JP2004356595A - Method of manufacturing silicon-based film containing carbon using cathode coupling-type plasma cvd equipment - Google Patents

Method of manufacturing silicon-based film containing carbon using cathode coupling-type plasma cvd equipment Download PDF

Info

Publication number
JP2004356595A
JP2004356595A JP2003155751A JP2003155751A JP2004356595A JP 2004356595 A JP2004356595 A JP 2004356595A JP 2003155751 A JP2003155751 A JP 2003155751A JP 2003155751 A JP2003155751 A JP 2003155751A JP 2004356595 A JP2004356595 A JP 2004356595A
Authority
JP
Japan
Prior art keywords
gas
film
carbon
silicon
reaction gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003155751A
Other languages
Japanese (ja)
Other versions
JP4119791B2 (en
Inventor
Shinichi Motoyama
慎一 本山
Atsufumi Ogishi
厚文 大岸
Mikio Sawai
巳喜夫 澤井
Toshiaki Tatsuta
利明 立田
Osamu Tsuji
理 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samco International Inc
Original Assignee
Samco International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samco International Inc filed Critical Samco International Inc
Priority to JP2003155751A priority Critical patent/JP4119791B2/en
Publication of JP2004356595A publication Critical patent/JP2004356595A/en
Application granted granted Critical
Publication of JP4119791B2 publication Critical patent/JP4119791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film manufacturing method capable of finely changing carbon contents in a film, in a method of manufacturing a silicon film containing a carbon by using cathode coupling-type plasma CVD equipment and using hexamethyldisilazane (HMDS) as material gas. <P>SOLUTION: The manufacturing method comprises the steps of mixing hydrogen gas with the HMDS and reactant gas consisting of gas containing nitrogen atom gas and/or gas containing oxygen atom gas; and varying the carbon contents of the silicon film (SiN film, SiO<SB>2</SB>film, and SiON film) by changing the mixing ratio of the reactant gas and the hydrogen gas. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、プラズマCVD装置を用いたシリコン系膜の製造方法に関する。
【0002】
【従来の技術】
従来、SiN、SiO、SiON等のシリコン系膜はモノシラン(SiH)を用いて作製されていた。しかし、SiHは爆発性があるため、安全のための付帯設備が法的に定められているとともに、使用にも許可を必要とする。そこで、安全性、設備コスト、入手容易性等を考慮して、近年、SiHに代わって有機シランの一つであるヘキサメチルジシラザン(HMDS)がシリコン系膜の作製に用いられている。
【0003】
HMDSは炭化水素を含有する有機シランであることから、通常、それを用いて作製した膜中には炭素が混入する。この炭素は、シリコン系膜の所期の特性である絶縁性等を損なうものであるため、これまでは、HMDSに水素ガスを添加するなどの方法で、膜中に混入する炭素量をできるだけ少なくするようにしている(特許文献1参照)。しかし、炭素が膜を形成する他原子と完全に結合してネットワークに組み込まれるようにすれば、フリーの電子は生じず、絶縁特性が低下することはなくなると思われる。
【0004】
本発明者らは、このような観点から、炭素が膜を形成する他原子と完全に結合してネットワークに組み込まれていると思われる炭素含有シリコン系膜を開発し、これについての発表を既に行っている(非特許文献1、非特許文献2参照)。
このシリコン系膜はHMDSを原料ガスとしてカソードカップリング型プラズマCVD装置を用いて作製するものであり、SiHを用いた場合と同等の絶縁性を示すばかりでなく、炭素含有量の増加に従い膜の屈折率が大きくなり、また、短波長領域における良好な光透過性等優れた光学特性を示す。
【0005】
【特許文献1】
特開平9−82705号公報
【非特許文献1】
大岸厚文、本山慎一、立田利明、辻理、金高健二、西井準治、「2002年度春季第49回応用物理学関係連合講演会予稿集」、2002年、 p.628
【非特許文献2】
大岸厚文、本山慎一、澤井巳喜夫、立田利明、辻理、「第21回材料科学シンポジウム予稿集」、2002年、pp.187−188
【0006】
【発明が解決しようとする課題】
本発明者らが既に発表した方法によれば、RF電力値を変化させることによりシリコン系膜の含有炭素量を変化させることができる。しかし、RF電力値を変化させると膜厚や膜質の変化等により膜の物性が変化してしまう。
【0007】
本発明はこのような点を考慮して成されたものであり、その目的とするところはHMDSを原料ガスとしてカソードカップリング型プラズマCVD装置を用いて炭素を含有するシリコン系膜の製造方法において、RF電力値を変化させる以外の方法で、膜の含有炭素量を調整する方法を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するために成された本発明に係るシリコン系膜の製造方法は、カソードカップリング型プラズマCVD装置を用いて、a)ヘキサメチルジシラザンと、b)窒素原子含有ガス又は酸素原子含有ガス又は窒素原子含有ガスと酸素原子含有ガスの混合ガスと、を混合したガスを反応ガスとして、所定量の炭素を含有するシリコン系膜を製造する方法において、反応ガスに水素ガスを混合し、その混合比を変化させることによりシリコン系膜の炭素含有量を変化させることを特徴とする。
【0009】
【発明の実施の形態及び効果】
本発明に係る方法ではカソードカップリング型のプラズマCVD装置を用いて、基板を載置した下部電極側にRF電力を投入してプラズマを発生させる。カソードカップリング型では、基板付近に形成されたシースによりイオンが基板に引き寄せられるため、基板表面での反応性がアノードカップリング型よりも高く、シースとプラズマとの境界付近で多量のイオンが形成される。このイオンを負バイアスにより引き込むことで、低温で、かつ、大きな成膜速度で効率よく、膜の作製を行うことができる。
【0010】
SiN膜を作製する際は、ヘキサメチルジシラザン(HMDS)及び窒素原子含有ガスとしてNHやNを使用する。SiO膜を作製する際は、HMDS及び酸素原子含有ガスとしてO又はNOを使用する。SiON膜を作製する際は、HMDS及び窒素原子含有ガスと酸素原子含有ガスの混合ガスを使用し、SiON膜中のO原子とN原子の割合は、窒素原子含有ガスと酸素原子含有ガスの混合比によって定まる。以下においては、HMDSを第一反応ガスと、窒素原子含有ガス、酸素原子含有ガス、及び窒素原子含有ガスと酸素原子含有ガスの混合ガスを第二反応ガスと呼ぶ。
なお、以上のガスを用いて膜の作製を行う際は、脱水のため、HMDSにSiClを1atm%程度添加することが望ましい。
【0011】
反応室における第一反応ガスと第二反応ガスの比は、第二反応ガスとして窒素原子含有ガス、酸素原子含有ガスのいずれ(か又は両方)を使用する場合も1:10〜1:1000の範囲内とする。HMDSの含有量がこの範囲よりも少ない場合は、短波長領域における良好な光透過性やその他の光学特性を十分に得ることができない。
HMDSの含有量がこの範囲よりも多いと、炭素が過度にシリコン系膜内に入り込み、ネットワークにより固定されない炭素が増加して膜の絶縁性を低下させる。
【0012】
第一反応ガスと第二反応ガスの比が上記の範囲内となるようにした上で、水素ガスを反応ガスに混合して、反応ガスと水素ガスの混合比を変化させることにより、膜の含有炭素量を変化させる。ここで、水素ガスは、第一反応ガスと混合してもよいし、第二反応ガスと混合してもよいし、第一反応ガスと第二反応ガスを混合したものと水素ガスを混合してもよい。このように水素ガスを反応ガスに混合することにより、各反応ガスのガス分圧の微調整が可能となり、その結果、膜の含有炭素量を細かく調整することが可能となる。このHガスの混合による含有炭素量の調整方法によれば、RF電力値を変化させることにより調整する方法と比較して、より微妙な含有炭素量の調整が可能となる。
【0013】
【実施例】
本実施例では、図1及び図2に示すカソードカップリング型プラズマCVD装置を用いて、水素ガスを第二反応ガスと混合し、この混合比を変化させることによりシリコン系膜に含まれる炭素量を変化させた。
【0014】
カソードカップリング型プラズマCVD装置10には、図1に示されるように、密閉されたチャンバ11内にシャワー板を兼ねた上部電極12及び下部電極13が略平行に配され、上部電極12は接地され、下部電極13はブロッキングコンデンサ15を介してRF電源16に接続されている。反応ガスはシャワー板を兼ねた上部電極12よりチャンバ11内に供給され、基板14上で成膜が行われる。
【0015】
ガス系統は図2に示すようになっている。チャンバ11と第二反応ガス源21を接続する配管22には、原料タンク23からの配管24及び水素ガス源20からの配管が接続されている。原料タンク23からの配管24には、マスフローコントローラ(MFC)25が設けられ、また、その配管24の他方の端部には、パージ用ガス源26が接続されている。なお、パージ用ガスとしては窒素ガス等を用いることができる。原料タンク23にはヒータ(図示せず)が設けられ、更に、原料タンク23及びマスフローコントローラ25は恒温槽27内に設けられている。
【0016】
ヒータにより原料タンク23を加熱し、恒温槽27を所定の温度に維持することにより、原料タンク23内のHMDSがガス化する。ガス化したHMDS(第一反応ガス)は、マスフローコントローラ25を介して、Hと混合された第二反応ガスとともにチャンバ11内に供給される。なお、気化したHMDSを液化させないため、途中の配管24、22やマスフローコントローラ25、バルブ28、29等にもリボンヒータを巻き、加熱しておく。また、第二反応ガスの流量が第一反応ガス(HMDS)の流量よりも大きい場合、反応ガスの配管22内圧力により第一反応ガス(HMDS)のチャンバ11への供給が妨げられる。このような場合は、第一反応ガス配管24に巻いたリボンヒータの温度を上げることにより、第一反応ガスの供給を確保することができるようになる。
【0017】
なお、以下の実施例においては、原料タンク23の温度を50℃、恒温槽27の温度を55℃、マスフローコントローラ25の温度を85℃、第一反応ガス配管24の温度を85℃、第一反応ガスの流れに対してマスフローコントローラ25よりも上流側のバルブ28の温度を85℃、マスフローコントローラ25よりも下流側のバルブ29の温度を100℃、マスフローコントローラ25より下流側の配管24の温度を100℃とした。
【0018】
膜中の炭素量変化
図1の装置を用いて、第二反応ガスである窒素原子含有ガス(NH)にHを混合してSiN膜の成膜を行った。この際、H+NHの総流量を200sccmで一定としつつ、HとNHの混合比を変化させた。HMDS流量は、300℃で成膜した場合は10sccm、80℃で成膜した場合は2sccmとし、RF電力は300Wとした。300℃で成膜を行った場合の混合ガス中のHの割合(H/(NH+H))と成膜速度の関係、Hの割合と膜組成の関係、Hの割合と膜の屈折率の関係を図3(a)〜(c)に、80℃で成膜を行った場合のHの割合と成膜速度の関係、Hの割合と膜組成の関係、Hの割合と膜の屈折率の関係を図4(a)〜(c)に示す。なお、膜組成はSiで規格化した構成比で表す。
【0019】
図3及び図4のいずれにおいても、Hの割合が増すにつれて炭素の割合が増加し、それに従い、膜の屈折率が大きくなっている。これは、窒素源の供給量が少なくなるに従い、代わりにHMDSの炭素が膜に取り込まれているためと考えられる。このように、窒素原子含有ガスの供給量を減らし水素ガスの量を増やすことにより、HMDSの炭素が膜に取り込まれ、膜の屈折率が変化することがわかる。
【0020】
なお、以上で作製した最大40%の炭素を含有するSiN膜は、いずれも目視においては無色透明であった。このことから、炭素は遊離して存在するのではなく、SiNのネットワーク中に組み込まれ、SiNCの状態で存在していると思われる。
なお、H割合=1の時の膜は、Nが混入したSiC膜と考えられる。
【0021】
次に、第二反応ガスとしてOを使用し、OにHを混合することでOの流量比を減少させ、膜中に炭素を混入させることを試みた。Hの割合と組成の関係及びHの割合と膜の屈折率の関係を図5(a),(b)に示す。なお、成膜速度は1500Å/minとした。図5に示されるように、Oの流量比が減少するに従い、膜中の炭素量が増加した。これにより、本発明に係る方法により作製したSiO膜にも炭素を混入させることが可能であって、炭素の混入により、膜の屈折率が変化することが確認された。
【0022】
なお、窒素原子含有ガス(NH)にHを混合した場合は、Siに対するCの割合が60%のとき、膜に茶色の着色が見られた。これはSiNネットワークに組み込まれない、フリーの状態で存在する炭素が多量に存在して、膜の構造が変化するためであると考えられる。
【0023】
以上では、NH又はOとHの混合比を変化させることにより、SiN膜又はSiO膜中に含まれる炭素量を変化させる例について記載したが、SiON膜についても同様の方法により含有炭素量を変化させることができる。
【0024】
また、以上では、第二反応ガスに水素ガス(H)を混合する方法によりシリコン系膜の炭素含有量を変化させたが、第一反応ガスに水素ガスを混合する方法、第一反応ガスと第二反応ガスを混合した反応ガスに更に水素ガスを混合する方法、第一反応ガスと第二反応ガスと水素ガスを同時に混合する方法によっても炭素含有量を変化させることは可能である。
【0025】
膜のアルカリ耐性
SiHを用いたSiO膜、SiHを用いたSiN膜及び本発明に係る方法によるSiN膜(成膜温度150℃、HMDS流量5sccm、H/(H+NH)=0〜0.75、圧力67Pa、RF電力300W)のpH9のアルカリ溶液に対する耐性評価を行った。アルカリ溶液としてはKOHを使用し、これに3日間膜を浸すことにより評価を行ったところ、エッチング速度はSiHを用いて作製したSiO膜(7.45nm/day)>SiHを用いて作製したSiN膜(6.55nm/day)>本発明に係る方法によるSiN膜(4nm/day)であり、本発明に係る方法により作製したSiN膜、即ち炭素含有SiN膜が、最もアルカリ耐性が高いことがわかった。なお、本発明に係る方法によるSiN膜においては、膜中の炭素含有量が多いほどエッチング速度が小さくなり、H/(H+NH)=0.75の条件において、膜はアルカリ溶液に全く侵されなくなった。
【図面の簡単な説明】
【図1】実施例で用いるカソードカップリング型プラズマCVD装置の概略構成図。
【図2】実施例で用いるカソードカップリング型プラズマCVD装置のガス系統図。
【図3】(a)300℃で成膜したSiN膜の、Hの割合と成膜速度の関係を示すグラフ、(b)(a)の膜のHの割合と膜の組成の関係を示すグラフ、(c)(a)の膜のHの割合と屈折率の関係を示すグラフ。
【図4】(a)80℃で成膜したSiN膜の、Hの割合と成膜速度の関係を示すグラフ、(b)(a)の膜のHの割合と膜の組成の関係を示すグラフ、(c)(a)の膜のHの割合と屈折率の関係を示すグラフ。
【図5】(a)酸素原子含有ガスとしてOを使用した場合の、Hの割合と膜の組成の関係を示すグラフ、(b)(a)の膜のHの割合と屈折率の関係を示すグラフ。
【符号の説明】
10…カソードカップリング型プラズマCVD装置
11…チャンバ
12…上部電極
13…下部電極
14…基板
15…ブロッキングコンデンサ
16…RF電源
20…水素ガス源
21…第二反応ガス源
22、24…配管
23…原料タンク
24…第一反応ガス配管
25…マスフローコントローラ
26…パージ用ガス源
27…恒温槽
28、29…バルブ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a silicon-based film using a plasma CVD apparatus.
[0002]
[Prior art]
Conventionally, silicon-based films such as SiN, SiO 2 , and SiON have been manufactured using monosilane (SiH 4 ). However, since SiH 4 has explosive properties, incidental facilities for safety are legally stipulated, and permission is required for use. Therefore, in consideration of safety, equipment cost, availability, and the like, hexamethyldisilazane (HMDS), which is one of organic silanes, has recently been used instead of SiH 4 for producing a silicon-based film.
[0003]
Since HMDS is a hydrocarbon-containing organic silane, carbon is usually mixed in a film produced using the same. Since this carbon impairs the desired properties of the silicon-based film, such as insulating properties, the amount of carbon mixed into the film has been reduced to a minimum by a method such as adding hydrogen gas to HMDS. (See Patent Document 1). However, if the carbon is completely bonded to the other atoms forming the film and incorporated into the network, free electrons are not generated, and it is considered that the insulating properties do not deteriorate.
[0004]
From such a viewpoint, the present inventors have developed a carbon-containing silicon-based film in which carbon is considered to be completely bonded to other atoms forming the film and incorporated into the network. (See Non-Patent Documents 1 and 2).
This silicon-based film is produced using a cathode-coupling plasma CVD apparatus using HMDS as a source gas, and exhibits not only the same insulating properties as when SiH 4 is used but also the film as the carbon content increases. Has a large refractive index, and exhibits excellent optical characteristics such as good light transmittance in a short wavelength region.
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 9-82705 [Non-Patent Document 1]
Atsufumi Ogishi, Shinichi Motoyama, Toshiaki Tateda, Osamu Tsuji, Kenji Kantaka, Junji Nishii, "Preprints of the 49th Annual Lecture Meeting on Applied Physics, Spring 2002," p. 628
[Non-patent document 2]
Atsumi Ogishi, Shinichi Motoyama, Mikio Sawai, Toshiaki Tateda, Osamu Tsuji, "Preliminary Proceedings of the 21st Material Science Symposium," 2002, pp. 187-188
[0006]
[Problems to be solved by the invention]
According to the method already announced by the present inventors, the carbon content of the silicon-based film can be changed by changing the RF power value. However, changing the RF power value changes the physical properties of the film due to changes in film thickness, film quality, and the like.
[0007]
The present invention has been made in view of the above points, and an object of the present invention is to provide a method for manufacturing a silicon-containing film containing carbon using a cathode coupling type plasma CVD apparatus using HMDS as a source gas. Another object of the present invention is to provide a method for adjusting the carbon content of a film by a method other than changing the RF power value.
[0008]
[Means for Solving the Problems]
The method for producing a silicon-based film according to the present invention, which has been made to solve the above-mentioned problems, comprises a) hexamethyldisilazane, and b) a nitrogen-containing gas or an oxygen atom using a cathode-coupled plasma CVD apparatus. In a method for producing a silicon-based film containing a predetermined amount of carbon, a mixed gas of a mixed gas of a gas containing a nitrogen atom and a gas containing an oxygen atom is used as a reaction gas, hydrogen gas is mixed with the reaction gas. The carbon content of the silicon-based film is changed by changing the mixing ratio.
[0009]
Embodiments and effects of the present invention
In the method according to the present invention, plasma is generated by applying RF power to the lower electrode side on which the substrate is mounted, using a cathode-coupled plasma CVD apparatus. In the cathode coupling type, ions are attracted to the substrate by the sheath formed near the substrate, so the reactivity on the substrate surface is higher than in the anode coupling type, and a large amount of ions are formed near the boundary between the sheath and the plasma Is done. By drawing in these ions with a negative bias, a film can be efficiently formed at a low temperature and at a high film formation rate.
[0010]
When fabricating a SiN film, NH 3 or N 2 is used as hexamethyldisilazane (HMDS) and a nitrogen atom-containing gas. When producing a SiO 2 film, O 2 or N 2 O is used as HMDS and an oxygen atom-containing gas. When preparing the SiON film, a mixed gas of HMDS and a gas containing a nitrogen atom and a gas containing an oxygen atom is used. The ratio of O atoms and N atoms in the SiON film is determined by mixing the gas containing a nitrogen atom and the gas containing an oxygen atom. Determined by the ratio. Hereinafter, HMDS is referred to as a first reaction gas, a nitrogen-containing gas, an oxygen-containing gas, and a mixed gas of a nitrogen-containing gas and an oxygen-containing gas as a second reactive gas.
Note that when a film is formed using the above gases, it is preferable to add approximately 1 atm% of SiCl 4 to HMDS for dehydration.
[0011]
The ratio between the first reaction gas and the second reaction gas in the reaction chamber is 1:10 to 1: 1000 even when using either (or both) a nitrogen atom-containing gas and an oxygen atom-containing gas as the second reaction gas. Within the range. When the content of HMDS is smaller than this range, it is not possible to sufficiently obtain good light transmittance in a short wavelength region and other optical characteristics.
If the content of HMDS is larger than this range, carbon excessively enters the silicon-based film, and carbon not fixed by the network increases, thereby lowering the insulating property of the film.
[0012]
After the ratio of the first reactant gas and the second reactant gas is within the above range, hydrogen gas is mixed with the reactant gas, and the mixture ratio of the reactant gas and the hydrogen gas is changed to thereby form a film. Change the carbon content. Here, the hydrogen gas may be mixed with the first reaction gas, may be mixed with the second reaction gas, or may be a mixture of the first reaction gas and the second reaction gas and the hydrogen gas. You may. By mixing the hydrogen gas with the reaction gas in this manner, the gas partial pressure of each reaction gas can be finely adjusted, and as a result, the carbon content of the film can be finely adjusted. According to the method of adjusting the carbon content by mixing the H 2 gas, it is possible to more finely adjust the carbon content as compared with the method of adjusting by changing the RF power value.
[0013]
【Example】
In this embodiment, hydrogen gas is mixed with the second reaction gas using the cathode coupling type plasma CVD apparatus shown in FIGS. 1 and 2, and the mixing ratio is changed to change the amount of carbon contained in the silicon-based film. Was changed.
[0014]
As shown in FIG. 1, in a cathode-coupling type plasma CVD apparatus 10, an upper electrode 12 and a lower electrode 13 serving also as a shower plate are arranged substantially in parallel in a closed chamber 11, and the upper electrode 12 is grounded. The lower electrode 13 is connected to an RF power supply 16 via a blocking capacitor 15. The reaction gas is supplied into the chamber 11 from the upper electrode 12 also serving as a shower plate, and a film is formed on the substrate 14.
[0015]
The gas system is as shown in FIG. A pipe 22 connecting the chamber 11 and the second reaction gas source 21 is connected to a pipe 24 from a raw material tank 23 and a pipe from a hydrogen gas source 20. A mass flow controller (MFC) 25 is provided in a pipe 24 from the raw material tank 23, and a purge gas source 26 is connected to the other end of the pipe 24. Note that a nitrogen gas or the like can be used as the purge gas. The raw material tank 23 is provided with a heater (not shown), and the raw material tank 23 and the mass flow controller 25 are provided in a thermostat 27.
[0016]
The HMDS in the raw material tank 23 is gasified by heating the raw material tank 23 by the heater and maintaining the constant temperature bath 27 at a predetermined temperature. The gasified HMDS (first reaction gas) is supplied into the chamber 11 via the mass flow controller 25 together with the second reaction gas mixed with H 2 . In order to prevent the vaporized HMDS from being liquefied, a ribbon heater is wound around the pipes 24 and 22 in the middle, the mass flow controller 25, the valves 28 and 29, and the like, and heated. When the flow rate of the second reaction gas is larger than the flow rate of the first reaction gas (HMDS), the supply of the first reaction gas (HMDS) to the chamber 11 is hindered by the pressure in the pipe 22 of the reaction gas. In such a case, by increasing the temperature of the ribbon heater wound around the first reaction gas pipe 24, the supply of the first reaction gas can be secured.
[0017]
In the following examples, the temperature of the raw material tank 23 was set to 50 ° C., the temperature of the constant temperature bath 27 was set to 55 ° C., the temperature of the mass flow controller 25 was set to 85 ° C., the temperature of the first reaction gas pipe 24 was set to 85 ° C. With respect to the flow of the reaction gas, the temperature of the valve 28 upstream of the mass flow controller 25 is 85 ° C., the temperature of the valve 29 downstream of the mass flow controller 25 is 100 ° C., and the temperature of the pipe 24 downstream of the mass flow controller 25. Was set to 100 ° C.
[0018]
Using the apparatus of the carbon content changes <br/> Figure 1 in the film, film formation was carried out in the SiN film by mixing with H 2 in nitrogen-containing gas as the second reaction gas (NH 3). At this time, the mixing ratio of H 2 and NH 3 was changed while the total flow rate of H 2 + NH 3 was kept constant at 200 sccm. The HMDS flow rate was 10 sccm when the film was formed at 300 ° C., 2 sccm when the film was formed at 80 ° C., and the RF power was 300 W. The ratio of H 2 mixed gas in the case of performing film formation at 300 ℃ (H 2 / (NH 3 + H 2)) and the relationship between the deposition rate, the relationship between the ratio and the film composition of H 2, the ratio of H 2 3 (a) to 3 (c) show the relationship between the ratio of H 2 and the film formation rate when the film was formed at 80 ° C., the relationship between the ratio of H 2 and the film composition, FIGS. 4A to 4C show the relationship between the ratio of H 2 and the refractive index of the film. The film composition is represented by a composition ratio standardized by Si.
[0019]
3 and 4, the proportion of carbon increases as the proportion of H 2 increases, and accordingly, the refractive index of the film increases. This is presumably because as the supply amount of the nitrogen source decreases, carbon of HMDS is taken into the film instead. As described above, it can be seen that by reducing the supply amount of the nitrogen atom-containing gas and increasing the amount of the hydrogen gas, the carbon of HMDS is taken into the film, and the refractive index of the film changes.
[0020]
Each of the SiN films containing up to 40% of carbon produced as described above was visually colorless and transparent. From this, it is considered that carbon is not present in a free state, but is incorporated in a network of SiN and exists in a state of SiNC.
The film when the H 2 ratio is 1 is considered to be a SiC film in which N is mixed.
[0021]
Then, by using the O 2 as the second reaction gas, the O 2 to reduce the flow rate of O 2 by mixing H 2, an attempt was made to incorporate carbon into the film. FIGS. 5A and 5B show the relationship between the ratio of H 2 and the composition and the relationship between the ratio of H 2 and the refractive index of the film. The film formation rate was 1500 ° / min. As shown in FIG. 5, as the O 2 flow ratio decreased, the amount of carbon in the film increased. Thus, it was confirmed that carbon could be mixed in the SiO 2 film produced by the method according to the present invention, and that the refractive index of the film was changed by the carbon mixing.
[0022]
When H 2 was mixed with the nitrogen-containing gas (NH 3 ), the film was colored brown when the ratio of C to Si was 60%. This is presumably because a large amount of free carbon, which is not incorporated in the SiN network, is present and the structure of the film changes.
[0023]
In the above, the example in which the amount of carbon contained in the SiN film or the SiO 2 film is changed by changing the mixing ratio of NH 3 or O 2 and H 2 has been described, but the SiON film is also contained by the same method. The carbon content can be varied.
[0024]
Further, in the above, the carbon content of the silicon-based film was changed by a method of mixing hydrogen gas (H 2 ) with the second reaction gas. It is also possible to change the carbon content by a method in which hydrogen gas is further mixed with a reaction gas obtained by mixing the first and second reaction gases, and a method in which the first reaction gas, the second reaction gas, and hydrogen gas are simultaneously mixed.
[0025]
SiO 2 film using alkali-resistant SiH 4 , SiN film using SiH 4 , and SiN film according to the method of the present invention (film formation temperature 150 ° C., HMDS flow rate 5 sccm, H 2 / (H 2 + NH 3 ) = The resistance to an alkaline solution of pH 9 at 0 to 0.75, pressure of 67 Pa, and RF power of 300 W) was evaluated. As the alkali solution using KOH, was evaluated by immersing it in 3 days film, the etching rate by using the SiO 2 film (7.45nm / day)> SiH 4 produced by using the SiH 4 The produced SiN film (6.55 nm / day)> SiN film (4 nm / day) produced by the method according to the present invention, and the SiN film produced by the method according to the present invention, that is, the carbon-containing SiN film has the highest alkali resistance. It turned out to be high. In the SiN film according to the method of the present invention, as the carbon content in the film increases, the etching rate decreases, and under the condition of H 2 / (H 2 + NH 3 ) = 0.75, the film is converted to an alkaline solution. It is no longer invaded.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a cathode coupling type plasma CVD apparatus used in an embodiment.
FIG. 2 is a gas system diagram of a cathode coupling type plasma CVD apparatus used in the embodiment.
3A is a graph showing the relationship between the H 2 ratio and the film formation rate of the SiN film formed at 300 ° C. FIG. 3B is a relationship between the H 2 ratio and the film composition of the film in FIG. graph showing the a graph showing the relationship between the ratio between the refractive index of H 2 film (c) (a).
4A is a graph showing the relationship between the H 2 ratio and the film formation rate of a SiN film formed at 80 ° C., and FIG. 4B is a relationship between the H 2 ratio and the film composition of the film in FIG. graph showing the a graph showing the relationship between the ratio between the refractive index of H 2 film (c) (a).
FIG. 5 (a) is a graph showing the relationship between the ratio of H 2 and the composition of the film when O 2 is used as the oxygen atom-containing gas, and (b) the ratio of H 2 and the refractive index of the film of (a). The graph which shows the relationship.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Cathode coupling type plasma CVD apparatus 11 ... Chamber 12 ... Upper electrode 13 ... Lower electrode 14 ... Substrate 15 ... Blocking capacitor 16 ... RF power supply 20 ... Hydrogen gas source 21 ... Second reaction gas sources 22, 24 ... Piping 23 ... Raw material tank 24 first reaction gas pipe 25 mass flow controller 26 purge gas source 27 constant temperature baths 28 and 29 valves

Claims (4)

カソードカップリング型プラズマCVD装置を用いて、a)ヘキサメチルジシラザンと、b)窒素原子含有ガス又は酸素原子含有ガス又は窒素原子含有ガスと酸素原子含有ガスの混合ガスと、を混合したガスを反応ガスとして、所定量の炭素を含有するシリコン系膜を作製する方法において、
反応ガスに水素ガスを混合し、その混合比を変化させることによりシリコン系膜の炭素含有量を変化させることを特徴とするシリコン系膜の製造方法。
Using a cathode-coupled plasma CVD apparatus, a gas obtained by mixing a) hexamethyldisilazane and b) a nitrogen-containing gas or an oxygen-containing gas or a mixed gas of a nitrogen-containing gas and an oxygen-containing gas is used. In a method for producing a silicon-based film containing a predetermined amount of carbon as a reaction gas,
A method for producing a silicon-based film, comprising mixing a hydrogen gas with a reaction gas and changing a mixing ratio thereof to change a carbon content of the silicon-based film.
反応ガスとして、ヘキサメチルジシラザンと窒素原子含有ガスと水素ガスの混合ガスを用いることにより炭素を含有するSiN膜を作製することを特徴とする請求項1に記載のシリコン系膜の製造方法。The method for producing a silicon-based film according to claim 1, wherein the SiN film containing carbon is produced by using a mixed gas of hexamethyldisilazane, a gas containing nitrogen atoms, and a hydrogen gas as a reaction gas. 反応ガスとして、ヘキサメチルジシラザンと酸素原子含有ガスと水素ガスの混合ガスを用いることにより炭素を含有するSiO膜を作製することを特徴とする請求項1に記載のシリコン系膜の製造方法。As the reaction gas, the manufacturing method of the silicon-based thin film according to claim 1, characterized in that to produce a SiO 2 film containing carbon by the use of hexamethyldisilazane and mixed gas of oxygen-containing gas and hydrogen gas . 反応ガスとして、ヘキサメチルジシラザンと窒素原子含有ガスと酸素原子含有ガスと水素ガスの混合ガスを用いることにより炭素を含有するSiON膜を作製することを特徴とする請求項1に記載のシリコン系膜の製造方法。2. A silicon-based SiON film according to claim 1, wherein a mixed gas of hexamethyldisilazane, nitrogen atom-containing gas, oxygen atom-containing gas, and hydrogen gas is used as a reaction gas. Manufacturing method of membrane.
JP2003155751A 2003-05-30 2003-05-30 Method for producing carbon-containing silicon film using cathode coupling type plasma CVD apparatus Expired - Fee Related JP4119791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003155751A JP4119791B2 (en) 2003-05-30 2003-05-30 Method for producing carbon-containing silicon film using cathode coupling type plasma CVD apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003155751A JP4119791B2 (en) 2003-05-30 2003-05-30 Method for producing carbon-containing silicon film using cathode coupling type plasma CVD apparatus

Publications (2)

Publication Number Publication Date
JP2004356595A true JP2004356595A (en) 2004-12-16
JP4119791B2 JP4119791B2 (en) 2008-07-16

Family

ID=34050056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003155751A Expired - Fee Related JP4119791B2 (en) 2003-05-30 2003-05-30 Method for producing carbon-containing silicon film using cathode coupling type plasma CVD apparatus

Country Status (1)

Country Link
JP (1) JP4119791B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006035563A1 (en) * 2006-07-27 2008-01-31 Kimes, Karin Silane-free plasma-assisted CVD deposition of silicon nitride as an anti-reflective film and hydrogen passivation of silicon cell-based photocells
JP2008507130A (en) * 2004-07-14 2008-03-06 東京エレクトロン株式会社 Low temperature plasma chemical vapor deposition of silicon-nitrogen-containing films
JP2008100398A (en) * 2006-10-18 2008-05-01 Toppan Printing Co Ltd Plastic container and method for producing plastic container
WO2010101077A1 (en) * 2009-03-04 2010-09-10 株式会社堀場エステック Gas supply device
WO2012169277A1 (en) * 2011-06-10 2012-12-13 シャープ株式会社 Method for forming texture structure and method for manufacturing solar cell
KR20150056376A (en) * 2013-11-15 2015-05-26 삼성디스플레이 주식회사 Flexible display device and the fabrication method thereof
WO2015079938A1 (en) * 2013-11-28 2015-06-04 Sppテクノロジーズ株式会社 Silicon nitride film, production method therefor, and production device therefor
JP2015153814A (en) * 2014-02-12 2015-08-24 サムコ株式会社 plasma CVD film forming method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60261143A (en) * 1984-06-07 1985-12-24 Fujitsu Ltd Manufacture of semiconductor device
JPH05263255A (en) * 1992-03-19 1993-10-12 Hitachi Electron Eng Co Ltd Plasma cvd device
JPH07106256A (en) * 1993-09-24 1995-04-21 Applied Materials Inc Film formation method
JPH0982706A (en) * 1995-09-16 1997-03-28 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPH0982705A (en) * 1995-09-08 1997-03-28 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device and device for manufacturing semiconductor device
JP2002513203A (en) * 1998-04-28 2002-05-08 シリコン ヴァレイ グループ サーマル システムズ リミテッド ライアビリティ カンパニー Low-κ dielectric inorganic / organic hybrid film and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60261143A (en) * 1984-06-07 1985-12-24 Fujitsu Ltd Manufacture of semiconductor device
JPH05263255A (en) * 1992-03-19 1993-10-12 Hitachi Electron Eng Co Ltd Plasma cvd device
JPH07106256A (en) * 1993-09-24 1995-04-21 Applied Materials Inc Film formation method
JPH0982705A (en) * 1995-09-08 1997-03-28 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device and device for manufacturing semiconductor device
JPH0982706A (en) * 1995-09-16 1997-03-28 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JP2002513203A (en) * 1998-04-28 2002-05-08 シリコン ヴァレイ グループ サーマル システムズ リミテッド ライアビリティ カンパニー Low-κ dielectric inorganic / organic hybrid film and method for producing the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008507130A (en) * 2004-07-14 2008-03-06 東京エレクトロン株式会社 Low temperature plasma chemical vapor deposition of silicon-nitrogen-containing films
DE102006035563A1 (en) * 2006-07-27 2008-01-31 Kimes, Karin Silane-free plasma-assisted CVD deposition of silicon nitride as an anti-reflective film and hydrogen passivation of silicon cell-based photocells
JP2008100398A (en) * 2006-10-18 2008-05-01 Toppan Printing Co Ltd Plastic container and method for producing plastic container
US9157578B2 (en) 2009-03-04 2015-10-13 Horiba Stec, Co., Ltd. Gas supply device
WO2010101077A1 (en) * 2009-03-04 2010-09-10 株式会社堀場エステック Gas supply device
JPWO2010101077A1 (en) * 2009-03-04 2012-09-10 株式会社堀場エステック Gas supply device
JP5565962B2 (en) * 2009-03-04 2014-08-06 株式会社堀場エステック Gas supply device
WO2012169277A1 (en) * 2011-06-10 2012-12-13 シャープ株式会社 Method for forming texture structure and method for manufacturing solar cell
JP2012256801A (en) * 2011-06-10 2012-12-27 Sharp Corp Formation method of texture structure and manufacturing method of solar cell
KR20150056376A (en) * 2013-11-15 2015-05-26 삼성디스플레이 주식회사 Flexible display device and the fabrication method thereof
US9252393B2 (en) 2013-11-15 2016-02-02 Samsung Display Co., Ltd. Flexible display apparatus including a thin-film encapsulating layer and a manufacturing method thereof
KR102136790B1 (en) 2013-11-15 2020-07-23 삼성디스플레이 주식회사 Flexible display device and the fabrication method thereof
WO2015079938A1 (en) * 2013-11-28 2015-06-04 Sppテクノロジーズ株式会社 Silicon nitride film, production method therefor, and production device therefor
JPWO2015079938A1 (en) * 2013-11-28 2017-03-16 Sppテクノロジーズ株式会社 Silicon nitride film, manufacturing method thereof, and manufacturing apparatus thereof
TWI646600B (en) * 2013-11-28 2019-01-01 Spp科技股份有限公司 Tantalum nitride film, manufacturing method thereof and manufacturing device thereof
US10280084B2 (en) 2013-11-28 2019-05-07 Spp Technologies Co., Ltd. Silicon nitride film and method of making thereof
JP2015153814A (en) * 2014-02-12 2015-08-24 サムコ株式会社 plasma CVD film forming method

Also Published As

Publication number Publication date
JP4119791B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
US6630413B2 (en) CVD syntheses of silicon nitride materials
KR101451525B1 (en) Process for producing silicon oxide films from organoaminosilane precursors
KR100443085B1 (en) A Method Of Forming Silicon Containing Thin Film by Atomic Layer Deposition Utilizing Hexachlorodisilane and ammonia
CN101275219B (en) Organosilane compounds for modifying dielectrical properties of silicon oxide and silicon nitride films
KR100434186B1 (en) A method of forming silicon containing thin films by atomic layer deposition utilizing trisdimethylaminosilane
US6448186B1 (en) Method and apparatus for use of hydrogen and silanes in plasma
TW201627519A (en) Method and precursors for manufacturing 3D devices
TW200406503A (en) Methods for producing silicon nitride films and silicon oxynitride films by thermal chemical vapor deposition
TW201213599A (en) Thin films and methods of making them using cyclohexasilane
KR101046506B1 (en) Plasma Surface Treatment to Prevent Pattern Collapse in Immersion Lithography
TWI274380B (en) Semiconductor device and method of manufacturing the same
KR19990088593A (en) Method for producing hydrogenated silicon oxycarbide films having low dielectric constant
KR100368100B1 (en) Method of forming a fluorine-added insulating film
TW201012962A (en) Novel silicon precursors to make ultra low-k films with high mechanical properties by plasma enhanced chemical vapor deposition
TW201041038A (en) Dielectric barrier deposition using nitrogen containing precursor
JP4881153B2 (en) Method for producing a hydrogenated silicon oxycarbide film.
JP4119791B2 (en) Method for producing carbon-containing silicon film using cathode coupling type plasma CVD apparatus
TWI742164B (en) Trichlorodisilane
CN104769705A (en) Method for manufacturing silicon-containing thin film
KR20030057938A (en) Method for manufacturing silicon nitride layer of semiconductor device
WO1992018430A1 (en) Method for forming vapor phase grown film and apparatus for producing semiconductor devices
US20200190664A1 (en) Methods for depositing phosphorus-doped silicon nitride films
US6562735B1 (en) Control of reaction rate in formation of low k carbon-containing silicon oxide dielectric material using organosilane, unsubstituted silane, and hydrogen peroxide reactants
TW202204368A (en) Silicon precursor compounds and method for forming silicon-containing films
TW202142545A (en) Precursors and methods for preparing silicon-containing films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080425

R150 Certificate of patent or registration of utility model

Ref document number: 4119791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees