JP2005000839A - Method for treating contaminated soil - Google Patents

Method for treating contaminated soil Download PDF

Info

Publication number
JP2005000839A
JP2005000839A JP2003168356A JP2003168356A JP2005000839A JP 2005000839 A JP2005000839 A JP 2005000839A JP 2003168356 A JP2003168356 A JP 2003168356A JP 2003168356 A JP2003168356 A JP 2003168356A JP 2005000839 A JP2005000839 A JP 2005000839A
Authority
JP
Japan
Prior art keywords
soil
organic halogen
contaminated soil
particle size
halogen compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003168356A
Other languages
Japanese (ja)
Other versions
JP5114643B2 (en
Inventor
Masami Kamata
雅美 鎌田
Hiroshi Uehara
大志 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2003168356A priority Critical patent/JP5114643B2/en
Publication of JP2005000839A publication Critical patent/JP2005000839A/en
Application granted granted Critical
Publication of JP5114643B2 publication Critical patent/JP5114643B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating contaminated soil, by which the movement of a halogenated organic compound in the contaminated soil can be promoted. <P>SOLUTION: A halogenated organic compound decomposing agent consisting of iron-containing powder, and the like, and a coarse granular material consisting of the iron-containing powder coarser than the contaminated soil, and the like, are mixed in the contaminated soil containing the halogenated organic compound. The particle size of the coarse granular material is made larger than at least either one of 20% particle size D<SB>20</SB>of the contaminated soil and 50% particle size D<SB>50</SB>of the same. The 20% particle size D<SB>20</SB>of the soil obtained by blending the halogenated organic compound decomposing agent and the coarse granular material into the contaminated soil is made to be 50-3,000 μm and the coefficient of water permeability of the obtained soil is made to be 1 x 10<SP>-3</SP>to 1 x 10<SP>0</SP>cm/sec. The coarse granular material consists of at least one of sandy soil, metal powder, an oxide, a mineral, soil and a macromolecular material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、汚染土壌の処理方法に関し、特に、揮発性有機ハロゲン化合物によって汚染された土壌を揮発性有機ハロゲン化合物分解剤によって無害化する処理方法に関する。
【0002】
【従来の技術】
産業構造の変化に伴って電子産業が急激に発展して成長し続けた結果、家電製品の開発および改良や、情報網の発達による社会生活の利便性の向上などの恩恵がもたらされたが、その代償として、工場周辺の大気や土壌および地下水などの地下環境に様々な汚染が蓄積されることとなった。近年、環境に関する各種の法的規制の整備とともにこれらの汚染が表面化して問題になっている。
【0003】
このような汚染のうち、電子産業分野において半導体材料や精密部品などの脱脂剤として大量に使用され、また、衣料や装飾産業分野においてクリーニング用の洗浄剤として大量に使用されてきたトリクロロエチレンなどの有機ハロゲン化合物による汚染は、使用履歴のある工場の地下のみならず、地下水へのごく微量の溶出に伴って広範囲に汚染が拡大するという特徴から、特に問題になる場合が多い。
【0004】
有機ハロゲン化合物によって汚染された土壌や地下水の浄化方法として、様々な方法が知られている。そのような方法として、銅含有鉄粉などの有機ハロゲン化合物分解剤を汚染土壌に均一に混合または局所的に配置することによって汚染土壌を浄化する方法がある。この方法は、汚染物質を原位置で直接的に分解して無害化することができ、広く実用化されている。この方法の代表的な例として、有機塩素系化合物を分解して無害化する銅含有鉄粉を使用する方法(例えば、特許文献1参照)、特殊鉄粉の表面に局所的に銅を付着させることによって有機ハロゲン化合物の分解性能を向上させた鉄粉を使用する方法(例えば、特許文献2参照)などが知られている。
【0005】
【特許文献1】
特開平11−235577号公報(段落番号0015−0016)
【特許文献2】
特開2002−69425号公報(段落番号0008−0009)
【0006】
【発明が解決しようとする課題】
しかし、上述した従来の処理方法では、有機ハロゲン化合物の分解能力が高い分解剤を混合することによって浄化速度を高めているが、浄化速度に大きな影響を及ぼす土壌中の有機ハロゲン化合物の移動速度を制御していないので、粒度が小さい粘土やシルト土壌を浄化対象とする場合に浄化期間が長期化する可能性があった。
【0007】
また、粒度分布が小さく、比表面積が大きく、多孔質であり、腐植土などのVOC類の保持量が大きい土壌については、土壌に保持された有機ハロゲン化合物が鉄粉に吸着され難く、浄化が進行し難い場合もあった。
【0008】
さらに、汚染中心の周辺などの局所的な高濃度部分(汚染源)とそこから広範囲に拡がった低濃度部分を持つような濃度分布が大きい汚染現場に対して有機ハロゲン化合物分解剤の施工を行う場合には、分解剤による有機ハロゲン化合物の分解反応が擬一次反応のような挙動を示すため、サイト全体の浄化期間が高濃度部分に要する浄化期間によって決定され、局所的な高濃度部分の存在により全体の浄化期間も長期化するという問題があった。
【0009】
ところで、鉄粉などの有機ハロゲン化合物分解剤によって土壌を浄化する場合、浄化対象となる土壌の性状によって有機ハロゲン化合物の分解の進行が大きく影響を受け、浄化期間が長期化したり、分解が停滞する場合があることが確認されている。この現象は、処理対象土壌の様々な物理的および化学的性質に関係するが、この中で、土壌の粒度分布による影響について説明する。
【0010】
処理対象土壌の粒度分布は、土壌中の有機ハロゲン化合物の移動に大きな影響を与える。すなわち、微粒成分が多いシルトや粘土質の土壌の透水性や通気性が小さいことは一般に知られた事実であり、このような土壌では、有機ハロゲン化合物が存在する液相または気相の移動が妨げられることにより、土壌中の有機ハロゲン化合物の移動速度も小さくなる。
【0011】
また、有機ハロゲン化合物によって汚染された土壌に鉄粉などの有機ハロゲン化合物分解剤を混合して浄化処理を行う場合には、以下に示す状態が進行する。すなわち、有機ハロゲン化合物分解剤の粒子表面で有機ハロゲン化合物の分解が起こり、表面近傍の有機ハロゲン化合物の濃度が低下する。その結果、有機ハロゲン化合物分解剤の粒子の表面近傍とバルク部(粒子の表面から離れた場所)の間に有機ハロゲン化合物の濃度勾配が生じ、高濃度側から低濃度側に、すなわちバルク側から粒子表面側に向かって有機ハロゲン化合物が移動する。これらが繰り返されることにより、土壌全体の有機ハロゲン化合物の濃度が低下していく。
【0012】
以上の説明から、土壌全体の浄化速度は、有機ハロゲン化合物分解剤の粒子表面における有機ハロゲン化合物の分解反応速度と、土壌中の有機ハロゲン化合物の移動速度により決定されることがわかる。したがって、有機ハロゲン化合物分解剤の粒子表面における有機ハロゲン化合物の分解反応速度が高くても、土壌中の有機ハロゲン化合物の移動速度が、有機ハロゲン化合物分解剤の粒子表面における分解速度に見合う量の有機ハロゲン化合物が粒子表面に供給されない程度に小さい場合には、土壌全体の浄化速度が低くなることがわかる。すなわち、分解能力が高い有機ハロゲン化合物分解剤を処理対象土壌に混合した場合でも、処理対象土壌の土質によってその高い分解能力を生かしきれない場合があった。
【0013】
上述したように、特殊鉄粉などの有機ハロゲン化合物分解剤による浄化期間が長期にわたるような土壌に対して、より短期間で効率的な処理を行うためには、分解能力が高い有機ハロゲン化合物分解剤を使用する他に、処理対象土壌中の有機ハロゲン化合物の移動を促進させることが必要である。
【0014】
また、有機ハロゲン化合物類を保持し易い土質の土壌に対しても、土壌に含まれる有機ハロゲン化合物類の分解剤の粒子表面までの移動を促進させる処理により、有機ハロゲン化合物の分解が効率的になると考えられる。
【0015】
したがって、本発明は、このような従来の問題点に鑑み、有機ハロゲン化合物を含有する汚染土壌中の有機ハロゲン化合物の移動を促進させることができる、汚染土壌の処理方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意研究した結果、有機ハロゲン化合物を含有する汚染土壌に有機ハロゲン化合物分解剤と汚染土壌より粗粒の粗粒材とを混合することにより、有機ハロゲン化合物を含有する汚染土壌中の有機ハロゲン化合物の移動を促進させることができることを見出し、本発明を完成するに至った。
【0017】
すなわち、本発明による汚染土壌の処理方法は、有機ハロゲン化合物を含有する汚染土壌に、有機ハロゲン化合物分解剤と、汚染土壌より粗粒の粗粒材とを混合することを特徴とする。この汚染土壌の処理方法において、粗粒材の20%粒径D20が汚染土壌の20%粒径D20と50%粒径D50の少なくとも一方より大きいのが好ましい。また、ハロゲン化合物分解剤と粗粒材が鉄含有粉からなるのが好ましい。また、汚染土壌に有機ハロゲン化合物分解剤と粗粒材を混合した後の土壌の粒度分布が、20%粒径D20=50〜3000μmであるのが好ましい。また、粗粒材が、砂質土壌、金属粉、酸化物、鉱物、土壌および高分子材料の少なくとも一種であるのが好ましい。さらに、汚染土壌に有機ハロゲン化合物と粗粒材を混合した後の土壌の透水係数が1×10−3〜1×10cm/secであるのが好ましい。
【0018】
また、本発明による混合土壌は、有機ハロゲン化合物または有機ハロゲン分解物を含有する土壌と、有機ハロゲン化合物分解剤と、土壌より粗粒の粗粒材とからなり、粒度分布が20%粒径D20=100〜3000μmであることを特徴とする。この混合土壌の透水係数が1×10−3〜1×10cm/secであるのが好ましい。
【0019】
なお、本明細書中、「20%粒径D20」とは、土を構成する土粒子の粒径の分布状態(粒度)を粒径とその粒径より小さい粒子の質量百分率の関係を示す粒径加積曲線において通過質量百分率が20%のときの粒径をいい、「50%粒径D50」とは、粒径加積曲線において通過質量百分率が50%のときの粒径をいう。
【0020】
【発明の実施の形態】
本発明による汚染土壌の処理方法の実施の形態では、揮発性で土壌間隙水に溶解性の有機ハロゲン化合物によって汚染された土壌に有機ハロゲン化合物分解剤を混合することにより浄化処理を行うにあたり、有機ハロゲン化合物分解剤の混合と同時またはその前後の工程において粗粒材を混合することにより、土壌中の有機ハロゲン化合物の移動を促進させて土壌全体の浄化速度の改善を図っている。
【0021】
この方法により、浄化対象となる土壌の土質によらず、有機ハロゲン化合物の分解能力が高い分解剤を効率的に適用することができるとともに、局所的な高濃度部分の汚染物質の分解剤混合領域内の移動を促進させ、全体の濃度を均一化させることにより、高濃度部分の浄化期間により決定されていた全体の浄化期間を短縮することができるなどの効果が得られる。また、汚染物質分解剤および粗粒材を混合した部分は、近傍の他の部分と比較して透水性が向上しており、周辺の地下水流を収束させる効果も得られ、この部分を透過した地下水中の汚染物質が分解剤により分解され、周辺地域への汚染の拡散を防止する効果も得られると考えられる。
【0022】
この透水性を示す指標として透水係数がある。本明細書では、透水係数の計算値として、クレーガー(Creager)によって示された20%粒径D20と透水係数kの関係を示す表1のデータ(社団法人地盤工学会発行「土質試験−基本と手引き(第一回改訂版)」99頁、表11.4を参照)を使用した。また、表1に記載されていないD20値に対する透水係数は、その前後のD20値に対応する透水係数を下限および上限とする範囲で示すこととした。
【0023】
【表1】

