JP2004363432A - Heat conduction sheet and heat dissipation structure employing same - Google Patents

Heat conduction sheet and heat dissipation structure employing same Download PDF

Info

Publication number
JP2004363432A
JP2004363432A JP2003161782A JP2003161782A JP2004363432A JP 2004363432 A JP2004363432 A JP 2004363432A JP 2003161782 A JP2003161782 A JP 2003161782A JP 2003161782 A JP2003161782 A JP 2003161782A JP 2004363432 A JP2004363432 A JP 2004363432A
Authority
JP
Japan
Prior art keywords
heat
graphite sheet
liquid
sheet
phase change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003161782A
Other languages
Japanese (ja)
Other versions
JP4380226B2 (en
Inventor
Norihiro Kawamura
典裕 河村
Kazuhiko Kubo
和彦 久保
Hidefumi Sasaki
英文 佐々木
Etsuro Habata
悦朗 幅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003161782A priority Critical patent/JP4380226B2/en
Publication of JP2004363432A publication Critical patent/JP2004363432A/en
Application granted granted Critical
Publication of JP4380226B2 publication Critical patent/JP4380226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat conduction sheet with an excellent heat dissipation effect even when a heat generation amount is increased in accordance with a high performance trend of an LSI and a CPU and the heat conduction sheet is attached with a small pressing force of a degree not giving effect on the performance of an electronic device as above. <P>SOLUTION: The heat conduction sheet 1 comprises a graphite sheet 2 and liquid layers 3 made of a substance, which is in a liquid state and has no phase change within an operating temperature range, air gaps to be formed to a joining part on the surface of the graphite sheet and inside of the graphite sheet are eliminated. Since a low thermal resistance is obtained even when a pressing force at fitting is low, heat can efficiently be dissipated and production of carbon powder can be suppressed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子機器の放熱等に使用される熱伝導性シートとこれを用いた放熱構造体に関するものである。
【0002】
【従来の技術】
以下、従来の技術について、説明する。
【0003】
近年の電子機器の小型化、高性能化が進むにつれて高密度に集積されたCPU(コンピュータに用いられる中央演算処理装置)などから発生する熱を効率良く逃がすために発熱部品に放熱フィンを接触させた熱対策が行われている。
【0004】
しかし、発熱部品と放熱フィンのそれぞれお互いの接触面には小さな凹凸による空隙が多数存在するため、接触面積が小さくなり、発熱部品から放熱フィンへの熱伝達がスムーズに行われない。
【0005】
この対策として従来グリースを塗布する方法が用いられているが、グリースは塗布して使用されるため、工程が複雑になること、塗布に際して汚れを伴うことや自動化しにくいことなどの課題があり、また、長時間使用した場合グリース中の熱伝導用固形分と油分が分離してしまい、熱抵抗が大きくなり、熱伝達の効果が損なわれるという課題や、組立時の不具合によるやり直し(リワーク)を行う時も大きな工数がかかるという課題があった。これを改善するために、グラファイトシート単独かまたはシートの片面あるいは両面にシリコーンゴムを塗布したもの等を発熱部品と放熱フィンの間に挟み込み多数存在する空隙を埋めることにより、熱抵抗を小さくする方法が提案されており、例えば先行技術文献としては特許文献1が知られている。
【0006】
【特許文献1】
特開昭62−25440号公報
【0007】
【発明が解決しようとする課題】
前記のグラファイトシートの片面あるいは両面にシリコーンゴムを塗布したものは、発熱部品への取り付け性は向上するが、シリコーンゴムの熱伝導率が低いため、熱伝達の効果が損なわれるという課題があった。
【0008】
また、グラファイトシートとシリコーンゴムを接着するための工数が必要で高価なものになっていた。
【0009】
また、グラファイトシートを単独で使用する場合、発熱部品と放熱フィンの間に柔軟なグラファイトシートを挟み込んで加圧することにより、発熱部品と放熱フィンの凹凸がグラファイトシートに食い込む形で挟み込まれ、発熱部品、放熱フィン、グラファイトシートそれぞれの凹凸が打ち消されて接触部分の熱抵抗が小さくなり、さらにグラファイトシート内部の空隙が押し潰されてなくなることにより熱伝達効果が発揮されていた。
【0010】
しかし、従来この取り付け時の加圧力は、10kg/cm程度であったが、近年低圧力で取り付ける要望が増加し、一部には1.5kg/cm程度の圧力で取り付けるケースが発生しており、この場合、発熱部品と放熱フィンの凹凸のグラファイトシートへの食い込みが少なくなるため、発熱部品とグラファイトシートの間の接触部と、放熱フィンとグラファイトシートの間の接触部の空隙が多数残された状態で取り付けられてしまい熱抵抗が大きくなってしまう。
【0011】
さらに、グラファイトシート内部の空隙も、低圧力で取り付けられることにより押し潰されず、空隙が多数残された状態で取り付けられるため、十分な熱伝達効果が得られないという課題があった。
【0012】
さらにグラファイトシートを半導体製装置内のウエハーの均熱に使用する場合、装置内のクリーン度が重要であるが、グラファイトシートは結晶層間の強度が弱く、作業中の摩擦により表面の結晶層の一部が破壊しカーボン粉の粉塵が発生してしまうという不具合があるため、グラファイトシートの表面に粘着テープを張ったり、金属板で覆う等の処理を行った上で使用されていたが、粘着テープや金属板等はグラファイトシートに比べ熱伝導率が小さいため、熱伝達の効果が損なわれるという課題もあった。
【0013】
本発明は、作業性が良く、長時間使用しても熱伝達の効果が損なわれることがなく、低加圧でも良好な熱伝達を行うことができるとともに、カーボン粉の粉塵が発生しない熱伝導性シートを提供することを目的とするものである。
【0014】
【課題を解決するための手段】
上記目的を達成するために本発明は、以下の構成を有するものである。
【0015】
本発明の請求項1に記載の発明は、常温で液体であり、かつ使用温度範囲において相変化がない物質と、グラファイトシートとを備えた熱伝導性シートであり、取り付け時の加圧力が小さくても液体が自由に移動できるため、グラファイトシート表面のしわ状の微細な凹凸により接合部に形成される空隙をなくし、さらに加圧力で移動した液体が5〜100μmといった比較的大きな窪み部分に溜まることにより、窪み部分に残る空隙を小さくし、空隙による熱抵抗を最小限に抑えることにより良好な熱伝達が得られるという作用を有する。
【0016】
また、表面に存在している液体が潤滑剤の役目を果たし、作業中の摩擦によりカーボン粉が発生し難く、また発生しても液体に吸着され、カーボン粉がグラファイトシートから離脱することを抑えることができる。
【0017】
請求項2に記載の発明は、前記常温で液体であり、かつ使用温度範囲において相変化がない物質は、グラファイトシートの表面に設けた請求項1に記載の熱伝導性シートであり、グラファイトシート表面のしわ状の微細な凹凸や、5〜100μmといった比較的大きな窪みを液体で埋めることにより熱抵抗を下げることができるとともにグラファイトシートからのカーボン粉の発生を防止することができる。
【0018】
請求項3に記載の発明は、常温で液体であり、かつ使用温度範囲において相変化がない物質は、グラファイトシートの内部に存在する空隙部分に設けた請求項1に記載の熱伝導性シートであり、グラファイトシートの内部の空隙も液体で埋めてしまうことにより、高い熱伝導率が得られ、良好な熱伝達ができるという作用を有する。
【0019】
請求項4に記載の発明は、常温で液体でありかつ使用温度範囲において相変化がない物質に、金属粉末、セラミックス粉末、カーボン粉末、ダイヤモンド粉末の内少なくとも一つ以上の粉末を含む請求項1に記載の熱伝導性シートであり、液体だけでは埋められないグラファイトシートの表面に存在する5μm〜100μmの窪み部分に液体と粉末の混合物を埋め込むことにより、窪み部分に残る空隙を更に小さくし、空隙による熱抵抗を最小限に抑えるとともに粉末の持つ熱伝導を利用することにより、良好な熱伝達ができるという作用を有する。
【0020】
請求項5に記載の発明は、常温で液体であり、かつ使用温度範囲において相変化がない物質はパーフルオロポリエーテル、シリコーンオイルのいずれかである請求項1に記載の熱伝導性シートであり、発熱温度が高い状態でも長期間にわたって低く安定した熱抵抗を保持できるため、放熱効果の信頼性を高めることができるという作用を有する。
【0021】
請求項6に記載の発明は、常温で液体であり、かつ使用温度範囲において相変化がない物質とグラファイトシートとを備えた熱伝導性シートを、発熱部品と放熱フィンやヒートパイプ、冷却用ファンなどの放熱手段との間に介在させた放熱構造体であり、この構成により発熱部品と放熱手段とのそれぞれお互いの接触面に存在する小さな凹凸による空隙をなくし、接触面積を大きくして熱抵抗を下げることにより、効率のよい放熱構造体が得られるものである。
【0022】
【発明の実施の形態】
以下本発明の一実施の形態における複合電子部品について、図面を参照しながら説明する。
【0023】
図1は本発明の一実施の形態における熱伝導性シートの斜視図であり、熱伝導性シート1はグラファイトシート2の両面に液体層3が形成されたものである。
【0024】
図2は本発明の一実施の形態における放熱構造体の断面図であり、グラファイトシート2と液体層3からなる熱伝導性シート1を発熱部品4と放熱フィン5の間に挟み、その後放熱フィン5を固定用ネジ6により取り付けるものである。
【0025】
図3は図4に示した従来のグラファイトシート2の内部の空隙部分21をシリコーンオイル11で埋めた状態を示す模式図である。
【0026】
(実施の形態1)
まず、ポリイミドフィルムを不活性ガス中で室温から昇温して1000℃〜1600℃の温度範囲で予備焼成を行い、さらに不活性ガス中で2500℃以上の温度で焼成してグラファイト化したのち、圧延処理を行って図1に示した高配向性のグラファイトシート2を得る。
【0027】
次にこのグラファイトシートの表面にパーフルオロポリエーテルよりなる液体層3をローラーを用いて塗布した後、布を用いて、手で軽く触れても指に付着して濡れることがない程度までグラファイトシート表面に溜まった余分なパーフルオロポリエーテルを拭き取り試料1とする。
【0028】
この試料1を図2のように発熱部品4と放熱フィン5の間に挟み、トルクドライバーによって固定用ネジ6を締め付け、約7Wの電力になるように電圧を印加し30分放置して定常状態になった後に発熱部品の温度と放熱フィンの温度より熱抵抗を算出する。
【0029】
熱抵抗の測定にあたっては、上記トルクドライバーの締め付け力を1.5kg/cm〜10kg/cmの範囲で変えて測定を行った結果を(表1)に示す。
【0030】
また比較のために表面に何も塗布していない圧延処理後のグラファイトシート単独の試料2についても同様の測定を行い、その結果を(表1)に併せて示す。
【0031】
【表1】

Figure 2004363432
【0032】
(表1)で#を付した試料は本発明の範囲外の比較例である。
【0033】
(表1)の結果から明らかなように、本発明の実施の形態1でグラファイトシートの表面にパーフルオロポリエーテル層を形成した試料1ではグラファイトシート単独(試料2)より熱抵抗が低く、取り付け時の加圧力にほとんど関係無く熱抵抗が低くなり、放熱効果が著しく向上していることがわかる。
【0034】
これは、グラファイトシート単独の場合は表面のしわ状の微細な凹凸や5〜100μmといった比較的大きな窪みや、グラファイトシート内部の小さな空隙により、締め付け力を大きくしないと熱抵抗を小さくできないが、グラファイトシートの表面にパーフルオロポリエーテルによる液体層を形成した試料では取り付け時の加圧力が小さくても液体が自由に移動でき、さらに5〜100μmといった比較的大きな窪み部分をも埋めることができるため、空隙による熱抵抗を最小限に抑えることにより良好な熱伝達が得られるものである。
【0035】
(実施の形態2)
実施の形態1と同様に高配向性のグラファイトシートを準備し、このグラファイトシートをシリコーンオイル(信越化学製、商品名KF96−500cs)を満たしたビーカ−に浸漬した後、真空容器に入れ0.1気圧で10分間真空含浸を行う。
【0036】
その後このグラファイトシートをビーカーより取り出し、実施の形態1と同じ方法で表面に溜まった余分なシリコーンオイルを拭き取り、熱抵抗を測定した結果を(表2)に示す。
【0037】
また比較のために表面に何も塗布していない圧延処理後のグラファイトシート単独の試料2についても同様の測定を行い、その結果を(表2)に併せて示す。
【0038】
【表2】
Figure 2004363432
【0039】
(表2)で#を付した試料は本発明の範囲外の比較例である。
【0040】
また図3は実施の形態2で使用したグラファイトシートであり、図4に示した従来のグラファイトシート2の空隙部分21をシリコーンオイル11で埋めた状態を示す。
【0041】
(表2)および図3から明らかなように、本発明の実施の形態2のように真空含浸によりグラファイトシートの内部並びに表面にシリコーンオイルで液体層を形成した試料ではグラファイトシート単独より熱抵抗が低く、取り付け時の加圧力に関係無く熱抵抗が非常に低くなり、放熱効果が著しく向上していることがわかる。
【0042】
(実施の形態3)
パーフルオロポリエーテルの中にパーフルオロポリエーテル100重量%に対し50重量%の量の窒化ホウ素の粉末を入れて、ロールミルを用いて混合した。
【0043】
実施の形態1と同様に高配向性のグラファイトシートを準備し、次にこのグラファイトシートの表面にパーフルオロポリエーテルと窒化ホウ素の粉末の混合物を塗布ローラーを用いて塗布した後、実施の形態1と同じ方法で表面に溜まった余分なパーフルオロポリエーテルと窒化ホウ素の粉末の混合物を布で拭き取り、熱抵抗を測定した結果を(表3)に示す。
【0044】
(表3)の比較例は実施の形態1と同じものである。
【0045】
【表3】
Figure 2004363432
【0046】
(表3)で#を付した試料は本発明の範囲外の比較例である。
【0047】
(表3)の結果から明らかなように、本発明の実施の形態3でグラファイトシートの表面にパーフルオロポリエーテルと窒化ホウ素の粉末の混合物で液体層を形成した試料ではグラファイトシート単独より熱抵抗が低く、取り付け時の加圧力に関係無く熱抵抗が非常に低くなり、放熱効果が著しく向上していることがわかる。
【0048】
さらに、グラファイトシートからのカーボン粉の離脱を検討するため、実施の形態1〜3で作成した本発明による試料と、比較のために表面に何も塗布していない圧延処理後のグラファイトシートを各2枚ずつ用意し、白い紙の上で本発明による試料どうし2枚並びに表面に何も塗布していない圧延処理後のグラファイトシートどうし2枚を擦り合わせて、グラファイトシートからのカーボン粉の離脱の有無を確認した。
【0049】
その結果、表面に何も塗布していない圧延処理後のグラファイトシートは、少量のカーボン粉がグラファイトシートから離脱していたが、実施の形態1〜3で作成した試料ではカーボン粉の離脱は見られなかった。
【0050】
この結果から明らかなように、パーフルオロポリエーテルやシリコーンオイルが表面に存在しているとこれらの液体が潤滑剤の役目を果たし、作業中の摩擦によるカーボン粉の発生を抑え、また発生しても液体に吸着され、カーボン粉がグラファイトシートから離脱することを抑えることができるものであり、カーボン粉などの粉体の発生を嫌う半導体製造装置のような精密機器でも使用することができるものである。
【0051】
なお、実施の形態1〜3ではポリイミドの熱分解により作成した高配向性のグラファイトシートを用いたが、天然黒鉛を酸処理し洗浄後加熱して膨張した黒鉛をプレス成形して得られるいわゆる膨張黒鉛に本発明を適用した場合でも同様の効果を奏する。
【0052】
常温で液体であり、かつ使用温度範囲において相変化がない物質という場合の使用温度範囲は、通常パソコン等の電子機器の使用温度範囲である−20℃〜130℃であり、この使用温度範囲内で、液体の状態から相変化を起こして気体になってしまった場合には、グラファイトシートと発熱部品または、グラファイトシートと放熱フィンの間から気化して失われてしまうため本発明の効果は得られない。
【0053】
また使用温度範囲内で液体の状態から相変化を起こして固体になってしまう場合、相変化に伴って体積の変化が起こるため、使用時と不使用時の繰り返しによる温度サイクルによりグラファイトシートが変形し、発熱部品と放熱フィンの間に固定用ネジで締め付けられて使用されていると隙間が発生してしまう。
【0054】
この隙間により発熱部品と放熱フィンの間の熱伝達の効果が損なわれる。
【0055】
ここで相変化とは、物質がたとえば液体などの1つの相から固体などの他の相に変化することを意味し、常温とは冷却や加熱をしな通常の温度をいう。
【0056】
なお、常温で液体であり、かつ−20℃〜130℃のような使用温度範囲において相変化がない物質としては、上記のパーフルオロポリエーテルやシリコーンオイル以外にも例えば高級飽和脂肪酸や高級アルコール類またはその化合物でも使用することはできるが、長期にわたって安定な物質であることが必要である。
【0057】
またこれら液体を塗布する方法としては、ローラー塗布以外にもスプレーや液体中への浸漬やスピンコートなどの方法を用いることができるが、柔らかいグラファイトの表面を傷つけずに塗布することが必要である。
【0058】
また、実施の形態1〜3では、手で軽く触れても指に付着して濡れることがない程度までグラファイトシート表面に溜まった余分な液体を拭き取ったが、これは発熱部品の発熱部品と放熱フィンの間に挟み込む作業時の汚れを考慮して行ったものであり、拭き取りを行わず濡れた状態でも同様の効果を奏する。
【0059】
【発明の効果】
以上のように本発明は、グラファイトシートに常温で液体であり、かつ使用温度範囲において相変化がない物質よりなる液体層を設けることにより、作業性が良く、長時間使用しても熱伝達の効果を損なわず、加圧力に関係無く熱抵抗が非常に低くなり、さらに加圧力が小さくても十分低い熱抵抗を実現でき、放熱効果を向上することができ、さらにカーボン粉の粉塵が発生しないという効果を奏するものである。
【図面の簡単な説明】
【図1】本発明の一実施の形態における熱伝導性シートの斜視図
【図2】本発明の一実施の形態における放熱構造体の断面図
【図3】本発明の一実施の形態における熱伝導性シートの模式図
【図4】従来のグラファイトシートの空隙部分を示す模式図
【符号の説明】
1 熱伝導性シート
2 グラファイトシート
3 液体層
4 発熱部品
5 放熱フィン
6 固定用ネジ
11 シリコーンオイル
21 空隙部分[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat conductive sheet used for heat radiation of an electronic device, and a heat radiation structure using the same.
[0002]
[Prior art]
Hereinafter, the related art will be described.
[0003]
In recent years, as electronic devices have become smaller and more sophisticated, heat-dissipating fins have been brought into contact with heat-generating components in order to efficiently release heat generated by a CPU (central processing unit used in a computer) and the like that are integrated at a high density. Heat measures have been taken.
[0004]
However, since there are many gaps due to small irregularities on the contact surfaces of the heat-generating component and the heat radiation fin, the contact area is small, and the heat transfer from the heat-generating component to the heat radiation fin is not performed smoothly.
[0005]
As a countermeasure, a method of applying grease is conventionally used, but since grease is applied and used, there are problems such as a complicated process, dirt during application, and difficulty in automation. In addition, if the grease is used for a long time, the solid and oil components for heat conduction in the grease will be separated, increasing the thermal resistance and impairing the heat transfer effect. There was a problem that a large number of man-hours were required when performing this. In order to improve this, a method of reducing thermal resistance by sandwiching a graphite sheet alone or a sheet coated with silicone rubber on one or both sides of the sheet between a heat-generating component and a radiating fin and filling a large number of voids is adopted. For example, Patent Document 1 is known as a prior art document.
[0006]
[Patent Document 1]
JP-A-62-25440
[Problems to be solved by the invention]
The above-mentioned graphite sheet coated with silicone rubber on one or both sides improves the attachment property to the heat-generating component, but has a problem that the heat transfer effect is impaired because the thermal conductivity of the silicone rubber is low. .
[0008]
In addition, the number of steps required for bonding the graphite sheet and the silicone rubber is required, which is expensive.
[0009]
When the graphite sheet is used alone, a flexible graphite sheet is sandwiched between the heat-generating component and the radiating fins and pressed, so that the unevenness of the heat-generating component and the heat-radiating fin are sandwiched into the graphite sheet. In addition, the heat transfer effect is exhibited by the fact that the unevenness of each of the radiation fins and the graphite sheet is canceled out, the thermal resistance of the contact portion is reduced, and the gap inside the graphite sheet is not crushed.
[0010]
However, conventionally, the pressure at the time of this mounting was about 10 kg / cm 2 , but in recent years the demand for mounting at a low pressure has increased, and in some cases, mounting at a pressure of about 1.5 kg / cm 2 has occurred. In this case, since the unevenness of the heat-generating component and the radiation fin is less likely to bite into the graphite sheet, there are many gaps between the contact portion between the heat-generating component and the graphite sheet and the contact portion between the heat-radiation fin and the graphite sheet. The heat resistance is increased because it is mounted in a state where it is left.
[0011]
Further, the gaps inside the graphite sheet are not crushed by being attached at a low pressure, and are attached with a large number of gaps remaining. Therefore, there is a problem that a sufficient heat transfer effect cannot be obtained.
[0012]
Furthermore, when a graphite sheet is used for equalizing the temperature of a wafer in a semiconductor device, cleanliness in the device is important. Since there was a problem that the part was broken and dust of carbon powder was generated, it was used after applying adhesive tape on the surface of the graphite sheet or covering it with a metal plate, etc. Since the heat conductivity of a metal sheet or a metal sheet is smaller than that of a graphite sheet, there is also a problem that the heat transfer effect is impaired.
[0013]
The present invention has good workability, does not impair the heat transfer effect even when used for a long time, can perform good heat transfer even at a low pressure, and has a heat conduction that does not generate carbon powder dust. It is intended to provide a functional sheet.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration.
[0015]
The invention according to claim 1 of the present invention is a heat conductive sheet including a substance that is liquid at normal temperature and has no phase change in a use temperature range, and a graphite sheet, and a pressing force at the time of attachment is small. Liquid can move freely, eliminating voids formed in the joints due to wrinkle-like fine irregularities on the graphite sheet surface, and the liquid moved by the pressing force accumulates in a relatively large depression such as 5 to 100 μm. This has the effect of reducing air gaps remaining in the depressions and minimizing the thermal resistance due to the air gaps, thereby providing good heat transfer.
[0016]
In addition, the liquid existing on the surface serves as a lubricant, and carbon powder is hardly generated due to friction during work, and even if it is generated, it is absorbed by the liquid and carbon powder is prevented from detaching from the graphite sheet. be able to.
[0017]
The invention according to claim 2 is the heat conductive sheet according to claim 1, wherein the substance that is liquid at room temperature and has no phase change in a use temperature range is provided on the surface of a graphite sheet. By filling wrinkle-like fine irregularities on the surface or relatively large depressions of 5 to 100 μm with a liquid, the thermal resistance can be reduced and the generation of carbon powder from the graphite sheet can be prevented.
[0018]
According to a third aspect of the present invention, there is provided the heat conductive sheet according to the first aspect, wherein the substance which is liquid at normal temperature and has no phase change in a use temperature range is provided in a void portion existing inside the graphite sheet. In addition, since the gaps inside the graphite sheet are filled with the liquid, a high thermal conductivity is obtained, and an effect of good heat transfer is obtained.
[0019]
According to a fourth aspect of the present invention, the substance which is liquid at normal temperature and has no phase change in a use temperature range includes at least one powder of a metal powder, a ceramic powder, a carbon powder, and a diamond powder. The heat conductive sheet according to the above, by embedding a mixture of liquid and powder in a recess of 5 μm to 100 μm present on the surface of the graphite sheet that cannot be filled with liquid alone, to further reduce the voids remaining in the recess. By minimizing the thermal resistance due to the voids and utilizing the heat conduction of the powder, it has the effect of enabling good heat transfer.
[0020]
The invention according to claim 5 is the heat conductive sheet according to claim 1, wherein the substance which is liquid at normal temperature and has no phase change in a use temperature range is either perfluoropolyether or silicone oil. In addition, even if the heat generation temperature is high, the heat resistance can be kept low and stable for a long period of time, so that the reliability of the heat radiation effect can be improved.
[0021]
The invention according to claim 6 provides a heat conductive sheet having a substance which is liquid at normal temperature and has no phase change in a use temperature range and a graphite sheet, a heat generating component, a heat dissipating fin, a heat pipe, and a cooling fan. This structure eliminates gaps due to small irregularities on the contact surface between the heat-generating component and the heat-dissipating means, and increases the contact area by eliminating heat-dissipating structures. Thus, an efficient heat radiating structure can be obtained by lowering the temperature.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a composite electronic component according to an embodiment of the present invention will be described with reference to the drawings.
[0023]
FIG. 1 is a perspective view of a heat conductive sheet according to an embodiment of the present invention. A heat conductive sheet 1 is a graphite sheet 2 in which liquid layers 3 are formed on both surfaces.
[0024]
FIG. 2 is a cross-sectional view of a heat radiation structure according to an embodiment of the present invention, in which a heat conductive sheet 1 composed of a graphite sheet 2 and a liquid layer 3 is sandwiched between a heat generating component 4 and a heat radiation fin 5, and then a heat radiation fin. 5 is attached by a fixing screw 6.
[0025]
FIG. 3 is a schematic view showing a state in which voids 21 inside the conventional graphite sheet 2 shown in FIG.
[0026]
(Embodiment 1)
First, the polyimide film is heated from room temperature in an inert gas, pre-baked in a temperature range of 1000 ° C. to 1600 ° C., and further baked in an inert gas at a temperature of 2500 ° C. or more to be graphitized. Rolling is performed to obtain the highly oriented graphite sheet 2 shown in FIG.
[0027]
Next, a liquid layer 3 made of perfluoropolyether is applied to the surface of the graphite sheet using a roller, and then, using a cloth, the graphite sheet is lightly touched with a hand to such an extent that it does not adhere to a finger and get wet. Excess perfluoropolyether accumulated on the surface is wiped off to obtain Sample 1.
[0028]
This sample 1 is sandwiched between the heat-generating component 4 and the radiating fin 5 as shown in FIG. 2, the fixing screw 6 is tightened by a torque screwdriver, a voltage is applied to a power of about 7 W, and the apparatus is left for 30 minutes to be in a steady state. After that, the thermal resistance is calculated from the temperature of the heat-generating component and the temperature of the radiation fin.
[0029]
Of In measuring thermal resistance, shows the results of the clamping force of the torque screwdriver was measured by changing the range of 1.5kg / cm 2 ~10kg / cm 2 in (Table 1).
[0030]
For comparison, the same measurement was also performed on Sample 2 of the graphite sheet alone after the rolling treatment in which nothing was applied to the surface, and the results are also shown in (Table 1).
[0031]
[Table 1]
Figure 2004363432
[0032]
Samples marked with # in Table 1 are comparative examples outside the scope of the present invention.
[0033]
As is clear from the results shown in Table 1, Sample 1 in which the perfluoropolyether layer was formed on the surface of the graphite sheet in Embodiment 1 of the present invention had lower thermal resistance than the graphite sheet alone (Sample 2), and was attached. It can be seen that the thermal resistance is reduced almost irrespective of the pressing force at the time and the heat radiation effect is remarkably improved.
[0034]
This is because, in the case of the graphite sheet alone, wrinkle-like fine irregularities on the surface, relatively large dents such as 5 to 100 μm, and small voids inside the graphite sheet cannot reduce the thermal resistance unless the tightening force is increased. In a sample in which a liquid layer of perfluoropolyether is formed on the surface of the sheet, the liquid can move freely even when the pressing force at the time of attachment is small, and it can also fill a relatively large depression such as 5 to 100 μm. Good heat transfer can be obtained by minimizing the thermal resistance due to the air gap.
[0035]
(Embodiment 2)
A highly oriented graphite sheet was prepared in the same manner as in Embodiment 1, and this graphite sheet was immersed in a beaker filled with silicone oil (trade name: KF96-500cs, manufactured by Shin-Etsu Chemical Co., Ltd.) and then placed in a vacuum vessel. Vacuum impregnation at 1 atmosphere for 10 minutes.
[0036]
Thereafter, the graphite sheet was taken out of the beaker, excess silicone oil accumulated on the surface was wiped off in the same manner as in Embodiment 1, and the thermal resistance was measured. The results are shown in Table 2.
[0037]
For comparison, the same measurement was performed on the sample 2 of the graphite sheet alone after the rolling treatment in which nothing was applied to the surface, and the results are also shown in (Table 2).
[0038]
[Table 2]
Figure 2004363432
[0039]
Samples marked with # in Table 2 are comparative examples outside the scope of the present invention.
[0040]
FIG. 3 shows the graphite sheet used in the second embodiment, and shows a state in which the void portions 21 of the conventional graphite sheet 2 shown in FIG.
[0041]
As is clear from Table 2 and FIG. 3, the heat resistance of the sample in which the liquid layer was formed with silicone oil inside and on the surface of the graphite sheet by vacuum impregnation as in the second embodiment of the present invention was lower than that of the graphite sheet alone. It can be seen that the heat resistance is extremely low irrespective of the pressing force at the time of mounting, and the heat radiation effect is remarkably improved.
[0042]
(Embodiment 3)
Boron nitride powder was added to the perfluoropolyether in an amount of 50% by weight with respect to 100% by weight of the perfluoropolyether, and mixed using a roll mill.
[0043]
A highly oriented graphite sheet was prepared in the same manner as in the first embodiment, and a mixture of perfluoropolyether and boron nitride powder was applied to the surface of the graphite sheet using an application roller. Excessive mixture of perfluoropolyether and boron nitride powder collected on the surface was wiped off with a cloth in the same manner as described above, and the thermal resistance was measured. The results are shown in Table 3.
[0044]
The comparative example in Table 3 is the same as the first embodiment.
[0045]
[Table 3]
Figure 2004363432
[0046]
The samples marked with # in Table 3 are comparative examples outside the scope of the present invention.
[0047]
As is evident from the results of Table 3, the sample having a liquid layer formed of a mixture of perfluoropolyether and boron nitride on the surface of the graphite sheet according to the third embodiment of the present invention had a higher thermal resistance than the graphite sheet alone. It can be seen that the heat resistance is extremely low regardless of the pressing force at the time of attachment, and the heat radiation effect is remarkably improved.
[0048]
Furthermore, in order to examine the detachment of the carbon powder from the graphite sheet, each of the samples according to the present invention prepared in Embodiments 1 to 3 and the graphite sheet after the rolling process in which nothing was coated on the surface for comparison were used. Prepare two sheets at a time and rub two sheets of the sample according to the present invention on white paper and two sheets of the graphite sheet after the rolling process in which nothing is coated on the surface to remove carbon powder from the graphite sheet. The presence or absence was checked.
[0049]
As a result, a small amount of carbon powder was detached from the graphite sheet after the rolling process in which nothing was applied to the surface, but detachment of the carbon powder was not observed in the samples prepared in Embodiments 1 to 3. I couldn't.
[0050]
As is evident from these results, when perfluoropolyether or silicone oil is present on the surface, these liquids serve as a lubricant, suppressing the generation of carbon powder due to friction during work, and Is also adsorbed by the liquid and can prevent carbon powder from detaching from the graphite sheet, and can be used in precision equipment such as semiconductor manufacturing equipment that dislikes generation of powder such as carbon powder. is there.
[0051]
In the first to third embodiments, a highly oriented graphite sheet prepared by thermal decomposition of polyimide is used. However, natural graphite is subjected to an acid treatment, washed, heated, heated, and then expanded to obtain so-called expanded graphite. Similar effects can be obtained when the present invention is applied to graphite.
[0052]
When the substance is liquid at room temperature and has no phase change in the operating temperature range, the operating temperature range is usually −20 ° C. to 130 ° C., which is the operating temperature range of electronic devices such as personal computers. In the case where a phase change occurs from the liquid state to a gas, the gas is vaporized and lost from the graphite sheet and the heat-generating component or between the graphite sheet and the radiation fins, so that the effect of the present invention is obtained. I can't.
[0053]
Also, if the phase changes from the liquid state to the solid state within the operating temperature range, the volume changes with the phase change, so the graphite sheet is deformed by the temperature cycle due to repeated use and non-use However, a gap is generated between the heat-generating component and the heat-radiating fin when the heat-generating component and the heat-radiating fin are tightened with a fixing screw.
[0054]
This gap impairs the effect of heat transfer between the heat-generating component and the radiation fins.
[0055]
Here, the phase change means that a substance changes from one phase such as a liquid to another phase such as a solid, and the normal temperature refers to a normal temperature without cooling or heating.
[0056]
Examples of the substance which is liquid at normal temperature and has no phase change in a use temperature range of -20 ° C to 130 ° C include, for example, higher saturated fatty acids and higher alcohols in addition to the above-mentioned perfluoropolyether and silicone oil. Alternatively, the compound can be used, but it needs to be a stable substance for a long time.
[0057]
In addition, as a method for applying these liquids, other than roller application, a method such as spraying, dipping in liquid or spin coating can be used, but it is necessary to apply without damaging the surface of soft graphite. .
[0058]
Further, in the first to third embodiments, excess liquid accumulated on the surface of the graphite sheet is wiped off to the extent that the liquid does not adhere to the finger even when touched lightly with the hand and is not wetted. This is done in consideration of dirt during the work of sandwiching between the fins, and the same effect can be obtained even when wet without performing wiping.
[0059]
【The invention's effect】
As described above, the present invention provides a graphite sheet with a liquid layer made of a substance that is liquid at normal temperature and has no phase change in a use temperature range, so that workability is good and heat transfer can be performed even when used for a long time. The heat resistance is extremely low regardless of the pressing force without impairing the effect, and even if the pressing force is small, a sufficiently low heat resistance can be realized, the heat radiation effect can be improved, and no dust of carbon powder is generated This is an effect.
[Brief description of the drawings]
FIG. 1 is a perspective view of a heat conductive sheet according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of a heat dissipation structure according to an embodiment of the present invention. FIG. FIG. 4 is a schematic view of a conductive sheet. FIG. 4 is a schematic view showing void portions of a conventional graphite sheet.
REFERENCE SIGNS LIST 1 heat conductive sheet 2 graphite sheet 3 liquid layer 4 heat generating component 5 heat radiation fin 6 fixing screw 11 silicone oil 21 void portion

Claims (6)

グラファイトシートと、このグラファイトシートに常温で液体でありかつ使用温度範囲において相変化がない物質を備えた熱伝導性シート。A heat conductive sheet comprising a graphite sheet and a substance which is liquid at room temperature and has no phase change in a use temperature range. 常温で液体でありかつ使用温度範囲において相変化がない物質は、グラファイトシートの表面に設けた請求項1に記載の熱伝導性シート。The heat conductive sheet according to claim 1, wherein the substance which is liquid at room temperature and has no phase change in a use temperature range is provided on a surface of the graphite sheet. グラファイトシートは内部に空隙部分を有するものであり、常温で液体でありかつ使用温度範囲において相変化がない物質は、前記空隙部分に設けた請求項1に記載の熱伝導性シート。The heat conductive sheet according to claim 1, wherein the graphite sheet has a void portion inside, and a substance that is liquid at room temperature and has no phase change in a use temperature range is provided in the void portion. 常温で液体でありかつ使用温度範囲において相変化がない物質に、金属粉末、セラミックス粉末、カーボン粉末、ダイヤモンド粉末の内少なくとも一つの粉末を含む請求項1に記載の熱伝導性シート。The heat conductive sheet according to claim 1, wherein the substance that is liquid at room temperature and has no phase change in a use temperature range includes at least one powder of a metal powder, a ceramic powder, a carbon powder, and a diamond powder. 常温で液体でありかつ使用温度範囲において相変化がない物質はパーフルオロポリエーテル、シリコーンオイルのいずれかである請求項1に記載の熱伝導性シート。The heat conductive sheet according to claim 1, wherein the substance which is liquid at room temperature and has no phase change in a use temperature range is either perfluoropolyether or silicone oil. 常温で液体でありかつ使用温度範囲において相変化がない物質とグラファイトシートとを備えた熱伝導性シートを、発熱部品と、放熱手段との間に介在させてなる放熱構造体。A heat dissipating structure in which a heat conductive sheet including a substance that is liquid at room temperature and has no phase change in a use temperature range and a graphite sheet is interposed between a heat generating component and heat dissipating means.
JP2003161782A 2003-06-06 2003-06-06 Thermally conductive sheet and heat dissipation structure using the same Expired - Fee Related JP4380226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003161782A JP4380226B2 (en) 2003-06-06 2003-06-06 Thermally conductive sheet and heat dissipation structure using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003161782A JP4380226B2 (en) 2003-06-06 2003-06-06 Thermally conductive sheet and heat dissipation structure using the same

Publications (2)

Publication Number Publication Date
JP2004363432A true JP2004363432A (en) 2004-12-24
JP4380226B2 JP4380226B2 (en) 2009-12-09

Family

ID=34054109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003161782A Expired - Fee Related JP4380226B2 (en) 2003-06-06 2003-06-06 Thermally conductive sheet and heat dissipation structure using the same

Country Status (1)

Country Link
JP (1) JP4380226B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269643A (en) * 2005-03-23 2006-10-05 Japan Matekkusu Kk Heat radiation sheet
JP2006286684A (en) * 2005-03-31 2006-10-19 Toyo Tanso Kk Heat transfer sheet, heat dissipation structure and method of using heat transfer sheet
JP2006313328A (en) * 2005-05-02 2006-11-16 Samsung Sdi Co Ltd Heat dissipation structure for integrated circuit chip of plasma display module and plasma display module having the same
JP2007111943A (en) * 2005-10-19 2007-05-10 Hitachi Chem Co Ltd Heat-conductive sheet
JP2007160484A (en) * 2005-12-16 2007-06-28 Yaskawa Electric Corp Multi-finger hand system and robot using the same
JP2007236045A (en) * 2006-02-28 2007-09-13 Toshiba Corp Cooled housing rotary electric machine and its manufacturing process
WO2009025093A1 (en) * 2007-08-23 2009-02-26 Kabushiki Kaisha Toshiba Cooled casing type electric motor, and its stator
JP2010070413A (en) * 2008-09-18 2010-04-02 Panasonic Corp Graphite composite material
US8720537B2 (en) 2009-07-13 2014-05-13 Panasonic Corporation Graphite sheet and heat transfer structure using same
JP2014133669A (en) * 2013-01-08 2014-07-24 Kaneka Corp Thermal interface material and thermal interface method
JP2015002199A (en) * 2013-06-13 2015-01-05 株式会社カネカ Interlayer thermal connection member, method of manufacturing interlayer thermal connection member, and interlayer thermal connection method
WO2016031212A1 (en) * 2014-08-26 2016-03-03 バンドー化学株式会社 Thermally conductive resin molded article
KR101670780B1 (en) 2015-04-29 2016-10-31 주식회사 엘엠에스 Diamond-graphite hybrid material, method of manufacturing the same, and heat transfer sheet including the diamond-graphite hybrid material
JP2018123034A (en) * 2017-02-02 2018-08-09 株式会社カネカ Interlayer thermal bonding member, interlayer thermal bonding method, and method for producing thermal interlayer bonding member
JP2018152408A (en) * 2017-03-10 2018-09-27 東芝電波プロダクツ株式会社 Heat Spreader
JP2018203857A (en) * 2017-06-02 2018-12-27 日本ゼオン株式会社 Thermally conductive sheet
KR101959824B1 (en) * 2017-10-31 2019-03-19 주식회사 지피케이 A heat sink using carbon material
CN112692590A (en) * 2020-12-28 2021-04-23 珠海格力智能装备有限公司 Guide rail structure and machine tool with same
JP2022060242A (en) * 2017-06-02 2022-04-14 日本ゼオン株式会社 Heat conductive sheet and method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102203339B1 (en) * 2018-07-19 2021-01-15 한국과학기술원 Fabrication of flexible material for efficient heat dissipation of chip and cooling method thereof

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269643A (en) * 2005-03-23 2006-10-05 Japan Matekkusu Kk Heat radiation sheet
KR101052752B1 (en) * 2005-03-31 2011-07-29 토요 탄소 가부시키가이샤 Radiation structure and method for using heat transfer sheet
JP2006286684A (en) * 2005-03-31 2006-10-19 Toyo Tanso Kk Heat transfer sheet, heat dissipation structure and method of using heat transfer sheet
WO2006112211A1 (en) 2005-03-31 2006-10-26 Toyo Tanso Co., Ltd. Heat transfer sheet, radiation structure and method for using heat transfer sheet
KR101068416B1 (en) * 2005-03-31 2011-09-29 토요 탄소 가부시키가이샤 Heat transfer sheet, radiation structure and method for using heat transfer sheet
KR101061805B1 (en) * 2005-03-31 2011-09-05 토요 탄소 가부시키가이샤 Radiation structure
EP1865552A1 (en) * 2005-03-31 2007-12-12 Toyo Tanso Co., Ltd. Heat transfer sheet, radiation structure and method for using heat transfer sheet
EP1865552A4 (en) * 2005-03-31 2008-07-02 Toyo Tanso Co Heat transfer sheet, radiation structure and method for using heat transfer sheet
JP2008153704A (en) * 2005-03-31 2008-07-03 Toyo Tanso Kk Heat dissipation structure
JP2006313328A (en) * 2005-05-02 2006-11-16 Samsung Sdi Co Ltd Heat dissipation structure for integrated circuit chip of plasma display module and plasma display module having the same
JP2007111943A (en) * 2005-10-19 2007-05-10 Hitachi Chem Co Ltd Heat-conductive sheet
JP4716102B2 (en) * 2005-10-19 2011-07-06 日立化成工業株式会社 Heat conduction sheet
JP4692824B2 (en) * 2005-12-16 2011-06-01 株式会社安川電機 Multi-finger hand system and robot using the same
JP2007160484A (en) * 2005-12-16 2007-06-28 Yaskawa Electric Corp Multi-finger hand system and robot using the same
JP2007236045A (en) * 2006-02-28 2007-09-13 Toshiba Corp Cooled housing rotary electric machine and its manufacturing process
JPWO2009025093A1 (en) * 2007-08-23 2010-11-18 株式会社東芝 Outer cooled rotating electric machine and its stator
WO2009025093A1 (en) * 2007-08-23 2009-02-26 Kabushiki Kaisha Toshiba Cooled casing type electric motor, and its stator
JP2010070413A (en) * 2008-09-18 2010-04-02 Panasonic Corp Graphite composite material
US8720537B2 (en) 2009-07-13 2014-05-13 Panasonic Corporation Graphite sheet and heat transfer structure using same
JP2014133669A (en) * 2013-01-08 2014-07-24 Kaneka Corp Thermal interface material and thermal interface method
JP2015002199A (en) * 2013-06-13 2015-01-05 株式会社カネカ Interlayer thermal connection member, method of manufacturing interlayer thermal connection member, and interlayer thermal connection method
US10941325B2 (en) 2014-08-26 2021-03-09 Bando Chemical Industries, Ltd. Thermally conductive resin molded article
WO2016031212A1 (en) * 2014-08-26 2016-03-03 バンドー化学株式会社 Thermally conductive resin molded article
JP6068733B2 (en) * 2014-08-26 2017-01-25 バンドー化学株式会社 Thermally conductive resin molded product
CN106575644A (en) * 2014-08-26 2017-04-19 阪东化学株式会社 Thermally conductive resin molded article
JPWO2016031212A1 (en) * 2014-08-26 2017-04-27 バンドー化学株式会社 Thermally conductive resin molded product
US10457845B2 (en) 2014-08-26 2019-10-29 Bando Chemical Industries, Ltd. Thermally conductive resin molded article
KR101670780B1 (en) 2015-04-29 2016-10-31 주식회사 엘엠에스 Diamond-graphite hybrid material, method of manufacturing the same, and heat transfer sheet including the diamond-graphite hybrid material
JP2018123034A (en) * 2017-02-02 2018-08-09 株式会社カネカ Interlayer thermal bonding member, interlayer thermal bonding method, and method for producing thermal interlayer bonding member
JP2018152408A (en) * 2017-03-10 2018-09-27 東芝電波プロダクツ株式会社 Heat Spreader
JP2018203857A (en) * 2017-06-02 2018-12-27 日本ゼオン株式会社 Thermally conductive sheet
JP7024213B2 (en) 2017-06-02 2022-02-24 日本ゼオン株式会社 Heat conduction sheet and its manufacturing method
JP2022060242A (en) * 2017-06-02 2022-04-14 日本ゼオン株式会社 Heat conductive sheet and method for producing the same
JP7334809B2 (en) 2017-06-02 2023-08-29 日本ゼオン株式会社 Heat-conducting sheet and manufacturing method thereof
KR101959824B1 (en) * 2017-10-31 2019-03-19 주식회사 지피케이 A heat sink using carbon material
CN112692590A (en) * 2020-12-28 2021-04-23 珠海格力智能装备有限公司 Guide rail structure and machine tool with same

Also Published As

Publication number Publication date
JP4380226B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
JP2004363432A (en) Heat conduction sheet and heat dissipation structure employing same
EP1865552B1 (en) Heat transfer sheet, radiation structure and method for using heat transfer sheet
JP5204355B1 (en) Liquid DIMM cooling device
JP4459470B2 (en) Electronic component heat dissipation structure and heat dissipation sheet used therefor
EP1850394B1 (en) Re-workable heat sink attachment assembly
US20030203181A1 (en) Interstitial material with enhanced thermal conductance for semiconductor device packaging
US20070053168A1 (en) Advanced heat sinks and thermal spreaders
JP2012054578A (en) Dissipation of heat from circuit board on which bare silicon chip is mounted
US11441855B2 (en) Thermal interface materials
Pathumudy et al. Thermal interface materials for cooling microelectronic systems: present status and future challenges
TW202020106A (en) Method of producing semiconductor device, thermoconductive sheet, and method of producing thermoconductive sheet
US10117355B2 (en) Heat dissipation foil and methods of heat dissipation
JP2005203735A (en) Thermally conductive composite sheet
JP3813301B2 (en) Thermally conductive rubber composition and thermally conductive rubber sheet
US20070048520A1 (en) Thermal interface material and method for making the same
JP6086775B2 (en) Heat dissipation device
Tong et al. Thermal interface materials in electronic packaging
JP4124459B2 (en) Grease
JP4225945B2 (en) Thermally conductive sheet
JP3372487B2 (en) Silicone rubber molding
JP7253688B2 (en) Graphite sheet and manufacturing method thereof
WO2016170777A1 (en) Heat dissipation mechanism and device provided with same
TWM540741U (en) Multi-layer composite heat conduction structure
KR100787780B1 (en) Thermal interface bonding structure and method using carbon nanotube
JP2017212254A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060531

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4380226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees