率が0〜60%のオーステナイトを形成する仕上げ圧延する工程
▲3▼仕上げ圧延後、鋼片の温度をAr3 変態点未満に低下させることなくAc3 変態点以上、950℃以下に10〜1000s加熱・保持する工程
▲4▼必要に応じて、加工熱処理後の鋼板に加熱温度が450℃以上、Ac1 変態点以下の焼戻し処理を施す工程
【0038】
先ず、熱間圧延に先だって▲1▼の工程で、鋼片を1000〜1300℃に加熱する。加熱温度が1000℃未満であると、本発明の前提となっている、強化元素、再結晶抑制元素として含有される、Cu,Mo,W,V,Nb,Ta,Zr,Bの固溶が十分でなく、強化に対して有効に働かないために好ましくない。一方、鋼片の加熱温度が1300℃超と過大であると、オーステナイト粒径が過大となる恐れがあり、また、表面性状が劣化するため、好ましくない。なお、連続鋳造スラブまたは分塊圧延後の鋼片をそのまま室温まで冷却することなく所定温度に保持または加熱・保持することは構わない。ただし、加熱オーステナイト粒径は微細なほど、最終的なオーステナイト粒径も整細粒化するため、材質均一性のためには一旦、Ar1 変態点以下まで冷却した冷片を1000〜1200℃に再加熱することがが好ましい。
【0039】
熱間圧延工程は形状調整を主な目的とした粗圧延と材質を決定づけるために温度や圧下率を意図的に制御する仕上げ圧延に区分される。本発明では材質制御を目的とする仕上げ圧延を、オーステナイトの未再結晶域〜部分再結晶域で累積圧下率が30〜90%の圧延を施し、再結晶率が0〜60%のオーステナイトを形成する工程とすることを要件とする。
【0040】
オーステナイト再結晶率とそのときの累積圧下率を規定するのは、再結晶率と累積圧下率が適正範囲に入っていて初めて引き続く加熱・保持工程において、オーステナイトが細粒で且つ混粒度の小さい整細粒組織となって良好な靭性が得られると同時に、材質の異方性、ばらつきを極めて小さくすることができるためである。
【0041】
圧延温度域を未再結晶域〜部分再結晶域とするのは、100%再結晶したオーステナイトは転位密度が低く、引き続く加熱・保持工程によってオーステナイトの状態を変化させることが困難であると同時に、100%再結晶状態で圧延が完了するような組成、製造条件では、オーステナイトは混粒度が大きくない限り、材質の異方性やばらつきはもともと小さく、本発明を適用する効果も小さいためである。
【0042】
引き続く加熱・保持工程で整細粒のオーステナイトを確実に形成するためには、仕上げ圧延が完了した時点でのオーステナイトの再結晶率が0〜60%となっている必要がある。そのためには、圧延温度域が未再結晶域〜部分再結晶域の仕上げ圧延の累積圧下率を30〜90%とする必要がある。累積圧下率が30%未満ではオーステナイト中に導入される転位密度が過小で、引き続く加熱・保持工程での再結晶のための駆動力が十分でなく、100%再結晶した整細粒のオーステナイトを確実に形成することが困難となる。累積圧下率は大きいほど再結晶させるために、また、再結晶後のオーステナイト粒径の微細化に有利であるが、90%を超えると、製造できる鋼板サイズも限定され、生産性にも問題が生じるため、本発明においては累積圧下率の上限を90%とする。
【0043】
仕上げ圧延が終了した時点でのオーステナイトの再結晶率は0〜60%となっている必要がある。引き続く加熱・保持工程で整細粒オーステナイトを確実に形成するためには、再結晶率が0%の完全未再結晶であることが好ましいが、未再結晶部が40%、すなわち、再結晶率が60%であれば、引き続き行う加熱・保持工程で再結晶を生じて混粒度の非常に小さい整細粒オーステナイト組織を形成させることが可能である。一方、再結晶率が60%超の部分再結晶オーステナイトであると、引き続く加熱・保持工程で完全に再結晶させることが困難であり、また、完全に再結晶させるためには、本発明の範囲をはずれて高温・長時間で加熱・保持する必要があり、オーステナイトが粗大化して靱性劣化の恐れがあり、好ましくない。
【0044】
仕上げ圧延工程に引き続いて、▲3▼の加熱・保持を施し、強化元素、再結晶抑制元素として、Cu,Mo,W,V,Nb,Ta,Zr,Bの1種または2種以上を、本発明の範囲内で含む化学組成の鋼においても、整細粒オーステナイトを形成させて、材質の異方性、ばらつきの小さい厚鋼板に製造する。その要件は、仕上げ圧延後、鋼片の温度をAr3 変態点未満に低下させることなく、Ac3 変態点以上、950℃以下に10〜1000s加熱・保持することにある。
【0045】
仕上げ圧延後、加熱・保持を行うことによって、未再結晶〜部分再結晶オーステナイトを再結晶させ、細粒且つ等方性を有する等軸オーステナイトにする。このとき、加熱温度がAc3 変態点未満では再結晶の進行が極端に遅くなり、100%再結晶させることが困難となる上、鋼の組成によっては、保持中に一部変態が生じてしまい、所望の均一組織が達成されない恐れがあるため、好ましくない。一方、加熱温度が950℃超であると、再結晶抑制元素を含有していても、極短時間に再結晶し、さらに粒成長を開始して、粗大オーステナイト組織が形成される可能性があるため、好ましくない。従って、本発明においては、仕上げ圧延後の加熱・保持における加熱温度はAc3 変態点以上、950℃以下とする。
【0046】
仕上げ圧延後、Ac3 変態点〜950℃に加熱する際の保持時間は本発明では10〜1000秒(s)とする。仕上げ圧延後の未再結晶〜部分再結晶オーステナイトを整細粒の再結晶オーステナイトとすることが可能である限りは特に保持時間の制約はないが、保持時間が10s未満と極短時間とすることは工業的に制御が困難であるため、本発明では保持時間を10s以上とする。一方、1000sを超えるような長時間保持をすることは生産性を極端に阻害して好ましくないことから、本発明では保持時間の上限を1000sとする。なお、仕上げ圧延後、加熱・保持に入るまでの間に鋼の温度がAr3 変態点未満にならないようにする必要がある。Ar3 変態点未満に低下すると、変態が一部生じる可能性が大きく、一部、変態が生じてしまうと、その後に加熱・保持を行っても、オーステナイトままの領域と、一旦変態が生じた後にオーステナイト化した領域とではオーステナイト粒径に極端な差が生じて、材質のばらつきを拡大する恐れが高いため、好ましくない。また、材質劣化が生じる恐れもある。
【0047】
上記加熱・保持によってオーステナイトを再結晶させて整細粒化した後の鋼板の冷却は、冷却でも加速冷却でも、材質の均一化には、同様の効果を得られるため、通常の制御圧延、加速冷却をともなう加工熱処理、いずれにおいても、本発明は有効である。
以下に、本発明の効果を実施例によりさらに詳細に説明する。なお、本発明は下記実施例に限定されるものではない。
【0048】
【実施例】
以上が、本発明の要件についての説明であるが、さらに、実施例に基づいて本発明の効果を示す。
表1に示す化学組成の鋼片を用いて、表2に示す製造条件により鋼板を試作した。試作鋼は真空溶解または転炉により溶製し、鋳造まま鋼片(インゴットあるいはスラブ)あるいは分塊圧延により形状を調整した鋼片を鋼板に製造した。
【0049】
表1中の鋼片番号1〜10が本発明の化学組成を満足しているものであり、鋼片番号11〜15は化学組成が本発明の範囲を逸脱している比較例である。
表2において、鋼板番号A1〜A13は本発明例であり、鋼板番号B1〜B6はいずれかの要件が本発明を満足していない比較例である。なお、鋼板間及び鋼板内における材質のばらつきを検証する目的から、表2に示す製造方法各々について、同一条件で3枚づつ鋼板(鋼板子番1〜3)を製造した。
【0050】
表2の条件で製造された鋼板の引張特性、2mmVノッチシャルピー衝撃特性を調査し、強度、靭性レベル及びそのばらつき、異方性を検討した。材質のばらつきと異方性を詳細に比較する目的で、各鋼板とも、鋼板の先端から全長の1/5位置(先端:F)、中央(中央部:M)、尾端から1/5(尾端:T)の3位置についてL方向(圧延方向に平行に試験片を採取)、C方向(圧延方向に直角に試験片を採取)の板厚中心部の材質を調査した。従って、同一製造条件(同一鋼板番号)ごとに9カ所(鋼板3枚×3カ所)の材質をL,C両方向について調査している。なお、引張試験は平行部の直径が10mm、評点間距離が60mmの丸棒引張試験片により室温で実施し、2mmVノッチシャルピー衝撃試験は試験片断面が10mm×10mmの標準試験片により行い、靭性は破面遷移温度(vTrs)により評価した。
【0051】
表3に材質調査結果を示す。各鋼板番号とも、L方向、C方向ごとに3枚の鋼板の各位置、合計9カ所の強度(降伏応力、引張強度)靭性(破面遷移温度:vTrs)を示し、各方向ごとの測定値の最大値と最小値の差で材質のばらつきを評価し、同一位置での各特性のL方向とC方向との差で材質異方性を評価した。
【0052】
表3に示すように、本発明例である鋼板番号A1〜A13の試験結果からは、本発明により変態前のオーステナイトの状態を制御した場合には、材質ばらつきも異方性も非常に小さくなっていることが明らかである。具体的には、材質ばらつきについては、降伏応力、引張強度の変化幅で20MPa以下、vTrsの変化幅で13℃以下であり、L/C方向異方性については、強度で17MPa以下、vTrsで10℃以下となっている。また、靭性レベルも化学組成、強度レベルからみて良好なレベルを有している。
【0053】
一方、表3から、本発明を満足していない鋼板番号B1〜B8については、材質のばらつき、異方性ともに本発明例より大幅に劣っているか、あるいは構造用鋼として十分な機械的性質を発揮できないことが明らかである。
すなわち、鋼板番号B1は、製造方法については本発明を満足していて材質ばらつきは小さいが、C量が過剰であるために、靭性が非常に劣化していて好ましくない。
鋼板番号B2も、製造方法については本発明を満足していて材質ばらつきは小さいが、Mn量が過剰であるため、靭性が大きく劣化している。
鋼板番号B3は、Nb量が過剰なため、Nbによるオーステナイトの再結晶抑制効果が強固で、熱間圧延後の加熱・保持工程の要件は本発明を満足しているものの、該工程の中でのオーステナイトの再結晶が十分でなく、材質ばらつき、異方性は本発明鋼に比べて格段に大きくなっており、好ましくない。加えてNb量が過剰なため、Nbの析出強化、粗大なNb炭窒化物に起因して靭性劣化も著しい。
【0054】
鋼板番号B4,B5も、同様に、各々、再結晶抑制及び析出強化元素であるTa,Vが過剰なために、鋼板番号B3と同じ理由により、材質ばらつき、異方性が過大であり、靭性劣化も大きい。
鋼板番号B6〜B8は、鋼片は鋼板番号A2と同一のものであるため、化学組成は本発明を満足しているが、製造方法に関わる要件が本発明を満足していないために、本発明により製造した鋼板に比べて材質ばらつき、異方性が非常に大きい例である。
すなわち、鋼板番号B6は、圧延で形成された形態や転位密度の不均一なオーステナイト粒を均一整細粒とするために必要な圧延後の加熱・保持工程における加熱温度が過小であるため、加熱・保持後のオーステナイトが100%再結晶しておらず、そのため、圧延工程で形成されたオーステナイトの不均一性、異方性が完全には解消されず、その結果、変態組織のばらつき、異方性が大きくなっている。そのため、強度・靭性のばらつき、異方性も大きい。
【0055】
鋼板番号B7は、鋼板番号B6とは反対に、該加熱・保持工程おける加熱温度が過大であったため、オーステナイトは100%再結晶して均一化しており、材質のばらつきは小さいが、加熱温度が過大なために、圧延で細粒化されたオーステナイト粒が粗大となってしまったため、靭性が同一組成の本発明鋼である鋼板番号A2と比べて著しく劣り、好ましくない。
鋼板番号B8は、圧延後、加熱・保持工程に入る前にAr3変態点以下の二相域まで温度低下したために、加熱・保持後のオーステナイトの混粒度が大きくなり、材質の不均一性が大きい。また混粒オーステナイトから変態した組織のため、靭性レベルは本発明例に比べて劣る。
【0056】
以上の実施例から、本発明によれば、材質の異方性やばらつきが極めて小さい、材質の均一性にすぐれた厚鋼板の製造が可能であることが明らかである。
【0057】
【表1】

Figure 2005002372
【0058】
【表2】
Figure 2005002372
【0059】
【表3】
Figure 2005002372
【0060】
【発明の効果】
本発明によれば、強化元素であり、同時にオーステナイトの再結晶を抑制に効果のある元素である、Cu,Mo,W,V,Nb,Ta,Zr,Bの1種または2種以上を含有し、加工熱処理によって製造される厚鋼板において、材質の異方性及びばらつきを極めて小さくすることが可能であり、産業上の効果は極めて大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a thick steel plate having excellent strength and toughness produced by thermomechanical processing represented by accelerated cooling after controlled rolling and hot rolling, and having little material anisotropy and variation. The obtained steel sheet can be used for, for example, a welded structure such as a building structure, an offshore structure, a ship, a bridge, a line pipe, and the like.
