JP2004363212A - Wiring board with through-hole conductor - Google Patents

Wiring board with through-hole conductor Download PDF

Info

Publication number
JP2004363212A
JP2004363212A JP2003157723A JP2003157723A JP2004363212A JP 2004363212 A JP2004363212 A JP 2004363212A JP 2003157723 A JP2003157723 A JP 2003157723A JP 2003157723 A JP2003157723 A JP 2003157723A JP 2004363212 A JP2004363212 A JP 2004363212A
Authority
JP
Japan
Prior art keywords
hole
wiring board
diameter
conductor
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003157723A
Other languages
Japanese (ja)
Inventor
Yasuto Takeuchi
靖人 竹内
Satoshi Yamaguchi
山口  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003157723A priority Critical patent/JP2004363212A/en
Priority to PCT/JP2004/007354 priority patent/WO2004110116A1/en
Publication of JP2004363212A publication Critical patent/JP2004363212A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board made of glass with a through-hole conductor which is hard to cause omission and a continuity failure, etc. <P>SOLUTION: The wiring board is provided with the through-hole conductor wherein a through-hole formed in the wiring board formed of glass, ceramic or silicon is filled with conductive paste and solidified. The through-hole has a minimal value of a diameter smaller than a certain portal aperture diameter in each end surface in the middle of both end surfaces. Further, the minimum diameter is larger than eight times the average diameter of filled conductor particles. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はスルーホール導体を持った配線基板に関し、特にGMR素子などを形成するのに適したガラスなどからできた配線基板のように脱落の生じやすいスルーホール導体を持った配線基板に関するものである。
【0002】
【従来の技術】
プリント配線基板に開けたスルーホールに充填して導体とするのに適した導電ペーストが特許文献1に記載されている。この導電ペーストは導体粒子として銅の微粒子の表面に銀を被覆したものを用い、エポキシ樹脂を主成分とするペーストで混練されたものである。特許文献1に記載されている導電ペーストは、プリント配線基板のプリプレグ(ガラスエポキシ、紙フェノール、コンポジット、アラミドエポキシ等の材料から構成される)に開けたスルーホールに充填するのに適したものである。
【0003】
ところが、GMR(巨大磁気抵抗)素子など機能素子はその特性を十分に発揮させるにはガラスなどからできた配線基板に形成するのが望ましい。ガラスなどの配線基板上に形成した機能素子から導かれているリード線は、その配線基板上にプリント配線して作られ、そのリード線の端子を同じ配線基板の反対面に作られることが多い。配線基板の一面上に形成したリード線からその配線基板の他面に形成した端子までは、配線基板に開けたスルーホールを通して導体が設けられている。
【0004】
【特許文献1】
特開2002−289038号公報。
【0005】
【発明が解決しようとする課題】
ガラスなどの配線基板に開けたかかるスルーホールに設ける導体として前記特許文献1に開示された導電ペーストを用いると、スルーホールに充填した導電ペーストが固化してできた導体が固化後にスルーホールから脱落することがあった。同様な問題はセラミック、シリコンなどからできた配線基板のように導体ペーストの樹脂が付着しにくい材料からなる配線基板においても生じることが判明した。
【0006】
そこで本発明は脱落や導通不良などの生じにくいスルーホール導体を持ったガラスなどでできた配線基板を提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明のスルーホール導体を持った配線基板は、ガラス、セラミックあるいはシリコンからできた配線基板の両端面間に開けられたスルーホール内に、導体粒子を混練したぺ−ストを充填固化した導体を有するものにおいて、
前記スルーホールは、前記両端面それぞれにある入口開口の直径よりも小さい直径の極小値を両端面の途中に持ち、
その極小直径は前記充填固化した導体が含んでいる導体粒子の平均直径の8倍よりも大きいことを特徴とする。
【0008】
前記スルーホール導体を持った配線基板において、スルーホールの直径の極小値は前記端面にある小さい側の入口開口直径の90%未満であることが好ましい。
【0009】
前記スルーホール導体を持った配線基板において、前記直径の極小値が80μmよりも大きいことが好ましい。
【0010】
本発明のスルーホール導体を持った配線基板は、ガラス、セラミックあるいはシリコンからできた配線基板の両端面間に開けられたスルーホール内に、導体粒子を混練したぺ−ストを充填固化した導体を有するものにおいて、
前記スルーホールは、前記両端面それぞれにある入口開口の中心軸が互いに偏芯していることを特徴とする。
【0011】
前記スルーホール導体を持った配線基板において、前記両端面それぞれにある入口開口の中心軸の偏芯が両入口開口の半径の差よりも大きいことが好ましい。
【0012】
【発明の実施の形態】
以下図面を参照しながら本発明を実施例について詳しく説明する。図1はGMR素子を形成した配線基板を上面図で示すものであり、図2は図1の配線基板を底面図で示す。また、図3と図4は本発明の第一実施例を示し、図3は図1に示すガラス配線基板のスルーホール導体を含む部分の拡大断面図で、図4は図3に示すガラス配線基板で導体を充填する前のスルーホールを拡大断面図で示し、あわせてレジストマスクを二点鎖線で示している。図5と図6は本発明の第二実施例を示し、図5は図4に対応するスルーホールの拡大断面図を、図6は図5のスルーホールの平面図を示している。
【0013】
図1と図2を参照して、配線基板1は約700μm厚さをしたガラス配線基板であり、そのほぼ中央にGMR素子2が形成されている。GMR素子から引き出されている4本のリード線31,32,33,34それぞれがガラス配線基板の4隅近くに設けられたスルーホール導体4に接続されており各スルーホール導体4はガラス配線基板1の裏面で端子5に接続されている。
【0014】
図3から明らかなようにガラス配線基板裏面の端子5と表面のリード線31,32,33,34との間がスルーホール導体4で接続されているので、スルーホール導体は脱落や導通不良などの欠陥のないことが要求される。
【0015】
図4にスルーホール導体を充填するための本発明の第一実施例によるスルーホール6の拡大断面図を示している。同図で、ガラス配線基板1に開けられたスルーホール6はガラス配線基板1の両端面11,12それぞれに入口開口を持ち、上側端面11に大きな開口61を、下側端面12に小さい開口62を持っている。この図では、上側端面11にある開口61がスルーホール6の最大直径となっている。更に両端面の途中に直径が極小となった部分があり、図に示す例では上側端面の開口61から約600μmの深さのところに直径が極小となった部分がある。図で最大直径をd1,小さい側の開口直径をd2、極小となっている部分の直径をd3として示している。
【0016】
第一実施例におけるスルーホール6では、途中にある極小直径d3は最大の開口直径d1及び小さい側の開口直径d2よりも小さく、スルーホールに充填固化した導体4が含んでいる導体粒子の平均直径の8倍よりも大きい。
【0017】
図4に2点鎖線で示すように、300+−10μm径をした孔91を持ったレジストマスク9をガラス基板上に載せて、サンドブラストによって約600μm深さの穴を開け、その穴を開けることによって残りの部分には欠けを生じさせてスルーホールとした。ここで150mm直径のガラス基板を用いてスルーホール8000個を同時に作った。基板の一方の端面上にあるスルーホールの開口直径d1は350+−40μm、小さい側の開口直径d2は140+−40μm、極小部直径d3は80〜120μmであった。すべてのスルーホール6において、小さい側の開口直径d2は極小部直径d3よりも大であった。
【0018】
銀で被覆された銅微粒子(直径分布は約1μm〜約10μmで、平均直径は約7μmであった。)の80〜95質量%をエポキシ樹脂と混練したペーストをガラス基板に刷り込んでスルーホール中にペーストを充填した。それを170〜280℃に加熱してペーストを固化した上で、ガラス基板の両端面から突出している導体の部分を研磨してスルーホール導体4とした。
【0019】
このようにして形成した8000個のスルーホール導体を持った150mm直径のガラス基板を用いて、図1〜3に示すように端子5、リード線31,32,33,34、GMR素子2を形成した上で、図1に示す大きさに切断してガラス配線基板1とした。それらの形成工程中の取り扱いではスルーホール導体の脱落は生じなかった。また、この処理工程後に行った、スルーホール導体の通電テストでは、導通不良は観察されなかった。
【0020】
この実施例ではスルーホール導体の極小直径は、導体が含んでいる銅微粒子すなわち導体粒子の平均直径の8倍よりも大きく、具体的には80〜120μmなので、導体粒子が極小直径の部分に95から227個程度存在させていることになり、スルーホール導体の他の部分の断面は極小直径の面積とほぼ同じかそれよりも大きな面積をしているので、更に多くの導体粒子を存在させていることになる。またスルーホールの開口と極小部分との直径差があまり大きくないので導電ペーストの加熱固化時の収縮の差があまり大きくなく、導体の収縮による切断が生じなかったものと考えられる。これらの理由によって通電テストで導通が良かったものと考えられる。
【0021】
更に第一実施例で極小部直径d3が80〜120μmで、小さい側の入口開口直径d2は140+−40μmであったので、極小部直径d3は小さい側の入口開口直径d2の90%未満であった。小さい側の入口開口直径d2と極小部直径d3との差が大きいので、導電ペーストを約200℃加熱して固化した後の導体とガラス部分の収縮の差によるスルーホールから導体の抜け落ちや弛みを防止することができた。
【0022】
図5に本発明の第二実施例によるスルーホール導体を充填するためのスルーホール形状の拡大断面図を、図6にそのスルーホールの平面図を示している。それらの図でスルーホール7はガラス配線基板1のそれぞれの端面から開けられた2個の穴71,72からできており、それらの穴はスルーホール7の内部で連通している。両端面それぞれにある入口開口の中心軸(図5で中心軸を一点鎖線で示している)が互いに偏芯しており、この図に示した例では、大きい側の穴71の入口開口直径d4が約300μmで、小さい側の穴72の入口開口直径d5が約150μmであり、それらの偏芯は100μmとしたので、それらの半径の差以上の偏芯となっている。このスルーホール7に充填した導体も抜け落ちや弛みを防止することができた。しかし第二実施例のものでは、ガラス基板の両端面から穴をそれぞれ開ける必要がある。
【0023】
【発明の効果】
以上詳しく説明したように、本発明のスルーホール導体を持った配線基板で、その配線基板としてガラス、セラミック、シリコンのように導電ペーストが付着しにくい材料を用いた場合にも、スルーホール導体の脱落や断線を防止することができ、信頼性のある配線基板とすることができる。
【図面の簡単な説明】
【図1】GMR素子を形成したガラス配線基板を上面図で示すものである。
【図2】図1に示すガラス配線基板の底面図である。
【図3】図1に示すガラス配線基板のスルーホール導体を含む部分の拡大断面図を示す。
【図4】図3に示す配線ガラス基板で、導体を充填する前の第一実施例によるスルーホールを拡大断面図で示し、あわせてレジストマスクを二点鎖線で示す。
【図5】図4に対応する第二実施例によるスルーホールの拡大断面図である。
【図6】図5のスルーホールの平面図である。
【符号の説明】
1 ガラス配線基板
11,12 端面
2 GMR素子
31,32,33,34 リード線
4 スルーホール導体
5 端子
6,7 スルーホール
61,62 開口
71,72 穴
9 レジストマスク
91 孔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wiring board having a through-hole conductor, and more particularly to a wiring board having a through-hole conductor that is likely to fall off, such as a wiring board made of glass or the like suitable for forming a GMR element or the like. .
[0002]
[Prior art]
Patent Document 1 discloses a conductive paste suitable for filling a through-hole formed in a printed wiring board into a conductor. This conductive paste uses copper particles coated with silver as the conductive particles and is kneaded with a paste containing an epoxy resin as a main component. The conductive paste described in Patent Document 1 is suitable for filling a through hole formed in a prepreg (made of a material such as glass epoxy, paper phenol, composite, or aramid epoxy) of a printed wiring board. is there.
[0003]
However, it is desirable to form a functional element such as a GMR (giant magnetoresistance) element on a wiring substrate made of glass or the like in order to sufficiently exhibit its characteristics. Lead wires that are led from functional elements formed on a wiring board such as glass are made by printed wiring on the wiring board, and the terminals of the lead wires are often made on the opposite surface of the same wiring board . A conductor is provided from a lead wire formed on one surface of the wiring substrate to a terminal formed on the other surface of the wiring substrate through a through hole formed in the wiring substrate.
[0004]
[Patent Document 1]
JP-A-2002-289038.
[0005]
[Problems to be solved by the invention]
If the conductive paste disclosed in Patent Document 1 is used as a conductor provided in such a through hole opened in a wiring board such as glass, the conductor formed by solidification of the conductive paste filled in the through hole drops from the through hole after solidification. There was something to do. It has been found that a similar problem occurs in a wiring board made of a material to which a resin of a conductive paste is unlikely to adhere, such as a wiring board made of ceramic, silicon, or the like.
[0006]
Accordingly, it is an object of the present invention to provide a wiring board made of glass or the like having through-hole conductors that are unlikely to cause dropout or poor conduction.
[0007]
[Means for Solving the Problems]
The wiring board having the through-hole conductor of the present invention is a wiring board made of glass, ceramic or silicon, and a through-hole formed between both end faces of the wiring board is filled with a paste filled with paste mixed with conductive particles and solidified. In having
The through-hole has a minimum value of the diameter smaller than the diameter of the inlet opening at each of the both end surfaces in the middle of both end surfaces,
The minimum diameter is characterized by being greater than eight times the average diameter of the conductive particles contained in the solidified conductor.
[0008]
In the wiring board having the through-hole conductor, it is preferable that the minimum value of the diameter of the through-hole is less than 90% of the diameter of the entrance opening on the small side on the end face.
[0009]
In the wiring board having the through-hole conductor, it is preferable that the minimum value of the diameter is larger than 80 μm.
[0010]
The wiring board having the through-hole conductor of the present invention is a wiring board made of glass, ceramic or silicon, and a through-hole formed between both end faces of the wiring board is filled with a paste filled with paste mixed with conductive particles and solidified. In having
The through-holes are characterized in that the central axes of the inlet openings at the respective end faces are eccentric to each other.
[0011]
In the wiring board having the through-hole conductor, it is preferable that the eccentricity of the center axis of the entrance opening at each of the both end surfaces is larger than the difference between the radii of both entrance openings.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a top view showing a wiring board on which a GMR element is formed, and FIG. 2 is a bottom view showing the wiring board of FIG. 3 and 4 show a first embodiment of the present invention. FIG. 3 is an enlarged sectional view of a portion including a through-hole conductor of the glass wiring board shown in FIG. 1, and FIG. 4 is a glass wiring shown in FIG. The through hole before the conductor is filled with the substrate is shown in an enlarged sectional view, and the resist mask is shown by a two-dot chain line. 5 and 6 show a second embodiment of the present invention. FIG. 5 is an enlarged sectional view of the through hole corresponding to FIG. 4, and FIG. 6 is a plan view of the through hole of FIG.
[0013]
Referring to FIGS. 1 and 2, a wiring board 1 is a glass wiring board having a thickness of about 700 μm, and a GMR element 2 is formed substantially at the center thereof. Each of the four lead wires 31, 32, 33, and 34 drawn from the GMR element is connected to through-hole conductors 4 provided near four corners of the glass wiring board. 1 is connected to the terminal 5 on the back surface.
[0014]
As is clear from FIG. 3, since the terminals 5 on the back surface of the glass wiring board and the lead wires 31, 32, 33, 34 on the front surface are connected by the through-hole conductors 4, the through-hole conductors fall off or have poor conduction. Is required to be free of defects.
[0015]
FIG. 4 is an enlarged sectional view of the through hole 6 for filling the through hole conductor according to the first embodiment of the present invention. In the figure, a through hole 6 formed in the glass wiring board 1 has an inlet opening on each of both end faces 11 and 12 of the glass wiring board 1, and a large opening 61 is formed on the upper end face 11 and a small opening 62 is formed on the lower end face 12. have. In this figure, the opening 61 in the upper end face 11 has the maximum diameter of the through hole 6. Further, there is a portion where the diameter is extremely small in the middle of both end surfaces, and in the example shown in the figure, there is a portion where the diameter is extremely small at a depth of about 600 μm from the opening 61 on the upper end surface. In the figure, the maximum diameter is indicated by d1, the opening diameter on the smaller side is indicated by d2, and the diameter of the minimum part is indicated by d3.
[0016]
In the through hole 6 in the first embodiment, the minimum diameter d3 in the middle is smaller than the maximum opening diameter d1 and the opening diameter d2 on the small side, and the average diameter of the conductor particles contained in the conductor 4 filled and solidified in the through hole It is larger than 8 times.
[0017]
As shown by a two-dot chain line in FIG. 4, a resist mask 9 having a hole 91 having a diameter of 300 + -10 μm is placed on a glass substrate, and a hole having a depth of about 600 μm is formed by sandblasting. The remaining part was chipped to form a through hole. Here, 8000 through holes were simultaneously formed using a glass substrate having a diameter of 150 mm. The opening diameter d1 of the through hole on one end surface of the substrate was 350 + -40 μm, the opening diameter d2 on the smaller side was 140 + -40 μm, and the minimum diameter d3 was 80 to 120 μm. In all the through holes 6, the opening diameter d2 on the smaller side was larger than the diameter d3 of the minimum portion.
[0018]
A paste obtained by kneading 80 to 95% by mass of silver-coated copper fine particles (having a diameter distribution of about 1 μm to about 10 μm and an average diameter of about 7 μm) with an epoxy resin was imprinted on a glass substrate, and the paste was passed through a through-hole. Was filled with the paste. After heating to 170 to 280 ° C. to solidify the paste, the conductor portions protruding from both end surfaces of the glass substrate were polished to form through-hole conductors 4.
[0019]
As shown in FIGS. 1 to 3, the terminal 5, the lead wires 31, 32, 33, and 34, and the GMR element 2 are formed using a glass substrate having a diameter of 150 mm having 8000 through-hole conductors formed in this manner. After that, it was cut into the size shown in FIG. No dropout of the through-hole conductor occurred during handling during those forming steps. In addition, in a conduction test of the through-hole conductor performed after this processing step, no conduction failure was observed.
[0020]
In this embodiment, the minimum diameter of the through-hole conductor is greater than eight times the average diameter of the copper fine particles contained in the conductor, that is, the average diameter of the conductor particles, specifically 80 to 120 μm. From about 227, and the cross section of the other part of the through-hole conductor has an area almost equal to or larger than the area of the minimum diameter. Will be. In addition, it is considered that the difference in diameter between the opening of the through hole and the extremely small portion is not so large, and the difference in shrinkage when the conductive paste is heated and solidified is not so large, and it is considered that no cut due to shrinkage of the conductor occurred. It is considered that conduction was good in the energization test for these reasons.
[0021]
Further, in the first embodiment, since the minimum part diameter d3 is 80 to 120 μm and the small side entrance opening diameter d2 is 140 + −40 μm, the minimum part diameter d3 is less than 90% of the small side entrance opening diameter d2. Was. Since the difference between the entrance opening diameter d2 on the small side and the diameter d3 of the minimum part is large, the conductor paste may be dropped or slack from the through hole due to the difference in contraction between the conductor and the glass part after the conductive paste is heated and solidified at about 200 ° C. Could be prevented.
[0022]
FIG. 5 is an enlarged sectional view of a through-hole shape for filling a through-hole conductor according to a second embodiment of the present invention, and FIG. 6 is a plan view of the through-hole. In these figures, the through hole 7 is made up of two holes 71 and 72 formed from the respective end surfaces of the glass wiring board 1, and these holes communicate with each other inside the through hole 7. The center axes of the inlet openings at both end surfaces (the center axes are indicated by dashed lines in FIG. 5) are eccentric to each other, and in the example shown in this figure, the inlet opening diameter d4 of the hole 71 on the larger side. Is about 300 μm, the entrance opening diameter d5 of the hole 72 on the smaller side is about 150 μm, and their eccentricity is 100 μm. Therefore, the eccentricity is larger than the difference between their radii. The conductor filled in the through hole 7 was also prevented from falling off and loosening. However, in the second embodiment, it is necessary to make holes from both end surfaces of the glass substrate.
[0023]
【The invention's effect】
As described in detail above, in a wiring board having a through-hole conductor of the present invention, glass, ceramic, and a material to which a conductive paste is unlikely to adhere, such as silicon, are used as the wiring board. Dropping and disconnection can be prevented, and a reliable wiring board can be obtained.
[Brief description of the drawings]
FIG. 1 is a top view showing a glass wiring substrate on which a GMR element is formed.
FIG. 2 is a bottom view of the glass wiring board shown in FIG.
FIG. 3 is an enlarged cross-sectional view of a portion including a through-hole conductor of the glass wiring board shown in FIG.
FIG. 4 is an enlarged sectional view of the through-hole according to the first embodiment before the conductor is filled in the wiring glass substrate shown in FIG. 3, and a resist mask is indicated by a two-dot chain line.
FIG. 5 is an enlarged sectional view of a through hole according to the second embodiment corresponding to FIG. 4;
FIG. 6 is a plan view of the through hole of FIG. 5;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Glass wiring board 11,12 End surface 2 GMR element 31,32,33,34 Lead wire 4 Through hole conductor 5 Terminal 6,7 Through hole 61,62 Opening 71,72 Hole 9 Resist mask 91 Hole

Claims (5)

ガラス、セラミックあるいはシリコンからできた配線基板の両端面間に開けられたスルーホール内に、導体粒子を混練したぺ−ストを充填固化した導体を有するものにおいて、
前記スルーホールは、前記両端面それぞれにある入口開口の直径よりも小さい直径の極小値を両端面の途中に持ち、
その極小直径は前記充填固化した導体が含んでいる導体粒子の平均直径の8倍よりも大きいことを特徴とするスルーホール導体を持った配線基板。
In a through-hole opened between both end surfaces of a wiring substrate made of glass, ceramic or silicon, a conductor having a paste filled and solidified with paste mixed with conductive particles,
The through-hole has a minimum value of the diameter smaller than the diameter of the inlet opening at each of the both end surfaces in the middle of both end surfaces,
A wiring board having a through-hole conductor, wherein the minimum diameter is larger than eight times the average diameter of the conductive particles contained in the solidified conductor.
前記スルーホールの直径の極小値は前記端面にある小さい側の入口開口直径の90%未満であることを特徴とする請求項1記載のスルーホール導体を持った配線基板。2. The wiring board having a through-hole conductor according to claim 1, wherein the minimum value of the diameter of the through-hole is less than 90% of the diameter of the entrance opening on the smaller side at the end face. 前記直径の極小値が80μmよりも大きいことを特徴とする請求項1あるいは2記載のスルーホール導体を持った配線基板。3. The wiring board according to claim 1, wherein the minimum value of the diameter is larger than 80 [mu] m. ガラス、セラミックあるいはシリコンからできた配線基板の両端面間に開けられたスルーホール内に、導体粒子を混練したぺ−ストを充填固化した導体を有するものにおいて、
前記スルーホールは、前記両端面それぞれにある入口開口の中心軸が互いに偏芯していることを特徴とするスルーホール導体を持った配線基板。
In a through-hole opened between both end surfaces of a wiring substrate made of glass, ceramic or silicon, a conductor having a paste filled and solidified with paste mixed with conductive particles,
A wiring board having through-hole conductors, wherein the through-holes have center axes of entrance openings formed on both end surfaces thereof eccentric to each other.
前記両端面それぞれにある入口開口の中心軸の偏芯が両入口開口の半径の差よりも大きいことを特徴とする請求項4記載のスルーホール導体を持った配線基板。5. The wiring board having a through-hole conductor according to claim 4, wherein the eccentricity of the center axis of the entrance opening at each of the both end faces is larger than the difference between the radii of both entrance openings.
JP2003157723A 2003-06-03 2003-06-03 Wiring board with through-hole conductor Pending JP2004363212A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003157723A JP2004363212A (en) 2003-06-03 2003-06-03 Wiring board with through-hole conductor
PCT/JP2004/007354 WO2004110116A1 (en) 2003-06-03 2004-05-28 Production method for feedthrough electrode-carrying substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003157723A JP2004363212A (en) 2003-06-03 2003-06-03 Wiring board with through-hole conductor

Publications (1)

Publication Number Publication Date
JP2004363212A true JP2004363212A (en) 2004-12-24

Family

ID=34051345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003157723A Pending JP2004363212A (en) 2003-06-03 2003-06-03 Wiring board with through-hole conductor

Country Status (1)

Country Link
JP (1) JP2004363212A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303360A (en) * 2005-04-25 2006-11-02 Fujikura Ltd Through-wire board, composite board, and electronic apparatus
JP2007227512A (en) * 2006-02-22 2007-09-06 Ibiden Co Ltd Printed wiring board and its manufacturing method
WO2008069055A1 (en) * 2006-11-28 2008-06-12 Kyocera Corporation Wiring substrate and semiconductor element mounting structure using the same
JP2009182260A (en) * 2008-01-31 2009-08-13 Sanyo Electric Co Ltd Solar battery
CN101925266A (en) * 2009-06-09 2010-12-22 揖斐电株式会社 The manufacture method of printed circuit board (PCB) and printed circuit board (PCB)
KR101148545B1 (en) 2009-06-09 2012-05-25 이비덴 가부시키가이샤 Double-sided circuit board and manufacturing method thereof
CN102686051A (en) * 2012-06-07 2012-09-19 杭州华三通信技术有限公司 Processing method of printed circuit board (PCB) and PCB
WO2012125481A3 (en) * 2011-03-15 2012-11-08 Qualcomm Mems Technologies, Inc. Thin film through-glass via and methods for forming same
JP2013098209A (en) * 2011-10-28 2013-05-20 Seiko Epson Corp Circuit board, electronic device, electronic equipment, and circuit board manufacturing method
JP2015146410A (en) * 2014-02-04 2015-08-13 大日本印刷株式会社 Glass interposer substrate, glass interposer substrate manufacturing method
JP2017041650A (en) * 2016-11-15 2017-02-23 大日本印刷株式会社 Through electrode substrate and semiconductor device using through electrode substrate
US10256176B2 (en) 2013-11-21 2019-04-09 Dai Nippon Printing Co., Ltd. Through-hole electrode substrate and semiconductor device using through-hole electrode substrate
US10580725B2 (en) 2017-05-25 2020-03-03 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US10756003B2 (en) 2016-06-29 2020-08-25 Corning Incorporated Inorganic wafer having through-holes attached to semiconductor wafer
US10794679B2 (en) 2016-06-29 2020-10-06 Corning Incorporated Method and system for measuring geometric parameters of through holes
JP2020199748A (en) * 2019-06-13 2020-12-17 セイコーエプソン株式会社 Wiring board, manufacturing method of wiring board, inkjet head, mems device, and oscillator
US11078112B2 (en) * 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11152294B2 (en) 2018-04-09 2021-10-19 Corning Incorporated Hermetic metallized via with improved reliability
WO2022185997A1 (en) * 2021-03-02 2022-09-09 ソニーグループ株式会社 Semiconductor substrate, semiconductor substrate manufacturing method, and electronic device having semiconductor substrate
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
US11760682B2 (en) 2019-02-21 2023-09-19 Corning Incorporated Glass or glass ceramic articles with copper-metallized through holes and processes for making the same

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303360A (en) * 2005-04-25 2006-11-02 Fujikura Ltd Through-wire board, composite board, and electronic apparatus
US8101865B2 (en) 2006-02-22 2012-01-24 Ibiden Co., Ltd. Printed wiring board and a method of production thereof
JP2007227512A (en) * 2006-02-22 2007-09-06 Ibiden Co Ltd Printed wiring board and its manufacturing method
US9029711B2 (en) 2006-02-22 2015-05-12 Ibiden Co., Ltd. Method for manufacturing a printed wiring board having a through-hole conductor
US8890000B2 (en) 2006-02-22 2014-11-18 Ibiden Co., Ltd. Printed wiring board having through-hole and a method of production thereof
CN103025055A (en) * 2006-02-22 2013-04-03 揖斐电株式会社 Printed wiring board and a method of production thereof
US8324506B2 (en) 2006-02-22 2012-12-04 Ibiden Co., Ltd. Printed wiring board and a method of production thereof
JPWO2008069055A1 (en) * 2006-11-28 2010-03-18 京セラ株式会社 Wiring board and semiconductor device mounting structure using the same
WO2008069055A1 (en) * 2006-11-28 2008-06-12 Kyocera Corporation Wiring substrate and semiconductor element mounting structure using the same
JP2009182260A (en) * 2008-01-31 2009-08-13 Sanyo Electric Co Ltd Solar battery
KR101148545B1 (en) 2009-06-09 2012-05-25 이비덴 가부시키가이샤 Double-sided circuit board and manufacturing method thereof
JP2010287878A (en) * 2009-06-09 2010-12-24 Ibiden Co Ltd Method for manufacturing printed wiring board, and printed wiring board
CN101925266A (en) * 2009-06-09 2010-12-22 揖斐电株式会社 The manufacture method of printed circuit board (PCB) and printed circuit board (PCB)
US8698009B2 (en) 2009-06-09 2014-04-15 Ibiden Co., Ltd. Printed wiring board and method for manufacturing the same
US8925192B2 (en) 2009-06-09 2015-01-06 Ibiden Co., Ltd. Printed wiring board and method for manufacturing the same
WO2012125481A3 (en) * 2011-03-15 2012-11-08 Qualcomm Mems Technologies, Inc. Thin film through-glass via and methods for forming same
JP2013098209A (en) * 2011-10-28 2013-05-20 Seiko Epson Corp Circuit board, electronic device, electronic equipment, and circuit board manufacturing method
CN102686051A (en) * 2012-06-07 2012-09-19 杭州华三通信技术有限公司 Processing method of printed circuit board (PCB) and PCB
US10256176B2 (en) 2013-11-21 2019-04-09 Dai Nippon Printing Co., Ltd. Through-hole electrode substrate and semiconductor device using through-hole electrode substrate
CN109616458A (en) * 2013-11-21 2019-04-12 大日本印刷株式会社 Through electrode substrate and the semiconductor device for utilizing through electrode substrate
US10580727B2 (en) 2013-11-21 2020-03-03 Dai Nippon Printing Co., Ltd. Through-hole electrode substrate
US10790221B2 (en) 2013-11-21 2020-09-29 Dai Nippon Printing Co., Ltd. Through-hole electrode substrate
US11362028B2 (en) 2013-11-21 2022-06-14 Dai Nippon Printing Co., Ltd. Through-hole electrode substrate
JP2015146410A (en) * 2014-02-04 2015-08-13 大日本印刷株式会社 Glass interposer substrate, glass interposer substrate manufacturing method
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
US10756003B2 (en) 2016-06-29 2020-08-25 Corning Incorporated Inorganic wafer having through-holes attached to semiconductor wafer
US10794679B2 (en) 2016-06-29 2020-10-06 Corning Incorporated Method and system for measuring geometric parameters of through holes
JP2017041650A (en) * 2016-11-15 2017-02-23 大日本印刷株式会社 Through electrode substrate and semiconductor device using through electrode substrate
US11078112B2 (en) * 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
KR20230017911A (en) * 2017-05-25 2023-02-06 코닝 인코포레이티드 Silica-containing Substrates with Vias Having an Axially Variable Sidewall Taper and Methods for Forming the Same
US10580725B2 (en) 2017-05-25 2020-03-03 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
KR102651564B1 (en) * 2017-05-25 2024-03-28 코닝 인코포레이티드 Silica-containing Substrates with Vias Having an Axially Variable Sidewall Taper and Methods for Forming the Same
US11972993B2 (en) 2017-05-25 2024-04-30 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
US11152294B2 (en) 2018-04-09 2021-10-19 Corning Incorporated Hermetic metallized via with improved reliability
US11201109B2 (en) 2018-04-09 2021-12-14 Corning Incorporated Hermetic metallized via with improved reliability
US11760682B2 (en) 2019-02-21 2023-09-19 Corning Incorporated Glass or glass ceramic articles with copper-metallized through holes and processes for making the same
JP2020199748A (en) * 2019-06-13 2020-12-17 セイコーエプソン株式会社 Wiring board, manufacturing method of wiring board, inkjet head, mems device, and oscillator
JP7302318B2 (en) 2019-06-13 2023-07-04 セイコーエプソン株式会社 Wiring board, wiring board manufacturing method, inkjet head, MEMS device, and oscillator
WO2022185997A1 (en) * 2021-03-02 2022-09-09 ソニーグループ株式会社 Semiconductor substrate, semiconductor substrate manufacturing method, and electronic device having semiconductor substrate

Similar Documents

Publication Publication Date Title
JP2004363212A (en) Wiring board with through-hole conductor
US6663799B2 (en) Conductive metal particles, conductive composite metal particles and applied products using the same
EP1503216B1 (en) Sheet-form connector and production method and application therefor
CN104241196B (en) Method for manufacturing stacked package
TWI288591B (en) Circuit board structure and dielectric structure thereof
KR101956221B1 (en) Anisotropic conductive film, manufacturing method for same, and connection structure
CN106469705B (en) Package module and its board structure
CN108962840A (en) Electronic package and manufacturing method thereof
CN100495824C (en) Anisotropic conductive film and method for producing the same
KR20170078586A (en) Anisotropic conductive film
EP2695499A1 (en) Housing-side separating layer for the stress decoupling of potted electronics
US20050079707A1 (en) Interconnection substrate and fabrication method thereof
JP2005019576A (en) Wiring board having through hole conductor
US8093712B2 (en) Monolithic molded flexible electronic assemblies without solder and methods for their manufacture
US8488331B2 (en) Electrical connection interfaces and methods for adjacently positioned circuit components
CN106298728A (en) Package structure and method for fabricating the same
JPS62179792A (en) Plastic wiring board
JP2003331951A (en) Anisotropic conductive film and manufacturing method of the same
US20140069701A1 (en) Wiring board
CN108886019A (en) The nanoscale interconnection array of crystal grain for being stacked
JPH0831976A (en) Silicon double-sided packaging substrate and its manufacturing method
KR101655465B1 (en) Semiconductor device having conformal coating layer and method for manufacturing the same
JP2003142535A (en) Flexible wiring substrate and method of manufacturing the same
JP2000208226A (en) Metal mold for producing anisotropically conductive sheet and manufacture thereof
JPH0878074A (en) Anisotropic conductor adhesive sheet and its mauafacture

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041214