JP2004358721A - Lactic acid-based polymer multilayered film - Google Patents

Lactic acid-based polymer multilayered film Download PDF

Info

Publication number
JP2004358721A
JP2004358721A JP2003157491A JP2003157491A JP2004358721A JP 2004358721 A JP2004358721 A JP 2004358721A JP 2003157491 A JP2003157491 A JP 2003157491A JP 2003157491 A JP2003157491 A JP 2003157491A JP 2004358721 A JP2004358721 A JP 2004358721A
Authority
JP
Japan
Prior art keywords
lactic acid
based polymer
layer
weight
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003157491A
Other languages
Japanese (ja)
Inventor
Takayuki Yamada
孝行 山田
Yasuhiro Kitahara
泰広 北原
Masahiro Sugi
正浩 杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003157491A priority Critical patent/JP2004358721A/en
Publication of JP2004358721A publication Critical patent/JP2004358721A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bag Frames (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lactic acid-based polymer multilayered film good in heat sealability, slip properties, blocking resistance and transparency and decomposed under the natural environment after used, and a bag comprising the film. <P>SOLUTION: This lactic acid-based polymer multilayered film is composed of a layer (layer A) comprising a lactic acid polymer (lactic acid polymer A) with a D-lactic acid content of 8% or below and a layer (layer B) comprising a lactic acid polymer (lactic acid polymer B) which is obtained by compounding 0.05-2 pts.wt. of a lubricant and 0.05-1.0 pts.wt. of an anti-blocking agent with 100 pts.wt. of a lactic acid polymer with a lactic acid content of 9-91%. At least one surface of this lactic acid polymer multilayered film is constituted of the layer B. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は乳酸系ポリマー多層フィルムおよび該フィルムからなる袋に関する。更に詳しくはヒートシール性、滑り性、耐ブロッキング性、透明性が良好で使用後、自然環境下で分解する乳酸系ポリマー多層フィルムおよび該フィルムからなる袋に関する。
【0002】
【従来の技術】
従来、一般包装材、食品包装材、繊維包装材、薬剤包装材用途をはじめ、幅広い用途において、ヒートシール性に優れるフィルムが要求されている。
ヒートシールとは、加熱バーや加熱板あるいは加熱ロール等を用いて、複数のフィルムを重ねて、加熱、加圧し、フィルムを接着させることである。
ヒートシール性に優れるフィルムとは、広い温度範囲で接着可能で、かつ、実用上十分で安定した接着強度が得られるフィルムのことである。
従来、ヒートシール性に優れるプラスチックフィルムとしては、表面に塩化ビニリデンをコートして防湿性を兼ね備えたセロファンが、広く包装用途に使用されてきた。
【0003】
しかしながら、セロファンは、パルプ質を化学処理して溶解させ、製膜される流延法という製造方法をとることから、生産性が低く、また、廃水処理の問題もあり、経済的にも、環境保護の見地からも、製造コストが高かった。
このような背景から、このような問題を解決するために、製造コストの安い石油由来のポリオレフィン、芳香族ポリエステル、ポリ塩化ビニル等の汎用フィルムに、異種原料をブレンド、積層することにより、ヒートシール性を付与した積層フィルムが製造され、包装材用途に使用されてきた。
【0004】
かかる樹脂から製造された成形物は透明性に優れているものもあるが、廃棄する際その処理方法を誤るとゴミの量を増すうえに、自然環境下では殆ど分解しないため、埋設処理すると、半永久的に地中に残留する。一方、熱可塑性樹脂で生分解性のあるポリマーとして、ポリヒドロキシカルボン酸型脂肪族ポリエステル、ジオールジカルボン酸重縮合型ポリエステルが開発されている。これらのポリマーは、土壌や海水中に置かれた場合、湿った環境下では数週間で分解を始め、約1年から数年で消滅し、さらに分解生成物は、人体に無害な乳酸と二酸化炭素と水になるという特性を有している。
【0005】
これらの脂肪族ポリエステルを用いたフィルムは、汎用フィルムと同等、あるいは、それ以上の力学物性、光学物性、熱物性を有し、生分解性であるため、包装分野での幅広い応用が期待されている。
しかしながら、脂肪族ポリエステル、特に、乳酸系ポリマーから得られるフィルムは、ヒートシール性に乏しく、製袋等の二次加工が困難で、実用上の問題となっていた。
特開平8−323946号公報にはポリ乳酸系重合体を主成分とする組成物からなるフィルムを有し、少なくとも一方の最外層が生分解性プラスチックフィルムである多層生分解性プラスチックフィルムが開示されている。特開平9−157408号公報では、ポリ乳酸重合体とTg≦0℃の脂肪族ポリエステルの多層フィルムが開示されている。これらは、脂肪族ジオールと脂肪族ジカルボン酸を縮合して得られる重合体、および環状ラクトン類を開環重合して得られる重合体がヒートシール性向上に効果があることを開示している。特開2001−219522号公報には、ポリ乳酸系重合体のD−乳酸含有割合がDa≦7かつDb−Da>3の関係が成り立つ異なるポリ乳酸系重合体からなる積層2軸延伸フィルムが開示されている。しかしながら、いずれのフィルムもヒートシール性は向上するものの、ヒートシール性、滑り性、耐ブロッキング性及び透明性を同時に満たすには未だ十分ではなかった。
【0006】
【特許文献1】
特開平8−323946号公報
【特許文献2】
特開平9−157408号公報
【特許文献3】
特開2001−219522号公報
【0007】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、ヒートシール性、滑り性、耐ブロッキング性及び透明性の改良された乳酸系ポリマー多層フィルムおよび該フィルムからなる袋を得ることである。
【0008】
【課題を解決するための手段】
本発明は、D−乳酸含有量が8%以下である乳酸系ポリマー(乳酸系ポリマ−A)からなる層(A層)と、D−乳酸含有量が9%〜91%である乳酸系ポリマー100重量部に対し滑剤を0.05〜2重量部、耐ブロッキング剤を0.05〜1.0重量部配合した乳酸系ポリマー(乳酸系ポリマ−B)からなる層(B層)とからなり、少なくとも片側の表面がB層により構成されることを特徴とする乳酸系ポリマー多層フィルムを提供する。
