JP2004360512A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2004360512A
JP2004360512A JP2003157677A JP2003157677A JP2004360512A JP 2004360512 A JP2004360512 A JP 2004360512A JP 2003157677 A JP2003157677 A JP 2003157677A JP 2003157677 A JP2003157677 A JP 2003157677A JP 2004360512 A JP2004360512 A JP 2004360512A
Authority
JP
Japan
Prior art keywords
exhaust
particulates
electrodes
electrode
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003157677A
Other languages
Japanese (ja)
Inventor
Masatoshi Shimoda
正敏 下田
Koichi Machida
耕一 町田
Takatoshi Furukawa
卓俊 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2003157677A priority Critical patent/JP2004360512A/en
Priority to PCT/JP2004/007611 priority patent/WO2004109070A1/en
Priority to EP04745510A priority patent/EP1640574A1/en
Priority to KR1020057023069A priority patent/KR20060025158A/en
Priority to US10/558,562 priority patent/US7364606B2/en
Priority to CN 200480015532 priority patent/CN1798909A/en
Priority to CNA2007101621752A priority patent/CN101182795A/en
Priority to CNA2007101621856A priority patent/CN101182796A/en
Publication of JP2004360512A publication Critical patent/JP2004360512A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/36Controlling flow of gases or vapour
    • B03C3/361Controlling flow of gases or vapour by static mechanical means, e.g. deflector
    • B03C3/366Controlling flow of gases or vapour by static mechanical means, e.g. deflector located in the filter, e.g. special shape of the electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/30Details of magnetic or electrostatic separation for use in or with vehicles

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device with reduced power consumption. <P>SOLUTION: The exhaust emission control device comprises: a hollow inside electrode 5 formed of a conductive filter for collecting particulates; an outside electrode 6 circumferentially surrounding the inside electrode 5; a housing 4 built in a flow passage of exhaust G housing the electrodes 5, 6; a temperature sensor 2 detecting a temperature of the exhaust G; and a discharge control unit 3 controlling electric power supplied to the electrodes 5, 6 based on a detection value of the temperature sensor 2. When the temperature of the exhaust G detected by the temperature sensor 2 is low, the electric power required for generating discharge plasma is supplied from the discharge control unit 3 to the electrodes 5, 6, so that particulates collected by the inside electrode 5 are oxidized. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は排気浄化装置に関するものである。
