JP2004360136A - Staple fiber for reinforcement having excellent loosening property - Google Patents

Staple fiber for reinforcement having excellent loosening property Download PDF

Info

Publication number
JP2004360136A
JP2004360136A JP2003162210A JP2003162210A JP2004360136A JP 2004360136 A JP2004360136 A JP 2004360136A JP 2003162210 A JP2003162210 A JP 2003162210A JP 2003162210 A JP2003162210 A JP 2003162210A JP 2004360136 A JP2004360136 A JP 2004360136A
Authority
JP
Japan
Prior art keywords
mol
fiber
cement
defibration
sizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003162210A
Other languages
Japanese (ja)
Other versions
JP4252369B2 (en
Inventor
Yoshiki Nishinaka
喜樹 西中
Hiroshi Inoue
啓 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2003162210A priority Critical patent/JP4252369B2/en
Publication of JP2004360136A publication Critical patent/JP2004360136A/en
Application granted granted Critical
Publication of JP4252369B2 publication Critical patent/JP4252369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a staple fiber for reinforcement having excellent loosening property and high cement-reinforcing effect, and quickly loosened and uniformly dispersed without carrying out mechanical agitation for a long period even in an alkaline medium developed e.g. by adding a kneading water to a hydraulic material such as cement. <P>SOLUTION: The reinforcing staple fiber having excellent loosening property is a bundled staple fiber produced by separably integrating a plurality of polyvinyl alcohol staple fibers with a bundling agent. The aspect ratio of the staple fiber is 100-1,000 and the bundling agent is a (meth)acrylic acid copolymer having a number-average molecular weight of 1,000-100,000 and containing 20-40 mol% constitution unit expressed by formula 1, 10-30 mol% constitution unit expressed by formula 2 and 45-60 mol% (the total of the components is 100 mol%) constitution unit expressed by formula 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、セメントなどを代表例とする水硬性硬化材料、特に吹き付け施工用材料の補強用繊維として好適な短繊維状の集束糸であって、解繊性に優れた補強用短繊維に関するものである。
【0002】
【従来の技術】
従来、セメントなどの水硬性硬化材料を使用した施工品や成形品のひび割れ抑制や曲げ強度、靭性などの機械特性を向上させる目的として、各種の繊維状物を配合することは公知の技術であり、数多く提案されている。
【0003】
しかしながら、繊維をセメントなどの水硬性硬化材料のマトリックス(母材)中に均一に分散させることは極めて困難であり、混練の際に単繊維同士が絡みあったり、湾曲してファイバーボールが発生して、目標とする補強効果が得られにくいという問題がある。
【0004】
このような状況に鑑み、複数本の繊維を集束剤で結合一体化した集束糸(チョップドストランド)を補強材として使用することが提案されており、熱硬化性樹脂により複数本の繊維を弱く接着した集束糸が示されている(例えば、特許文献1参照)。
【0005】
このような集束糸を使用した場合、まず、集束糸の形態でマトリックス中に分散し、次いで撹拌機中での撹拌羽根やマトリックスとの摩擦や剪断力により樹脂が脱離して集束状態が徐々にはずれて単繊維から複数本の状態に解繊し、分散されていく。したがって、集束されていない繊維を混入する場合に比較して、均一分散性に優れるという特徴を有している。
【0006】
しかしながら、この集束糸は、熱硬化性樹脂により接着されているため、上記のような機械により、長時間攪拌を行わないことには十分に解繊させることが困難であった。攪拌を行うことにより単繊維に解繊されるが、長時間攪拌すると、すでに解繊された繊維は、未解繊の繊維を解繊させるために攪拌を続けるうちにファイバーボールを形成するという問題があった。そして、このようなファイバーボールが形成されると補強効果が損なわれる。
【0007】
また、水溶性高分子樹脂で集束され、PH12における解繊度が50%以上である集束糸が開示されている(特許文献2参照)。この集束糸によると、解繊度が優れており、分散性に優れ、ファイバーボールも形成されにくいものであった。しかしながら、この集束糸は、解繊度の定義からも明らかなように、攪拌プロペラによる攪拌を行うことにより解繊されるものであって、上記と同様に機械的な攪拌が必要であり、十分な解繊性を有しているものではなかった。
【0008】
さらに、水溶性高分子樹脂で固めた集束糸であって、アスペクト比を規定し、コンクリート成型品中では20%以上、単繊維に解繊するものが記載されている(特許文献3参照)。また、疎水性高分子集束剤で固着し、アスペクト比を20〜300となるようにして切断したセメントモルタル又はコンクリート補強用繊維も提案されている(特許文献4参照)。
【0009】
これらの集束糸は集束剤として、水溶性又は疎水性でかつフィルム形成能を有するものを用いているため、集束性は良好であるが解繊性は不十分であり、上記と同様に機械的な攪拌を長時間行うことによりはじめて解繊されるものであり、短時間での解繊性には優れていなかった。
【0010】
ところが、近年、セメントを結合材とする繊維補強モルタルやコンクリートのポンプ打設や吹き付け施工において、施工機器の能力や効率の増強化(改良)により、原材料混合物の撹拌をより短時間で行う必要が生じている。特に止水箇所の施工や吹き付け施工においては、セメントの凝結を著しく促進させて短時間に固化させるためにアルミニウム塩や炭酸塩を主成分とする急結剤を用いることが多く、原材料混合物の撹拌時には、より短時間で集束糸が均一に解繊、分散することが必要であった。そこで、より短時間に均一分散する集束糸が望まれていた。
【0011】
【特許文献1】
特公昭62−21743号公報(第1〜5頁)
【特許文献2】
特開平10−183473号公報(第1〜5頁)
【特許文献3】
特公昭64−1424号公報(第1〜11頁)
【特許文献4】
特公平5−43654号公報(第1〜11頁)
【0012】
【発明が解決しようとする課題】
本発明は上記の問題点を解決するものであって、セメントなどの水硬性材料に混練り水を加えたときのようなアルカリ雰囲気下においても、機械的な攪拌を長時間を行うことなく、短時間で解繊、均一分散することができ、セメントなどの水硬性材料の補強効果が高く解繊性に優れた補強用短繊維を提供することを技術的な課題とするものである。
【0013】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するために検討した結果、本発明に到達した。
すなわち、本発明は、複数本のポリビニルアルコール単繊維が集束剤によって分離可能に一体化された短繊維状の集束糸であって、単繊維のアスペクト比が100〜1000、集束剤が下記の式▲1▼で示される構成単位を20〜40モル%、下記の式▲2▼で示される構成単位を10〜30モル%及び下記の式▲3▼で示される構成単位を45〜60モル%(合計100モル%)の割合で有し、数平均分子量が1000〜100000の(メタ)アクリル酸共重合体である解繊性に優れた補強用短繊維を要旨とするものである。
【化4】