【0009】
前記滑剤が脂肪酸アミドであり、、乳酸系ポリマー(A)の融点がTm1(℃)で、滑剤(B)の軟化点がTm2(℃)であるとき、Tm1<Tm2の関係が成り立つ脂肪酸ポリアミドである前記の乳酸系ポリマー多層フィルムも本発明の好ましい形態である。
【0010】
前記耐ブロッキング剤が無機の微粒子である前記の乳酸系ポリマー多層フィルムもまた本発明の好ましい形態である。
【0011】
また本発明は、前記した乳酸系ポリマー多層フィルムの一部をヒートシールした袋を提供する。
【0012】
さらに本発明は、静摩擦係数が0.5以下、ヘイズ値が5%以下かつ100℃でヒートシールした場合のヒートシール強度が5N/15mm以上であるり、且つフィルム表面同士のブロッキングが起こらない耐熱性に優れた乳酸系ポリマー多層フィルムを提供する。
【0013】
【発明の実施の形態】
本発明においてフィルムとは、厚みが1μm〜10mmのシートまたはフィルムを両方含んだものをいうこととする。
【0014】
乳酸系ポリマーには、ポリ乳酸、乳酸−ヒドロキシカルボン酸コポリマー、並びにそれらの混合物を含む。ポリマーの原料としては乳酸類及びヒドロキシカルボン酸類が用いられる。乳酸類としては、L−乳酸、D−乳酸,DL−乳酸又はそれらの混合物または乳酸の環状2量体であるラクタイドを得られる乳酸系ポリマーのD−乳酸体含有量が9〜91%又は8%以下のなるように種々の組み合わせで使用することができる。
【0015】
また乳酸類と併用できるヒドロキシカルボン酸類としては、炭素数2〜10のヒドロキシカルボン酸類が好ましく、具体的にはグリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、4−ヒドロキシ吉草酸、5−ヒドロキシ吉草酸、6−ヒドロキシカプロン酸などを好適に使用することができ、更にヒドロキシカルボン酸の環状エステル中間体、例えば、グリコール酸の2量体であるグリコライドや6−ヒドロキシカプロン酸の環状エステルであるε−カプロラクトンも使用できる。原料としての乳酸類とヒドロキシカルボン酸類の混合物は、種々の組み合わせで使用することができる。
【0016】
乳酸系ポリマーは、上記原料を直接脱水重縮合する方法、または上記乳類やヒドロキシカルボン酸類の環状2量体、例えばラクタイドやグリコライド、あるいはε−カプロラクトンのような環状エステル中間体を開環重合させる方法により得られる。
【0017】
直接脱水重縮合して製造する場合、原料である乳酸類又は乳酸類とヒドロキシカルボン酸類を好ましくは有機溶媒、特にフェニルエーテル系溶媒の存在下で共沸脱水縮合し、特に好ましくは共沸により留出した溶媒から水を除き実質的に無水の状態にした溶媒を反応系に戻す方法によって重合することにより、本発明に適した強度を持つ高分子量の乳酸系ポリマーが得られる。乳酸系ポリマーの重量平均分子量は、成形性が可能な範囲で高分子量のものが好ましく、3万以上500万以下がより好ましい。
【0018】
本発明において滑剤は、脂肪酸アミドであり、その軟化点Tm2がD−乳酸含有量が8%以下の乳酸系ポリマー(乳酸系ポリマーA)の融点Tm1を越えるもの、すなわちTm1<Tm2の関係が成り立つ脂肪酸アミドが使用されるが、さらに好ましくは軟化点(Tm2)が180℃を超えるもの、特に好ましくは2300℃を超えるもの、さらに好ましくは230〜400℃の有機化合物が使用される。ここで、軟化点とはJIS K−2531に準拠した環球法により測定される軟化点のことをいう。またこれらの有機化合物を単独あるいは2種類以上の混合物でもよい。
【0019】
脂肪酸アミドの例として、例えばカルボン酸とアミンとを、必要に応じて多塩基酸を用いて反応させることによって得られるような有機化合物を挙げることができる。
【0020】
このような脂肪酸アミドは、カルボン酸、アミン、多塩基酸の種類を変えるか、あるいは多塩基酸の使用量を変えることによって軟化点を調節できるので、それによって本発明の軟化点を満たす分子内にアミド結合を有する有機化合物を得ることができる。
【0021】
脂肪酸アミドの具体例としては、N,N′−メチレンビスステアルアミド、N,N′−エチレンビスステアロアミド、N,N′−キシリレンビスステアロアミド、N,N´−ビス(2−ステアロアミドエチル)−セバカミド、N,N´−ビス(2−ステアロアミドエチル)アゼライカミドなどを挙げることができるが、これに限定されるものではない。
【0022】
本発明において使用できる滑剤として、市場から入手できる化合物を用いることも可能である。市場から入手できるものの例として、商品名ライトアマイドWH−255(共栄社化学(株)製)などを挙げることができる。
【0023】
本発明で示す耐ブロッキング剤として用いる無機系の微粒子としてはSiO2、CaCO3、タルク、クレー、カオリン、カオリンクレー、マイカ、酸化亜鉛などの無機化合物が挙げられ、好ましくはSiO2、CaCO3、タルクが良い。これらは一種又は二種以上の混合物として用いる事もできる。
【0024】
また、その粒径は0.1μm〜20μm、好ましくは0.1μm〜15μm、より好ましくは0.1μm〜7.0μmがよい。
【0025】
滑剤の添加量は、フィルム100重量部に対し0.05〜2重量部である。添加量が少なすぎる場合はフィルムの滑り性に効果が発現されず、多すぎると成形が不安定になり加工性、ヒートシール強度等が劣る。滑剤の添加量を上記範囲にて実施することにより成形加工性、透明性、耐ブロッキング性及び滑り性に加え、成形時に該添加剤による分子量の低下が殆ど生じず、また結晶化及び添加剤のブリードによる成形物の白化現象(曇り)が生じない成形物が得られる。
【0026】
耐ブロッキング剤の添加量は、フィルム・シートに100重量部に対し0.02〜2.4重量部であり、好ましくは0.05〜2重量部、より好ましくは0.05〜2重量部である。その添加量は、滑剤と同様に、目的とする押出し成形、例えばTダイ押出し成形やインフレーション成形、あるいは二次加工時、例えばヒートシール性などの加工性や得られたフィルム・シートの耐ブロッキング性や滑性が良好となる最適量が適宜選択される。
【0027】
本発明では必要により可塑剤を含んでもよい。可塑剤としては、アセチルクエン酸トリブチル等のヒドロキシ多価カルボン酸エステル類、グセリントリアセテートやグセリントリプロピオネート等の多価アルコールエステルがあげられる。可塑剤と乳酸系ポリマーの比率は、乳酸系ポリマー80〜95重量%に対して可塑剤20〜5重量%、好ましくは15〜9重量%である。又、本発明のポリマーに可塑剤、酸化防止剤、紫外線吸収剤等の改質剤を添加することもできる。
【0028】
乳酸系ポリマーと滑剤等の混合には公知の混練技術を適用できる。添加された滑剤の混練時の分散性を良くし、これらの添加剤の効果が発揮されるためには、乳酸系ポリマーの平均粒径が15〜100μmの微細粉末が用いらことが好ましい。本発明による乳酸系ポリマー組成物は造粒することにより、ペレット、棒状のものが得られ、成形に用いられる。
【0029】
次に、本発明による乳酸系ポリマー多層フィルム、延伸フィルムを製造する方法を詳細に説明する。本発明の乳酸系ポリマー組成物から得られたフィルムは、乳酸系ポリマーに滑剤等を混合機で均一に混合してペレット化し、押出成形することにより製造することができる。更に必要に応じて延伸加工することにより延伸フィルムを製造することができる。
【0030】
本発明の乳酸系ポリマー多層フィルムの成形方法としては、公知の方法を用いることができる。例えば次の方法により得られる。パウダー状あるいはペレット状の乳酸系ポリマーに滑剤をリボンブレンダー等で混合した後、2軸押出機で組成物を押出しペレット化する。ペレットにした組成物は、加熱処理を行なう事でペレット中のポリマーの結晶化を促進し、耐熱性が向上して、ペレット同士の融着が防止されて押出安定性が向上する。押出成形をする場合は、押出機の押出機先端に特定の金型を取り付けることにより、インフレフィルム成形、T−ダイフィルム成形を行なうことができる。
【0031】