【0002】
【従来の技術】
ディーゼルエンジンの排気(軽油の燃焼ガス)には、炭素質よりなる煤、及び高沸点炭化水素成分よりなるSOF分(Soluble Organic Fraction:可溶性有機成分)を主成分として、微小量のサルフェート(ミスト状硫酸成分)が加わった組成のパティキュレート(Particulate Matter:粒子状物質)が含まれている。
【0003】
このパティキュレートが大気中への拡散を抑制するために、エンジン排気系統にパティキュレート捕集用のフィルタを組み込むことが行なわれている。
【0004】
パティキュレートフィルタの一例としては、コージライトなどのセラミックスによりハニカムコアを形成し、当該ハニカムコアの多孔質薄壁で区分される多数の通路にエンジン排気を流通させるものがある。
【0005】
上記パティキュレートフィルタでは、平行に並ぶ多数の通路の一端部分を1つおきに封鎖して、これに隣接するガス通路の非封鎖の一端部分へエンジン排気を導くようにし、また、エンジン排気が流入するガス通路の他端部分を封鎖して、これに隣接するガス通路の非封鎖の他端部分をマフラに接続している。
【0006】
すなわち、エンジン排気に含まれているパティキュレートを多孔質薄壁で捕集し、当該多孔質薄壁を透過した排気だけを大気中へ放出する。
【0007】
更に、多孔質薄壁に付着したパティキュレートは、排気温度が高くなる領域にエンジン運転状態が移行した際に自然着火して酸化処理される。
【0008】
ところが、主に市街地を運行する路線バスなどでは、一般に走行速度が低く、パティキュレートの酸化処理に適した排気温度を得ることができるエンジン運転状態が続く機会が少ないため、パティキュレートの捕集量が酸化処理量を上回り、多孔質薄壁が閉塞してしまうことになる。
【0009】
そこで近年、排気温度が低くてもパティキュレートを酸化処理可能なプラズマアシスト型の排気浄化装置(ガス処理反応器)が提案されている(例えば、特許文献1参照)。
【0010】
この排気浄化装置では、ステンレス製円筒体に穿設加工を施した外側電極及び内側電極をチャンバ内に同軸に配置し、当該両電極の間の空隙に誘電体よりなるペレットを処理対象のエンジン排気が通過し得るように充填し、チャンバと外側電極の間の空隙へエンジン排気を導くようにしている。
【0011】
すなわち、チェンバと外部電極の間からペレット充填層に送給されるエンジン排気に含まれているパティキュレートをペレットに付着させ、ペレット充填層を通過したエンジン排気だけを大気中に放出する。
【0012】
更にまた、内側電極と外側電極に高電圧を印加し、放電プラズマを発生させてエンジン排気を励起し、オゾンや酸素ラジカルなどを発生させる。
【0013】
これにより、排気温度が低い場合でも、ペレットに付着したパティキュレートが酸化処理される。
【0014】
【特許文献1】
特表2002−501813号公報
【0015】
【発明が解決しようとする課題】
しかしながら、従来方式のプラズマアシスト型の排気浄化装置では、内側電極と外側電極に常時高電圧を印加すると、電力消費が過大になってしまう。
【0016】
本発明は上述した実情に鑑みてなしたもので、電力消費が少ない排気浄化装置を提供することを目的としている。
【0017】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明は、排気中に放電によってプラズマを発生させるための電極と、排気に随伴するパティキュレートを捕らえる捕集体と、排気温度を検出する温度センサと、該温度センサの検出値に基づき電極へ供給すべき電力を調整する放電制御ユニットとを備えている。
【0018】
また、請求項2に記載の発明は、排気中に放電によってプラズマを発生させるための電極と、排気に随伴するパティキュレートを捕らえる捕集体と、該捕集体により捕らえたパティキュレートの量を推定する捕集量推定手段と、該捕集量推定手段の算出値に基づき電極へ供給すべき電力を調整する放電制御ユニットとを備えている。
【0019】
請求項1に記載の発明においては、温度センサで得た排気温度が、所定値よりも低いときに、放電制御ユニットから両電極に放電プラズマの発生に必要な電力を供給し、捕集体が捕らえたパティキュレートを酸化処理する。
【0020】
請求項2に記載の発明においては、捕集量推定手段でパティキュレート捕集量が所定値を超えたときに、放電制御ユニットから両電極に放電プラズマの発生に必要な電力を供給し、捕集体が捕らえたパティキュレートを酸化処理する。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態を、図示例とともに説明する。
【0022】
図1及び図2は本発明の排気浄化装置の実施の形態の第1の例を示すもので、この排気浄化装置は、捕集セル1、温度センサ2、放電制御ユニット3を備えている。
【0023】
捕集セル1は、浄化の対象となる排気Gの流通経路に組み込んだハウジング4と、パティキュレートを捕集可能な導電性フィルタで形成され且つハウジング4内部に同軸に配置した中空状の内側電極5と、該内側電極5を周方向に取り囲むようにハウジング4内部に配置した筒状の外側電極6と、該外側電極6の内面を被覆するセラミックスなどの誘電体7とを備えている。