Figure 2004360136
【化5】
Figure 2004360136
【化6】
Figure 2004360136
(式▲1▼、式▲2▼、式▲3▼において、
、R、R:水素またはメチル基
、R:水素、炭素数1〜10の炭化水素基
Y:−COで示される有機基、−CHSOで示される有機基、−OCSOで示される有機基、−CSOで示される有機基のいずれか。
:オキシエチレン単位のみ又はオキシエチレン単位とオキシプロピレン単位との双方からなるオキシアルキレン単位の繰り返し数が3〜200のポリアルキレングリコールから全ての水酸基を除いた残基
、M、M、M:水素、アルカリ金属、アルカリ土類金属、アンモニウム又は有機アミン(ただし、同一又は異なっていてもよい)
【0014】
【発明の実施の形態】
本発明の短繊維は、セメントなどの水硬性材料を結合材とするモルタル、コンクリートなどの補強用短繊維として優れた効果が得られる。セメントなどの水硬性材料に混練り水を加えるとセメント中の化合物と水との水和反応が始まるとともに、その原料混合物はアルカリ雰囲気下となる。このとき、撹拌時間が長くなるほど原料混合物の温度は上昇し、水和反応が進んで流動性を失い施工し難くなってしまう。
【0015】
従って、補強繊維用短繊維としては、アルカリ雰囲気下で優れた解繊性を有することが不可欠であり、さらには、水の温度が高く原料混合物の水和反応が進みやすい比較的高温な状態においても優れた解繊性を有することが必要である。
【0016】
本発明の短繊維はセメント等と水とを加えて混練りする際に、水を添加した段階で速やかに解繊しはじめ、混練機での攪拌、混練を行うとさらに解繊が進み、短時間で均一かつ十分に解繊するものである。
【0017】
すなわち、本発明の短繊維は、下記の式▲1▼で示される構成単位を20〜40モル%、下記の式▲2▼で示される構成単位を10〜30モル%及び下記の式▲3▼で示される構成単位を45〜60モル%(合計100モル%)の割合で有し、かつ数平均分子量が1000〜100000の(メタ)アクリル酸共重合体を集束剤として用い、この集束剤により分離可能に一体化された短繊維状の集束糸である。
【化7】
Figure 2004360136
【化8】
Figure 2004360136
【化9】
Figure 2004360136
(式▲1▼、式▲2▼、式▲3▼において、
、R、R:水素またはメチル基
、R:水素、炭素数1〜10の炭化水素基
Y:−COで示される有機基、−CHSOで示される有機基、−OCSOで示される有機基、−CSOで示される有機基のいずれか。
:オキシエチレン単位のみ又はオキシエチレン単位とオキシプロピレン単位との双方からなるオキシアルキレン単位の繰り返し数が3〜200のポリアルキレングリコールから全ての水酸基を除いた残基
、M、M、M:水素、アルカリ金属、アルカリ土類金属、アンモニウム又は有機アミン(ただし、同一又は異なっていてもよい)
【0018】
式▲1▼で示されるものとしてはカルボン酸系ビニルポリマー等、式▲2▼で示されるものとしてはポリオキシアルキレン系ビニルポリマー等、式▲3▼で示されるものとしてはスルホン酸系ビニルポリマー等が挙げられる。
【0019】
集束剤が、上記▲1▼〜▲3▼で示される構成単位の割合や数平均分子量の範囲外である(メタ)アクリル酸共重合体であると、上記したような優れた解繊性を有する集束糸とすることができなくなる。また、アクリル酸共重合体以外の樹脂であっても、アルカリ雰囲気下で優れた解繊性を有する集束糸とすることができなくなる。
【0020】
なお、アクリル酸共重合体以外の他の樹脂として、たとえば尿素樹脂、メラミン樹脂、フェノール樹脂のような熱硬化型樹脂(特許文献1の集束糸に使用)やエチレン−酢酸ビニル−塩化ビニル共重合体のような疎水性集束剤(特許文献4の集束糸に使用)により集束した場合、硬化後に樹脂がフィルム状被膜を形成して、機械的な長時間の撹拌でしか解繊は困難となる。また、鹸化度の低いポリビニルアルコール系樹脂の水溶液(特許文献3の集束糸に使用)を用いて集束した場合、セメント濾水(抽出液)のような強アルカリ条件下では、残存酢酸基がセメント中のアルカリとの鹸化反応によって疎水化されるとともに結晶化度が高くなることによって完全鹸化のポリビニルアルコールとなり、水への溶解性が著しく低下することによって集束糸の解繊は困難となる。
【0021】
そして、本発明の短繊維は、解繊性に優れる指標として、下記で定義する解繊度が70%以上であることが好ましく、より好ましくは80%以上であり、さらに好ましくは90%以上である。
なお、解繊度とは、500mlビーカーに40℃、500mlのセメント濾水(セメントと水の比率が1:1の質量比率からなる混合液物を濾紙を使って吸引濾過して採取したセメント濾水抽出液)を入れ、マグネチックスターラーによって渦の中心が300mlの目盛りを指すように回転を合わせ、その水中に短繊維1gを投入し、30秒間攪拌を行い、集束状のもの(A)と解繊したもの(B)を目視にて分別し、絶乾した後、A、Bの質量を測定し、次式にて算出する。
解繊度(%)=〔(Bの質量)/(Aの質量+Bの質量)〕×100
【0022】
解繊度が70%以上であることにより、セメント濾水中のアルカリ雰囲気下で比較的高温の40℃の条件下においても、原材料混合物を混練りする際にミキサー等を使用した機械的な撹拌や混練に依存することなく容易に解繊される。
【0023】
このため、原料混合物の撹拌時間を短縮でき、たとえ夏場等の原料混合物の温度が高く水和反応が進みやすい状態であっても容易に素早く解繊するので、繊維が損傷し難く、ファイバーボールの形成も生じることがない。そして、得られるコンクリート等は繊維の有する性能が十分に発揮された補強効果を有するものとなる。
【0024】
解繊度が70%未満である場合、セメント濾水中のアルカリ雰囲気下で容易に解繊されないので、原料混合物の撹拌時間が長くなり、ファイバーボールが形成されて、得られるコンクリート等は十分な補強効果を有さないものとなりやすい。
なお、解繊度の定義においてマグネチックスターラーでの攪拌を行うのは、機械的な攪拌や混練ではなく、簡単なかき混ぜを行うだけで解繊する状態を示すためのものである。
【0025】
また、本発明の短繊維は、単繊維のアスペクト比が100〜1000であり、好ましくは200〜800、より好ましくは300〜600である。アスペクト比とは、繊維の長さと直径の比(長さ/直径)をいう。アスペクト比が100未満となると分散性は優れているものの、セメント補強効果が乏しくなる。一方、1000を超えると適切な集束剤により分離可能に一体化させた集束糸といえども、単繊維同士が絡みあって均一な分散性が得難くなる。
【0026】
本発明の集束糸を構成するポリビニルアルコール繊維としては、その紡糸方法において特に限定されるものではなく、湿式法、乾式法、乾湿式法などを用い、その後、延伸、中和、湿熱延伸、水洗、乾燥、熱延伸を施した繊維が用いられる。集束糸を構成する単繊維の繊度としては、分散性と補強効果の観点から0.1dtex〜22.2dtex、さらには、0.6dtex〜11.1dtexであることが好ましい。
そして、本発明の集束糸は、単繊維数が100〜1000のフィラメントとすることが好ましく、さらにはこれらのフィラメントを複数本集束したものとして用いてもよく、この場合は、単繊維数を数万〜数百万本とすることが好ましい。
【0027】
また、単繊維強度としては特に限定されるものではないが、補強効果の観点からは6cN/dtex以上であることが好ましい。
【0028】
集束剤の付着量は、ポリビニルアルコール繊維質量に対して3〜20質量%とすることが好ましく、より好ましくは5〜15質量%、さらに好ましくは7〜12質量%とする。付着量が3質量%未満の場合は集束性が不十分となりやすく、一方、20質量%を超える場合には十分な集束性は得られるものの、解繊度が低下したり、集束剤を付与させる工程で集束剤のガムアップなどがローラ部分などで生じるために作業性が著しく不良となりやすい。
【0029】
集束剤を付着させる方法としては、単繊維が集まったマルチフィラメント長繊維、さらにはそれを複数本に引き揃えた形状のものやトウ状長繊維をボビンやビームクリールから連続的に送繊されるようにして、集束剤の入った漕の中で含浸させる方法やローラータッチ法によって付着させる方法、スプレー方式により集束剤を噴霧して付着させる方法などが挙げられるが、繊維に均一に付着させるためには集束剤の入った漕の中で含浸させる方法が好ましく、次いで絞りロールで一定の付着量に調整すればよい。
【0030】
そして、集束剤を付与した後には、乾燥処理を施すことが好ましく、装置としては特に限定されるものではないが、非接触型の熱乾燥炉を用いると集束剤による装置への付着や汚れがなく作業しやすい。また、この時の処理温度としては105〜200℃程度、特に120〜180℃程度で乾燥することが好ましい。次いで、得られたトウ状繊維物を公知の切断機によって所定の繊維長になるように切断すればよい。
なお、集束剤の付着量は、上記のようにして付着させた後、乾燥処理を行ってもその付着量はほとんど変化しない。
【0031】
本発明の短繊維のセメント等への添加方法としては特に限定されるものではない。例えば、セメントモルタルやコンクリートなどの補強用として用いる場合には、予めセメントと細骨材、粗骨材等と本発明の短繊維をドライプレミックスとしたのちに水を添加して混練りする方法、または、セメントと細骨材、粗骨材等と水を十分に撹拌したのち、最後に本発明の短繊維を添加して混練りする方法が挙げられる。
本発明の短繊維を配合したマトリックスの撹拌に用いる混練機としては、特に限定するものではないが、パン型ミキサー、可傾式ミキサー、オムニミキサー、トラックミキサー等が挙げられる。
【0032】
セメントなどを代表例とする水硬性硬化材料中への本発明の短繊維の添加量は、補強性と分散性の観点から水硬性硬化材料〔下記に詳述するようなセメント、混和材(砂や骨材等)、混和剤(AE剤、源水剤、増粘剤等)、水〕の容量に対して、0.3〜5容量%、さらには0.5〜3容量%とすることが好ましい。
本発明におけるセメントなどを代表例とする水硬性硬化材料とは、各種ポルトランドセメント、高炉セメント、シリカセメント、フライアッシュセメント、アルミナセメント等のセメント類や石膏、珪酸カルシウム、炭酸カルシウム、炭酸マグネシウム等であり、これらは、単独もしくは混合して用いてもかまわない。また、細砂、砂利等の骨材、シラスバルーンやパーライト等の軽量骨材、作業性・耐久性の改質や増量効果による経済性を持たせることを目的として、フライアッシュや高炉スラグ、炭酸カルシウム等の混和材、AE剤、減水剤、増粘剤、気泡剤、発泡剤、防錆剤等を混合利用できる。
【0033】
また、本発明の短繊維を配合したモルタル、コンクリート等の用途は特に限定されるものではなく、一般の土木材料や建築材料として使用できる。例えば、吹き付け成型、プレス成型、振動成型、遠心成型等により、法面補強、建築構造物の基礎、二次製品(ブロック、板状物、シート状物、テトラポット等)等、幅広い用途に利用される。
【0034】
【実施例】
以下、実施例を挙げて本発明をさらに具体的に説明する。なお、実施例中の各種の値の測定は以下のように行った。
1.解繊度
前記のように測定した。なお、攪拌後の溶液から集束状のもの(A)と解繊したもの(B)を目視にて分別する際には、溶液を60メッシュの金網で濾過して繊維状物を採取し、次いで、目視にてピンセットで単繊維状に解繊しているものと集束状態で残っているものを分別し、それぞれを絶乾して質量を測定し、算出式にて解繊度を求めた。そして、濾紙はADVANTEC社製No.2を用いた。2.アスペクト比
定長カットされた単繊維の長さ(a)をスケールの付いた光学顕微鏡または、マイクロスコープによる断面観察によって測定した単繊維の直径(b)で除した。
アスペクト比=(a)/(b)
3.集束剤付着量
集束剤付与前の繊維と集束剤付与、乾燥後カット前の繊維をそれぞれ10m採取して質量を測定し、次式で算出した。
付着量(質量%)=〔(B−A)/A〕×100
A:集束剤付与前の繊維の質量
B:集束剤付与、乾燥後カット前の繊維の質量
4.セメントモルタル板曲げ強度
細骨材(珪砂5号)/普通ポルトランドセメント比が1/1になるように配合した原材料をオムニミキサー中に投入し、ドライプレミックスした後、水/セメント質量比が4/10になるように水を入れた水硬性硬化材料に、水硬性硬化材料の容量の2容量%となるように短繊維を添加し、30秒間撹拌を行った。その後、この水硬性硬化材料を幅4cm、長さ16cm、厚み4cmの型枠に流し込み、バイブレータで振動、脱泡・締め固め後、室温中で1日間清置して脱型、20℃水中×28日間の養生を施した。その後、60℃に設定したオーブン乾燥機中で24時間乾燥させた後、オートグラフを用いてスパンを10cmとして中央集中荷重をかけて応力の最高点より曲げ強度を測定した。
【0035】
実施例1
単繊維繊度6.7dtex、繊維強度12.4cN/dtexの単繊維が375本集まったマルチフィラメント状ポリビニールアルコール繊維に集束剤を付与した。集束剤としては、前記式▲1▼で示される構成単位を30モル%、式▲2▼で示される構成単位を30モル%、式▲3▼で示される構成単位を40モル%の割合で有し、数平均分子量が50000である(メタ)アクリル酸共重合体を使用し、集束剤140g/L水溶液に繊維を浸漬させ、プレスローラで搾液した後、非接触型の熱乾燥炉を用いて、170℃×3分間乾燥を行い、定長カットして、繊度2500dtex、長さ8mmの短繊維を得た。
【0036】
比較例1、2
繊維のカット長を表1に示すように変更した以外は、実施例1と同様に行った。
【0037】
実施例2
集束剤として、前記式▲1▼で示される構成単位を30モル%、式▲2▼で示される構成単位を20モル%、式▲3▼で示される構成単位を50モル%の割合で有し、数平均分子量が5000である(メタ)アクリル酸共重合体を使用した以外は、実施例1と同様に行った。
【0038】
比較例3
集束剤として、前記式▲1▼で示される構成単位を50モル%、式▲2▼で示される構成単位を10モル%、式▲3▼で示される構成単位を40モル%の割合で有し、数平均分子量が5000である(メタ)アクリル酸共重合体を使用した以外は、実施例1と同様に行った。
【0039】
実施例3
単繊維繊度4.8dtex、繊維強度12.6cN/dtexの単繊維が250本集まったフィラメント状ポリビニールアルコール繊維とした以外は、実施例1と同様に行った。
【0040】
実施例4
単繊維繊度2.7dtex、繊維強度12.9cN/dtexの単繊維が750本集まったフィラメント状ポリビニールアルコール繊維とした以外は、実施例2と同様に行った。
【0041】
比較例4
集束剤として熱硬化性を有する尿素ホルマリン系樹脂を使用し、集束剤125g/L水溶液とした以外は、実施例1と同様に行った。
【0042】
比較例5
集束剤として水溶性を有する部分ケン化型ポリビニルアルコール樹脂(ケン化度88.5モル%)を使用し、集束剤100g/L水溶液とした以外は、実施例1と同様に行った。
【0043】
比較例6
集束剤としてエチレン−酢酸ビニル−塩化ビニル共重合体からなる疎水性高分子樹脂を使用し、集束剤125g/L水溶液とした以外は、実施例1と同様に行った。
【0044】
実施例1〜4、比較例1〜6で得られた短繊維のアスペクト比(繊維直径、カット長)、解繊度、集束剤付着量、セメントモルタル板曲げ強度を測定した結果を表1に示す。