[0002]
[Prior art]
The steel material inevitably varies, but the thick steel plate used as the strength member of the structure is preferably as small as possible from the viewpoint of safety. On the other hand, recently, it is possible to achieve both good weldability and high strength, so in high-tensile thick steel plates, there are increasing cases of being manufactured by thermomechanical processing represented by accelerated cooling after controlled rolling and hot rolling, By performing accelerated cooling such as non-recrystallized zone rolling or water cooling after hot rolling, material variations such as anisotropy, material variation due to steel plate position, material variation between steel plates, etc., are not It tends to be larger than rolling, normalizing, and reheat quenching / tempering materials.
[0003]
It can be said that the main cause of material anisotropy and material variation of thick steel plates produced by thermomechanical processing is attributed to the non-uniformity of austenite grains produced by rolling. That is, by a low temperature rolling or / and Cu, Mo, W, V, Nb, Ta, Zr, and B added as strength elements increase the recrystallization temperature of austenite, In the non-recrystallized or partially recrystallized state, the transformed structure also has directionality and variation, and the structure change due to slight variations in other process factors also increases.
[0004]
If hot rolling is completed in the complete recrystallization region, the above problem will not occur. However, in the actual production of thick steel plates, it is a strong element and is not yet possible because of the need for both weldability and strength. In many cases, Cu, Mo, W, V, Nb, Ta, Zr, and B for increasing the recrystallization temperature are inevitably added. In many cases, it is difficult to complete the rolling in the complete recrystallization region because the temperature drop is large even when hot rolling is performed. On the other hand, if it is attempted to complete the rolling in the complete recrystallization temperature range, the rolling end temperature must be increased even when the above-mentioned recrystallization inhibitor element is not added, and it is difficult to perform the normal facility operation. Since the austenite grain size becomes coarse due to the higher end temperature, the risk of deterioration of toughness increases.
[0005]
Conventionally, various methods for reducing the material variation have been proposed. For example, Patent Document 1 discloses a method for making a material in the thickness direction uniform by heating a slab uniformly at low temperature. In addition, for example, Patent Document 2 discloses a reduction in variation in yield point by defining the time between passes and the temperature deviation of steel in hot rolling to achieve uniform austenite grain size and residual dislocation density. Yes.
[0006]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 63-50422
[Patent Document 2]
JP 2002-249822 A
[0007]
[Problems to be solved by the invention]
The methods proposed in Patent Document 1 and Patent Document 2 mainly limit the heating temperature and rolling conditions in hot rolling, but the decrease in heating temperature is a precipitation strengthening added to improve the strength. There is a problem in that it is difficult to make a uniform solution of elements, which is disadvantageous for increasing the strength, and defining the time between rolling passes often reduces productivity and places a load on operations.
In the present invention, for the thick steel plate containing one or more of Cu, Mo, W, V, Nb, Ta, Zr, B, which is a material variation problem, and manufactured by thermomechanical processing, It is an object of the present invention to provide a production method in which the limitations on hot rolling in the above-described prior art are not large, versatility is high, and anisotropy and variation in material are small.
[0008]
[Means for Solving the Problems]
The inventors of the present invention have the strength and strength when manufacturing a high-tensile thick steel plate containing Cu, Mo, W, V, Nb, Ta, Zr, and B, which is a strengthening element and a recrystallization inhibiting element, by thermomechanical treatment. In order to reduce the anisotropy of strength and toughness, the cause and anisotropy of variation, and the variation by examining in detail the relationship between the anisotropy of toughness, the variation between the plates and between the austenite structure and transformation structure I found a new means. That is, first, the anisotropy increases because the austenite grains are oriented in the rolling direction by non-recrystallized zone rolling, so that the transformation structure is also oriented, and the orientation of the structure material is eliminated. In order to achieve this, it is necessary to recrystallize approximately 90 to 100% austenite into fine grain.
[0009]
Similarly, austenite in an unrecrystallized state has a great influence on the variation in material. That is, the transformation occurs inhomogeneously from the austenite grain boundaries or twins and deformation bands, and there is a large difference in the fineness of the transformation structure between the unrecrystallized austenite grains and the austenite grain boundaries or twins and deformation bands. Therefore, it becomes a cause of material variation. Unrecrystallized austenite is unstable depending on the chemical composition, and the dislocation density of unrecrystallized grains changes greatly due to slight changes in the heated austenite grain size, cumulative rolling reduction, and temperature, and some recrystallization occurs. As a result, the recrystallization rate greatly changes, which causes a large variation in the transformation structure within and between plates.
[0010]
If it is generally possible to finish hot rolling at a temperature at which austenite recrystallizes 100%, the above-mentioned material variation can be greatly reduced, but the strength elements Cu, Mo, W, V, Nb, Ta , Zr, and B are elements that suppress recrystallization of austenite at the same time, and the steel containing these elements has a high 100% recrystallization temperature. When rolling is completed at such a high temperature, the austenite grain size is inevitably coarse and it may be difficult to ensure toughness. In addition, when the steel plate thickness is thin, since the temperature drop during rolling is large, it may be difficult to recrystallize austenite 100% by normal hot rolling even when these recrystallization inhibiting elements are not included. Many.
[0011]
Therefore, the present inventors recrystallize once formed non-recrystallized to partially recrystallized austenite by controlling the temperature history after the end of rolling rather than controlling austenite in hot rolling. By forming fine grained austenite, Cu, Mo, W, V, Nb, Ta, Zr, B are contained without increasing the load of the rolling process and without limiting the plate thickness and chemical composition, For the first time, it was found that the anisotropy and variation of the material of a thick steel plate produced by thermomechanical treatment can be reduced. The gist is as follows.
[0012]
(1) In mass%,
C: 0.02-0.3%, Si: 0.01-2%,
Mn: 0.1 to 2%, Al: 0.001 to 0.1%,
N: 0.001 to 0.01%
As impurities,
P: 0.02% or less, S: 0.01% or less
In addition, one or more of Cu, Mo, W, V, Nb, Ta, Zr, and B, which are effective in suppressing austenite recrystallization and improving strength,
Cu: 0.01 to 1.5%, Mo: 0.01 to 2%,
W: 0.01-2%, V: 0.005-0.5%,
Nb: 0.003-0.2%, Ta: 0.005-0.2%,
Zr: 0.003-0.1%, B: 0.0002-0.005%
The thickness of the material is low in anisotropy and variation, characterized by subjecting a steel slab containing iron and unavoidable impurities to a heat treatment including the following steps (1) to (3): A method of manufacturing a steel sheet.
(1) Heating the steel slab to 1000-1300 ° C
(2) A step of performing finish rolling in which a rolling reduction of 30 to 90% is performed in a non-recrystallized region to a partially recrystallized region of austenite to form austenite having a recrystallization rate of 0 to 60%.