Figure 2005000839
【0024】
本発明による汚染土壌の処理方法の実施の形態は、1,1−ジクロロエチレン、シス−1,2−ジクロロエチレン、トランス−1,2−ジクロロエチレン、トリクロロエチレン、テトラクロロエチレン、ジクロロメタン、クロロホルム、四塩化炭素、1,1−ジクロロエタン、1,2−ジクロロエタン、1,1,1−トリクロロエタンおよび1,1,2−トリクロロエタンからなる群から少なくとも1種の有機塩素化合物などの有機ハロゲン化合物に有効であり、特にトリクロロエチレンに有効である。
【0025】
上記の有機ハロゲン化合物の鉄粉などによる分解反応は、擬一次反応として示されることが確認されており、その反応式は以下のように表される。
【0026】
ln(C/C)=−k×t
ここで、tは経過日数(day)、Cはt日後の有機ハロゲン化合物の濃度(例えば(mg/L))、Cは有機ハロゲン化合物の初期(0日目)の濃度(例えば(mg/L))、kは分解反応速度定数(day−1)である。
【0027】
処理対象である土壌は、有機ハロゲン化合物を含有する土壌であればよいが、本発明による汚染土壌の処理方法の実施の形態は、微粒成分が多いシルトまたは粘土質の土壌にも有効である。これは、シルトまたは粘土質の土壌は、透水性や通気性が小さいことから、土壌中の有機ハロゲン化合物の移動が妨げられることにより、土壌中の有機ハロゲン化合物の移動速度も小さく、土壌中の移動に大きな影響を与えるからである。
【0028】
有機ハロゲン化合物分解剤(以下、「分解剤」という)としては、鉄粉、表面に銅が存在する銅含有鉄粉、2種以上の金属の組合わせによる金属粉などが挙げられ、粉状のものが好ましく、鉄を含有する鉄含有粉がさらに好ましい。特に、鉄含有粉の鉄成分が表面に配置するのが好ましい。鉄の作用により有機塩素化合物が分解されるからである。また、分解剤は、固形であり且つ土壌中で位置を保持できるもの良い。位置が保持できないと有機ハロゲンの浄化位置が変わるだけでなく、分解剤の存在箇所に偏りが生じ、分解効果が弱まる可能性がある場合もあるからである。分解剤の平均粒度は100μm以下が好ましいが、混合する土壌などに応じて設計または設定することができる。
【0029】
分解剤の作用は、土壌中の有機ハロゲン化合物を分解して、汚染された土壌を環境上無害にすることであるが、鉄粉などの分解剤を使用した場合には、有機ハロゲン化合物の塩素などを分離して無害な有機物に変性させる。この変性後の化合物は、粘度が高くならない化合物であるのが好ましい。粘性が高くなると、土壌中の有機ハロゲン化合物の移動速度が低下して、汚染地域全体の浄化時間が長期化するからである。言い換えれば、粘性が高くならないように分解する分解剤が好ましい。
【0030】
浄化対象土壌より粗粒である粗粒材の材質は、土壌中で有機ハロゲン化合物などに対して化学的に無害であり、環境を汚染しないものがよく、土壌の地耐力を向上するものまたは著しく損なわないものが好ましい。例えば、金属粉、酸化物、鉱物、土壌、高分子材料などが挙げられる。
【0031】
粗粒材の粒径は、浄化対象土壌の20%粒径D20と50%粒径D50の少なくとも一方より大きいのが好ましく、汚染土壌中の有機ハロゲン化合物が移動し易いように、浄化対象土壌と粗粒材との混合後の粒度分布を勘案して設定される。粗粒材および鉄粉を混合した後の土壌の粒度分布は、20%粒径D20=90〜3000μm程度がよく、20%粒径D20=90μm程度以上であるのが好ましい。20%粒径D20が90μm程度以上になると、表1に示すように、透水係数が1.0×10−3cm/secになり、浄化速度が高くなって、浄化範囲が拡大するからである。20%粒径D20=250μm程度以上、すなわち、透水係数が1.0×10−2cm/secになるのがさらに好ましい。
【0032】
浄化対象土壌に対する粗粒材の混合比率は、5〜300%(浄化対象土壌:粗粒材=1:0.048〜1:3)であるのが好ましい。特に、シルト質の土壌の場合には、粗粒材の混合比率が100〜300%(浄化対象土壌:粗粒材=1:1〜1:3)であるのが好ましい。
【0033】
浄化対象土壌と分解剤と粗粒材の混合の順序は特に問わないが、浄化対象土壌を少しずつ堀り出し、分解剤と粗粒材を適切な混合比で添加し、これを繰り返すのがよい。一度に大量に混合するよりもより均一に混合されるからである。但し、粗粒材の混合比率が低い場合には、粗粒材を浄化対象土壌に練りこむような過度な混合を避けるべきである。
【0034】
また、粗粒材を汚染地帯の浄化対象土壌の全てに混合しなくても、一部に混合して埋め戻すことにより、埋め戻した混合土壌を中心に浄化が拡大し、その配置および量によって汚染地帯全域を浄化することが可能になる。また、粗粒材の種類やその混合条件によっては、粘土のような扱い難い土壌でも粘性が低下するため、施工中の土壌の取扱いも容易になる。さらに、地盤の強度も向上して、施工終了後の土地に建物を建設する場合などに利点がある。
【0035】
混合施工後の混合土壌は、上述したように地中に埋め戻してもよいし、別の場所に移動して、パイル状に積み上げ、浄化の状況を確認してもよい。
【0036】
【実施例】
以下、本発明による汚染土壌の処理方法の実施例について詳細に説明する。
【0037】
[実施例1]
表1および図1に示す粒度分布を有する砂質土壌A(D20=304μm、D50=674μm)と粗粒鉄粉B(D20=864μm、D50=4065μm)を用意し、混合比率水準をA:B=10:0、9:1、8:2および0:10の4水準とし、混合後の混合土壌の粒度分布を測定した。各混合比率水準におけるサンプルの20%粒径D20の値は、それぞれ304μm、420.2μm、419.6μmおよび864μmであり、各D20値における透水係数を表1から求めると、それぞれ2.2〜3.2×10−2cm/sec、4.5〜5.8×10−2cm/sec、4.5〜5.8×10−2cm/secおよび2.2〜2.8×10−1cm/secであった。
【0038】
また、混合後の土壌サンプルを用いて透水係数の実測も行った。透水係数の実測は、以下のような定水位測定法により行った。
【0039】
図2に示すように、両端にスリットが設けられて通水可能な内径7cm、高さ12.57cmの円筒10の内部に測定対象サンプル(土壌)を充填した。この際、高さ3cm程度ずつを目安にして土壌を投入し、治具を使用して締固めた。締固めた土壌の上に次の土壌を投入する前に、層間の馴染みを良くするために、締固めた土壌の上面にヘラなどで傷をつけた。この操作を繰り返して、円筒10の内部に土壌を充填した。次に、円筒10の両端を蓋12で閉じ、蓋12に接続したガス・液体供給用の配管からCOガスを適切な流量で1時間流し続け、空隙ガスをCOで置換した。COガスを流した後、ガス・液体供給用の配管を、オーバーフローで定水位に調整される水タンク14に接続された配管16に交換し、同様にオーバーフローにより定水位に調整される水タンク18内に土壌充填層10をセットした。次に、水タンク14と土壌充填層10の水頭差によって、土壌充填層10に通水を行った。土壌充填層10の出口の水流出量が安定した時点で、単位時間当たりの流出水量を測定し、透水係数の評価を行った。透水係数k(cm/sec)を求める計算式は、以下のように表される。なお、温度による水の粘性の変化を考慮して、実験は全て25℃の条件下で行った。
【0040】
k=L/h×Q/A(t−t
ここで、Lは供試体の厚さ(=12.57cm)、hは水位差(=115.5cm)、Qは流出水量(cm)、(t−t)は測定時間(sec)である。
【0041】
これらの結果を図3に示す。図3に示すように、砂質土壌に対して20重量%の粗粒鉄粉を混合する条件で、クレーガーの値から算出した値も、透水係数の向上の比率がほぼ同様の結果であった。このように、クレーガーの値を用いても実際の透水係数と相関があり、本発明による汚染土壌の処理方法を実施する際には、その差異などを考慮して調整すれば、問題なく実施することができる。なお、表2に砂質土壌Aおよび粗粒鉄粉Bの粒度分布と(クレーガーの式から算出した)透水係数kを示す。
【0042】
【表2】
Figure 2005000839
【0043】
[実施例2]
シス型−1,2−ジクロロエチレンおよびトリクロロエチレンによって汚染されたシルトまたは粘土質の汚染土壌Cに鉄粉を混合することによる浄化処理について試験を行った。なお、浄化促進材料として砂質清浄土壌Dを使用した。汚染土壌Cおよび砂質清浄土壌Dの粒度分布の測定結果を図4に示し、この結果に基づいてクレーガーのD20値と透水係数kの関係から算出される各土壌の20%粒径D20、50%粒径D50およびこれらの土壌を1:1で混合した場合の20%粒径D20、50%粒径D50を表3に示す。
【0044】
【表3】
Figure 2005000839
【0045】
汚染土壌Cおよび砂質清浄土壌Dを汚染土壌C:砂質清浄土壌D=1:1で混合した混合土壌Eを使用して、以下のように汚染物質である有機塩素化合物の分解試験を行った。
【0046】
まず、鉄粉に対して5重量%の希CuSO溶液を加えて攪拌した後に乾燥することによって得られた銅含有鉄粉を、100gの汚染土壌Cと100gの混合土壌E(汚染土壌C:砂質清浄土壌D=1:1)のそれぞれに、汚染土壌Cに対して1重量%の割合で混合した。すなわち、100gの汚染土壌Cに対して1gの銅含有鉄粉を混合し、100gの混合土壌Eに対して0.5gの銅含有鉄粉を混合した。なお、この実施例以降の実施例で使用した銅含有鉄粉は、特に説明しない限り、すべて上記と同様に製造した銅含有鉄粉である。このときのD20値を用いてクレーガーのD20と透水係数kの関係より算出した透水係数は、0.9〜1.4×10−2cm/secであった。
【0047】
次に、容量24mLのバイアル瓶中に、銅含有鉄粉と砂質清浄土壌Dを混合した浄化対象土壌10gを投入し、テフロン(登録商標)ライニングを施したブチルゴム製セプタムおよびアルミシールで密栓した。このバイアル瓶内にマイクロシリンジを用いて分解対象物質となるシス型−1,2−ジクロロエチレンおよびトリクロロエチレンをそれぞれ1μ/L注入した。分解対象物質の注入時点から1日経過後を初期値として、バイアル瓶中のシス型−1,2−ジクロロエチレンおよびトリクロロエチレンの濃度を経時的に測定し、見かけの分解速度定数kobsを求めた。これらの結果を図5および表4に示す。なお、表4において、見かけの分解速度定数kobsの値は10日目時点のデータから算出した。
【0048】
【表4】
Figure 2005000839
【0049】
図5および表4に示すように、汚染土壌の量に対する鉄粉の混合量を一定にして土壌全体への鉄粉の混合量を1/2倍と少なくしたにもかかわらず、シス−1,2−ジクロロエチレンの分解速度が約1.5倍、トリクロロエチレンの分解速度が約1.4倍に向上した。
【0050】
[実施例3]
実施例2に示した汚染土壌Cおよび砂質清浄土壌Dを用いて、以下のように実スケールにおける浄化処理を行った。
【0051】
4tの汚染土壌Cと、4tの砂質清浄土壌D(実施例2と同様に混合比率1:1)と、40kgの銅含有鉄粉を1バッチとして、バックホウで混合した後、合計約320tをパイル状に造成し、浄化モニタリングを行った。パイルの造成終了時をモニタリング開始時の初期値として溶出分析を行ったところ、パイル内のトリクロロエチレンの溶出量の平均値は0.028mg/L、シス−1,2−ジクロロエチレンの溶出量の平均値は0.059mg/Lであった。モニタリングした結果から算出された各物質についての見かけの分解反応速度定数kobsを表5に示す。
【0052】
【表5】
Figure 2005000839
【0053】
砂質清浄土壌Dを混合した場合と混合しなかった場合の分解速度定数kobsの比率を実施例2と同じと仮定すると、シス−1,2−ジクロロエチレンの土壌溶出値が環境基準(0.04mg/L)を満たすまでの浄化期間およびシス−1,2−ジクロロエチレンのkobsは、砂質清浄土壌Dを混合した場合と混合しなかった場合で、それぞれ表6に示す値となり、砂質清浄土壌Dを混合した場合には、混合しなかった場合と比較して浄化期間を約35%程度短縮できることがわかる。すなわち、浄化範囲がより早く拡大することがわかる。
【0054】
【表6】
Figure 2005000839
【0055】
[実施例4]
実施例2に示すシルトまたは粘土質の汚染土壌Cと砂質清浄土壌Dを用いて、粗粒材の混合による地耐力の改善効果について試験を行った。
【0056】
高さ100mm、内径84mmの塩化ビニル製の円筒の内部に、汚染土壌Cと、この汚染土壌Cに砂質清浄土壌Dを1:0.5、1:1および1:1.5の混合比率で混合したサンプル土壌とを空隙がないように充填し、土壌充填層の厚さが100mmになるように上部をすり切った。塩化ビニル製の円筒を除去した後、時間の経過とともに円柱状の土壌が崩れてその高さが変化した。円周上の3定点の高さを時間毎に記録し、これらの3点の高さの平均値の推移を各混合比率について記録した。
【0057】
表7に各混合比率についての時間毎の土壌の高さの推移を示し、図6に土壌の高さの初期値に対する変化を示す。なお、土壌の粘着性により、塩化ビニル製の円筒に土壌が付着するため、初期値には条件毎に多少のばらつきがある。
【0058】
【表7】
Figure 2005000839
【0059】
表7および図6に示すように、シルトまたは粘土質の汚染土壌Cに対する砂質清浄土壌Dの混合比率がC:D=1:1以上の条件では、土壌の自重による崩れがほとんどなかった。なお、汚染土壌Cのみの条件では、円筒の型枠の除去の際に型枠への土壌の付着や土壌の形状の崩れが顕著であったため、同様の数値評価は不可能であると判定した。このように、シルトまたは粘土質の汚染土壌Cに砂質清浄土壌Dを適量混合することにより地耐力が改善されることが確認できた。
【0060】
【発明の効果】
上述したように、本発明によれば、有機ハロゲン化合物を含有する汚染土壌中の有機ハロゲン化合物の分解を促進させることができる。
【図面の簡単な説明】
【図1】実施例1において使用した土壌Aと粗粒鉄粉Bの粒度分布を示すグラフ。
【図2】実施例1において透水係数の実測に使用した装置を概略的に示す図。
【図3】実施例1における透水係数の実測値と透水係数の経験値を示すグラフ。
【図4】実施例2において測定した汚染土壌Cおよび砂質清浄土壌Dの粒度分布の測定結果を示すグラフ。
【図5】実施例2におけるシス型−1,2−ジクロロエチレンおよびトリクロロエチレンの濃度の経時変化を示すグラフ。
【図6】実施例4における土壌の高さの初期値に対する変化を示すグラフ。
【符号の説明】
10 円筒(土壌充填層)
12 蓋
14 水タンク
16 配管
18 水タンク[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating contaminated soil, and more particularly to a treatment method for detoxifying soil contaminated with a volatile organic halogen compound with a volatile organic halogen compound decomposing agent.
[0002]
[Prior art]
As a result of the rapid development and growth of the electronics industry accompanying changes in the industrial structure, there have been benefits such as the development and improvement of home appliances and the improvement of the convenience of social life through the development of information networks. In exchange for this, various pollutions accumulated in the underground environment such as the atmosphere, soil and groundwater around the factory. In recent years, along with the development of various legal regulations related to the environment, these pollutions have become a problem.
[0003]