【0045】
【表1】
Figure 2004360136
【0046】
表1から明らかなように、実施例1〜4の短繊維は、集束剤が繊維表面にフィルム状被膜を形成することなく付着しており、解繊度が高く、短時間で解繊、均一分散することができ、セメント補強効果にも優れていた。
一方、比較例1の短繊維は、アスペクト比が小さすぎたため、セメント補強効果に劣るものであった。比較例2の短繊維は、アスペクト比が大きすぎたため、解繊性が悪く、セメント補強効果にも劣るものであった。比較例3の短繊維は、集束剤の組成が適切でなかったため、解繊度が低くなり、セメント補強効果に劣っていた。比較例4〜6の短繊維は集束剤として従来使用されているものを用いたため、解繊度が極めて低く、セメント補強効果にも著しく劣るものであった。
【0047】
【発明の効果】
本発明の補強用短繊維は、セメントなどの水硬性材料に混練り水を加えたときのようなアルカリ雰囲気下においても、機械的な攪拌を長時間を行うことなく、短時間で解繊、均一分散することができ、補強効果が極めて高い。そして、短時間の攪拌での解繊が要求される施工方法においても好適に使用することが可能となる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a short fiber-like bundled yarn suitable as a reinforcing fiber of a hydraulically hardened material, particularly a material for spraying construction, typically a cement, and the like, and relates to a short fiber for reinforcement excellent in defibration properties. It is.
[0002]
[Prior art]
Conventionally, it is a known technique to mix various fibrous materials for the purpose of suppressing mechanical cracks and improving mechanical properties such as bending strength and toughness of construction products and molded products using hydraulic hardening materials such as cement. Many have been proposed.
[0003]
However, it is extremely difficult to uniformly disperse the fibers in a matrix (base material) of a hydraulically hardened material such as cement, and the single fibers become entangled during kneading, or a curved fiber ball is generated. Therefore, there is a problem that it is difficult to obtain a desired reinforcing effect.
[0004]
In view of such circumstances, it has been proposed to use a bundled yarn (chopped strand) in which a plurality of fibers are combined and integrated with a sizing agent as a reinforcing material, and the plurality of fibers are weakly bonded by a thermosetting resin. A bundled yarn is shown (for example, see Patent Document 1).
[0005]
When such a bundled yarn is used, first, the bundle is dispersed in the form of the bundled yarn in the matrix, and then the resin is detached due to friction or shearing force with the stirring blade or the matrix in the stirrer, and the bundled state is gradually reduced. The fibers are disintegrated and disintegrated into single fibers and dispersed. Therefore, as compared with the case where unbundled fibers are mixed, it has a feature of being excellent in uniform dispersibility.
[0006]
However, since the bundled yarn is bonded by a thermosetting resin, it is difficult to sufficiently open the bundle without stirring for a long time by the above-described machine. The fibers are broken into single fibers by stirring, but if stirred for a long time, the fibers that have already been broken will form fiber balls while continuing to stir to break open fibers. was there. When such a fiber ball is formed, the reinforcing effect is impaired.
[0007]
Further, a bundled yarn that is bundled with a water-soluble polymer resin and has a degree of defibration at PH12 of 50% or more is disclosed (see Patent Document 2). According to this bundled yarn, the defibration degree was excellent, the dispersibility was excellent, and the fiber ball was hardly formed. However, as is clear from the definition of the degree of defibration, this bundled yarn is defibrated by stirring with a stirring propeller, and requires mechanical stirring as described above, It did not have defibration properties.
[0008]
Furthermore, there is described a bundled yarn hardened with a water-soluble polymer resin, which has an aspect ratio defined and is defibrated into a single fiber of 20% or more in a concrete molded product (see Patent Document 3). Further, a cement mortar or concrete reinforcing fiber fixed with a hydrophobic polymer sizing agent and cut so as to have an aspect ratio of 20 to 300 has also been proposed (see Patent Document 4).
[0009]
As these sizing yarns are used as sizing agents, those having water-solubility or hydrophobicity and having film-forming ability, the sizing properties are good, but the defibration properties are insufficient, and the mechanical properties are the same as above. It was only defibrated by performing a long stirring for a long time, and the defibration in a short time was not excellent.
[0010]
However, in recent years, in pumping and spraying fiber-reinforced mortar or concrete using cement as a binder, it is necessary to stir the raw material mixture in a shorter time due to the enhancement (improvement) of the capacity and efficiency of construction equipment. Has occurred. Especially in the construction of water stoppage and spraying, a quick setting agent mainly composed of aluminum salt or carbonate is often used in order to remarkably accelerate the setting of cement and to solidify it in a short time. In some cases, it was necessary for the bundled yarn to be uniformly defibrated and dispersed in a shorter time. Therefore, a bundled yarn that can be uniformly dispersed in a shorter time has been desired.
[0011]
[Patent Document 1]
Japanese Patent Publication No. 62-21743 (pages 1 to 5)
[Patent Document 2]
JP-A-10-183473 (pages 1 to 5)
[Patent Document 3]
JP-B 64-1424 (pages 1 to 11)
[Patent Document 4]
Japanese Patent Publication No. 5-43654 (pages 1 to 11)
[0012]
[Problems to be solved by the invention]
The present invention is to solve the above problems, even under an alkaline atmosphere such as when mixing water is added to a hydraulic material such as cement, without performing mechanical stirring for a long time, An object of the present invention is to provide a reinforcing short fiber which can be defibrated and uniformly dispersed in a short time, has a high reinforcing effect on a hydraulic material such as cement, and has an excellent defibration property.
[0013]
[Means for Solving the Problems]
The present inventors have studied to solve the above-mentioned problems, and as a result, have reached the present invention.
That is, the present invention is a short fiber bunched yarn in which a plurality of polyvinyl alcohol single fibers are separably integrated by a sizing agent, the aspect ratio of the single fiber is 100 to 1000, and the sizing agent has the following formula: 20 to 40 mol% of the structural unit represented by (1), 10 to 30 mol% of the structural unit represented by the following formula (2), and 45 to 60 mol% of the structural unit represented by the following formula (3) A short fiber for reinforcement, which is a (meth) acrylic acid copolymer having a number average molecular weight of 1,000 to 100,000 and having excellent fibrillation properties, has a total content of 100 mol%.
Embedded image
Figure 2004360136
Embedded image
Figure 2004360136
Embedded image
Figure 2004360136
(In equations (1), (2), and (3),