【0024】
また、排気Gの流通経路には、捕集セル1とは別途にコージライトなどを適用したパティキュレートフィルタが組み込まれている。
【0025】
上記の導電性フィルタとしては、繊維状金属を積層して焼結により一体化したもの、金属粉末の焼結体、微細な金属メッシュを積層して焼結により一体化したもの、あるいは微細な金属メッシュに金属粉末を焼結により担持させたものなどがあり、これらはいずれも、気体の通過性を確保しつつパティキュレートを捕集することができる。
【0026】
内側電極5は、排気Gの進行方向上流寄り端部が閉じられ且つ下流寄り端部が開口した形状となっており、内側電極5と外側電極6の排気G進行方向下流寄り部分には、両電極5,6の端部全周に接するように環状の絶縁材8が設けられている。
【0027】
すなわち、エンジン(図示せず)から送出される排気Gは、捕集セル1の内側電極5外面と誘電体7内面の間の空隙9に流入し、内側電極5を外方より内方へ向かって通過した後、当該内側電極5の内方の空間を経て捕集セル1の下流側のマフラ(図示せず)に流出し、パティキュレートは、導電性フィルタである内側電極5に捕集されることになる。
【0028】
温度センサ2は、ハウジング4の排気流入口に設けられ、排気Gの温度を検出するようになっている。
【0029】
放電制御ユニット3には、オルタネータなどの車載電源10と温度センサ2が接続されている。
【0030】
この放電制御ユニット3は、温度センサ2で得た検出値(排気Gの温度)が、パティキュレートの自然着火に至らない範囲である際に、放電プラズマの発生量がパティキュレートを酸化させるのに充分になるように、両電極5,6への供給電力を設定し、温度センサ2で得た検出値が、パティキュレートが酸化する温度範囲になる際に、両電極5,6への供給電力を減少して放電プラズマの発生量を抑制する制御(図2参照)を行なうように構成されている。
【0031】
上記の供給電力の制御としては、排気Gの温度に応じて、
▲1▼ 単位時間あたりの両電極5,6への通電時間を増減する方式、
▲2▼ 両電極5,6への印加電圧を増減する方式、
▲3▼ 両電極5,6への印加電流を増減する方式、
▲4▼ 両電極5,6に交流を給電し且つその周波数を増減する方式、
▲5▼ 両電極5,6に直流を給電し且つそのデューティ比率を増減する方式、
▲6▼ 上記▲5▼項において波形の立ち上がり時間を増減する方式、
などがある。
【0032】
つまり、放電制御ユニット3は、排気Gの温度が低い場合に、放電プラズマによりオゾンや酸素ラジカルなどを発生させて、パティキュレートを酸化処理するので、消費電力を削減することができる。
【0033】
図3乃至図5は本発明の排気浄化装置の実施の形態の第2の例を示すもので、この排気浄化装置は、捕集セル1、捕集量推定手段11、放電制御ユニット12を備えており、捕集セル1、車載電源10は、図1のものと同じ構造である。
【0034】
捕集量推定手段11は、ハウジング4の内圧、内側電極5の電気的特性(通電時の電圧値、電流値、抵抗値)などのパラメータを計測し、予め実測により得た内側電極5のパティキュレートの捕集量とパラメータ計測値の相互関係に基づき、現時点での内側電極5のパティキュレートの捕集量を算出するように構成されている。
【0035】
放電制御ユニット12には、車載電源10と捕集量推定手段11が接続されている。
【0036】
この放電制御ユニット12は、捕集量推定手段11で得たパティキュレートの捕集量の算出値が予め設定した範囲を超過した際に、パティキュレート捕集量に応じて放電プラズマの発生量が増えるように、両電極5,6への供給電力を増大する制御(図4及び図5参照)を行なうように構成されている。
【0037】
上記の供給電力の制御としては、パティキュレートの捕集量に応じて、
▲1▼ 単位時間あたりの両電極5,6への通電時間を増減する方式、
▲2▼ 両電極5,6への印加電圧を増減する方式、
▲3▼ 両電極5,6への印加電流を増減する方式、
▲4▼ 両電極5,6に交流を給電し且つその周波数を増減する方式、
▲5▼ 両電極5,6に直流を給電し且つそのデューティ比率を増減する方式、
▲6▼ 上記▲5▼項において波形の立ち上がり時間を増減する方式、
などがある。
【0038】
つまり、放電制御ユニット12は、内側電極5のパティキュレートの捕集量が増えたときにだけ、放電プラズマによりオゾンや酸素ラジカルなどを発生させて、パティキュレートを酸化処理するので、消費電力を削減することができる。
【0039】
なお、本発明の排気浄化装置は上述した実施の形態のみに限定されるものではなく、放電プラズマ発生用の電極として、平板対向型や格子型などの実施の形態として図示した円筒型とは相違する形状のものを用いること、パティキュートの捕集体として、セラミックスペレットやセラミックスハニカムなどの実施の形態として述べた導電性フィルタとは別の材質のものを用いること、その他、本発明の要旨を逸脱しない範囲において変更を加え得ることは勿論である。
【0040】
【発明の効果】
以上述べたように本発明の排気浄化装置によれば、下記のような優れた効果を奏し得る。
【0041】
(1)請求項1に記載の発明においては、温度センサで得た排気温度が、所定値よりも低いときに、放電制御ユニットから両電極に放電プラズマの発生に必要な電力を供給し、捕集体が捕らえたパティキュレートを酸化処理するので、消費電力を削減してエネルギー利用効率を向上を図ることができる。
【0042】
(2)請求項2に記載の発明においては、捕集量推定手段でパティキュレート捕集量が所定値を超えたときに、放電制御ユニットから両電極に放電プラズマの発生に必要な電力を供給し、捕集体が捕らえたパティキュレートを酸化処理するので、消費電力を削減してエネルギー利用効率を向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の排気浄化装置の実施の形態の第1の例を示す概念図である。
【図2】排気温度とプラズマ発生量の関係の一例を示すグラフである。
【図3】本発明の排気浄化装置の実施の形態の第2の例を示す概念図である。
【図4】パティキュレート捕集量とプラズマ発生量の関係の一例を示すグラフである。
【図5】パティキュレート捕集量とプラズマ発生量の関係の他の例を示すグラフである。
【符号の説明】
2 温度センサ
3 放電制御ユニット
5 内側電極(捕集体)
6 外側電極
11 捕集量推定手段
12 放電制御ユニット
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas purification device.
[0002]
[Prior art]
Diesel engine exhaust gas (combustion gas of light oil) contains, as main components, soot composed of carbonaceous material and SOF (Soluble Organic Fraction: soluble organic component) composed of a high-boiling hydrocarbon component, and contains a small amount of sulfate (mist-like component). Particulate matter (particulate matter) having a composition to which a sulfuric acid component is added.
[0003]
In order to suppress the diffusion of the particulates into the atmosphere, a filter for collecting particulates is incorporated in an engine exhaust system.
[0004]
As an example of the particulate filter, there is a filter in which a honeycomb core is formed of ceramics such as cordierite and the engine exhaust gas flows through a number of passages divided by the porous thin walls of the honeycomb core.
[0005]
In the particulate filter, one end portion of each of a number of parallel passages is sealed, and engine exhaust is guided to an unsealed one end portion of a gas passage adjacent thereto. The other end of the gas passage is closed, and the other end of the gas passage adjacent to the other end is connected to the muffler.
[0006]
That is, the particulates contained in the engine exhaust are collected by the porous thin wall, and only the exhaust passing through the porous thin wall is released to the atmosphere.
[0007]
Further, the particulates adhered to the porous thin wall are oxidized by spontaneous ignition when the operating state of the engine is shifted to a region where the exhaust gas temperature becomes high.
[0008]
However, in the case of route buses operating mainly in urban areas, the traveling speed is generally low, and there is little opportunity for the engine to operate at an exhaust temperature suitable for particulate oxidation treatment. Exceeds the oxidation treatment amount, and the porous thin wall is closed.
[0009]
Therefore, in recent years, a plasma-assisted exhaust gas purification device (gas treatment reactor) capable of oxidizing particulates even at a low exhaust gas temperature has been proposed (for example, see Patent Document 1).
[0010]
In this exhaust gas purification apparatus, an outer electrode and an inner electrode formed by piercing a stainless steel cylinder are coaxially arranged in a chamber, and a pellet made of a dielectric is filled in a gap between the two electrodes with the engine exhaust gas to be processed. So that the engine exhaust can be guided to the gap between the chamber and the outer electrode.
[0011]
That is, the particulates contained in the engine exhaust gas sent from the chamber and the external electrode to the pellet-packed layer are attached to the pellets, and only the engine exhaust gas that has passed through the pellet-packed layer is released to the atmosphere.
[0012]
Furthermore, a high voltage is applied to the inner electrode and the outer electrode to generate discharge plasma to excite the engine exhaust and generate ozone and oxygen radicals.
[0013]
Thereby, even if the exhaust gas temperature is low, the particulates attached to the pellets are oxidized.
[0014]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 2002-501813
[Problems to be solved by the invention]
However, in the conventional plasma-assisted exhaust gas purification apparatus, if a high voltage is constantly applied to the inner electrode and the outer electrode, the power consumption becomes excessive.
[0016]
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an exhaust gas purification device that consumes less power.
[0017]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 includes an electrode for generating plasma by discharge in exhaust, a collector for capturing particulates accompanying exhaust, and a temperature sensor for detecting exhaust temperature. A discharge control unit that adjusts the power to be supplied to the electrodes based on the detection value of the temperature sensor.
[0018]
According to a second aspect of the present invention, an electrode for generating plasma by discharge in exhaust gas, a collector for capturing particulates accompanying the exhaust, and an amount of the particulates captured by the collector are estimated. The apparatus includes a trapping amount estimating unit and a discharge control unit that adjusts power to be supplied to the electrode based on a value calculated by the trapping amount estimating unit.
[0019]
According to the first aspect of the present invention, when the exhaust gas temperature obtained by the temperature sensor is lower than a predetermined value, the discharge control unit supplies power necessary for generating discharge plasma to both electrodes, and the collector is caught. The particulates are oxidized.
[0020]
According to the second aspect of the present invention, when the trapping amount exceeds a predetermined value by the trapping amount estimating means, the discharge control unit supplies power necessary for generating discharge plasma to both electrodes, and traps. The particulates captured by the aggregate are subjected to oxidation treatment.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0022]
FIG. 1 and FIG. 2 show a first example of an embodiment of an exhaust gas purification device of the present invention. This exhaust gas purification device includes a collection cell 1, a temperature sensor 2, and a discharge control unit 3.
[0023]
The collection cell 1 includes a housing 4 incorporated in a flow path of the exhaust gas G to be purified, and a hollow inner electrode formed of a conductive filter capable of collecting particulates and arranged coaxially inside the housing 4. 5, a cylindrical outer electrode 6 disposed inside the housing 4 so as to surround the inner electrode 5 in a circumferential direction, and a dielectric 7 such as ceramics for coating the inner surface of the outer electrode 6.
[0024]
Further, a particulate filter to which cordierite or the like is applied separately from the collection cell 1 is incorporated in the flow path of the exhaust gas G.
[0025]
Examples of the conductive filter include a filter obtained by laminating fibrous metals and integrating them by sintering, a sintered body of metal powder, a filter obtained by laminating a fine metal mesh and integrating them by sintering, or a fine metal. There are, for example, those in which a metal powder is carried on a mesh by sintering, and any of these can collect particulates while ensuring gas permeability.
[0026]
The inner electrode 5 has a shape in which the upstream end in the traveling direction of the exhaust gas G is closed and the downstream end is open, and both the inner electrode 5 and the outer electrode 6 in the downstream portion in the exhaust gas traveling direction have both ends. An annular insulating material 8 is provided so as to be in contact with the entire periphery of the ends of the electrodes 5 and 6.
[0027]
That is, the exhaust gas G discharged from the engine (not shown) flows into the gap 9 between the outer surface of the inner electrode 5 of the collection cell 1 and the inner surface of the dielectric 7, and moves the inner electrode 5 inward from outside. After passing through the inside electrode 5, it flows out to a muffler (not shown) on the downstream side of the collection cell 1 through the space inside the inside electrode 5, and the particulates are collected by the inside electrode 5 which is a conductive filter. Will be.
[0028]
The temperature sensor 2 is provided at an exhaust gas inlet of the housing 4 and detects the temperature of the exhaust gas G.
[0029]
The discharge control unit 3 is connected to a vehicle-mounted power supply 10 such as an alternator and the temperature sensor 2.
[0030]
When the detected value (temperature of the exhaust gas G) obtained by the temperature sensor 2 is in a range that does not lead to the spontaneous ignition of the particulates, the discharge control unit 3 reduces the amount of generated discharge plasma to oxidize the particulates. The power supplied to both electrodes 5 and 6 is set so as to be sufficient. When the detected value obtained by temperature sensor 2 falls within the temperature range where particulates are oxidized, the power supplied to both electrodes 5 and 6 is obtained. Is controlled so as to reduce the amount of discharge plasma by reducing the amount (see FIG. 2).
[0031]
The above-described control of the supplied power includes, according to the temperature of the exhaust gas G,
{Circle around (1)} A method of increasing / decreasing the energizing time to both electrodes 5 and 6 per unit time,
{Circle around (2)} A method of increasing / decreasing the voltage applied to both electrodes 5, 6;
{Circle around (3)} A method of increasing / decreasing the current applied to both electrodes 5, 6;
{Circle around (4)} a method of supplying alternating current to both electrodes 5 and 6 and increasing / decreasing the frequency;
(5) A method of supplying a direct current to both electrodes 5 and 6 and increasing or decreasing the duty ratio thereof;
(6) The method of increasing or decreasing the rise time of the waveform in the above (5),
and so on.
[0032]
That is, when the temperature of the exhaust gas G is low, the discharge control unit 3 generates ozone and oxygen radicals by the discharge plasma to oxidize the particulates, thereby reducing power consumption.
[0033]
FIGS. 3 to 5 show a second example of the embodiment of the exhaust gas purification apparatus of the present invention. This exhaust gas purification apparatus includes a collection cell 1, a collection amount estimating unit 11, and a discharge control unit 12. The collection cell 1 and the vehicle-mounted power supply 10 have the same structure as that of FIG.
[0034]
The trapping amount estimating means 11 measures parameters such as the internal pressure of the housing 4 and the electrical characteristics (voltage value, current value, and resistance value at the time of energization) of the inner electrode 5, and measures the parameters of the inner electrode 5 obtained in advance by actual measurement. It is configured to calculate the amount of particulate collected by the inner electrode 5 at the present time based on the correlation between the collected amount of curate and the parameter measurement value.
[0035]
The in-vehicle power supply 10 and the trapping amount estimating means 11 are connected to the discharge control unit 12.
[0036]
When the calculated value of the trapped amount of particulates obtained by the trapped amount estimating means 11 exceeds a predetermined range, the discharge control unit 12 reduces the amount of discharge plasma generated in accordance with the trapped amount of particulates. The control is performed so as to increase the supply power to both electrodes 5 and 6 (see FIGS. 4 and 5).