(3) A step of heating and holding at a temperature not lower than the Ar3 transformation point and not lower than the Ar3 transformation point and not higher than 950 ° C. for 10 to 1000 seconds after finish rolling.
[0013]
(2) A thick steel plate having a small anisotropy and variation in the material according to (1), wherein the processed and held steel plate is subjected to a tempering treatment at a heating temperature of 450 ° C. or higher and an Ac1 transformation point or lower. Manufacturing method.
[0014]
(3) Steel is further mass%,
Ni: 0.01-6%, Cr: 0.01-2%,
Ti: 0.003-0.1%
The method for producing a thick steel plate having a small anisotropy and variation in the material according to the above (1) or (2), characterized by containing one or more of the above.
[0015]
(4) Steel is further mass%,
Mg: 0.0001 to 0.01%, Ca: 0.0005 to 0.01%,
Y: 0.001 to 0.1%, La: 0.005 to 0.1%,
Ce: 0.005 to 0.1%
1 or 2 types or more are contained, The manufacturing method of the thick steel plate with a small anisotropy and dispersion | variation in the material in any one of said (1)-(3) characterized by the above-mentioned.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail. Thick steel plates produced by thermomechanical processing must have an appropriate chemical composition in order to ensure the properties as structural steel and to control the recrystallization behavior of austenite under the production method of the present invention. is there. Therefore, first, the reason for limiting the chemical composition and its action are described, and then, the reason for limiting the manufacturing method is described.
[0017]
C is an element necessary for ensuring the strength necessary for structural steel, and for that purpose, it is necessary to contain 0.02% or more. On the other hand, if the content exceeds 0.3%, the toughness and weld crack resistance of the base material and the welded portion are lowered. Therefore, in the present invention, the C content is set to 0.02 to 0.3%.
[0018]
Si is necessary as a deoxidizing element, and in order to exert a deoxidizing effect, 0.01% or more is necessary. Si is an element that increases the strength by solid solution strengthening and is useful for increasing the strength. However, if Si is excessively contained exceeding 2%, the toughness of the base material and the HAZ is deteriorated. Has an upper limit of 2%.
[0019]
Mn is required to be 0.1% or more for securing the strength of the steel. On the other hand, if it exceeds 2%, the weldability is deteriorated and the grain boundary embrittlement susceptibility is increased, which is not preferable. Therefore, in the present invention, the range of Mn is limited to 0.1 to 2%.
[0020]
Al is an element useful for deoxidation, and is an element effective for refining the heated austenite grain size of the base material by AlN. In order to exhibit an effect, it is necessary to contain 0.001% or more. On the other hand, if it exceeds 0.1% and excessively contained, a coarse oxide is formed and the ductility is deteriorated. Therefore, it is necessary to limit it to the range of 0.001% to 0.1%.
[0021]
N is not preferable because it adversely affects ductility and toughness in the solid solution state, but it works effectively with austenite grain refinement and precipitation strengthening in combination with nitride forming elements such as V, Al, Ti, etc. It is effective for improving mechanical properties. Further, it is impossible to remove N in steel completely industrially, and reducing it more than necessary is not preferable because it places an excessive load on the manufacturing process. Therefore, the lower limit is set to 0.001% as a range in which an adverse effect on ductility and toughness can be tolerated and industrially controllable and a load on the manufacturing process can be tolerated. If excessively contained, solid solution N increases, which may adversely affect ductility and toughness, so the upper limit is made 0.01% as an acceptable range.
[0022]
P is an impurity element, and if it exceeds 0.02%, the toughness and weldability are deteriorated, so it is limited to 0.02% or less.
S is also an impurity element. If it exceeds 0.01%, the ductility and toughness are adversely affected, so 0.01% is made the upper limit.
[0023]
The present invention is directed to a thick steel plate containing one or more of Cu, Mo, W, V, Nb, Ta, Zr, and B, which is a strengthening element and an austenite recrystallization inhibiting element. However, the content is limited for the following reasons.
Cu is an element that can be strengthened by solid solution strengthening, transformation strengthening, and precipitation strengthening, and has a small adverse effect on toughness. Therefore, Cu is useful as a strengthening element. In order to exert the effect, it is necessary to contain 0.01% or more. On the other hand, if the content exceeds 1.5%, adverse effects such as the promotion of surface cracking of steel slabs and deterioration of joint toughness become obvious, so the upper limit is set to 1.5% in the present invention.
[0024]
Mo is an element effective for improving temper embrittlement resistance and SR embrittlement resistance in addition to strength improvement through solid solution strengthening, transformation strengthening and precipitation strengthening. On the other hand, the above content is necessary. On the other hand, if the content exceeds 2%, the toughness and weldability are deteriorated, so the content is limited to 0.01 to 2%.
[0025]
W is an element having an effect similar to that of Mo, and is limited to a range of 0.01 to 2% as a range in which the effect can be exhibited and the material does not deteriorate.
[0026]
V is an element effective for improving the strength by forming VN. However, if contained excessively, the toughness deteriorates due to precipitation embrittlement. Accordingly, the range in which the effect can be exhibited without causing significant deterioration in toughness is limited to the range of 0.005 to 0.5%.
[0027]
Nb is the most effective element for suppressing recrystallization and, at the same time, is an element effective for improving the strength by forming Nb (C, N) at the time of transformation or tempering. As a result, the toughness deteriorates. Therefore, the range within which the effect can be exhibited without causing deterioration of toughness is limited to the range of 0.003 to 0.2%.
[0028]
Ta is also an element effective for suppressing and strengthening recrystallization of austenite by the same mechanism as Nb. In order to exhibit the effect, 0.005% or more needs to be contained. On the other hand, if it exceeds 0.2%, precipitation embrittlement, coarse precipitates, and toughness deterioration due to inclusions occur, so the upper limit is made 0.2%.
[0029]
Zr is also an element that forms a nitride, and has the same effect as other precipitate-forming elements, but it needs to be contained in an amount of 0.003% or more in order to exhibit the effect. On the other hand, if it exceeds 0.1%, coarse precipitates and inclusions are formed and the toughness and ductility are deteriorated, so the content is limited to the range of 0.003 to 0.1%.
[0030]
B is an element that is segregated at the austenite grain boundary in a solid solution state and is effective in increasing the hardenability and increasing the strength in a small amount, but in the state segregated at the grain boundary, it suppresses recrystallization of austenite. Is also effective. In order to exert effects on hardenability and recrystallization suppression, the content of 0.0002% or more is necessary. On the other hand, in the case of excessive addition exceeding 0.005%, BN, Fe 23 (C, B) 6 For example, coarse precipitates such as the above are produced and the toughness is deteriorated, so the content is limited to 0.0002 to 0.005%.
[0031]
In the present invention, in addition to the basic components described above, one or more of Ni, Cr, and Ti can be contained as necessary for adjusting strength and toughness. Ni is the most effective element for securing toughness, and needs to be contained by 0.01% or more in order to exert the effect. When the content is increased, the strength and toughness are improved, but even if the content exceeds 6%, the effect is saturated, but the weldability is deteriorated, so the upper limit is made 6%.
[0032]
Cr is an element effective for improving the hardenability and the strength of the base material by precipitation strengthening, but is required to be 0.01% or more in order to produce a clear effect, while adding over 2%, Since the toughness and weldability tend to deteriorate, the range is set to 0.01 to 2%.
[0033]
Ti is an element that contributes to improving the strength of the base metal by precipitation strengthening, and is also effective for refining the heated austenite grain size by forming TiN that is stable even at high temperatures. It is. In order to exhibit the effect, the content of 0.003% or more is necessary. On the other hand, if it exceeds 0.1%, coarse precipitates and inclusions are formed to deteriorate toughness and ductility, so the upper limit is made 0.1%.
[0034]
Furthermore, in order to improve ductility and joint toughness, one or more of Mg, Ca, Y, La, and Ce can be contained as necessary. The lower limit of the content of each element in the present invention is determined from the lower limit at which the effect is manifested. Mg is 0.0001%, Ca is 0.0005%, Y is 0.001%, and La is 0.005%. , Ce has a lower limit of 0.005%. On the other hand, the upper limit is determined by whether inclusions are coarsened and adversely affect mechanical properties, particularly ductility and toughness. In the present invention, the upper limit is determined from this viewpoint, and Mg and Ca are 0.01%. , Y, La, and Ce are 0.1%.
[0035]
The above is the reason for limitation regarding the chemical composition in the present invention. In the present invention, the chemical composition is limited for the above reasons, the manufacturing conditions in the heat treatment are limited, and the austenite structure is homogenized by adding a specific thermal history immediately after rolling, thereby making the material of the thick steel plate Minimizing anisotropy and variation of In addition, the thermomechanical processing in this invention refers to all the manufacturing methods including the process of controlling intentionally in order to use an austenite particle size and a dislocation density for material control. That is, rolling includes from the step of controlling the austenite grain size in the recrystallized austenite region to the non-recrystallized region rolling step, and the cooling method includes from air cooling to accelerated cooling. Furthermore, the case where the tempering process performed for adjustment of strength and toughness level and shape adjustment is included is also included.
[0036]
In the present invention, steel slabs (including continuously cast slabs, ingots, and slabs and ingots that have been rolled or forged for slight shape adjustment) are manufactured into thick steel plates by thermomechanical treatment. It is a requirement to include the following steps (1) to (4). The steps need to be carried out in the order of steps (1) to (4). However, before the step (1), heat treatment such as diffusion heat treatment, partial rolling, or before step (2) is performed. For the purpose of dehydrogenation after the step (3), or a heat treatment with a heating temperature less than the tempering temperature (4). Repeating the tempering of (4) within the scope of the present invention does not impair the effects of the present invention.
[0037]
(1) Heating the steel slab to 1000-1300 ° C
(2) A step of performing finish rolling in which a rolling reduction of 30 to 90% is performed in a non-recrystallized region to a partially recrystallized region of austenite to form austenite having a recrystallization rate of 0 to 60%.
(3) After finishing rolling, heating and holding for 10 to 1000 seconds at a temperature not lower than the Ar3 transformation point and not lower than the Ar3 transformation point and not lower than the Ac3 transformation point and not higher than 950 ° C.
(4) A step of subjecting the steel sheet after the heat treatment to a tempering treatment at a heating temperature of 450 ° C. or higher and an Ac1 transformation point or lower as necessary.
[0038]
First, prior to hot rolling, the steel slab is heated to 1000 to 1300 ° C. in the step (1). When the heating temperature is less than 1000 ° C., the solid solution of Cu, Mo, W, V, Nb, Ta, Zr, and B contained as a strengthening element and a recrystallization suppressing element, which is a premise of the present invention, is obtained. It is not preferable because it is not sufficient and does not work effectively for strengthening. On the other hand, if the heating temperature of the steel slab is excessively higher than 1300 ° C., the austenite grain size may be excessive, and the surface properties deteriorate, such being undesirable. In addition, it does not matter whether the steel slab after the continuous casting slab or the partial rolling is kept at a predetermined temperature or heated and held without being cooled to room temperature. However, the finer the heated austenite particle size, the finer the final austenite particle size. Therefore, in order to make the material uniform, the cold piece once cooled to below the Ar1 transformation point is re-adjusted to 1000-1200 ° C. Heating is preferred.
[0039]
The hot rolling process is divided into rough rolling mainly for shape adjustment and finishing rolling in which the temperature and the rolling reduction are intentionally controlled in order to determine the material. In the present invention, the finish rolling for the purpose of controlling the material is subjected to rolling with a cumulative reduction of 30 to 90% in the non-recrystallized region to the partially recrystallized region of austenite to form austenite with a recrystallization rate of 0 to 60%. It is a requirement that the process be performed.
[0040]
The austenite recrystallization rate and the cumulative reduction rate at that time are defined only when the recrystallization rate and the cumulative reduction rate are within the appropriate ranges, and the austenite is fine and has a small mixed particle size in the subsequent heating and holding process. This is because a fine grain structure can be obtained and good toughness can be obtained, and at the same time, anisotropy and variation of the material can be extremely reduced.
[0041]
For the rolling temperature range to be an unrecrystallized region to a partially recrystallized region, 100% recrystallized austenite has a low dislocation density, and it is difficult to change the austenite state by the subsequent heating and holding process, This is because, under the composition and production conditions that complete the rolling in the 100% recrystallized state, austenite originally has little anisotropy and variation in material unless the mixed grain size is large, and the effect of applying the present invention is also small.
[0042]
In order to reliably form fine-grained austenite in the subsequent heating / holding step, the recrystallization rate of austenite at the time when finish rolling is completed needs to be 0 to 60%. For that purpose, it is necessary that the cumulative rolling reduction ratio of the finish rolling in the non-recrystallized region to the partially recrystallized region is 30 to 90%. If the cumulative rolling reduction is less than 30%, the dislocation density introduced into the austenite is too small, and the driving force for recrystallization in the subsequent heating / holding process is not sufficient, and 100% recrystallized austenite with recrystallized grains is used. It becomes difficult to form reliably. The larger the rolling reduction, the more advantageous it is to recrystallize and to refine the austenite grain size after recrystallization. However, if it exceeds 90%, the steel plate size that can be produced is limited, and there is a problem in productivity. Therefore, in the present invention, the upper limit of the cumulative rolling reduction is set to 90%.
[0043]
The recrystallization rate of austenite at the time when finish rolling is completed needs to be 0 to 60%. In order to reliably form fine grained austenite in the subsequent heating / holding process, it is preferable that the recrystallization rate is 0%, but the non-recrystallized portion is 40%, that is, the recrystallization rate. Is 60%, it is possible to form a fine grained austenite structure with very small mixed grain size by recrystallization in the subsequent heating and holding step. On the other hand, when the recrystallization rate is partially recrystallized austenite exceeding 60%, it is difficult to completely recrystallize in the subsequent heating / holding step. It is necessary to heat and hold at a high temperature for a long time, and the austenite is coarsened and may deteriorate toughness.
[0044]
Subsequent to the finish rolling step, heating and holding of (3) is performed, and one or more of Cu, Mo, W, V, Nb, Ta, Zr, and B are used as strengthening elements and recrystallization suppressing elements. Even in a steel having a chemical composition included within the scope of the present invention, fine-grained austenite is formed to produce a thick steel plate with little material anisotropy and variation. The requirement is to heat and hold the steel slab at a temperature not lower than the Ar3 transformation point and not higher than the Ar3 transformation point and not higher than 950 ° C. for 10 to 1000 seconds after finish rolling.
[0045]
After finish rolling, heating and holding are performed to recrystallize non-recrystallized to partially recrystallized austenite to form equiaxed austenite having fine grains and isotropic properties. At this time, if the heating temperature is less than the Ac3 transformation point, the progress of recrystallization becomes extremely slow, making it difficult to recrystallize 100%, and depending on the composition of the steel, some transformation occurs during holding, This is not preferable because a desired uniform structure may not be achieved. On the other hand, if the heating temperature is higher than 950 ° C., even if it contains a recrystallization inhibiting element, it may recrystallize in a very short time and further start grain growth to form a coarse austenite structure. Therefore, it is not preferable. Accordingly, in the present invention, the heating temperature in heating and holding after finish rolling is set to the Ac3 transformation point or higher and 950 ° C or lower.
[0046]
After the finish rolling, the holding time when heating to Ac3 transformation point to 950 ° C. is 10 to 1000 seconds (s) in the present invention. As long as non-recrystallized to partially recrystallized austenite after finish rolling can be made into fine-grained recrystallized austenite, there is no particular limitation on the retention time, but the retention time is less than 10 s and is extremely short. Since it is difficult to control industrially, the holding time is set to 10 s or more in the present invention. On the other hand, holding for a long time exceeding 1000 s is not preferable because it extremely hinders productivity, and therefore the upper limit of the holding time is set to 1000 s in the present invention. In addition, it is necessary to prevent the temperature of the steel from being lower than the Ar3 transformation point after finishing rolling and before starting heating and holding. When the temperature falls below the Ar3 transformation point, there is a high possibility that a part of the transformation will occur, and partly, if the transformation occurs, even after heating and holding, the region remains austenite and once the transformation has occurred. An austenite grain size is extremely different from the austenite region, and there is a high possibility that the variation of the material is increased. In addition, material deterioration may occur.
[0047]
The cooling of the steel sheet after recrystallizing austenite by heating and holding as described above is the same effect for homogenizing the material, whether it is cooling or accelerated cooling. The present invention is effective for any of the heat treatments with cooling.
Hereinafter, the effects of the present invention will be described in more detail with reference to examples. In addition, this invention is not limited to the following Example.
[0048]
【Example】
The above is an explanation of the requirements of the present invention. Further, the effects of the present invention are shown based on examples.
A steel plate having a chemical composition shown in Table 1 was used to produce a steel plate under the manufacturing conditions shown in Table 2. The prototype steel was melted by vacuum melting or a converter, and a steel slab (ingot or slab) as cast or a steel slab whose shape was adjusted by partial rolling was produced on a steel plate.
[0049]
Steel slab numbers 1 to 10 in Table 1 satisfy the chemical composition of the present invention, and steel slab numbers 11 to 15 are comparative examples in which the chemical composition deviates from the scope of the present invention.
In Table 2, steel plate numbers A1 to A13 are examples of the present invention, and steel plate numbers B1 to B6 are comparative examples in which any of the requirements does not satisfy the present invention. In addition, from the objective of verifying the dispersion | variation in the material between steel plates and in a steel plate, about each of the manufacturing methods shown in Table 2, the steel plate (steel plate child numbers 1-3) was manufactured for every three on the same conditions.
[0050]
The tensile properties and 2 mmV notch Charpy impact properties of the steel sheets manufactured under the conditions shown in Table 2 were investigated, and the strength, toughness level, variation thereof, and anisotropy were examined. For the purpose of comparing the variation and anisotropy of materials in detail, each steel plate is 1/5 position (tip: F), center (center: M), and 1/5 of the tail (from the tip of the steel plate). The material at the center of the plate thickness in the L direction (collecting a test piece parallel to the rolling direction) and the C direction (collecting a test piece perpendicular to the rolling direction) was investigated at three positions at the tail end (T). Therefore, the materials at 9 locations (3 steel plates × 3 locations) for the same manufacturing conditions (same steel plate number) are investigated in both the L and C directions. The tensile test was performed at room temperature with a round bar tensile test piece having a parallel part diameter of 10 mm and a distance between scores of 60 mm, and the 2 mm V notch Charpy impact test was carried out with a standard test piece having a cross section of 10 mm × 10 mm. Was evaluated by the fracture surface transition temperature (vTrs).
[0051]
Table 3 shows the material survey results. Each steel plate number indicates the strength (yield stress, tensile strength) toughness (fracture surface transition temperature: vTrs) at each of the three steel plates in each of the L and C directions, and the measured values for each direction. The variation of the material was evaluated by the difference between the maximum value and the minimum value, and the material anisotropy was evaluated by the difference between the L direction and the C direction of each characteristic at the same position.
[0052]
As shown in Table 3, from the test results of steel plate numbers A1 to A13, which are examples of the present invention, when the state of austenite before transformation is controlled according to the present invention, material variation and anisotropy become very small. It is clear that Specifically, regarding material variations, the yield stress and tensile strength change width is 20 MPa or less, and vTrs change width is 13 ° C. or less. L / C direction anisotropy is strength 17 MPa or less and vTrs. It is 10 degrees C or less. Further, the toughness level is also good from the viewpoint of chemical composition and strength level.
[0053]
On the other hand, from Table 3, for steel plate numbers B1 to B8 that do not satisfy the present invention, both material variation and anisotropy are significantly inferior to those of the present invention examples, or sufficient mechanical properties as structural steel. It is clear that it cannot be demonstrated.
That is, the steel plate number B1 is not preferable because the manufacturing method satisfies the present invention and the material variation is small, but because the amount of C is excessive, the toughness is extremely deteriorated.
Steel plate number B2 also satisfies the present invention with respect to the manufacturing method and the material variation is small, but because the Mn amount is excessive, the toughness is greatly deteriorated.
Steel plate number B3 has an excessive amount of Nb, so the effect of suppressing recrystallization of austenite by Nb is strong, and the requirements of the heating / holding step after hot rolling satisfy the present invention. The austenite is not sufficiently recrystallized, and the material variation and anisotropy are significantly larger than those of the steel of the present invention, which is not preferable. In addition, since the amount of Nb is excessive, toughness deterioration is remarkable due to precipitation strengthening of Nb and coarse Nb carbonitride.
[0054]
Similarly, steel plates Nos. B4 and B5 also have excessive material variation and anisotropy due to the same reason as steel plate No. B3 due to excessive amounts of Ta and V which are recrystallization suppression and precipitation strengthening elements. Degradation is also great.
Steel plate numbers B6 to B8 are the same as steel plate number A2 because the steel slab is the same as the steel plate number A2, but the chemical composition satisfies the present invention, but the requirements related to the manufacturing method do not satisfy the present invention. This is an example in which the material variation and anisotropy are very large as compared with the steel plate manufactured according to the invention.
That is, the steel plate number B6 is heated because the heating temperature in the heating / holding step after rolling necessary for making the austenite grains having a nonuniform shape and dislocation density formed by rolling into uniform fine grains is too low. -The retained austenite is not 100% recrystallized, and therefore, the non-uniformity and anisotropy of the austenite formed in the rolling process are not completely eliminated, resulting in variations in the transformation structure and anisotropy. Sex is getting bigger. Therefore, variation in strength and toughness and anisotropy are also large.
[0055]
Steel plate number B7, contrary to steel plate number B6, was overheated in the heating / holding step, so austenite was 100% recrystallized and homogenized. Since the austenite grains refined by rolling become coarse due to being excessively large, the toughness is remarkably inferior to steel plate number A2 which is the steel of the present invention having the same composition, which is not preferable.
Steel plate No. B8 had a temperature drop to a two-phase region below the Ar3 transformation point after rolling and before entering the heating / holding step, so the mixed grain size of austenite after heating / holding was large, and the material non-uniformity was large. . Further, because of the structure transformed from the mixed grain austenite, the toughness level is inferior to that of the examples of the present invention.
[0056]
From the above examples, it is clear that according to the present invention, it is possible to produce a thick steel plate with extremely small material anisotropy and variation and excellent material uniformity.
[0057]
[Table 1]
Figure 2005002372
[0058]
[Table 2]
Figure 2005002372
[0059]
[Table 3]
Figure 2005002372
[0060]
【The invention's effect】
According to the present invention, one or more of Cu, Mo, W, V, Nb, Ta, Zr, and B, which are strengthening elements and at the same time effective in suppressing recrystallization of austenite, are contained. However, in the thick steel plate manufactured by the thermomechanical treatment, the anisotropy and variation of the material can be made extremely small, and the industrial effect is extremely large.

Claims (4)

質量%で、
C :0.02〜0.3%、
Si:0.01〜2%、
Mn:0.1〜2%、
Al:0.001〜0.1%、
N :0.001〜0.01%
を含有し、不純物として、
P:0.02%以下、
S :0.01%以下
を含有し、さらに、オーステナイト再結晶抑制及び強度向上に効果のある、Cu,Mo,W,V,Nb,Ta,Zr,Bの1種または2種以上を、
Cu:0.01〜1.5%、
Mo:0.01〜2%、
W :0.01〜2%、
V :0.005〜0.5%、
Nb:0.003〜0.2%、
Ta:0.005〜0.2%、
Zr:0.003〜0.1%、
B :0.0002〜0.005%
の範囲で含有し、残部が鉄及び不可避不純物からなる鋼片を下記の▲1▼〜▲3▼の工程を含む加工熱処理を施すことを特徴とする、材質の異方性及びばらつきの小さい厚鋼板の製造方法。
▲1▼鋼片を1000〜1300℃に加熱する工程。
▲2▼オーステナイトの未再結晶域〜部分再結晶域で累積圧下率が30〜90%の圧延を施し、再結晶率が0〜60%のオーステナイトを形成する仕上げ圧延する工程。
▲3▼仕上げ圧延後、鋼片の温度をAr3 変態点未満に低下させることなく、Ac3 変態点以上、950℃以下に10〜1000秒間加熱・保持する工程。
% By mass
C: 0.02-0.3%
Si: 0.01-2%
Mn: 0.1 to 2%,
Al: 0.001 to 0.1%,
N: 0.001 to 0.01%
As impurities,
P: 0.02% or less,
S: 0.01% or less, and further, one or more of Cu, Mo, W, V, Nb, Ta, Zr, B, which are effective in suppressing austenite recrystallization and improving strength,
Cu: 0.01 to 1.5%,
Mo: 0.01-2%
W: 0.01-2%
V: 0.005-0.5%
Nb: 0.003 to 0.2%,
Ta: 0.005 to 0.2%,
Zr: 0.003 to 0.1%,
B: 0.0002 to 0.005%
The thickness of the material is low in anisotropy and variation, characterized by subjecting a steel slab containing iron and unavoidable impurities to a heat treatment including the following steps (1) to (3): A method of manufacturing a steel sheet.
(1) A step of heating the steel slab to 1000-1300 ° C.
(2) A step of finish rolling in which a rolling reduction of 30 to 90% is performed in an austenite non-recrystallized region to a partially recrystallized region to form austenite having a recrystallization rate of 0 to 60%.
(3) A step of heating and holding at a temperature not lower than the Ar3 transformation point and not lower than the Ar3 transformation point and not higher than 950 ° C. for 10 to 1000 seconds after finish rolling.
前記加熱・保持した鋼板に加熱温度が450℃以上、Ac1 変態点以下の焼戻し処理を施すことを特徴とする、請求項1に記載の材質の異方性及びばらつきの小さい厚鋼板の製造方法。The method for producing a thick steel plate with small material anisotropy and variation according to claim 1, wherein the heated and held steel plate is subjected to a tempering treatment at a heating temperature of 450 ° C. or more and an Ac1 transformation point or less. 鋼がさらに、質量%で、
Ni:0.01〜6%、
Cr:0.01〜2%、
Ti:0.003〜0.1%
の1種または2種以上を含有することを特徴とする請求項1または2に記載の材質の異方性及びばらつきの小さい厚鋼板の製造方法。
Steel is further mass%,
Ni: 0.01-6%,
Cr: 0.01-2%
Ti: 0.003-0.1%
1 or 2 types or more of these are contained, The manufacturing method of the thick steel plate with small anisotropy and dispersion | variation in the material of Claim 1 or 2 characterized by the above-mentioned.
鋼がさらに、質量%で、
Mg:0.0001〜0.01%、
Ca:0.0005〜0.01%、
Y :0.001〜0.1%、
La:0.005〜0.1%、
Ce:0.005〜0.1%
のうち1種または2種以上を含有することを特徴とする請求項1〜3のいずれかに記載の材質の異方性及びばらつきの小さい厚鋼板の製造方法。
Steel is further mass%,
Mg: 0.0001 to 0.01%
Ca: 0.0005 to 0.01%,
Y: 0.001 to 0.1%
La: 0.005 to 0.1%,
Ce: 0.005 to 0.1%
The method for producing a thick steel plate having small anisotropy and variation in the material according to any one of claims 1 to 3, wherein one or more of them are contained.
JP2003164431A 2003-06-09 2003-06-09 Method for producing thick steel plate having small anisotropic characteristic and variation in material quality Withdrawn JP2005002372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003164431A JP2005002372A (en) 2003-06-09 2003-06-09 Method for producing thick steel plate having small anisotropic characteristic and variation in material quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003164431A JP2005002372A (en) 2003-06-09 2003-06-09 Method for producing thick steel plate having small anisotropic characteristic and variation in material quality

Publications (1)

Publication Number Publication Date
JP2005002372A true JP2005002372A (en) 2005-01-06

Family

ID=34091195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003164431A Withdrawn JP2005002372A (en) 2003-06-09 2003-06-09 Method for producing thick steel plate having small anisotropic characteristic and variation in material quality

Country Status (1)

Country Link
JP (1) JP2005002372A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241581A (en) * 2005-03-07 2006-09-14 Asahi Kasei Construction Materials Co Ltd Pillar-beam joining hardware made of cast steel having excellent weldability and impact resistance
WO2008108483A1 (en) * 2007-03-05 2008-09-12 Jfe Steel Corporation Thin steel sheet excelling in strength and toughness uniformity, process for producing the same, and apparatus therefor
JP2008248383A (en) * 2007-03-05 2008-10-16 Jfe Steel Kk Directly quenched thick steel plate with thin wall and manufacturing method therefor
JP2009209444A (en) * 2008-02-07 2009-09-17 Jfe Steel Corp Thin steel sheet excellent in uniformity, and process for producing the same
JP2011068949A (en) * 2009-09-25 2011-04-07 Nippon Steel Corp High-toughness steel plate
JP2011202244A (en) * 2010-03-26 2011-10-13 Jfe Steel Corp High-strength thin steel sheet having excellent material quality stability and method for producing the same
JP2012153928A (en) * 2011-01-25 2012-08-16 Nippon Steel Corp Method for manufacturing steel plate for bridge
CN108866429A (en) * 2017-05-10 2018-11-23 现代自动车株式会社 There is the improved corten of corrosion resistance and preparation method thereof in a corrosive environment for vehicle
CN111394654A (en) * 2020-04-23 2020-07-10 辽宁科技学院 Hot-press forming steel plate added with L a microalloy and preparation method thereof
CN114622140A (en) * 2022-03-17 2022-06-14 陕西西咸新区沣西新城能源发展有限公司 Low-alloy corrosion-resistant sleeve material for middle-deep geothermal buried pipe and preparation method thereof
CN114875302A (en) * 2022-03-25 2022-08-09 广东省科学院新材料研究所 Low-alloy steel and preparation method and application thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241581A (en) * 2005-03-07 2006-09-14 Asahi Kasei Construction Materials Co Ltd Pillar-beam joining hardware made of cast steel having excellent weldability and impact resistance
WO2008108483A1 (en) * 2007-03-05 2008-09-12 Jfe Steel Corporation Thin steel sheet excelling in strength and toughness uniformity, process for producing the same, and apparatus therefor
JP2008248383A (en) * 2007-03-05 2008-10-16 Jfe Steel Kk Directly quenched thick steel plate with thin wall and manufacturing method therefor
JP2009209444A (en) * 2008-02-07 2009-09-17 Jfe Steel Corp Thin steel sheet excellent in uniformity, and process for producing the same
JP2011068949A (en) * 2009-09-25 2011-04-07 Nippon Steel Corp High-toughness steel plate
JP2011202244A (en) * 2010-03-26 2011-10-13 Jfe Steel Corp High-strength thin steel sheet having excellent material quality stability and method for producing the same
JP2012153928A (en) * 2011-01-25 2012-08-16 Nippon Steel Corp Method for manufacturing steel plate for bridge
CN108866429A (en) * 2017-05-10 2018-11-23 现代自动车株式会社 There is the improved corten of corrosion resistance and preparation method thereof in a corrosive environment for vehicle
CN111394654A (en) * 2020-04-23 2020-07-10 辽宁科技学院 Hot-press forming steel plate added with L a microalloy and preparation method thereof
CN114622140A (en) * 2022-03-17 2022-06-14 陕西西咸新区沣西新城能源发展有限公司 Low-alloy corrosion-resistant sleeve material for middle-deep geothermal buried pipe and preparation method thereof
CN114875302A (en) * 2022-03-25 2022-08-09 广东省科学院新材料研究所 Low-alloy steel and preparation method and application thereof

Similar Documents

Publication Publication Date Title
EP2729590B1 (en) Hot-rolled high-strength steel strip with improved haz-softening resistance and method of producing said steel
CN114686777B (en) Flat steel product with good ageing resistance and manufacturing method thereof
JP3314295B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP2001123245A (en) High toughness and high tensile strength steel excellent in weld zone toughness and producing method therefor
JP2014505172A (en) Manufacturing method of hot rolled flat steel products
JP2008208454A (en) High-strength steel excellent in delayed fracture resistance and its production method
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
US20070289679A1 (en) High Strength Cold Rolled Steel Sheet Having Excellent Shape Freezability, and Method for Manufacturing the Same
JP6682988B2 (en) High-tensile steel plate with excellent ductility and method of manufacturing the same
JP3800836B2 (en) Manufacturing method of steel with excellent strength and toughness
JP2005002372A (en) Method for producing thick steel plate having small anisotropic characteristic and variation in material quality
JP4210010B2 (en) Manufacturing method of high toughness and high strength steel
JP2002363644A (en) Method for manufacturing high-tensile steel with excellent toughness and fatigue strength
JP3922805B2 (en) Manufacturing method of high-tensile steel with excellent low-temperature toughness
JP3842836B2 (en) Method for producing high-tensile steel with excellent low-temperature toughness
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
JPH1171615A (en) Production of thick steel plate excellent in low temperature toughness
JP3261515B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP2004269924A (en) High efficient producing method of steel sheet excellent in strength and toughness
JP2756534B2 (en) Manufacturing method for high ductility steel bars
JP2007177293A (en) Ultrahigh-strength steel sheet and manufacturing method therefor
JPH06240355A (en) Production of high toughness thick tmcp steel plate
JP6724720B2 (en) High-strength steel sheet manufacturing method
JPH0583605B2 (en)
JP3325146B2 (en) Manufacturing method for high yield strength steel sheet with low yield ratio

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905