R 1 , R 2 , R 3 : hydrogen or a methyl group R 4 , R 5 : hydrogen, a hydrocarbon group having 1 to 10 carbon atoms Y: an organic group represented by —CO 2 R 5 , —CH 2 SO 3 M 2 in the organic group represented, the organic group represented by -OC 6 H 4 SO 3 M 3 , any of the organic group represented by -C 6 H 4 SO 3 M 4 .
A 1 : Residues M 1 , M 2 , M obtained by removing all hydroxyl groups from a polyalkylene glycol having a repeating number of 3-200 oxyalkylene units comprising only oxyethylene units or both oxyethylene units and oxypropylene units. 3 , M 4 : hydrogen, alkali metal, alkaline earth metal, ammonium or organic amine (but may be the same or different)
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The short fiber of the present invention can provide an excellent effect as a reinforcing short fiber such as mortar or concrete using a hydraulic material such as cement as a binder. When kneading water is added to a hydraulic material such as cement, a hydration reaction between the compound in the cement and water starts, and the raw material mixture is brought into an alkaline atmosphere. At this time, as the stirring time becomes longer, the temperature of the raw material mixture rises, the hydration reaction proceeds, the fluidity is lost, and the work becomes difficult.
[0015]
Therefore, it is indispensable for the short fibers for reinforcing fibers to have excellent defibration properties in an alkaline atmosphere, and furthermore, in a relatively high temperature state in which the temperature of water is high and the hydration reaction of the raw material mixture easily proceeds. It is also necessary to have excellent defibration properties.
[0016]
The short fiber of the present invention, when adding and kneading with cement or the like and water, begins to be defibrated promptly at the stage of adding water, and further defibration proceeds by stirring and kneading with a kneading machine. The fiber is uniformly and sufficiently defibrated in time.
[0017]
That is, in the short fiber of the present invention, the structural unit represented by the following formula (1) is 20 to 40 mol%, the structural unit represented by the following formula (2) is 10 to 30 mol%, and the following formula (3) A (meth) acrylic acid copolymer having the structural units represented by ▼ at a ratio of 45 to 60 mol% (total 100 mol%) and having a number average molecular weight of 1,000 to 100,000 is used as a sizing agent. This is a short-fiber bundled yarn that is integrated so as to be separable.
Embedded image
Figure 2004360136
Embedded image
Figure 2004360136
Embedded image
Figure 2004360136
(In equations (1), (2), and (3),
R 1 , R 2 , R 3 : hydrogen or a methyl group R 4 , R 5 : hydrogen, a hydrocarbon group having 1 to 10 carbon atoms Y: an organic group represented by —CO 2 R 5 , —CH 2 SO 3 M 2 in the organic group represented, the organic group represented by -OC 6 H 4 SO 3 M 3 , any of the organic group represented by -C 6 H 4 SO 3 M 4 .
A 1 : Residues M 1 , M 2 , M obtained by removing all hydroxyl groups from a polyalkylene glycol having a repeating number of 3-200 oxyalkylene units comprising only oxyethylene units or both oxyethylene units and oxypropylene units. 3 , M 4 : hydrogen, alkali metal, alkaline earth metal, ammonium or organic amine (but may be the same or different)
[0018]
The carboxylic acid-based vinyl polymer is represented by the formula (1), the polyoxyalkylene-based vinyl polymer is represented by the formula (2), and the sulfonic acid-based vinyl polymer is represented by the formula (3). And the like.
[0019]
When the sizing agent is a (meth) acrylic acid copolymer which is out of the range of the ratio of the constituent units and the number average molecular weights shown in the above (1) to (3), the excellent defibration property as described above is obtained. It cannot be used as a bundled yarn. In addition, even if the resin is other than the acrylic acid copolymer, a bundled yarn having excellent fibrillation properties under an alkaline atmosphere cannot be obtained.
[0020]
In addition, as a resin other than the acrylic acid copolymer, for example, a thermosetting resin such as a urea resin, a melamine resin, or a phenol resin (used for the binding yarn of Patent Document 1) or an ethylene-vinyl acetate-vinyl chloride copolymer When bundled with a hydrophobic sizing agent such as coalescing (used for the sizing yarn of Patent Literature 4), the resin forms a film-like film after curing, and the fibrillation becomes difficult only by mechanical long-time stirring. . In addition, when bunching is performed using an aqueous solution of a polyvinyl alcohol-based resin having a low degree of saponification (used for the bunching yarn of Patent Document 3), under strong alkaline conditions such as drainage of cement (extracted solution), residual acetic acid groups are removed by cement. Hydrophobization by the saponification reaction with the alkali contained therein and a high degree of crystallinity result in a completely saponified polyvinyl alcohol, and the solubility in water is remarkably reduced, making it difficult to open the bundled yarn.
[0021]
The short fiber of the present invention preferably has an defibration degree of 70% or more, more preferably 80% or more, and still more preferably 90% or more, as an index excellent in defibration. .
The degree of defibration is defined as a cement drainage obtained by suction-filtering a mixed liquid having a mass ratio of cement to water of 1: 1 using a filter paper at 40 ° C. and 500 ml in a 500 ml beaker. Extract), and rotate it with a magnetic stirrer so that the center of the vortex points to the 300 ml scale. Then, 1 g of short fiber is put into the water, and the mixture is stirred for 30 seconds to dissolve the bundle (A). The fine fiber (B) is visually separated and dried completely, and then the masses of A and B are measured and calculated by the following formula.
Fibrillation degree (%) = [(mass of B) / (mass of A + mass of B)] × 100
[0022]
When the degree of defibration is 70% or more, mechanical stirring or kneading using a mixer or the like when kneading the raw material mixture even under the condition of relatively high temperature of 40 ° C. under an alkaline atmosphere in the cement drainage water. It is easily disintegrated without depending on
[0023]
For this reason, the stirring time of the raw material mixture can be shortened, and even if the temperature of the raw material mixture is high and the hydration reaction is likely to proceed in summer or the like, the fiber is easily and quickly defibrated. No formation occurs. Then, the obtained concrete or the like has a reinforcing effect in which the performance of the fiber is sufficiently exhibited.