Among such contaminations, organic materials such as trichlorethylene, which have been used in large quantities as degreasing agents for semiconductor materials and precision parts in the electronics industry, and have been used in large quantities as cleaning agents for cleaning in the clothing and decoration industries. Contamination with halogen compounds is often a particular problem because of the fact that contamination spreads over a wide range not only in the underground of factories with a history of use, but also with a very small amount of elution into groundwater.
[0004]
Various methods are known as methods for purifying soil and groundwater contaminated with organic halogen compounds. As such a method, there is a method of purifying contaminated soil by uniformly mixing or locally arranging an organic halogen compound decomposing agent such as copper-containing iron powder in the contaminated soil. This method can be made harmless by directly decomposing pollutants in situ, and is widely used. As a typical example of this method, a method using copper-containing iron powder that decomposes and detoxifies an organic chlorine compound (see, for example, Patent Document 1), and copper is locally attached to the surface of the special iron powder. For example, a method of using iron powder whose organic halogen compound decomposition performance is improved (see, for example, Patent Document 2) is known.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-235577 (paragraph numbers 0015-0016)
[Patent Document 2]
JP 2002-69425 A (paragraph numbers 0008-0009)
[0006]
[Problems to be solved by the invention]
However, in the conventional treatment method described above, the purification rate is increased by mixing a decomposing agent having a high ability to decompose organic halogen compounds. However, the movement rate of organic halogen compounds in the soil that greatly affects the purification rate is increased. Since it is not controlled, when the clay or silt soil having a small particle size is targeted for purification, the purification period may be prolonged.
[0007]
In addition, for soils with a small particle size distribution, a large specific surface area, a porous structure, and a large amount of VOCs such as humus soil, the organic halogen compounds retained in the soil are difficult to be adsorbed by the iron powder, so that purification is possible. Sometimes it was difficult to progress.
[0008]
In addition, when an organic halogen compound decomposing agent is applied to a contaminated site with a high concentration distribution such as a local high concentration part (contamination source) such as around the contamination center and a low concentration part extending from there. Since the decomposition reaction of the organic halogen compound by the decomposition agent behaves like a quasi-primary reaction, the purification period of the entire site is determined by the purification period required for the high concentration part, and due to the presence of a local high concentration part. There was a problem that the entire purification period was prolonged.
[0009]
By the way, when purifying soil with an organic halogen compound decomposing agent such as iron powder, the progress of the decomposition of the organic halogen compound is greatly affected by the properties of the soil to be purified, and the purification period is prolonged or the decomposition is delayed. It has been confirmed that there are cases. This phenomenon is related to various physical and chemical properties of the soil to be treated, in which the effect of the particle size distribution of the soil is described.
[0010]
The particle size distribution of the soil to be treated has a great influence on the movement of organic halogen compounds in the soil. That is, it is a generally known fact that silt or clayey soil with a large amount of fine particles has low water permeability and air permeability. In such soil, the movement of liquid phase or gas phase in which organic halogen compounds are present does not occur. By being hindered, the movement speed of the organic halogen compound in the soil is also reduced.
[0011]
Further, when the soil contaminated with the organic halogen compound is mixed with an organic halogen compound decomposing agent such as iron powder to perform the purification treatment, the following state proceeds. That is, the organic halogen compound decomposes on the surface of the organic halogen compound decomposing agent, and the concentration of the organic halogen compound near the surface decreases. As a result, a concentration gradient of the organic halogen compound occurs between the vicinity of the surface of the organic halogen compound decomposing agent particles and the bulk portion (location away from the particle surface), from the high concentration side to the low concentration side, that is, from the bulk side. The organic halogen compound moves toward the particle surface. By repeating these, the density | concentration of the organic halogen compound of the whole soil falls.
[0012]
From the above description, it can be seen that the purification rate of the entire soil is determined by the decomposition reaction rate of the organic halogen compound on the surface of the organic halogen compound decomposer and the migration rate of the organic halogen compound in the soil. Therefore, even if the organic halogen compound decomposition reaction rate on the particle surface of the organic halogen compound decomposer is high, the transfer rate of the organic halogen compound in the soil is an amount of organic that matches the decomposition rate on the particle surface of the organic halogen compound decomposer. It can be seen that when the halogen compound is small enough not to be supplied to the particle surface, the purification rate of the entire soil becomes low. That is, even when an organic halogen compound decomposing agent having a high decomposing ability is mixed with the soil to be treated, the high degrading ability may not be fully utilized depending on the soil quality of the treating target soil.
[0013]
As mentioned above, in order to perform an efficient treatment in a shorter period of time on soil that has a long purification period with an organic halogen compound decomposing agent such as special iron powder, organic halogen compound decomposition with high decomposition ability In addition to using the agent, it is necessary to promote the movement of the organic halogen compound in the soil to be treated.
[0014]
In addition, even in soils that easily hold organohalogen compounds, the decomposition of organohalogen compounds can be efficiently performed by promoting the movement of the organohalogen compounds contained in the soil to the particle surface of the decomposing agent. It is considered to be.
[0015]
Therefore, in view of such a conventional problem, the present invention aims to provide a method for treating contaminated soil, which can promote the movement of the organic halogen compound in the contaminated soil containing the organic halogen compound. To do.
[0016]
[Means for Solving the Problems]
As a result of diligent research to solve the above-mentioned problems, the present inventors have mixed organic halogen compound decomposing agent and coarser material coarser than contaminated soil into contaminated soil containing an organic halogen compound. It has been found that the movement of organic halogen compounds in contaminated soil containing a halogen compound can be promoted, and the present invention has been completed.