多層フィルムを成形する場合は、Tダイが装着された押出機を用いる溶融押出法によりフィルム状に成形することが好ましい。この際、異なる樹脂組成物を、別々にフィルム化した後に接着しても良いし、また、マルチマニホールドダイ、あるいはフィードブロックを備えた押出機を用いて、共押出しても良い。また、得られた多層フィルムをロール延伸によって流れ方向に延伸することにより多層延伸フィルムを製造することができる。さらに、テンター延伸によって横方向に延伸してもよいし、横延伸後、緊張下で熱処理してもよい。
【0032】
本発明のフィルムは、必要に応じてフィルム表面に帯電防止性、防曇性、粘着性、ガスバリヤー性、密着性および易接着性等の機能を有する層をコーティングにより形成することができる。例えば、フィルムの片面あるいは両面に、帯電防止剤を含む水性塗工液を塗布、乾燥することによって帯電防止層を形成することができる。また、本発明の多層フィルムは、必要に応じて、他樹脂およびフィルムをラミネートすることにより、帯電防止性、防曇性、粘着性、ガスバリヤー性、密着性および易接着性等の機能を有する層を形成することができる。その際、押出ラミ、ドライラミ等の公知の方法を用いることができる。
【0033】
本発明のフィルムは、規格袋、重袋、ラップフィルム、熱収縮フィルム、ラミ原反、砂糖袋、油物包装袋、水物包装袋、食品包装用等の各種包装用フィルム、輸液バッグ、農業用資材等に好適である。また、このフィルムをナイロン、ポリエステル、アルミ等の基材と貼り合わせて、多層フィルムとして用いることもできる。
【0034】
【実施例】
本発明を以下実施例により説明するが、実施例は本発明をこれらのものに限定するものではない。
文中で、部とあるのはいずれも重量基準である。また、滑剤の軟化点、摩擦係数、透明性(ヘイズ)、ブロッキング性は、次に記す方法で測定、評価した。
(1)摩擦係数
ASTM D 1894−75に準じて求めた。下記基準によって評価した。
良好:動摩擦係数及び静摩擦係数がいずれも0.5以下である。
滑り性不良:動摩擦係数及び静摩擦係数の少なくとも1方が0.5超である。
(2)透明性(ヘイズ)
ASTM D 1003の方法に準じて求めた。下記基準により評価した。
良好:ヘイズ値が5%以下のもの。
不良:ヘイズ値が5%超のもの。
(4)ブロッキング性
ASTM D−1893に準拠し、サンプルを50℃で1日放置してから測定した。下記基準によって評価した。
良好:全くブロッキングが認められなかった。
不良:ブロッキングが認められた。
(5)ヒートシール性
フィルムのヒートシール性の評価は、JIS Z1707に準じて実施し、100℃でのシール強度を測定した。下記基準によって評価した。
良好:5N/15mm以上
不良:5N/15mm未満
(6)滑剤の軟化点
JIS K−2531 環球法に準拠し測定した。
(7)滑剤の融点
窒素雰囲気中で10℃/分の昇温速度下のDSCで測定した。
【0035】
本実施例で用いた脂肪酸アミド1〜5は、それぞれ下記特徴を有するものである。
脂肪酸アミド1:
商品名 ライトアマイドWH−255、共栄社化学(株)製、軟化点255℃
脂肪酸アミド2:
商品名 ライトアマイドWEF、共栄社化学(株)製、融点:139℃
脂肪酸アミド3:
商品名 ライトアマイドWES、共栄社化学(株)製、融点:140℃
脂肪酸アミド4:
オレイン酸アミド、融点:74℃
脂肪酸アミド5:
エチレンビスステアリン酸アミド、融点:140℃
【0036】
(実施例1)
ヘンシェルミキサー中でポリ乳酸B(商品名 LACEA H−280、三井化学製、Mw 20万、L体/D体=88/12)100重量部、軟化点255℃の脂肪酸アミド1 2.0重量部、平均粒径2.7μmの微粉末シリカ(商品名 サイリシア710 、富士シリシア化学製)0.2重量部を混合し、ドライブレンド物を調製した。その後、このドライブレンド物を、210℃に設定された、スクリュー径が35mmφの同方向二軸回転式押出機へと供給し、溶融混練して、ペレットを調製した。このペレットをシリンダー温度が220℃に設定された、スクリュー径が50mmφの押出し機と表層原料押出し用のシリンダー温度が240℃に設定されたスクリュー径40mmφの押出し機によって構成された、ダイス幅350mmのT−ダイ多層フィルム製膜機のスクリュー径40mmφの押出し機側へ供給した。一方、ポリ乳酸A(商品名 LACEA H−400、三井化学製、Mw 22万、L体/D体=98/2、融点162℃)をスクリュー径50mmφの押出し機にを供給した。
このようにして、50mmφの押出し機からは160μmの厚さ、40mmφの押出し機からは40μmの厚さの樹脂が押出されるように夫々の押出し機の吐出量を調整し、温度を30℃に調整したキャストロール上に押出し、トータル厚み200μmの二種二層の無延伸フィルムを得た。
この未延伸フィルムを、バッチ式二軸延伸機を用い、73℃に温度調整された延伸槽内で1分間の予熱した後、縦方向に2.5倍、横方向に2.5倍の同時二軸延伸を行い、フィルムの熱固定の為、延伸槽温度を100℃まで昇温し、フィルムを取り出した。
【0037】
(実施例2)
実施例1の脂肪酸アミド1 2.0重量部を脂肪酸アミド1 1.0重量部に変更した以外は、実施例1と同様な操作を行ない二軸延伸フィルムを取り出した。
【0038】
(実施例3)
実施例1の脂肪酸アミド1 2.0重量部を脂肪酸アミド1 0.7重量部に変更した以外は、実施例1と同様な操作を行ない二軸延伸フィルムを取り出した。
【0039】
(実施例4)
実施例1の脂肪酸アミド1 2.0重量部を脂肪酸アミド1 0.3重量部に変更した以外は、実施例1と同様な操作を行ない二軸延伸フィルムを取り出した。
【0040】
(実施例5)
実施例1の脂肪酸アミド1 2.0重量部を脂肪酸アミド1 0.1重量部に変更した以外は、実施例1と同様な操作を行ない二軸延伸フィルムを取り出した。
【0041】
(実施例6)
実施例1の脂肪酸アミド1 2.0重量部を脂肪酸アミド1 0.1重量部、また微粉末シリカの添加量を0.2重量部から0.05重量部に変更した以外は、実施例1と同様な操作を行ない二軸延伸フィルムを取り出した。
【0042】
(実施例7)
実施例1の脂肪酸アミド1 2.0重量部を脂肪酸アミド1 0.1重量部、また微粉末シリカの添加量を0.2重量部から1.0重量部に変更した以外は、実施例1と同様な操作を行ない二軸延伸フィルムを取り出した。
【0043】
(比較例1)
実施例1の脂肪酸アミド1 2.0重量部を脂肪酸アミド1 2.5重量部に変更した以外は、実施例1と同様な操作を行ない二軸延伸フィルムを取り出した。
【0044】
(比較例2)
実施例1の脂肪酸アミド1 2.0重量部を脂肪酸アミド1 0.01重量部に変更した以外は、実施例1と同様な操作を行ない二軸延伸フィルムを取り出した。
【0045】
(比較例3)
実施例1の脂肪酸アミド1 2.0重量部を脂肪酸アミド1 0.01重量部、また微粉末シリカの添加量を0.2重量部から0.03重量部に変更した以外は、実施例1と同様な操作を行ない二軸延伸フィルムを取り出した。
【0046】
(比較例4)
実施例1の脂肪酸アミド1 2.0重量部を脂肪酸アミド1 0.01重量部、また微粉末シリカの添加量を0.2重量部から1.2重量部に変更した以外は、実施例1と同様な操作を行ない二軸延伸フィルムを取り出した。
【0047】
(比較例5)
実施例1の脂肪酸アミド1 2.0重量部を融点が約74℃の脂肪酸アミド4 0.6重量部に変更した以外は、実施例1と同様な操作を行ない二軸延伸フィルムを取り出した。
【0048】
(比較例6)
実施例1の脂肪酸アミド1 2.0重量部を融点が約139℃の脂肪酸アミド2 1.0重量部に変更した以外は、実施例1と同様な操作を行ない二軸延伸フィルムを取り出した。
【0049】
(比較例7)
実施例1の脂肪酸アミド1 2.0重量部を融点が約143℃の脂肪酸アミド3 0.4重量部に変更した以外は、実施例1と同様な操作を行ない二軸延伸フィルムを取り出した。
【0050】
(比較例8)
実施例1の脂肪酸アミド1 2.0重量部を融点が約143℃の脂肪酸アミド3 0.7重量部に変更した以外は、実施例1と同様な操作を行ない二軸延伸フィルムを取り出した。
【0051】
(比較例9)
実施例1の脂肪酸アミド1 2.0重量部を融点が約140℃の脂肪酸アミド50.7重量部に変更した以外は、実施例1と同様な操作を行ない二軸延伸フィルムを取り出した。
【0052】
以上の全実施例及び全比較例で得た各々の二軸延伸フィルムについて、フィルムの表面同士の滑り性、ヘイズ値、フィルム同士のブロッキング性を測定した。結果を表1〜表5に示す。
【0053】
【表1】

Figure 2004358721
【0054】
【表2】
Figure 2004358721
【0055】
【表3】
Figure 2004358721
【0056】
【表4】
Figure 2004358721
【0057】
【表5】
Figure 2004358721
【0058】
【発明の効果】本発明によれば、ヒートシール性、滑り性、耐ブロッキング性、透明性が良好で使用後、自然環境下で分解する乳酸系ポリマー多層フィルムおよび該フィルムからなる袋が提供される。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lactic acid-based polymer multilayer film and a bag made of the film. More specifically, the present invention relates to a lactic acid-based polymer multilayer film having good heat sealability, slipperiness, blocking resistance, and transparency and decomposing in a natural environment after use, and a bag comprising the film.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, films having excellent heat sealability have been demanded in a wide range of applications including general packaging materials, food packaging materials, fiber packaging materials, and pharmaceutical packaging materials.
Heat sealing refers to laminating a plurality of films using a heating bar, a heating plate, a heating roll, or the like, heating and applying pressure, and bonding the films.
The film having excellent heat sealability is a film that can be bonded in a wide temperature range and that has a practically sufficient and stable bonding strength.
Conventionally, as a plastic film having excellent heat sealability, cellophane having a moisture-proof property by coating the surface with vinylidene chloride has been widely used for packaging purposes.
[0003]
However, since cellophane uses a casting method in which pulp is chemically treated and dissolved to form a film, the productivity is low, and there is also a problem of wastewater treatment. From a protection standpoint, the manufacturing costs were high.
Against this background, in order to solve such problems, heat-sealing is performed by blending and laminating different kinds of raw materials on general-purpose films such as petroleum-derived polyolefins, aromatic polyesters, and polyvinyl chloride, which are inexpensive to manufacture. Laminated films with added properties have been manufactured and used for packaging materials.
[0004]
Some molded products made from such resins are excellent in transparency, but when discarded, if the disposal method is not correct, the amount of trash will increase, and it will hardly decompose in the natural environment. Permanently remains in the ground. On the other hand, polyhydroxycarboxylic acid-type aliphatic polyesters and dioldicarboxylic acid polycondensation-type polyesters have been developed as biodegradable polymers made of thermoplastic resins. These polymers, when placed in soil or seawater, begin to decompose in a moist environment in a matter of weeks and disappear in about one to several years. It has the property of becoming carbon and water.
[0005]
Films using these aliphatic polyesters have the same or better mechanical properties, optical properties, and thermophysical properties as general-purpose films, and are biodegradable, so widespread application in the packaging field is expected. I have.
However, a film obtained from an aliphatic polyester, particularly a lactic acid-based polymer, has poor heat sealability and is difficult to perform secondary processing such as bag making, which has been a practical problem.
JP-A-8-323946 discloses a multilayer biodegradable plastic film having a film composed of a composition containing a polylactic acid-based polymer as a main component, wherein at least one outermost layer is a biodegradable plastic film. ing. Japanese Patent Application Laid-Open No. 9-157408 discloses a multilayer film of a polylactic acid polymer and an aliphatic polyester having a Tg ≦ 0 ° C. These documents disclose that a polymer obtained by condensing an aliphatic diol and an aliphatic dicarboxylic acid and a polymer obtained by ring-opening polymerization of a cyclic lactone are effective in improving heat sealability. Japanese Patent Application Laid-Open No. 2001-219522 discloses a laminated biaxially stretched film composed of different polylactic acid-based polymers in which the D-lactic acid content ratio of the polylactic acid-based polymer is such that the relationship of Da ≦ 7 and Db-Da> 3 is satisfied. Have been. However, although all of the films have improved heat sealability, they are not yet sufficient to simultaneously satisfy the heat sealability, slipperiness, blocking resistance, and transparency.
[0006]
[Patent Document 1]
JP-A-8-323946 [Patent Document 2]
JP-A-9-157408 [Patent Document 3]
JP 2001-219522 A
[Problems to be solved by the invention]
An object of the present invention is to provide a lactic acid-based polymer multilayer film having improved heat sealability, slipperiness, blocking resistance and transparency, and a bag made of the film.
[0008]
[Means for Solving the Problems]
The present invention provides a layer (A layer) composed of a lactic acid-based polymer (lactic acid-based polymer A) having a D-lactic acid content of 8% or less, and a lactic acid-based polymer having a D-lactic acid content of 9% to 91%. A layer (B layer) composed of a lactic acid-based polymer (lactic acid-based polymer B) in which 0.05 to 2 parts by weight of a lubricant and 0.05 to 1.0 part by weight of a blocking agent are blended with respect to 100 parts by weight. And a lactic acid-based polymer multilayer film characterized in that at least one surface is constituted by a B layer.
[0009]
When the lubricant is a fatty acid amide, and the melting point of the lactic acid-based polymer (A) is Tm1 (° C.) and the softening point of the lubricant (B) is Tm2 (° C.), a fatty acid polyamide satisfying the relationship of Tm1 <Tm2 is used. The above-mentioned lactic acid-based polymer multilayer film is also a preferred embodiment of the present invention.
[0010]
The lactic acid-based polymer multilayer film in which the antiblocking agent is inorganic fine particles is also a preferred embodiment of the present invention.
[0011]
The present invention also provides a bag in which a part of the lactic acid-based polymer multilayer film is heat-sealed.
[0012]
Further, the present invention has a heat resistance of 0.5 N or less, a haze value of 5% or less, and a heat seal strength of 5 N / 15 mm or more when heat-sealed at 100 ° C., and blocking between film surfaces does not occur. To provide a lactic acid-based polymer multilayer film having excellent properties.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the film refers to a film including both a sheet and a film having a thickness of 1 μm to 10 mm.
[0014]
Lactic acid-based polymers include polylactic acid, lactic acid-hydroxycarboxylic acid copolymers, and mixtures thereof. Lactic acids and hydroxycarboxylic acids are used as raw materials for the polymer. As the lactic acid, L-lactic acid, D-lactic acid, DL-lactic acid or a mixture thereof, or a lactic acid-based polymer from which lactide which is a cyclic dimer of lactic acid is obtained, has a D-lactic acid content of 9 to 91% or 8%. % Or less can be used in various combinations.
[0015]
As the hydroxycarboxylic acids that can be used in combination with the lactic acids, hydroxycarboxylic acids having 2 to 10 carbon atoms are preferable, and specifically, glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 4-hydroxyvaleric acid, and 5-hydroxyvaleric acid Valeric acid, 6-hydroxycaproic acid and the like can be suitably used, and further, a cyclic ester intermediate of hydroxycarboxylic acid, for example, glycolide which is a dimer of glycolic acid and a cyclic ester of 6-hydroxycaproic acid are used. Certain ε-caprolactone can also be used. Mixtures of lactic acids and hydroxycarboxylic acids as raw materials can be used in various combinations.
[0016]
The lactic acid-based polymer is obtained by direct dehydration polycondensation of the above raw materials, or ring-opening polymerization of a cyclic dimer of the above milk or hydroxycarboxylic acid, for example, a lactide or glycolide, or a cyclic ester intermediate such as ε-caprolactone. Obtained by the following method.
[0017]
In the case of production by direct dehydration polycondensation, the raw materials lactic acid or lactic acid and hydroxycarboxylic acid are preferably subjected to azeotropic dehydration condensation in the presence of an organic solvent, particularly a phenyl ether solvent, and particularly preferably azeotropic distillation. The high-molecular-weight lactic acid-based polymer having a strength suitable for the present invention can be obtained by polymerizing the solvent obtained by removing water from the discharged solvent and returning the substantially anhydrous solvent to the reaction system. The weight average molecular weight of the lactic acid-based polymer is preferably a high molecular weight as long as moldability is possible, and more preferably 30,000 to 5,000,000.
[0018]
In the present invention, the lubricant is a fatty acid amide whose softening point Tm2 exceeds the melting point Tm1 of a lactic acid-based polymer having a D-lactic acid content of 8% or less (lactic acid-based polymer A), that is, the relationship of Tm1 <Tm2 is established. Fatty acid amides are used, more preferably those having a softening point (Tm2) of more than 180 ° C, particularly preferably those having a softening point of more than 2300 ° C, more preferably 230 to 400 ° C. Here, the softening point means a softening point measured by a ring and ball method based on JIS K-2531. These organic compounds may be used alone or as a mixture of two or more.
[0019]
Examples of the fatty acid amide include, for example, an organic compound obtained by reacting a carboxylic acid and an amine with a polybasic acid as required.
[0020]
The softening point of such a fatty acid amide can be adjusted by changing the type of the carboxylic acid, amine, or polybasic acid, or by changing the amount of the polybasic acid to be used. An organic compound having an amide bond can be obtained.
[0021]
Specific examples of the fatty acid amide include N, N'-methylenebisstearamide, N, N'-ethylenebisstearamide, N, N'-xylylenebisstearamide, and N, N'-bis (2 -Stearoamidoethyl) -sebacamide, N, N'-bis (2-stearoamidoethyl) azeraicamide, and the like, but are not limited thereto.
[0022]
As the lubricant that can be used in the present invention, it is also possible to use a compound that is commercially available. Examples of products available on the market include Light Amide WH-255 (manufactured by Kyoeisha Chemical Co., Ltd.).
[0023]
Examples of the inorganic fine particles used as the antiblocking agent according to the present invention include inorganic compounds such as SiO2, CaCO3, talc, clay, kaolin, kaolin clay, mica, and zinc oxide, and preferably SiO2, CaCO3, and talc. These can be used alone or as a mixture of two or more.
[0024]
Further, the particle size is 0.1 μm to 20 μm, preferably 0.1 μm to 15 μm, and more preferably 0.1 μm to 7.0 μm.
[0025]
The amount of the lubricant is 0.05 to 2 parts by weight based on 100 parts by weight of the film. If the added amount is too small, no effect is exerted on the slipperiness of the film, while if it is too large, molding becomes unstable and processability, heat seal strength and the like are poor. By performing the addition amount of the lubricant in the above range, in addition to moldability, transparency, anti-blocking properties and slipperiness, almost no decrease in the molecular weight due to the additive at the time of molding occurs, and crystallization and addition of the additive A molded product free from whitening (clouding) of the molded product due to bleed is obtained.
[0026]
The amount of the antiblocking agent to be added is 0.02 to 2.4 parts by weight, preferably 0.05 to 2 parts by weight, more preferably 0.05 to 2 parts by weight per 100 parts by weight of the film / sheet. is there. As with the lubricant, the amount of addition may be the same as the desired extrusion molding, for example, T-die extrusion molding or inflation molding, or at the time of secondary processing, for example, the workability such as heat sealability and the blocking resistance of the obtained film / sheet. The optimal amount that provides good lubricity is selected as appropriate.
[0027]
In the present invention, a plasticizer may be included as necessary. Examples of the plasticizer include hydroxy polycarboxylic acid esters such as acetyl tributyl citrate, and polyhydric alcohol esters such as guserin triacetate and guserin tripropionate. The ratio of the plasticizer to the lactic acid-based polymer is 20 to 5% by weight, preferably 15 to 9% by weight, based on 80 to 95% by weight of the lactic acid-based polymer. Further, a modifying agent such as a plasticizer, an antioxidant, and an ultraviolet absorber can be added to the polymer of the present invention.
[0028]
A known kneading technique can be applied to mixing the lactic acid-based polymer and the lubricant. In order to improve the dispersibility of the added lubricant during kneading and to exert the effect of these additives, it is preferable to use a fine powder having an average particle size of the lactic acid-based polymer of 15 to 100 μm. The lactic acid-based polymer composition according to the present invention is granulated to obtain pellets and rods, which are used for molding.
[0029]
Next, a method for producing a lactic acid-based polymer multilayer film and a stretched film according to the present invention will be described in detail. The film obtained from the lactic acid-based polymer composition of the present invention can be produced by uniformly mixing a lactic acid-based polymer with a lubricant or the like with a mixer, pelletizing, and extruding. Further, a stretched film can be produced by stretching if necessary.
[0030]
As a method for forming the lactic acid-based polymer multilayer film of the present invention, a known method can be used. For example, it can be obtained by the following method. After the lubricant is mixed with the powdery or pelletized lactic acid-based polymer by a ribbon blender or the like, the composition is extruded and pelletized by a twin-screw extruder. The pelletized composition promotes crystallization of the polymer in the pellets by performing a heat treatment, improves heat resistance, prevents fusion between the pellets, and improves extrusion stability. In the case of extrusion molding, inflation film molding and T-die film molding can be performed by attaching a specific die to the extruder tip of the extruder.
[0031]
When forming a multilayer film, it is preferable to form the film by a melt extrusion method using an extruder equipped with a T-die. At this time, the different resin compositions may be separately formed into a film and then bonded, or may be co-extruded using a multi-manifold die or an extruder equipped with a feed block. Moreover, a multilayer stretched film can be manufactured by stretching the obtained multilayer film in the flow direction by roll stretching. Further, the film may be stretched in the lateral direction by tenter stretching, or may be subjected to a heat treatment under tension after the transverse stretching.
[0032]
In the film of the present invention, a layer having functions such as antistatic property, antifogging property, adhesive property, gas barrier property, adhesion property and easy adhesion property can be formed on the film surface by coating, if necessary. For example, an antistatic layer can be formed by applying and drying an aqueous coating solution containing an antistatic agent on one or both surfaces of the film. In addition, the multilayer film of the present invention has functions such as antistatic properties, antifogging properties, adhesive properties, gas barrier properties, adhesion properties, and easy adhesion properties by laminating other resins and films as necessary. Layers can be formed. At that time, known methods such as extrusion lamination and dry lamination can be used.
[0033]
The film of the present invention includes various types of packaging films such as standard bags, heavy bags, wrap films, heat-shrink films, raw paper lamina, sugar bags, oil-stuff packaging bags, water-stuff packaging bags, food packaging, infusion bags, agriculture. It is suitable for materials and the like. Also, this film can be used as a multilayer film by bonding it to a substrate such as nylon, polyester, or aluminum.
[0034]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the examples do not limit the present invention.
In the text, all parts are based on weight. The softening point, friction coefficient, transparency (haze), and blocking property of the lubricant were measured and evaluated by the following methods.
(1) Coefficient of friction was determined according to ASTM D 1894-75. Evaluation was made according to the following criteria.
Good: Both the dynamic friction coefficient and the static friction coefficient are 0.5 or less.
Poor slipperiness: at least one of the dynamic friction coefficient and the static friction coefficient exceeds 0.5.
(2) Transparency (haze)
It was determined according to the method of ASTM D 1003. Evaluation was made according to the following criteria.
Good: Those having a haze value of 5% or less.
Poor: one with a haze value of more than 5%.
(4) Blocking property In accordance with ASTM D-1893, the sample was left at 50 ° C. for 1 day before measurement. Evaluation was made according to the following criteria.
Good: no blocking was observed.
Poor: blocking was observed.
(5) Heat Sealability The heat sealability of the film was evaluated according to JIS Z1707, and the seal strength at 100 ° C. was measured. Evaluation was made according to the following criteria.
Good: 5 N / 15 mm or more Poor: Less than 5 N / 15 mm (6) Softening point of lubricant Measured in accordance with JIS K-2531 Ring and Ball Method.
(7) Melting point of lubricant Measured by DSC at a heating rate of 10 ° C./min in a nitrogen atmosphere.
[0035]
The fatty acid amides 1 to 5 used in this example have the following characteristics, respectively.
Fatty acid amide 1:
Product name Light Amide WH-255, manufactured by Kyoeisha Chemical Co., Ltd., softening point 255 ° C
Fatty acid amide 2:
Product name Light Amide WEF, manufactured by Kyoeisha Chemical Co., Ltd., melting point: 139 ° C
Fatty acid amide 3:
Product name Light Amide WES, manufactured by Kyoeisha Chemical Co., Ltd., melting point: 140 ° C
Fatty acid amide 4:
Oleic acid amide, melting point: 74 ° C
Fatty acid amide 5:
Ethylene bisstearic acid amide, melting point: 140 ° C
[0036]
(Example 1)
100 parts by weight of polylactic acid B (trade name LACEA H-280, manufactured by Mitsui Chemicals, Mw 200,000, L-form / D-form = 88/12) in a Henschel mixer, 1 2.0 parts by weight of fatty acid amide having a softening point of 255 ° C And 0.2 parts by weight of fine powder silica (trade name: Sylysia 710, manufactured by Fuji Silysia Chemical Ltd.) having an average particle size of 2.7 μm were mixed to prepare a dry blend. Thereafter, the dry blend was supplied to a co-rotating twin-screw extruder having a screw diameter of 35 mmφ set at 210 ° C. and melt-kneaded to prepare pellets. The pellets were formed by an extruder having a cylinder temperature of 220 ° C., a screw diameter of 50 mmφ, and an extruder having a screw diameter of 40 mmφ with a cylinder temperature of 240 ° C. for extruding a surface material, and having a die width of 350 mm. It was supplied to the extruder side having a screw diameter of 40 mmφ of the T-die multilayer film forming machine. On the other hand, polylactic acid A (trade name LACEA H-400, manufactured by Mitsui Chemicals, Mw: 220,000, L-form / D-form = 98/2, melting point: 162 ° C.) was supplied to an extruder having a screw diameter of 50 mmφ.
In this manner, the discharge rate of each extruder is adjusted so that a resin having a thickness of 160 μm is extruded from a 50 mmφ extruder and a resin having a thickness of 40 μm is extruded from a 40 mmφ extruder. It was extruded on the adjusted cast roll to obtain a two-layer, two-layer unstretched film having a total thickness of 200 μm.
This unstretched film was preheated for 1 minute in a stretching tank temperature-controlled to 73 ° C. using a batch-type biaxial stretching machine, and then simultaneously stretched 2.5 times in the longitudinal direction and 2.5 times in the transverse direction. The film was biaxially stretched, and the temperature of the stretching bath was raised to 100 ° C. for heat fixing of the film, and the film was taken out.
[0037]
(Example 2)
A biaxially stretched film was taken out by performing the same operation as in Example 1 except that fatty acid amide 1 in Example 1 was changed to 2.0 parts by weight to fatty acid amide 1 in 1.0 part by weight.
[0038]
(Example 3)
A biaxially stretched film was taken out by performing the same operation as in Example 1 except that fatty acid amide 1 in Example 1 was changed to 2.0 parts by weight to fatty acid amide 1 in 0.7 parts by weight.
[0039]
(Example 4)
A biaxially stretched film was taken out by performing the same operation as in Example 1 except that the fatty acid amide 1 in Example 1 was changed to 2.0 parts by weight to the fatty acid amide 10.3 parts by weight.
[0040]
(Example 5)
A biaxially stretched film was taken out by performing the same operation as in Example 1 except that fatty acid amide 1 in Example 1 was changed to 2.0 parts by weight to fatty acid amide 1 in 0.1 part by weight.
[0041]
(Example 6)
Example 1 was repeated except that 2.0 parts by weight of the fatty acid amide of Example 1 was changed to 0.1 part by weight of the fatty acid amide 1 and the addition amount of the fine silica powder was changed from 0.2 part by weight to 0.05 part by weight. The same operation as described above was performed to take out the biaxially stretched film.
[0042]
(Example 7)
Example 1 was repeated except that the fatty acid amide 1 of Example 1 was changed from 2.0 parts by weight to the fatty acid amide 1 by 0.1 part by weight, and the amount of the fine silica powder was changed from 0.2 part by weight to 1.0 part by weight. The same operation as described above was performed to take out the biaxially stretched film.
[0043]
(Comparative Example 1)
A biaxially stretched film was taken out by performing the same operation as in Example 1 except that 12.0 parts by weight of the fatty acid amide of Example 1 was changed to 2.5 parts by weight of the fatty acid amide.
[0044]
(Comparative Example 2)
A biaxially stretched film was taken out by performing the same operation as in Example 1 except that the fatty acid amide 1 in Example 1 was changed to 2.0 parts by weight to the fatty acid amide 1 in 0.01 part by weight.
[0045]
(Comparative Example 3)
Example 1 was repeated except that 2.0 parts by weight of the fatty acid amide of Example 1 was changed to 0.01 part by weight of the fatty acid amide 1 and the addition amount of the fine powdered silica was changed from 0.2 part by weight to 0.03 part by weight. The same operation as described above was performed to take out the biaxially stretched film.
[0046]
(Comparative Example 4)
Example 1 was repeated except that the fatty acid amide 1 in Example 1 was changed from 2.0 parts by weight to the fatty acid amide 1 in 0.01 part by weight, and the amount of the fine silica powder was changed from 0.2 part by weight to 1.2 parts by weight. The same operation as described above was performed to take out the biaxially stretched film.
[0047]
(Comparative Example 5)
A biaxially stretched film was taken out by performing the same operation as in Example 1 except that 12.0 parts by weight of the fatty acid amide of Example 1 was changed to 40.6 parts by weight of a fatty acid amide having a melting point of about 74 ° C.
[0048]
(Comparative Example 6)
A biaxially stretched film was taken out by performing the same operation as in Example 1 except that 12.0 parts by weight of the fatty acid amide of Example 1 was changed to 21.0 parts by weight of a fatty acid amide having a melting point of about 139 ° C.
[0049]
(Comparative Example 7)
A biaxially stretched film was taken out by performing the same operation as in Example 1 except that 12.0 parts by weight of the fatty acid amide of Example 1 was changed to 30.4 parts by weight of a fatty acid amide having a melting point of about 143 ° C.
[0050]
(Comparative Example 8)
A biaxially stretched film was taken out in the same manner as in Example 1 except that 12.0 parts by weight of the fatty acid amide of Example 1 was changed to 30.7 parts by weight of fatty acid amide having a melting point of about 143 ° C.
[0051]
(Comparative Example 9)
A biaxially stretched film was taken out by performing the same operation as in Example 1 except that 12.0 parts by weight of the fatty acid amide of Example 1 was changed to 50.7 parts by weight of a fatty acid amide having a melting point of about 140 ° C.
[0052]
For each of the biaxially stretched films obtained in all of the above Examples and Comparative Examples, the slip properties between the surfaces of the films, the haze value, and the blocking properties between the films were measured. The results are shown in Tables 1 to 5.
[0053]
[Table 1]
Figure 2004358721
[0054]
[Table 2]
Figure 2004358721
[0055]
[Table 3]
Figure 2004358721
[0056]
[Table 4]
Figure 2004358721
[0057]
[Table 5]
Figure 2004358721
[0058]
According to the present invention, there is provided a lactic acid-based polymer multilayer film having good heat sealability, slipperiness, blocking resistance, and transparency and decomposing in a natural environment after use, and a bag comprising the film. You.

Claims (6)

D−乳酸含有量が8%以下である乳酸系ポリマー(乳酸系ポ リマ−A)からなる層(A層)と、D−乳酸含有量が9%〜91%である乳 酸系ポリマー100重量部に対し滑剤を0.05〜2重量部、耐ブロッキン グ剤を0.05〜1.0重量部配合した乳酸系ポリマー(乳酸系ポリマ−B )からなる層(B層)とからなり、少なくとも片側の表面がB層により構成 されることを特徴とする乳酸系ポリマー多層フィルム。A layer (A layer) composed of a lactic acid-based polymer (lactic acid-based polymer A) having a D-lactic acid content of 8% or less, and 100% by weight of a lactic acid-based polymer having a D-lactic acid content of 9% to 91% And a layer (B layer) composed of a lactic acid-based polymer (lactic acid-based polymer B) containing 0.05 to 2 parts by weight of a lubricant and 0.05 to 1.0 part by weight of a blocking agent, A lactic acid-based polymer multilayer film, characterized in that at least one surface is constituted by a B layer. D−乳酸含有量が8%以下である乳酸系ポリマー(乳酸系ポ リマ−A)からなる層(A層)と、D−乳酸含有量が9%〜91%である乳 酸系ポリマー100重量部に対し滑剤を0.05〜2重量部、耐ブロッキン グ剤を0.05〜1.0重量部配合した乳酸系ポリマー(乳酸系ポリマ−B )からなる層(B層)とからなり、A層及び/又はB層が少なくとも一軸方 向に面倍率が1.5〜14倍になるように延伸され、少なくとも片側の表面 がB層により構成されることを特徴とする乳酸系ポリマー多層フィルム。A layer (A layer) composed of a lactic acid-based polymer (lactic acid-based polymer A) having a D-lactic acid content of 8% or less, and 100% by weight of a lactic acid-based polymer having a D-lactic acid content of 9% to 91% And a layer (B layer) composed of a lactic acid-based polymer (lactic acid-based polymer B) containing 0.05 to 2 parts by weight of a lubricant and 0.05 to 1.0 part by weight of a blocking agent, A lactic acid-based polymer multilayer film, characterized in that the layer A and / or the layer B are stretched in at least one axial direction so that the area ratio becomes 1.5 to 14 times, and at least one surface is constituted by the layer B. . 前記滑剤が脂肪酸アミドであり、D−乳酸含有量が8%以下 である乳酸系ポリマー(乳酸系ポリマ−A)の融点がTm1(℃)で、滑剤 (B)の軟化点がTm2(℃)であるとき、Tm1<Tm2の関係が成り立 つ脂肪酸アミドであることを特徴とする請求項1又は2に記載の乳酸系ポリ マー多層フィルム。The lubricant is a fatty acid amide, and the melting point of a lactic acid-based polymer (lactic acid-based polymer A) having a D-lactic acid content of 8% or less is Tm1 (° C), and the softening point of the lubricant (B) is Tm2 (° C). The lactic acid-based polymer multilayer film according to claim 1 or 2, wherein the fatty acid amide satisfies the relationship of Tm1 <Tm2. 前記耐ブロッキング剤が無機系微粒子であることを特徴と する請求項1又は請求項2に記載の乳酸系ポリマー多層フィルム。The lactic acid-based polymer multilayer film according to claim 1, wherein the antiblocking agent is an inorganic fine particle. 請求項1又は2記載の乳酸系ポリマー多層フィルムの一部 をヒートシールしたことを特徴とする袋。A bag, wherein a part of the lactic acid-based polymer multilayer film according to claim 1 or 2 is heat-sealed. 静摩擦係数が0.5以下、ヘイズ値が5%以下かつ100℃ でヒートシールした場合のヒートシール強度が5N/15mm以上であるり、 且つフィルム表面同士のブロッキングが起こらないことを特徴とするL−乳酸 系ポリマーを主成分とする少なくとも2層からなる耐熱性に優れた乳酸系ポリ マー多層フィルム。L, characterized in that the coefficient of static friction is 0.5 or less, the haze value is 5% or less, the heat seal strength when heat-sealed at 100 ° C. is 5 N / 15 mm or more, and no blocking occurs between the film surfaces. -A heat-resistant lactic acid-based polymer multilayer film composed of at least two layers mainly composed of a lactic acid-based polymer.
JP2003157491A 2003-06-03 2003-06-03 Lactic acid-based polymer multilayered film Pending JP2004358721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003157491A JP2004358721A (en) 2003-06-03 2003-06-03 Lactic acid-based polymer multilayered film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003157491A JP2004358721A (en) 2003-06-03 2003-06-03 Lactic acid-based polymer multilayered film

Publications (1)

Publication Number Publication Date
JP2004358721A true JP2004358721A (en) 2004-12-24

Family

ID=34051179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003157491A Pending JP2004358721A (en) 2003-06-03 2003-06-03 Lactic acid-based polymer multilayered film

Country Status (1)

Country Link
JP (1) JP2004358721A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030245A (en) * 2006-07-26 2008-02-14 Mitsui Chemicals Inc Laminate and its molding
EP2059390A1 (en) * 2006-08-18 2009-05-20 SKC Co., Ltd. Multilayered aliphatic polyester film
JP2009285865A (en) * 2008-05-27 2009-12-10 Toray Saehan Inc Multilayer sheet of excellent slidability
WO2010111501A1 (en) 2009-03-27 2010-09-30 Toray Plastics (America), Inc. Biaxially oriented metallized polylactic acid film with high metal adhesion and high barrier properties
KR101093389B1 (en) * 2008-12-23 2011-12-14 도레이첨단소재 주식회사 Biodegradable multi-layer sheet having an excellent anti-fogging and releasing property and preparing process thereof
US8206796B2 (en) 2006-04-27 2012-06-26 Cryovac, Inc. Multilayer film comprising polylactic acid
US8734933B2 (en) 2009-09-25 2014-05-27 Toray Plastics (America), Inc. Multi-layer high moisture barrier polylactic acid film
US9150004B2 (en) 2009-06-19 2015-10-06 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with improved heat seal properties
US9163141B2 (en) 2006-04-27 2015-10-20 Cryovac, Inc. Polymeric blend comprising polylactic acid
US9221213B2 (en) 2009-09-25 2015-12-29 Toray Plastics (America), Inc. Multi-layer high moisture barrier polylactic acid film
US9238324B2 (en) 2010-03-31 2016-01-19 Toray Plastics (Amercia), Inc. Biaxially oriented polylactic acid film with reduced noise level
US9314999B2 (en) 2008-08-15 2016-04-19 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with high barrier
US9492962B2 (en) 2010-03-31 2016-11-15 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with reduced noise level and improved moisture barrier

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9163141B2 (en) 2006-04-27 2015-10-20 Cryovac, Inc. Polymeric blend comprising polylactic acid
US8206796B2 (en) 2006-04-27 2012-06-26 Cryovac, Inc. Multilayer film comprising polylactic acid
JP2008030245A (en) * 2006-07-26 2008-02-14 Mitsui Chemicals Inc Laminate and its molding
EP2059390A1 (en) * 2006-08-18 2009-05-20 SKC Co., Ltd. Multilayered aliphatic polyester film
EP2059390A4 (en) * 2006-08-18 2012-05-30 Skc Co Ltd Multilayered aliphatic polyester film
JP2009285865A (en) * 2008-05-27 2009-12-10 Toray Saehan Inc Multilayer sheet of excellent slidability
US9314999B2 (en) 2008-08-15 2016-04-19 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with high barrier
KR101093389B1 (en) * 2008-12-23 2011-12-14 도레이첨단소재 주식회사 Biodegradable multi-layer sheet having an excellent anti-fogging and releasing property and preparing process thereof
US8652626B2 (en) 2009-03-27 2014-02-18 Toray Plastics (America), Inc. Biaxially oriented metallized polylactic acid film with high metal adhesion and high barrier properties
WO2010111501A1 (en) 2009-03-27 2010-09-30 Toray Plastics (America), Inc. Biaxially oriented metallized polylactic acid film with high metal adhesion and high barrier properties
US9150004B2 (en) 2009-06-19 2015-10-06 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with improved heat seal properties
US8734933B2 (en) 2009-09-25 2014-05-27 Toray Plastics (America), Inc. Multi-layer high moisture barrier polylactic acid film
US8795803B2 (en) 2009-09-25 2014-08-05 Toray Plastics (America), Inc. Multi-layer high moisture barrier polylactic acid film
US9023443B2 (en) 2009-09-25 2015-05-05 Toray Plastics (America), Inc. Multi-layer high moisture barrier polylactic acid film
US9221213B2 (en) 2009-09-25 2015-12-29 Toray Plastics (America), Inc. Multi-layer high moisture barrier polylactic acid film
US9238324B2 (en) 2010-03-31 2016-01-19 Toray Plastics (Amercia), Inc. Biaxially oriented polylactic acid film with reduced noise level
US9492962B2 (en) 2010-03-31 2016-11-15 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with reduced noise level and improved moisture barrier

Similar Documents

Publication Publication Date Title
JP5271322B2 (en) Molded product comprising lactic acid polymer composition and method for producing thermoformed product
WO2009084391A1 (en) Polypropylene resin composition, molded article produced from the resin composition, and method for production of the molded article
WO2011162046A1 (en) Polylactic acid film
JP2004300197A (en) Polyglycolic acid-based resin composition and its molded article
JP2004358721A (en) Lactic acid-based polymer multilayered film
JP2006192806A (en) Polylactic acid-based stretched laminated film
JP2000302956A (en) Aliphatic polyester composition and oriented film therefrom
US20030180561A1 (en) Multi-layered polyester film
JP2014156539A (en) Polyester resin composition, film obtained by molding resin composition and bag obtained by molding film
JP5739383B2 (en) Easy tear stretch film, easy tear laminate film, easy tear bag, and easy tear stretch film manufacturing method
US20140287212A1 (en) Biopolyester compositions with good transparency and sliding properties
JP6102315B2 (en) Polyester resin composition and film formed by molding the polyester resin composition
JP2002249603A (en) Aliphatic polyester film
JP2007039664A (en) Easily tearable oriented film, easily tearable laminate film, easily tearable bag, and process for producing the easily tearable oriented film
EP1022305B1 (en) Saponified ethylene-vinyl acetate copolymer and laminate
JP4836194B2 (en) Transparent biodegradable resin stretched film and resin product with improved gas barrier properties
JP5777133B2 (en) Polylactic acid resin film
JP2006035666A (en) Multiple layer polylactic acid resin film and its manufacturing method
JP2000001591A (en) Resin composition and use thereof
JP5041649B2 (en) Lactic acid polymer composition
JP2009107669A (en) Packaging bag
JP4315698B2 (en) L-lactic acid polymer composition
JP2000212369A (en) Resin composition and its use
JP2003313404A (en) Aliphatic polyester resin composition and multilayer film of aliphatic polyester
JP6102314B2 (en) Polyester resin composition and film formed by molding the polyester resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080124

A131 Notification of reasons for refusal

Effective date: 20080129

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080327

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20080812

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310