[0024]
If the degree of defibration is less than 70%, the fiber is not easily defibrated in an alkaline atmosphere in the filtered cement water, so that the stirring time of the raw material mixture becomes longer, fiber balls are formed, and the obtained concrete or the like has a sufficient reinforcing effect. It is easy to have no.
In the definition of the degree of fibrillation, stirring with a magnetic stirrer is not a mechanical stirring or kneading, but is intended to indicate a state in which the fiber is fibrillated by simple stirring.
[0025]
In the short fiber of the present invention, the single fiber has an aspect ratio of 100 to 1,000, preferably 200 to 800, and more preferably 300 to 600. The aspect ratio refers to the ratio of the length to the diameter of the fiber (length / diameter). When the aspect ratio is less than 100, the dispersibility is excellent, but the cement reinforcing effect is poor. On the other hand, if it exceeds 1,000, it is difficult to obtain uniform dispersibility because the single fibers are entangled with each other, even if the bundled yarn is separably integrated with an appropriate sizing agent.
[0026]
The polyvinyl alcohol fiber constituting the bundled yarn of the present invention is not particularly limited in the spinning method, and a wet method, a dry method, a dry-wet method, or the like is used, and thereafter, drawing, neutralization, wet heat drawing, and washing with water are performed. Dry, hot-drawn fibers are used. The fineness of the single fiber constituting the bundled yarn is preferably from 0.1 dtex to 22.2 dtex, and more preferably from 0.6 dtex to 11.1 dtex from the viewpoint of the dispersibility and the reinforcing effect.
The bundled yarn of the present invention is preferably a filament having a number of single fibers of 100 to 1,000, and may be used as a bundle of a plurality of these filaments. It is preferable that the number be in the range of 10,000 to several million.
[0027]
The single fiber strength is not particularly limited, but is preferably 6 cN / dtex or more from the viewpoint of the reinforcing effect.
[0028]
The amount of the sizing agent attached is preferably 3 to 20% by mass, more preferably 5 to 15% by mass, and still more preferably 7 to 12% by mass based on the mass of the polyvinyl alcohol fiber. When the amount of adhesion is less than 3% by mass, the sizing property tends to be insufficient. On the other hand, when the amount exceeds 20% by mass, sufficient sizing ability is obtained, but the degree of defibration is reduced or a sizing agent is applied. As a result, gum up of the sizing agent occurs in the roller portion and the like, so that the workability tends to be extremely poor.
[0029]
As a method of adhering the sizing agent, multifilament long fibers in which single fibers are gathered, and those having a shape obtained by arranging them into a plurality of fibers or tow-like long fibers are continuously sent from a bobbin or a beam creel. In this way, there are a method of impregnating in a tank containing a sizing agent, a method of attaching by a roller touch method, a method of spraying and attaching a sizing agent by a spray method, etc. Is preferable to impregnate in a tank containing a sizing agent, and then adjust the amount to a fixed amount with a squeezing roll.
[0030]
After the sizing agent is applied, it is preferable to perform a drying treatment, and the device is not particularly limited. However, if a non-contact heat drying furnace is used, the sizing agent adheres to the device or becomes dirty. Easy to work without. Further, it is preferable to dry at a treatment temperature of about 105 to 200 ° C, particularly about 120 to 180 ° C. Next, the obtained tow-like fiber material may be cut by a known cutting machine so as to have a predetermined fiber length.
The amount of the sizing agent adhered hardly changes even if the sizing agent is adhered as described above and then dried.
[0031]
The method for adding the short fibers of the present invention to cement or the like is not particularly limited. For example, when used for reinforcing cement mortar, concrete, etc., a method in which cement and fine aggregate, coarse aggregate and the like and the short fibers of the present invention are dry premixed, and then water is added and kneaded. Alternatively, a method of sufficiently stirring the cement, the fine aggregate, the coarse aggregate, and the like and the water, and finally adding the short fiber of the present invention and kneading the mixture.
The kneader used for stirring the matrix containing the short fibers of the present invention is not particularly limited, and examples thereof include a pan mixer, a tiltable mixer, an omni mixer, and a truck mixer.
[0032]
The amount of the short fiber of the present invention to be added to a hydraulic hardening material such as cement is a hydraulic hardening material [a cement, admixture (sand, etc.) described in detail below) from the viewpoint of reinforcement and dispersibility. And aggregates), admixtures (such as AE agents, water-source agents, thickeners, etc.) and water] to 0.3 to 5% by volume, and more preferably 0.5 to 3% by volume. Is preferred.
The hydraulic hardening material represented by cement or the like in the present invention is, for example, various portland cement, blast furnace cement, silica cement, fly ash cement, cement such as alumina cement, gypsum, calcium silicate, calcium carbonate, magnesium carbonate and the like. Yes, these may be used alone or as a mixture. In addition, fine aggregates such as fine sand and gravel, lightweight aggregates such as shirasu balloon and perlite, fly ash and blast furnace slag, An admixture such as calcium, an AE agent, a water reducing agent, a thickening agent, a foaming agent, a foaming agent, a rust inhibitor and the like can be mixed and used.
[0033]
The use of the mortar, concrete or the like containing the short fibers of the present invention is not particularly limited, and can be used as general civil engineering materials and building materials. For example, by spray molding, press molding, vibration molding, centrifugal molding, etc., it is used for a wide range of applications such as slope reinforcement, foundation of building structures, secondary products (blocks, plates, sheets, tetrapots, etc.) Is done.
[0034]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. In addition, the measurement of various values in an Example was performed as follows.