[0017]
That is, the method for treating contaminated soil according to the present invention is characterized in that an organic halogen compound decomposing agent and a coarser material coarser than the contaminated soil are mixed into the contaminated soil containing the organic halogen compound. In the processing method of this contaminated soil, preferably 20% particle diameter D 20 of the coarse-grained material is greater than at least one of the 20% particle diameter D 20 and the 50% particle size D 50 of the contaminated soil. Moreover, it is preferable that the halogen compound decomposing agent and the coarse particle material are made of iron-containing powder. Moreover, it is preferable that the particle size distribution of the soil after mixing the organohalogen compound decomposing agent and the coarse particle material in the contaminated soil is 20% particle size D 20 = 50 to 3000 μm. The coarse material is preferably at least one of sandy soil, metal powder, oxide, mineral, soil and polymer material. Furthermore, it is preferable that the water permeability of the soil after mixing the organic halogen compound and the coarse particle material in the contaminated soil is 1 × 10 −3 to 1 × 10 0 cm / sec.
[0018]
Further, the mixed soil according to the present invention comprises a soil containing an organic halogen compound or an organic halogen decomposed product, an organic halogen compound decomposer, and a coarse material coarser than the soil, and the particle size distribution is 20% particle size D. 20 = 100 to 3000 μm. It is preferable that the water permeability of the mixed soil is 1 × 10 −3 to 1 × 10 0 cm / sec.
[0019]
In this specification, “20% particle size D 20 ” indicates the relationship between the particle size distribution state (particle size) of the soil particles constituting the soil and the mass percentage of particles smaller than the particle size. The particle size when the passing mass percentage is 20% in the particle size accumulation curve, and “50% particle size D 50 ” means the particle size when the passing mass percentage is 50% in the particle size accumulation curve. .
[0020]
DETAILED DESCRIPTION OF THE INVENTION
In the embodiment of the method for treating contaminated soil according to the present invention, an organic halogen compound decomposing agent is mixed with soil that has been contaminated with volatile organic halogen compounds that are soluble in soil pore water. By mixing the coarse particles in the process before or after the mixing of the halogen compound decomposing agent, the movement of the organic halogen compound in the soil is promoted to improve the purification rate of the entire soil.
[0021]
By this method, it is possible to efficiently apply a decomposing agent having a high ability to decompose organic halogen compounds regardless of the soil quality of the soil to be purified, and a local decomposing agent mixing region of a high-concentration part of the contaminant. By promoting the movement of the inside and making the entire concentration uniform, an effect such as shortening the entire purification period determined by the purification period of the high concentration portion can be obtained. In addition, the part where the pollutant degrading agent and coarse particles are mixed has improved water permeability compared to other parts in the vicinity, and the effect of converging the surrounding groundwater flow is obtained. It is considered that the contaminants in the groundwater are decomposed by the decomposing agent, and the effect of preventing the diffusion of the contamination to the surrounding area can be obtained.
[0022]
There exists a water permeability coefficient as a parameter | index which shows this water permeability. In the present specification, as the calculation value of the permeability, the data (Institute of Geotechnical Society issuance of Table 1 showing the relationship between the 20% particle diameter D 20 and the permeability coefficient k shown by Kurega (Creager) "Soil Test - Basic And the manual (first revised edition), page 99, see Table 11.4). In addition, the hydraulic conductivity for D 20 values not listed in Table 1 is shown in a range where the hydraulic conductivity corresponding to the previous and subsequent D 20 values is the lower limit and the upper limit.
[0023]
[Table 1]
Figure 2005000839
[0024]
Embodiments of the method for treating contaminated soil according to the present invention include 1,1-dichloroethylene, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, trichloroethylene, tetrachloroethylene, dichloromethane, chloroform, carbon tetrachloride, 1, Effective for organic halogen compounds such as at least one organochlorine compound from the group consisting of 1-dichloroethane, 1,2-dichloroethane, 1,1,1-trichloroethane and 1,1,2-trichloroethane, especially effective for trichlorethylene It is.
[0025]
It has been confirmed that the above-mentioned decomposition reaction of the organic halogen compound with iron powder or the like is shown as a pseudo primary reaction, and the reaction formula is expressed as follows.
[0026]
ln (C / C 0 ) = − k × t
Here, t is the number of days elapsed (day), C is the concentration of the organic halogen compound after t days (for example, (mg / L)), and C 0 is the initial concentration (day 0) of the organic halogen compound (for example, (mg / L). L)), k is a decomposition reaction rate constant (day −1 ).
[0027]
The soil to be treated may be any soil containing an organic halogen compound, but the embodiment of the method for treating contaminated soil according to the present invention is also effective for silt or clayey soil having a large amount of fine particles. This is because silt or clayey soil has low water permeability and air permeability, and movement of organic halogen compounds in the soil is hindered. This is because it has a great influence on movement.
[0028]
Examples of the organic halogen compound decomposing agent (hereinafter referred to as “decomposing agent”) include iron powder, copper-containing iron powder having copper on the surface, metal powder by combining two or more metals, and the like. The thing is preferable and the iron containing powder containing iron is further more preferable. In particular, the iron component of the iron-containing powder is preferably disposed on the surface. This is because organochlorine compounds are decomposed by the action of iron. The decomposition agent is solid and can maintain its position in the soil. This is because if the position cannot be maintained, not only the purification position of the organic halogen is changed, but also the location where the decomposition agent is present may be biased and the decomposition effect may be weakened. The average particle size of the decomposing agent is preferably 100 μm or less, but can be designed or set according to the soil to be mixed.
[0029]
The action of the decomposing agent is to decompose the organic halogen compounds in the soil and make the contaminated soil harmless to the environment. However, if a decomposing agent such as iron powder is used, the chlorine of the organic halogen compounds Etc. are separated and denatured into harmless organic substances. The modified compound is preferably a compound whose viscosity does not increase. This is because when the viscosity increases, the movement speed of the organic halogen compound in the soil decreases, and the purification time of the entire contaminated area becomes longer. In other words, a decomposing agent that decomposes so as not to increase the viscosity is preferable.
[0030]
The material of the coarse-grained material that is coarser than the soil to be purified should be chemically harmless to organic halogen compounds in the soil, and should not pollute the environment. What is not impaired is preferable. For example, metal powder, an oxide, a mineral, soil, a polymeric material etc. are mentioned.
[0031]
The particle size of the coarse-grained material is preferably larger than at least one of the 20% particle diameter D 20 and the 50% particle size D 50 of purifying the target soil, so as to facilitate the organic halogen compounds in the contaminated soil is moved, it is purified It is set in consideration of the particle size distribution after mixing the soil and coarse particles. The particle size distribution of the soil after mixing the coarse material and iron powder, 20% particle size D 20 = about 90~3000μm well, is preferably 20% particle diameter D 20 = not less than about 90 [mu] m. 20% particle diameter D 20 is equal to or greater than about 90 [mu] m, because as shown in Table 1, the permeability becomes 1.0 × 10 -3 cm / sec, becomes high purification rate, cleaning range is expanded is there. More preferably, the 20% particle size D 20 is about 250 μm or more, that is, the water permeability is 1.0 × 10 −2 cm / sec.
[0032]
The mixing ratio of the coarse material to the purification target soil is preferably 5 to 300% (purification target soil: coarse material = 1: 0.048 to 1: 3). In particular, in the case of silty soil, the mixing ratio of the coarse particles is preferably 100 to 300% (the soil to be purified: the coarse particles: 1: 1 to 1: 3).
[0033]
The order of mixing the soil to be cleaned, the decomposing agent and the coarse particles is not particularly limited, but the soil to be cleaned is dug little by little, and the decomposing agent and the coarse particles are added at an appropriate mixing ratio, and this is repeated. Good. It is because it mixes more uniformly than mixing in large quantities at once. However, when the mixing ratio of the coarse particles is low, excessive mixing such as kneading the coarse particles into the soil to be purified should be avoided.
[0034]
Even if coarse particles are not mixed with all of the soil to be purified in the contaminated zone, by mixing and backfilling a part of the soil, the purification will be expanded mainly in the backfilled mixed soil. It becomes possible to purify the entire contaminated zone. In addition, depending on the type of coarse particles and the mixing conditions, the viscosity of even hard-to-handle soil such as clay is reduced, so that the soil can be easily handled during construction. In addition, the strength of the ground is improved, and there is an advantage when a building is constructed on the land after completion of construction.
[0035]
The mixed soil after mixed construction may be backfilled in the ground as described above, or moved to another place, piled up in a pile shape, and the state of purification may be confirmed.
[0036]
【Example】
Hereinafter, the Example of the processing method of the contaminated soil by this invention is described in detail.
[0037]
[Example 1]
Sandy soil A (D 20 = 304 μm, D 50 = 674 μm) and coarse iron powder B (D 20 = 864 μm, D 50 = 4065 μm) having the particle size distribution shown in Table 1 and FIG. 1 are prepared, and the mixing ratio level Was set to four levels of A: B = 10: 0, 9: 1, 8: 2, and 0:10, and the particle size distribution of the mixed soil after mixing was measured. The value of 20% particle diameter D 20 of the sample at each mixing ratio levels, respectively 304μm, 420.2μm, a 419.6μm and 864, when obtaining the permeability at each D 20 values from Table 1, respectively 2.2 To 3.2 × 10 −2 cm / sec, 4.5 to 5.8 × 10 −2 cm / sec, 4.5 to 5.8 × 10 −2 cm / sec and 2.2 to 2.8 × It was 10 −1 cm / sec.
[0038]
Moreover, the hydraulic conductivity was also measured using the mixed soil sample. The actual permeability was measured by the following constant water level measurement method.
[0039]
As shown in FIG. 2, the sample to be measured (soil) was filled into a cylinder 10 having an inner diameter of 7 cm and a height of 12.57 cm, which was provided with slits at both ends and allowed water to pass therethrough. At this time, the soil was introduced with a height of about 3 cm each as a guide, and compacted using a jig. Before putting the next soil on the compacted soil, the top surface of the compacted soil was scratched with a spatula or the like in order to improve the familiarity between the layers. This operation was repeated to fill the inside of the cylinder 10 with soil. Next, both ends of the cylinder 10 were closed with a lid 12, and CO 2 gas was kept flowing at an appropriate flow rate for 1 hour from a gas / liquid supply pipe connected to the lid 12 to replace the void gas with CO 2 . After flowing CO 2 gas, the gas / liquid supply pipe is replaced with a pipe 16 connected to a water tank 14 adjusted to a constant water level by overflow, and similarly a water tank adjusted to a constant water level by overflow The soil filling layer 10 was set in 18. Next, water was passed through the soil filling layer 10 by the water head difference between the water tank 14 and the soil filling layer 10. When the amount of water outflow at the outlet of the soil packed bed 10 was stabilized, the amount of outflow water per unit time was measured and the hydraulic conductivity was evaluated. The calculation formula for obtaining the hydraulic conductivity k (cm / sec) is expressed as follows. In consideration of the change in the viscosity of water with temperature, all experiments were conducted under the condition of 25 ° C.
[0040]
k = L / h × Q / A (t 2 −t 1 )
Here, L is the thickness of the specimen (= 12.57 cm), h is the water level difference (= 115.5 cm), Q is the amount of effluent water (cm 3 ), and (t 2 -t 1 ) is the measurement time (sec). It is.
[0041]
These results are shown in FIG. As shown in FIG. 3, under the condition of mixing 20% by weight of coarse iron powder with sandy soil, the value calculated from the value of Craiger was also the result of almost the same rate of improvement of the hydraulic conductivity. . Thus, even if the value of Crager is used, there is a correlation with the actual hydraulic conductivity, and when carrying out the method for treating contaminated soil according to the present invention, it is carried out without problems if adjustments are made in consideration of the difference. be able to. Table 2 shows the particle size distribution of sandy soil A and coarse iron powder B and the hydraulic conductivity k (calculated from the Crager equation).
[0042]
[Table 2]
Figure 2005000839
[0043]
[Example 2]
A test was conducted on a purification treatment by mixing iron powder into silt or clayey contaminated soil C contaminated with cis-1,2-dichloroethylene and trichlorethylene. Sandy clean soil D was used as a purification promoting material. The measurement result of the particle size distribution of the contaminated soil C and the sandy clean soil D is shown in FIG. 4, and based on this result, the 20% particle size D 20 of each soil calculated from the relationship between the Crager D 20 value and the hydraulic conductivity k. , 1 50% particle diameter D 50 and their soil: shows a 20% particle diameter D 20, the 50% particle size D 50 in the case of mixed 1 in Table 3.
[0044]
[Table 3]
Figure 2005000839
[0045]
Using the mixed soil E in which the contaminated soil C and the sandy clean soil D are mixed with the contaminated soil C: the sandy clean soil D = 1: 1, the decomposition test of the organic chlorine compound as the pollutant is performed as follows. It was.
[0046]
First, a copper-containing iron powder obtained by adding a 5% by weight dilute CuSO 4 solution to iron powder and stirring and then drying is used as a mixture of 100 g of contaminated soil C and 100 g of mixed soil E (contaminated soil C: Each of the sandy clean soils D = 1: 1) was mixed at a ratio of 1% by weight with respect to the contaminated soil C. That is, 1 g of copper-containing iron powder was mixed with 100 g of contaminated soil C, and 0.5 g of copper-containing iron powder was mixed with 100 g of mixed soil E. The copper-containing iron powder used in the examples after this example is a copper-containing iron powder produced in the same manner as described above unless otherwise specified. The water permeability coefficient calculated from the relationship between D 20 of the Crager and the water permeability coefficient k using the D 20 value at this time was 0.9 to 1.4 × 10 −2 cm / sec.
[0047]
Next, 10 g of the soil to be cleaned, in which the copper-containing iron powder and the sandy clean soil D are mixed, is put into a 24 mL capacity vial and sealed with a Teflon (registered trademark) -lined septum and aluminum seal. . 1 μ / L each of cis-type 1,2-dichloroethylene and trichloroethylene, which are substances to be decomposed, was injected into the vial using a microsyringe. The concentration of cis-type 1,2-dichloroethylene and trichlorethylene in the vial was measured over time, with an initial value 1 day after the injection of the substance to be decomposed, and the apparent decomposition rate constant k obs was determined. These results are shown in FIG. In Table 4, the apparent degradation rate constant k obs was calculated from the data at the 10th day.
[0048]
[Table 4]
Figure 2005000839
[0049]
As shown in FIG. 5 and Table 4, despite the fact that the amount of iron powder mixed with the amount of contaminated soil was kept constant and the amount of iron powder mixed into the entire soil was reduced to 1/2 times, cis-1, The decomposition rate of 2-dichloroethylene was improved by about 1.5 times, and the decomposition rate of trichlorethylene was improved by about 1.4 times.
[0050]
[Example 3]
Using the contaminated soil C and the sandy clean soil D shown in Example 2, purification treatment on an actual scale was performed as follows.
[0051]
After mixing 4t of contaminated soil C, 4t of sandy clean soil D (mixing ratio 1: 1 as in Example 2) and 40kg of copper-containing iron powder in one batch, about 320t in total A pile was created for purification monitoring. When the elution analysis was carried out using the end of pile formation as the initial value at the start of monitoring, the average elution amount of trichlorethylene in the pile was 0.028 mg / L, and the average elution amount of cis-1,2-dichloroethylene was Was 0.059 mg / L. Table 5 shows the apparent decomposition reaction rate constants k obs for each substance calculated from the monitored results.
[0052]
[Table 5]
Figure 2005000839
[0053]
Assuming that the ratio of the decomposition rate constant k obs when the sandy clean soil D is mixed and when not mixed is the same as in Example 2, the soil elution value of cis-1,2-dichloroethylene is the environmental standard (0. 04 mg / L), and the cis-1,2-dichloroethylene k obs is the value shown in Table 6 when the sandy clean soil D is mixed and when it is not mixed. It can be seen that when the clean soil D is mixed, the purification period can be shortened by about 35% compared to the case where the clean soil D is not mixed. That is, it can be seen that the purification range is expanded earlier.
[0054]
[Table 6]
Figure 2005000839
[0055]
[Example 4]
Using the silt or clay-contaminated soil C and sandy clean soil D shown in Example 2, a test was conducted on the effect of improving the earth strength by mixing coarse particles.
[0056]
In a cylinder made of vinyl chloride having a height of 100 mm and an inner diameter of 84 mm, a contaminated soil C and a sandy clean soil D in the contaminated soil C are mixed at a ratio of 1: 0.5, 1: 1 and 1: 1.5. The sample soil mixed in (1) was filled so that there was no void, and the upper part was ground so that the thickness of the soil-filled layer became 100 mm. After removing the vinyl chloride cylinder, the columnar soil collapsed over time and its height changed. The height of the three fixed points on the circumference was recorded every hour, and the transition of the average value of these three points was recorded for each mixing ratio.
[0057]
Table 7 shows the transition of the soil height for each mixing ratio, and FIG. 6 shows the change of the soil height with respect to the initial value. Since the soil adheres to the vinyl chloride cylinder due to the adhesiveness of the soil, the initial value varies somewhat depending on the conditions.
[0058]
[Table 7]
Figure 2005000839
[0059]
As shown in Table 7 and FIG. 6, when the mixing ratio of the sandy clean soil D to the silt or clayey contaminated soil C was C: D = 1: 1 or more, there was almost no collapse due to the weight of the soil. In addition, in the condition of only contaminated soil C, it was determined that the same numerical evaluation was impossible because the soil adhesion to the formwork and the soil shape collapsed during the removal of the cylindrical formwork. . Thus, it was confirmed that the soil strength was improved by mixing an appropriate amount of sandy clean soil D with silt or clay-contaminated soil C.
[0060]
【The invention's effect】
As described above, according to the present invention, the decomposition of the organic halogen compound in the contaminated soil containing the organic halogen compound can be promoted.
[Brief description of the drawings]
1 is a graph showing the particle size distribution of soil A and coarse iron powder B used in Example 1. FIG.
FIG. 2 is a diagram schematically showing an apparatus used for actual measurement of hydraulic conductivity in Example 1. FIG.
FIG. 3 is a graph showing measured values of hydraulic conductivity and empirical values of hydraulic conductivity in Example 1.
4 is a graph showing measurement results of particle size distribution of contaminated soil C and sandy clean soil D measured in Example 2. FIG.
5 is a graph showing changes over time in the concentrations of cis-type 1,2-dichloroethylene and trichlorethylene in Example 2. FIG.
FIG. 6 is a graph showing changes in soil height relative to the initial value in Example 4;
[Explanation of symbols]
10 cylinder (soil packed bed)
12 Lid 14 Water tank 16 Piping 18 Water tank

Claims (8)

有機ハロゲン化合物を含有する汚染土壌に、有機ハロゲン化合物分解剤と、汚染土壌より粗粒の粗粒材とを混合することを特徴とする、汚染土壌の処理方法。A method for treating contaminated soil, comprising mixing contaminated soil containing an organic halogen compound with an organic halogen compound decomposing agent and a coarse material coarser than the contaminated soil. 前記粗粒材の20%粒径D20が前記汚染土壌の20%粒径D20と50%粒径D50の少なくとも一方より大きいことを特徴とする、請求項1に記載の汚染土壌の処理方法。Wherein the 20% particle size D 20 of the coarse-grained material is greater than at least one of the 20% particle diameter D 20 and the 50% particle size D 50 of the contaminated soil, treatment of contaminated soil according to claim 1 Method. 前記ハロゲン化合物分解剤と前記粗粒材が鉄含有粉からなることを特徴とする、請求項1または2に記載の汚染土壌の処理方法。The method for treating contaminated soil according to claim 1, wherein the halogen compound decomposing agent and the coarse-grained material are made of iron-containing powder. 前記汚染土壌に前記有機ハロゲン化合物分解剤と前記粗粒材を混合した後の土壌の粒度分布が、20%粒径D20=50〜3000μmであることを特徴とする、請求項1乃至3のいずれかに記載の汚染土壌の処理方法。The particle size distribution of the soil after mixing the organohalogen compound decomposing agent and the coarse particle material in the contaminated soil is 20% particle size D 20 = 50 to 3000 μm, according to claim 1, wherein The processing method of the contaminated soil in any one. 前記粗粒材が、砂質土壌、金属粉、酸化物、鉱物、土壌および高分子材料の少なくとも一種であることを特徴とする、請求項1乃至4のいずれかに記載の汚染土壌の処理方法。The method for treating contaminated soil according to any one of claims 1 to 4, wherein the coarse-grained material is at least one of sandy soil, metal powder, oxide, mineral, soil, and polymer material. . 前記汚染土壌に前記有機ハロゲン化合物と前記粗粒材を混合した後の土壌の透水係数が1×10−3〜1×10cm/secであることを特徴とする、請求項1乃至5のいずれかに記載の土壌の処理方法。The water permeability of the soil after mixing the organic halogen compound and the coarse grain material in the contaminated soil is 1 × 10 −3 to 1 × 10 0 cm / sec, The soil treatment method according to any one of the above. 有機ハロゲン化合物または有機ハロゲン分解物を含有する土壌と、有機ハロゲン化合物分解剤と、前記土壌より粗粒の粗粒材とからなり、粒度分布が20%粒径D20=100〜3000μmであることを特徴とする、混合土壌。It is composed of a soil containing an organic halogen compound or an organic halogen decomposed product, an organic halogen compound decomposer, and a coarse material coarser than the soil, and the particle size distribution is 20% particle size D 20 = 100 to 3000 μm. Characterized by mixed soil. 前記混合土壌の透水係数が1×10−3〜1×10cm/secであることを特徴とする、請求項6に記載の混合土壌。The mixed soil according to claim 6, wherein a water permeability coefficient of the mixed soil is 1 × 10 −3 to 1 × 10 0 cm / sec.
JP2003168356A 2003-06-12 2003-06-12 Treatment method of contaminated soil Expired - Lifetime JP5114643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003168356A JP5114643B2 (en) 2003-06-12 2003-06-12 Treatment method of contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003168356A JP5114643B2 (en) 2003-06-12 2003-06-12 Treatment method of contaminated soil

Publications (2)

Publication Number Publication Date
JP2005000839A true JP2005000839A (en) 2005-01-06
JP5114643B2 JP5114643B2 (en) 2013-01-09

Family

ID=34093876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003168356A Expired - Lifetime JP5114643B2 (en) 2003-06-12 2003-06-12 Treatment method of contaminated soil

Country Status (1)

Country Link
JP (1) JP5114643B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272597A (en) * 2007-03-14 2008-11-13 Dowa Eco-System Co Ltd Method for treating polluted soil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272597A (en) * 2007-03-14 2008-11-13 Dowa Eco-System Co Ltd Method for treating polluted soil

Also Published As

Publication number Publication date
JP5114643B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
US5975798A (en) In-situ decontamination of subsurface waste using distributed iron powder
AU753616B2 (en) Method for detoxification treatment of soil
AU645048B2 (en) Cleaning halogenated contaminants from groundwater
US8097559B2 (en) Compositions for removing halogenated hydrocarbons from contaminated environments
US6238570B1 (en) Method for treating aqueous composition contaminants
Oluremi et al. Oil contaminated soil as potential applicable material in civil engineering construction
JPH11235577A (en) Detoxicating treatment of soil
JP5114643B2 (en) Treatment method of contaminated soil
Chung et al. Permeable reactive barrier using atomized slag material for treatment of contaminants from landfills
JP3516613B2 (en) Contaminated groundwater purification method
Brubaker et al. In situ bioremediation of aquifers containing polyaromatic hydrocarbons
US20130118993A1 (en) Light expanded clay aggregates for removal of halogenated contaminants from water
JP3976679B2 (en) Pollutant purification method using reaction wall containing zeolite with nanometer scale iron
Shackelford et al. In-situ remediation of chlorinated solvents using zero valent iron and clay mixtures: A case history
US20140321915A1 (en) Contamination treatment for soil
JP5109036B2 (en) Detoxification method of soil
JP4167563B2 (en) Contaminated groundwater purification structure
JP2004016865A (en) Construction method for cleaning polluted groundwater in situ
JP7334932B2 (en) Method for recycling contaminated soil
KR20060027634A (en) Permeable reactive barrier and method for removing chlorinated organic contaminants using steel slag/cement paste/ferrous iron
KR100526254B1 (en) Reactive geosynthetics for intercepting mitigation of chlorinated organic compounds and method to prepare thereit
JP2004283693A (en) Underground purification structure
Bates et al. Elution profiles of three chlorinated hydrocarbons leaching through sandy soil
Eftekhari Foam-surfactant technology in soil remediation
Brubaker et al. In situ bioremediation of aquifers containing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091216

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120725

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120913

R150 Certificate of patent or registration of utility model

Ref document number: 5114643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term