[0037]
As the control of the above power supply, according to the trapped amount of particulates,
{Circle around (1)} A method of increasing / decreasing the energizing time to both electrodes 5 and 6 per unit time,
{Circle around (2)} A method of increasing / decreasing the voltage applied to both electrodes 5, 6;
{Circle around (3)} A method of increasing / decreasing the current applied to both electrodes 5, 6;
{Circle around (4)} a method of supplying alternating current to both electrodes 5 and 6 and increasing / decreasing the frequency;
(5) A method of supplying a direct current to both electrodes 5 and 6 and increasing or decreasing the duty ratio thereof;
(6) The method of increasing or decreasing the rise time of the waveform in the above (5),
and so on.
[0038]
That is, the discharge control unit 12 oxidizes the particulates by generating ozone or oxygen radicals by the discharge plasma only when the amount of trapped particulates of the inner electrode 5 increases, thereby reducing power consumption. can do.
[0039]
Note that the exhaust gas purification apparatus of the present invention is not limited to the above-described embodiment, and is different from the cylindrical type illustrated as an embodiment such as a flat plate type or a lattice type as an electrode for generating discharge plasma. Using a material different from the conductive filter described in the embodiment, such as ceramic pellets and ceramic honeycomb, as a collector of the paticute, and deviating from the gist of the present invention. Of course, changes can be made within a range not to be performed.
[0040]
【The invention's effect】
As described above, according to the exhaust gas purification apparatus of the present invention, the following excellent effects can be obtained.
[0041]
(1) In the first aspect of the present invention, when the exhaust gas temperature obtained by the temperature sensor is lower than a predetermined value, the discharge control unit supplies power necessary for generating discharge plasma to both electrodes and captures the power. Since the particulates captured by the aggregate are oxidized, power consumption can be reduced and energy use efficiency can be improved.
[0042]
(2) In the invention according to the second aspect, when the trapping amount of the particulate exceeds a predetermined value by the trapping amount estimating means, the discharge control unit supplies power necessary for generating discharge plasma to both electrodes from the discharge control unit. Since the particulates captured by the collector are oxidized, power consumption can be reduced and energy use efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a first example of an embodiment of an exhaust gas purification device of the present invention.
FIG. 2 is a graph showing an example of a relationship between an exhaust temperature and a plasma generation amount.
FIG. 3 is a conceptual diagram showing a second example of the embodiment of the exhaust emission control device of the present invention.
FIG. 4 is a graph showing an example of a relationship between a particulate collection amount and a plasma generation amount.
FIG. 5 is a graph showing another example of the relationship between the amount of collected particulates and the amount of generated plasma.
[Explanation of symbols]
2 Temperature sensor 3 Discharge control unit 5 Inner electrode (collector)
6 outer electrode 11 trapping amount estimation means 12 discharge control unit

Claims (2)

排気中に放電によってプラズマを発生させるための電極と、排気に随伴するパティキュレートを捕らえる捕集体と、排気温度を検出する温度センサと、該温度センサの検出値に基づき電極へ供給すべき電力を調整する放電制御ユニットとを備えてなることを特徴とする排気浄化装置。An electrode for generating plasma by discharge during exhaust, a collector for capturing particulates accompanying exhaust, a temperature sensor for detecting exhaust temperature, and electric power to be supplied to the electrode based on a detection value of the temperature sensor. An exhaust emission control device comprising a discharge control unit for adjusting. 排気中に放電によってプラズマを発生させるための電極と、排気に随伴するパティキュレートを捕らえる捕集体と、該捕集体により捕らえたパティキュレートの量を推定する捕集量推定手段と、該捕集量推定手段の算出値に基づき電極へ供給すべき電力を調整する放電制御ユニットとを備えてなることを特徴とする排気浄化装置。An electrode for generating plasma by discharge in the exhaust, a collector for capturing particulates accompanying the exhaust, a collection amount estimating means for estimating an amount of the particulates captured by the collector, and a collection amount An exhaust emission control device comprising: a discharge control unit that adjusts electric power to be supplied to an electrode based on a value calculated by an estimation unit.
JP2003157677A 2003-06-03 2003-06-03 Exhaust emission control device Pending JP2004360512A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003157677A JP2004360512A (en) 2003-06-03 2003-06-03 Exhaust emission control device
PCT/JP2004/007611 WO2004109070A1 (en) 2003-06-03 2004-06-02 Exhaust gas cleaner
EP04745510A EP1640574A1 (en) 2003-06-03 2004-06-02 Exhaust gas cleaner
KR1020057023069A KR20060025158A (en) 2003-06-03 2004-06-02 Exhaust gas cleaner
US10/558,562 US7364606B2 (en) 2003-06-03 2004-06-02 Exhaust emission control device
CN 200480015532 CN1798909A (en) 2003-06-03 2004-06-02 Exhaust gas cleaner
CNA2007101621752A CN101182795A (en) 2003-06-03 2004-06-02 Exhaust gas cleaner
CNA2007101621856A CN101182796A (en) 2003-06-03 2004-06-02 Exhaust gas cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003157677A JP2004360512A (en) 2003-06-03 2003-06-03 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2004360512A true JP2004360512A (en) 2004-12-24

Family

ID=34051313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003157677A Pending JP2004360512A (en) 2003-06-03 2003-06-03 Exhaust emission control device

Country Status (2)

Country Link
JP (1) JP2004360512A (en)
CN (3) CN101182796A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100931622B1 (en) * 2007-03-28 2009-12-14 미쯔이 죠센 가부시키가이샤 High voltage plasma generator
PT2078563E (en) * 2008-01-09 2013-01-25 Alstom Technology Ltd Method and device for controlling an electrostatic precipitator
CN103008110B (en) * 2012-12-27 2016-01-06 中冶长天国际工程有限责任公司 Electric cleaner control method in a kind of sintering system and control device
JP6264169B2 (en) * 2014-04-15 2018-01-24 トヨタ自動車株式会社 Oil removal equipment
WO2017110581A1 (en) * 2015-12-25 2017-06-29 京セラ株式会社 Component for particulate matter measurement device
WO2020083097A1 (en) * 2018-10-22 2020-04-30 上海必修福企业管理有限公司 Engine emission treatment system and method
BR112021007614A2 (en) * 2018-10-22 2021-07-27 Shanghai Bixiufu Enterprise Management Co., Ltd air dedusting system

Also Published As

Publication number Publication date
CN1798909A (en) 2006-07-05
CN101182796A (en) 2008-05-21
CN101182795A (en) 2008-05-21

Similar Documents

Publication Publication Date Title
US7510600B2 (en) Gas purifying apparatus
JP4327506B2 (en) Exhaust purification equipment
JP5163695B2 (en) Exhaust gas purification device for internal combustion engine
JP4873564B2 (en) Exhaust gas purification device
JP2008045409A (en) Exhaust emission control system
JP2004360512A (en) Exhaust emission control device
JP2005061246A (en) Exhaust emission control device
US7364606B2 (en) Exhaust emission control device
JP4276474B2 (en) Exhaust purification equipment
JP4156276B2 (en) Exhaust purification device
JP2006105081A (en) Exhaust emission control device
JP4604803B2 (en) Exhaust treatment device
JP2004293416A (en) Exhaust emission control method of internal combustion engine and its device
JP2004340049A (en) Exhaust emission control device
JP4216649B2 (en) Exhaust purification equipment
JP2004092589A (en) Exhaust emission control device for internal combustion engine
JP2004360589A (en) Exhaust emission control device
JP2006170021A (en) Exhaust emission control device
JP2007090255A (en) Exhaust gas purifying apparatus
JP2004190528A (en) Exhaust emission control device
JP2004346827A (en) Exhaust emission control device
JP2004346914A (en) Emission control device
JP2004293417A (en) Exhaust emission control method of internal combustion engine and its device
JP2007182810A (en) Exhaust emission control device
JP2006029135A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090324