1. Fibrillation degree Measured as described above. When the bundle (A) and the defibrated (B) are visually separated from the stirred solution, the solution is filtered through a 60-mesh wire net to collect a fibrous material. Then, what was defibrated into a single fiber state with tweezers visually and what remained in a bundle state were separated, each was dried completely, the mass was measured, and the defibration degree was obtained by a calculation formula. Then, the filter paper is No. 1 manufactured by ADVANTEC. 2 was used. 2. The length (a) of a single fiber having a fixed aspect ratio cut was divided by the diameter (b) of the single fiber measured by cross-sectional observation using an optical microscope with a scale or a microscope.
Aspect ratio = (a) / (b)
3. Amount of sizing agent adhered The fiber before sizing agent application and the fiber before sizing agent application and drying and before cutting were each 10 m sampled, the mass was measured, and the mass was calculated by the following equation.
Amount attached (% by mass) = [(BA) / A] × 100
A: Mass of fiber before sizing agent application B: Mass of fiber before sizing agent application and after drying Cement mortar board Flexural strength Raw materials mixed so that the fine aggregate (silica sand No. 5) / ordinary Portland cement ratio is 1/1 are put into an omni mixer, dry premixed, and the water / cement mass ratio is 4 Short fibers were added to the hydraulically hardened material in which water was added so as to be / 10 so that the volume became 2% by volume of the hydraulically hardened material, and the mixture was stirred for 30 seconds. Thereafter, the hydraulic hardened material is poured into a mold having a width of 4 cm, a length of 16 cm, and a thickness of 4 cm, vibrated with a vibrator, defoamed and compacted, and then cleaned for 1 day at room temperature. Cured for 28 days. Then, after drying in an oven dryer set at 60 ° C. for 24 hours, a centralized load was applied with a span of 10 cm using an autograph, and the bending strength was measured from the highest point of stress.
[0035]
Example 1
A sizing agent was applied to a multifilament polyvinyl alcohol fiber comprising 375 single fibers having a single fiber fineness of 6.7 dtex and a fiber strength of 12.4 cN / dtex. As the sizing agent, the constituent unit represented by the formula (1) is 30 mol%, the constituent unit represented by the formula (2) is 30 mol%, and the constituent unit represented by the formula (3) is 40 mol%. Using a (meth) acrylic acid copolymer having a number average molecular weight of 50,000, immersing the fibers in a sizing agent 140 g / L aqueous solution, and squeezing the fibers with a press roller, a non-contact heat drying furnace The mixture was dried at 170 ° C. for 3 minutes and cut to a fixed length to obtain short fibers having a fineness of 2500 dtex and a length of 8 mm.
[0036]
Comparative Examples 1 and 2
Example 1 was repeated except that the fiber cut length was changed as shown in Table 1.
[0037]
Example 2
As the sizing agent, 30 mol% of the structural unit represented by the above formula (1), 20 mol% of the structural unit represented by the above formula (2), and 50 mol% of the structural unit represented by the above formula (3). The same procedure as in Example 1 was carried out except that a (meth) acrylic acid copolymer having a number average molecular weight of 5000 was used.
[0038]
Comparative Example 3
As the sizing agent, the structural unit represented by the formula (1) is 50 mol%, the structural unit represented by the formula (2) is 10 mol%, and the structural unit represented by the formula (3) is 40 mol%. The same procedure as in Example 1 was carried out except that a (meth) acrylic acid copolymer having a number average molecular weight of 5000 was used.
[0039]
Example 3
The procedure was performed in the same manner as in Example 1 except that the filamentous polyvinyl alcohol fiber was composed of 250 single fibers having a single fiber fineness of 4.8 dtex and a fiber strength of 12.6 cN / dtex.
[0040]
Example 4
The procedure was performed in the same manner as in Example 2 except that a filamentary polyvinyl alcohol fiber in which 750 single fibers having a single fiber fineness of 2.7 dtex and a fiber strength of 12.9 cN / dtex were collected was used.
[0041]
Comparative Example 4
The procedure was performed in the same manner as in Example 1 except that a urea formalin-based resin having thermosetting properties was used as the sizing agent, and a 125 g / L aqueous solution of the sizing agent was used.
[0042]
Comparative Example 5
The procedure was performed in the same manner as in Example 1 except that a water-soluble partially saponified polyvinyl alcohol resin (degree of saponification: 88.5 mol%) was used as the sizing agent, and a 100 g / L aqueous solution of the sizing agent was used.
[0043]
Comparative Example 6
The procedure was performed in the same manner as in Example 1 except that a hydrophobic polymer resin composed of an ethylene-vinyl acetate-vinyl chloride copolymer was used as a sizing agent, and a 125 g / L aqueous solution of the sizing agent was used.
[0044]
Table 1 shows the results of measuring the aspect ratio (fiber diameter, cut length), defibration degree, sizing agent adhesion amount, and cement mortar plate bending strength of the short fibers obtained in Examples 1 to 4 and Comparative Examples 1 to 6. .
[0045]
[Table 1]
Figure 2004360136
[0046]
As is clear from Table 1, the short fibers of Examples 1 to 4 have the sizing agent attached without forming a film-like film on the fiber surface, and have a high degree of defibration, defibration in a short time, and uniform dispersion. The cement reinforcing effect was excellent.
On the other hand, the short fiber of Comparative Example 1 was inferior in the cement reinforcing effect because the aspect ratio was too small. The short fiber of Comparative Example 2 had an excessively high aspect ratio, and thus had poor fibrillation properties and poor cement reinforcement effect. The short fiber of Comparative Example 3 had a low degree of defibration and was inferior in cement reinforcing effect because the composition of the sizing agent was not appropriate. Since the short fibers of Comparative Examples 4 to 6 were those conventionally used as sizing agents, the degree of defibration was extremely low and the cement reinforcing effect was extremely poor.
[0047]
【The invention's effect】
Short fibers for reinforcement of the present invention, even in an alkaline atmosphere such as when kneading water is added to a hydraulic material such as cement, without performing mechanical stirring for a long time, defibration in a short time, It can be uniformly dispersed and has a very high reinforcing effect. And it can use suitably also in the construction method which requires defibration by stirring for a short time.

Claims (2)

複数本のポリビニルアルコール単繊維が集束剤によって分離可能に一体化された短繊維状の集束糸であって、単繊維のアスペクト比が100〜1000、集束剤が下記の式▲1▼で示される構成単位を20〜40モル%、下記の式▲2▼で示される構成単位を10〜30モル%及び下記の式▲3▼で示される構成単位を45〜60モル%(合計100モル%)の割合で有し、かつ数平均分子量が1000〜100000の(メタ)アクリル酸共重合体である解繊性に優れた補強用短繊維。
Figure 2004360136
Figure 2004360136
Figure 2004360136
(式▲1▼、式▲2▼、式▲3▼において、
、R、R:水素またはメチル基
、R:水素、炭素数1〜10の炭化水素基
Y:−COで示される有機基、−CHSOで示される有機基、−OCSOで示される有機基、−CSOで示される有機基のいずれか。
:オキシエチレン単位のみ又はオキシエチレン単位とオキシプロピレン単位との双方からなるオキシアルキレン単位の繰り返し数が3〜200のポリアルキレングリコールから全ての水酸基を除いた残基
、M、M、M:水素、アルカリ金属、アルカリ土類金属、アンモニウム又は有機アミン(ただし、同一又は異なっていてもよい)
A staple fiber bundle in which a plurality of polyvinyl alcohol single fibers are integrated so as to be separable by a sizing agent. The single fiber has an aspect ratio of 100 to 1000, and the sizing agent is represented by the following formula (1). 20 to 40 mol% of the structural unit, 10 to 30 mol% of the structural unit represented by the following formula (2), and 45 to 60 mol% of the structural unit represented by the following formula (3) (total 100 mol%) And a number average molecular weight of 1,000 to 100,000 (meth) acrylic acid copolymer.
Figure 2004360136
Figure 2004360136
Figure 2004360136
(In equations (1), (2), and (3),
R 1 , R 2 , R 3 : hydrogen or a methyl group R 4 , R 5 : hydrogen, a hydrocarbon group having 1 to 10 carbon atoms Y: an organic group represented by —CO 2 R 5 , —CH 2 SO 3 M 2 in the organic group represented, the organic group represented by -OC 6 H 4 SO 3 M 3 , any of the organic group represented by -C 6 H 4 SO 3 M 4 .
A 1 : Residues M 1 , M 2 , M obtained by removing all hydroxyl groups from a polyalkylene glycol having a repeating number of 3-200 oxyalkylene units comprising only oxyethylene units or both oxyethylene units and oxypropylene units. 3 , M 4 : hydrogen, alkali metal, alkaline earth metal, ammonium or organic amine (but may be the same or different)
解繊度が70%以上である請求項1記載の解繊性に優れた補強用短繊維。
なお、解繊度とは、500mlビーカーに40℃、500mlのセメント濾水(セメントと水の比率が1:1の質量比率からなる混合液物を濾紙を使って吸引濾過して採取したセメント濾水抽出液)を入れ、マグネチックスターラーによって渦の中心が300mlの目盛りを指すように回転を合わせ、その水中に短繊維1gを投入し、30秒間攪拌を行い、集束状のもの(A)と解繊したもの(B)を目視にて分別し、絶乾した後、A、Bの質量を測定し、次式にて算出する。
解繊度(%)=〔(Bの質量)/(Aの質量+Bの質量)〕×100
The reinforcing short fiber excellent in defibration property according to claim 1, which has a defibration degree of 70% or more.
The degree of defibration is defined as a cement drainage obtained by suction-filtering a mixed liquid having a mass ratio of cement to water of 1: 1 using a filter paper at 40 ° C. and 500 ml in a 500 ml beaker. Extract), and rotate it with a magnetic stirrer so that the center of the vortex points to the 300 ml scale. Then, 1 g of short fiber is put into the water, and the mixture is stirred for 30 seconds to dissolve the bundle (A). The fine fiber (B) is visually separated and dried completely, and then the masses of A and B are measured and calculated by the following formula.
Fibrillation degree (%) = [(mass of B) / (mass of A + mass of B)] × 100
JP2003162210A 2003-06-06 2003-06-06 Reinforcing short fibers with excellent defibration properties Expired - Fee Related JP4252369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003162210A JP4252369B2 (en) 2003-06-06 2003-06-06 Reinforcing short fibers with excellent defibration properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003162210A JP4252369B2 (en) 2003-06-06 2003-06-06 Reinforcing short fibers with excellent defibration properties

Publications (2)

Publication Number Publication Date
JP2004360136A true JP2004360136A (en) 2004-12-24
JP4252369B2 JP4252369B2 (en) 2009-04-08

Family

ID=34054425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003162210A Expired - Fee Related JP4252369B2 (en) 2003-06-06 2003-06-06 Reinforcing short fibers with excellent defibration properties

Country Status (1)

Country Link
JP (1) JP4252369B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290911A (en) * 2006-04-25 2007-11-08 Denki Kagaku Kogyo Kk Hydraulic material and repairing method using the same
JP2007290912A (en) * 2006-04-25 2007-11-08 Denki Kagaku Kogyo Kk Hydraulic material and repairing method using the same
JP2008105909A (en) * 2006-10-26 2008-05-08 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2008105908A (en) * 2006-10-26 2008-05-08 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2008223183A (en) * 2007-03-14 2008-09-25 Japan Exlan Co Ltd Reinforcing acrylic fiber having excellent water-dispersing property
US20160108980A1 (en) * 2014-10-20 2016-04-21 Intellectual Property Holdings, Llc Ceramic preform and method
US9840030B2 (en) 2012-05-02 2017-12-12 Intellectual Property Holdings, Llc Ceramic preform and method
JP2019116393A (en) * 2017-12-26 2019-07-18 株式会社クラレ Geopolymer molding formed from curable composition
US10357846B2 (en) 2015-12-31 2019-07-23 Intellectual Property Holdings, Llc Metal matrix composite vehicle component and method
US10830296B2 (en) 2017-04-21 2020-11-10 Intellectual Property Holdings, Llc Ceramic preform and method
JP2021123507A (en) * 2020-01-31 2021-08-30 国立研究開発法人 海上・港湾・航空技術研究所 Highly durable back-filling grout material
US11338360B2 (en) 2016-02-04 2022-05-24 Intellectual Property Holdings, Llc Device and method for forming a metal matrix composite vehicle component

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290911A (en) * 2006-04-25 2007-11-08 Denki Kagaku Kogyo Kk Hydraulic material and repairing method using the same
JP2007290912A (en) * 2006-04-25 2007-11-08 Denki Kagaku Kogyo Kk Hydraulic material and repairing method using the same
JP2008105909A (en) * 2006-10-26 2008-05-08 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2008105908A (en) * 2006-10-26 2008-05-08 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2008223183A (en) * 2007-03-14 2008-09-25 Japan Exlan Co Ltd Reinforcing acrylic fiber having excellent water-dispersing property
US9840030B2 (en) 2012-05-02 2017-12-12 Intellectual Property Holdings, Llc Ceramic preform and method
US9714686B2 (en) * 2014-10-20 2017-07-25 Intellectual Property Holdings, Llc Ceramic preform and method
US20160108980A1 (en) * 2014-10-20 2016-04-21 Intellectual Property Holdings, Llc Ceramic preform and method
US10357846B2 (en) 2015-12-31 2019-07-23 Intellectual Property Holdings, Llc Metal matrix composite vehicle component and method
US11338360B2 (en) 2016-02-04 2022-05-24 Intellectual Property Holdings, Llc Device and method for forming a metal matrix composite vehicle component
US10830296B2 (en) 2017-04-21 2020-11-10 Intellectual Property Holdings, Llc Ceramic preform and method
JP2019116393A (en) * 2017-12-26 2019-07-18 株式会社クラレ Geopolymer molding formed from curable composition
JP7143077B2 (en) 2017-12-26 2022-09-28 株式会社クラレ Geopolymer molded body formed from curable composition
JP2021123507A (en) * 2020-01-31 2021-08-30 国立研究開発法人 海上・港湾・航空技術研究所 Highly durable back-filling grout material
JP7473754B2 (en) 2020-01-31 2024-04-24 国立研究開発法人 海上・港湾・航空技術研究所 Highly durable backfill grout material

Also Published As

Publication number Publication date
JP4252369B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
JP6470315B2 (en) Cement reinforcing fiber material
JP4252369B2 (en) Reinforcing short fibers with excellent defibration properties
JP6644546B2 (en) Cellulose nanofiber-supported reinforcing fiber for hydraulic molded article, hydraulic composition containing the same, hydraulic molded article
EP2376401A1 (en) Fiber-containing concrete compositions
WO2009075609A2 (en) Man-made mineral fibre for three-dimensional reinforcement of a cement product
JP2020112021A (en) Fiber inclusion tile, molding material for manufacturing fiber inclusion tile and manufacturing method thereof
JPH09295877A (en) Staple fiber-reinforced concrete
Wang et al. Effect of waste paper fiber on properties of cement-based mortar and relative mechanism
JP2023089189A (en) Fiber for reinforcement of soil improvement body
JPH10183473A (en) Bundled yarn
JP3355588B2 (en) Cellulose fiber-containing cement composition
KR100402324B1 (en) Method for preparing granulated cellulose fiber
JP5275906B2 (en) Fiber for reinforcing cement molding
JP3841472B2 (en) Porous inorganic molded product
JP2004137119A (en) Cement-based fiber composite material
JPH1179804A (en) Carbon fiber-reinforced concrete
JP5519437B2 (en) Short fibers for cement molding reinforcement
JP7476112B2 (en) Bundling yarn, hydraulic composition and molded body
CN108314364A (en) A kind of polypropylene fibre fabric concrete and preparation method thereof
JP4743358B2 (en) Glass fiber mixed concrete
JP7312947B2 (en) Concrete composition and method for producing concrete structure
JP2004051396A (en) Composite board of inorganic fiber and gypsum, and its production process
JP3563145B2 (en) Binding yarn
JP2002020152A (en) Production process of fiber-reinforced concrete material
JP2908494B2 (en) Method for producing asbestos-free extruded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees