JP2004356404A - Magnetic memory element and magnetic field sensor element employing polyboride - Google Patents

Magnetic memory element and magnetic field sensor element employing polyboride Download PDF

Info

Publication number
JP2004356404A
JP2004356404A JP2003152590A JP2003152590A JP2004356404A JP 2004356404 A JP2004356404 A JP 2004356404A JP 2003152590 A JP2003152590 A JP 2003152590A JP 2003152590 A JP2003152590 A JP 2003152590A JP 2004356404 A JP2004356404 A JP 2004356404A
Authority
JP
Japan
Prior art keywords
polyboride
hob
erb
magnetic
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003152590A
Other languages
Japanese (ja)
Inventor
Takao Mori
孝雄 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute for Materials Science
Original Assignee
Japan Science and Technology Agency
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute for Materials Science filed Critical Japan Science and Technology Agency
Priority to JP2003152590A priority Critical patent/JP2004356404A/en
Publication of JP2004356404A publication Critical patent/JP2004356404A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To find out a polyboride having a nature of developing residual magnetization as a new function which is not known at all in conventional polyborides, and to provide a magnetic memory element as well as a magnetic field sensor which employ the polyboride and which are excellent in resistance to acid, resistance to heat or the like. <P>SOLUTION: The magnetic memory element employs the polyboride shown by a general formula: HoB<SB>24+X</SB>C<SB>4+Y</SB>N<SB>1+Z</SB>(-8<X<8, -3<Y<3, -1<Z<1) or ErB<SB>24+X</SB>C<SB>4+Y</SB>N<SB>1+Z</SB>(-8<X<8, -3<Y<3, -1<Z<1). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、多ホウ化物を使用した磁気メモリー素子と磁場センサー素子に関するものである。
【0002】
【従来の技術】従来、磁気メモリーについては盛んな材料研究が行われており、パソコン市場などを中心に膨大なマーケットが築かれてきた。そして、このマーケットが大衆的に巨大になる反面、将来的には、例えば劣悪な環境下での応用など、特殊なニーズにそぐう磁性素子の開発も必要である。一方で、多ホウ化物は、その特徴として、耐酸性があり、また、高融点を有し、高温においても安定であるという劣悪環境下での魅力的な特性を有することが知られているが、磁気的性質などの機能で興味深いものは見つかっていなかった。しかし、近年、多ホウ化物における興味深い機能として、TbB50において初めての磁気転移が発見され、その後、TbB25やGdB18Siにおいても磁気転移が観測された(例えば、非特許文献1及び2を参照。)。
【0003】
【非特許文献1】
Takao Mori and Takaho Tanaka, Journal of the Physical Society of Japan Vol.68, No.6, June, 1999, pp.2033−2039
【非特許文献2】
Takao Mori and Takaho Tanaka, Journal of the Physical Society of Japan Vol.69, No.2, February, 2000, pp.579−585
【0004】
【発明が解決しようとする課題】しかしながら、前記のTbB50、TbB25、GdB18Siといった多ホウ化物においては、磁気転移は観測されたものの、それは全て反強磁性転移であり、磁性素子などへの応用にはそぐわないものであった。一方で、従来の磁性素子は、酸に弱く、多ホウ化物のような硝酸雰囲気下でも安定であるような耐酸性はなく、また、高温に曝されると分解してしまい、そのような環境に耐えられないのが現状であり、硝酸や硫酸の存在するような環境下や高温環境下でも磁気メモリー素子や磁場センサー素子等に安定して使用できるような新規な磁性素子用素材を見出すことが期待されている状況にある。
【0005】本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、従来の多ホウ化物には知られていない全く新しい機能として、残留磁化を発現する性質を有する多ホウ化物を見出し、それを使用した耐酸性、耐熱性等に優れた磁気メモリー素子や磁場センサー素子を提供することにある。
【0006】
【課題を解決するための手段】本発明者らは、多ホウ化物TbB50で磁気転移を初めて発見し、B12正二十面体が新規な磁気相互作用の担い手になっていることを解明している。そして、この知見に基づいて、B12正二十面体を有し、更に、二次元的な構造を持っているHoB24+X4+Y1+ZとErB24+X4+Y1+Zとに着目し、その磁気特性について鋭意研究を行ったところ、初めて多ホウ化物において残留磁化が生じる機能を見出すことに成功し、本発明を完成するに至った。
【0007】すなわち、本発明によれば、一般式HoB24+X4+Y1+Z(−8<X<8,−3<Y<3,−1<Z<1)又はErB24+X4+Y1+Z(−8<X<8,−3<Y<3,−1<Z<1)で示される多ホウ化物を使用した磁気メモリー素子、が提供される。
【0008】また、本発明によれば、一般式HoB24+X4+Y1+Z(−8<X<8,−3<Y<3,−1<Z<1)又はErB24+X4+Y1+Z(−8<X<8,−3<Y<3,−1<Z<1)で示される多ホウ化物を使用した磁場センサー素子、が提供される。
【0009】
【発明の実施の形態】本発明は、それぞれ一般式HoB24+X4+Y1+Z(−8<X<8,−3<Y<3,−1<Z<1)、ErB24+X4+Y1+Z(−8<X<8,−3<Y<3,−1<Z<1)で示される多ホウ化物に磁場を印加したとき、それらに残留磁化が発現するという性質を新たに見出し、その性質と多ホウ化物が一般的に有している耐酸性、耐熱性といった特性を利用すべく、それら多ホウ化物を磁気メモリー素子及び磁場センサー素子に使用してなるものである。
【0010】本発明において使用される多ホウ化物は、前記のとおり、一般式HoB24+X4+Y1+Z(−8<X<8,−3<Y<3,−1<Z<1)又はErB24+X4+Y1+Z(−8<X<8,−3<Y<3,−1<Z<1)で示されるものであり、一般式HoB26+X4+Y1+Z(−6<X<6,−2<Y<2,−1<Z<1)又はErB26+X4+Y1+Z(−6<X<6,−2<Y<2,−1<Z<1)で示されるものが好ましく、一般式HoB28+X4+Y1+Z(−4<X<4,−2<Y<2,−1<Z<1)又はErB28+X4+Y1+Z(−4<X<4,−2<Y<2,−1<Z<1)で示されるものがより好ましい。具体的な多ホウ化物としては、例えばHoB28.5、HoB22N、HoB17CN、ErB28.5、ErB22N、ErB17CN等を挙げることができる。
【0011】図1及び図2は、一般式HoB24+X4+Y1+Z(−8<X<8,−3<Y<3,−1<Z<1)で示される多ホウ化物の一例であるHoB28.5の、また、図3及び図4は、同多ホウ化物の他の一例であるHoB22Nのヒステリシス(磁化曲線)を示すグラフである。図5及び図6は、一般式ErB24+X4+Y1+Z(−8<X<8,−3<Y<3,−1<Z<1)で示される多ホウ化物の一例であるErB28.5の、また、図7及び図8は、同多ホウ化物の他の一例であるErB22Nのヒステリシスを示すグラフである。
【0012】これらの図より、HoB24+X4+Y1+ZやErB24+X4+Y1+Zは微小な磁場(<0.5 Oe)においても磁場履歴を示し、磁化が増大することが確認でき、磁場センサー素子としての使用が可能であることがわかる。また、磁場遍歴を利用して、磁場印加後、零磁場においても残留磁化が存在することが確認でき、磁気メモリー素子としても使用可能であることがわかる。
【0013】一般に、多ホウ化物は、極めて優れた耐酸性を有し、硝酸や硫酸環境下でも安定であり、また、約2000℃という高融点を有するので、高温下に曝されても安定であるという特性を有している。このため、前記のような磁気特性を有する多ホウ化物を使用した本発明の磁気メモリー素子及び磁場センサー素子は、従来は不可能であったような劣悪な環境下での使用が可能になる。
【0014】本発明の磁気メモリー素子及び磁場センサー素子については、具体的な使用環境は特に限定されないが、将来的には、例えば、他惑星無人探索等においての使用も考えられる。実際に、木星の月Europa上などにおいては硫酸が充満している環境がある。本発明に使用される多ホウ化物は、そのような環境下でも安定であり、自らが磁気履歴の特性が備わった化合物であるので、特異性があり、磁気メモリー素子や磁場センサー素子として使用可能である。
【0015】なお、本発明の磁気メモリー素子及び磁場センサー素子は、磁性素子材料として前記のような多ホウ化物を使用すること以外は、従来の一般的な磁気メモリー素子や磁場センサー素子と特に異なる構成を採る必要はなく、従来と同様の構成部材を使用し、従来と同様の構造とすることができ、また、細部については様々な様態を採ることが可能である。
【0016】次に、それぞれ一般式HoB24+X4+Y1+Z(−8<X<8,−3<Y<3,−1<Z<1)、ErB24+X4+Y1+Z(−8<X<8,−3<Y<3,−1<Z<1)で示される多ホウ化物の製法例について説明する。
【0017】
[製造方法1]:
ホルミウム(Ho)又はエルビウム(Er)に対するホウ素(B)のモル比(以下、単に「比」と言う。)が24+X(−8<X<8)で、Ho又はErに対する炭素(C)の比が4+Y(−3<Y<3)で、 Ho又はErに対する窒素(N)の比が1+Z(−1<Y<1)となるように、既知のホルミウムホウ化物又はエルビウムホウ化物(HoB、HoB、HoB、HoB12やErB、ErB、ErB、ErB12等)にBとCと窒化ホウ素(BN)を混合し、その混合物を真空下又は不活性ガス下で1500℃以上1900℃以下で固相反応する。
【0018】
[製造方法2]:
本方法では2段階の反応を行う。まず、Ho又はErに対するBの比がV(4<V<15)となるように、ホルミウム酸化物又はエルビウム酸化物(HoやEr)にBを混合し、その混合物を真空下で1200℃以上2200℃以下で固相反応する。次に、酸素(O)がBによって還元されて得られたHoBV−3又はErBV−3を用いて、Ho又はErに対するBの比が24+X(−8<X<8)で、Ho又はErに対するCの比が4+Y(−3<Y<3)で、Ho又はErに対するNの比が1+Z(−1<Y<1)となるように、HoBV−3又はErBV−3にBとCとBNを混合し、その混合物を真空下で1500℃以上1900℃以下で固相反応する。
【0019】
【実施例】以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0020】
[本発明に使用される多ホウ化物の具体的な製法例]:
HoとBをHoに対するBの比が8となる割合で混合し、これを加圧成形したものを真空中、1500℃で4時間加熱して得られたもの(酸素がホウ素により還元されたHoBの組成の燒結体である)を粉砕した。次いで、この粉砕物のHoに対するBの比が29で、Hoに対するCの比が4になるようにBとCを添加して混合し、これを加圧成形したものを真空中、1700℃で10時間加熱した。
【0021】こうして得られたホルミウム多ホウ化物について、化学分析による測定を行ったところ、[B]/[Ho]=28.5、[C]/[Ho]=4となり、HoB24+X4+Y1+Z(X=4.5,Y=0,Z=−1)のほぼ所望の組成と近似するホルミウム多ホウ化物を得たことが確認された。そして、粉末X線回折より、格子定数a=5.64Å、c=56.88Åの三斜晶系で指数付けすることができた(図9参照)。
【0022】
【発明の効果】以上説明したように、本発明の磁気メモリー素子及び磁場センサー素子は、磁性素子材料として、硝酸や硫酸環境下でも安定であり、また、約2000℃という高融点を有する多ホウ化物を使用しているため、従来は使用が困難であった強い酸性環境や高温環境などのような劣悪な環境下での使用が可能である。
【図面の簡単な説明】
【図1】一般式HoB24+X4+Y1+Z(−8<X<8,−3<Y<3,−1<Z<1)で示される多ホウ化物の一例であるHoB28.5のヒステリシスを示すグラフである。
【図2】一般式HoB24+X4+Y1+Z(−8<X<8,−3<Y<3,−1<Z<1)で示される多ホウ化物の一例であるHoB28.5の微小磁場におけるヒステリシスを示すグラフである。
【図3】一般式HoB24+X4+Y1+Z(−8<X<8,−3<Y<3,−1<Z<1)で示される多ホウ化物の一例であるHoB22Nのヒステリシスを示すグラフである。
【図4】一般式HoB24+X4+Y1+Z(−8<X<8,−3<Y<3,−1<Z<1)で示される多ホウ化物の一例であるHoB22Nの微小磁場におけるヒステリシスを示すグラフである。
【図5】一般式ErB24+X4+Y1+Z(−8<X<8,−3<Y<3,−1<Z<1)で示される多ホウ化物の一例であるErB28.5のヒステリシスを示すグラフである。
【図6】一般式ErB24+X4+Y1+Z(−8<X<8,−3<Y<3,−1<Z<1)で示される多ホウ化物の一例であるErB28.5の微小磁場におけるヒステリシスを示すグラフである。
【図7】一般式ErB24+X4+Y1+Z(−8<X<8,−3<Y<3,−1<Z<1)で示される多ホウ化物の一例であるErB22Nのヒステリシスを示すグラフである。
【図8】一般式ErB24+X4+Y1+Z(−8<X<8,−3<Y<3,−1<Z<1)で示される多ホウ化物の一例であるErB22Nの微小磁場におけるヒステリシスを示すグラフである。
【図9】実施例にて得られた多ホウ化物のX線回折パターンを示すグラフである。
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic memory device and a magnetic field sensor device using polyborides.
[0002]
2. Description of the Related Art Heretofore, active research has been conducted on magnetic memories, and an enormous market has been established mainly in the personal computer market. And while this market is huge in the masses, in the future, it is necessary to develop magnetic elements that meet special needs, for example, applications in poor environments. On the other hand, polyborides are known to have acid-resistant properties, a high melting point, and attractive properties in a poor environment such that they are stable even at high temperatures. No interesting features were found in the magnetic properties or other functions. However, in recent years, as an interesting function in a multi boride, first magnetic transitions are found in TbB 50, then magnetic transitions were observed also in TbB 25 and GdB 18 Si 5 (e.g., Non-Patent Documents 1 and 2 reference.).
[0003]
[Non-patent document 1]
Takao Mori and Takaho Tanaka, Journal of the Physical Society of Japan Vol. 68, no. 6, June, 1999 pp. 2033-2039
[Non-patent document 2]
Takao Mori and Takaho Tanaka, Journal of the Physical Society of Japan Vol. 69, no. 2, February, 2000, pp. 579-585
[0004]
However, in the above-mentioned polyborides such as TbB 50 , TbB 25 , and GdB 18 Si 5 , although a magnetic transition was observed, they were all antiferromagnetic transitions, and a magnetic element such as a magnetic element was used. It was not suitable for the application to the. On the other hand, conventional magnetic elements are weak to acids, do not have acid resistance that is stable even in a nitric acid atmosphere such as polyborides, and decompose when exposed to high temperatures. To find new materials for magnetic elements that can be used stably in magnetic memory elements and magnetic field sensor elements even in environments where nitric acid or sulfuric acid is present or in high-temperature environments. Is in the expected situation.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide, as a completely new function not known in conventional polyborides, a property of exhibiting remanent magnetization. An object of the present invention is to find a polyboride having the same and provide a magnetic memory element and a magnetic field sensor element using the same, which are excellent in acid resistance, heat resistance and the like.
[0006]
The present inventors have SUMMARY OF THE INVENTION for the first time discovered a magnetic transition in multiple boride TbB 50, B 12 icosahedron has clarified that it is bearer of the novel magnetic interaction ing. Based on this finding, have B 12 icosahedral, further, focusing on the HoB have a two-dimensional structure 24 + X C 4 + Y N 1 + Z and ErB 24 + X C 4 + Y N 1 + Z, the magnetic properties As a result of intensive research on, for the first time, the inventors succeeded in finding a function of generating remanent magnetization in a multi-boride, and completed the present invention.
[0007] That is, according to the present invention, the general formula HoB 24 + X C 4 + Y N 1 + Z (-8 <X <8, -3 <Y <3, -1 <Z <1) or ErB 24 + X C 4 + Y N 1 + Z (- 8 <X <8, -3 <Y <3, -1 <Z <1) A magnetic memory element using a polyboride represented by the formula:
[0008] Also, according to the present invention, the general formula HoB 24 + X C 4 + Y N 1 + Z (-8 <X <8, -3 <Y <3, -1 <Z <1) or ErB 24 + X C 4 + Y N 1 + Z (- A magnetic field sensor element using a polyboride represented by 8 <X <8, -3 <Y <3, -1 <Z <1) is provided.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to the general formulas HoB 24 + X C 4 + Y N 1 + Z (-8 <X <8, -3 <Y <3, -1 <Z <1), ErB 24 + X C 4 + Y N 1 + Z ( When a magnetic field is applied to polyborides represented by -8 <X <8, -3 <Y <3, -1 <Z <1), a new property that remanent magnetization appears in them is newly found. In order to make use of the properties such as acid resistance and heat resistance that polyborides generally have, these polyborides are used for a magnetic memory element and a magnetic field sensor element.
[0010] Multi borides used in the present invention, as described above, the general formula HoB 24 + X C 4 + Y N 1 + Z (-8 <X <8, -3 <Y <3, -1 <Z <1) or ErB 24 + X C 4 + Y N 1 + Z are those represented by (-8 <X <8, -3 <Y <3, -1 <Z <1), the general formula HoB 26 + X C 4 + Y N 1 + Z (-6 <X <6, -2 <Y <2, -1 < Z <1) or ErB 26 + X C 4 + Y N 1 + Z (-6 <X <6, -2 <Y <2, preferably one represented by -1 <Z <1), formula HoB 28 + X C 4 + Y N 1 + Z (-4 <X <4, -2 <Y <2, -1 <Z <1) or ErB 28 + X C 4 + Y N 1 + Z (-4 <X <4, -2 <Y < Those represented by 2, -1 <Z <1) are more preferable. Specific examples of polyborides include HoB 28.5 C 4 , HoB 22 C 2 N, HoB 17 CN, ErB 28.5 C 4 , ErB 22 C 2 N, and ErB 17 CN.
FIGS. 1 and 2 show an example of a polyboride represented by the general formula HoB 24 + X C 4 + Y N 1 + Z (-8 <X <8, -3 <Y <3, -1 <Z <1). FIGS. 3 and 4 are graphs showing the hysteresis (magnetization curve) of HoB 28.5 C 4 and HoB 22 C 2 N which is another example of the polyboride. FIGS. 5 and 6 show an example of the multi-boride ErB 28. represented by the general formula ErB 24 + X C 4 + Y N 1 + Z (−8 <X <8, −3 <Y <3, −1 <Z <1) . of 5 C 4, FIG. 7 and FIG. 8 is a graph showing the ErB 22 C 2 N hysteresis, which is another example of the multi borides.
From these figures, it can be confirmed that HoB 24 + X C 4 + Y N 1 + Z and ErB 24 + X C 4 + Y N 1 + Z show the magnetic field history even in a small magnetic field (<0.5 Oe), and that the magnetization increases. It turns out that it can be used as an element. Further, by utilizing the magnetic field itinerary, it can be confirmed that the residual magnetization exists even in the zero magnetic field after the application of the magnetic field, and it can be seen that it can be used as a magnetic memory element.
In general, polyborides have extremely good acid resistance, are stable in an environment of nitric acid or sulfuric acid, and have a high melting point of about 2000 ° C., so that they are stable even when exposed to high temperatures. There is a characteristic that there is. For this reason, the magnetic memory element and the magnetic field sensor element of the present invention using the multi-borides having the magnetic properties as described above can be used in a poor environment which has not been possible in the past.
Although the specific use environment of the magnetic memory element and the magnetic field sensor element of the present invention is not particularly limited, the use of the magnetic memory element and the magnetic field sensor element in, for example, unmanned other planet search is considered in the future. Actually, there is an environment filled with sulfuric acid, for example, on Jupiter's moon Europa. The polyboride used in the present invention is stable even in such an environment, and is a compound having the property of its own magnetic history, so it has specificity and can be used as a magnetic memory element or a magnetic field sensor element It is.
The magnetic memory element and the magnetic field sensor element of the present invention are particularly different from the conventional general magnetic memory element and the conventional magnetic field sensor element except that the above polyboride is used as a magnetic element material. There is no need to adopt a configuration, and the same components as in the related art can be used and the same structure as in the related art can be used, and various modes can be adopted for details.
Next, each formula HoB 24 + X C 4 + Y N 1 + Z (-8 <X <8, -3 <Y <3, -1 <Z <1), ErB 24 + X C 4 + Y N 1 + Z (-8 <X < A method for producing a polyboride represented by 8, -3 <Y <3, -1 <Z <1) will be described.
[0017]
[Production method 1]:
The molar ratio of boron (B) to holmium (Ho) or erbium (Er) (hereinafter simply referred to as “ratio”) is 24 + X (−8 <X <8), and the ratio of carbon (C) to Ho or Er There 4 + Y (-3 <Y < 3) , as the ratio of nitrogen (N) with respect to Ho and Er is 1 + Z (-1 <Y < 1), known holmium boride or erbium boride (HoB 2, HoB 4 , HoB 6 , HoB 12 , ErB 2 , ErB 4 , ErB 6 , ErB 12 ), B, C and boron nitride (BN) are mixed, and the mixture is heated to 1500 ° C. or more under vacuum or an inert gas. Solid phase reaction at 1900 ° C or lower.
[0018]
[Production method 2]:
In this method, a two-stage reaction is performed. First, B is mixed with holmium oxide or erbium oxide (Ho 2 O 3 or Er 2 O 3 ) so that the ratio of B to Ho or Er is V (4 <V <15), and the mixture is mixed. The solid-phase reaction is performed at 1200 ° C. or more and 2200 ° C. or less under vacuum. Next, using HoB V-3 or ErB V-3 obtained by reducing oxygen (O 2 ) with B, the ratio of B to Ho or Er is 24 + X (−8 <X <8), and Ho is obtained. Or HoB V-3 or ErB V-3 such that the ratio of C to Er is 4 + Y (-3 <Y <3) and the ratio of N to Ho or Er is 1 + Z (-1 <Y <1). B, C and BN are mixed, and the mixture is subjected to a solid-phase reaction at a temperature of not less than 1500 ° C. and not more than 1900 ° C. under vacuum.
[0019]
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0020]
[Specific production method of polyboride used in the present invention]:
Ho 2 O 3 and B were mixed at a ratio of B to Ho of 8 and the resulting mixture was pressed and heated in vacuum at 1500 ° C. for 4 hours (oxygen was reduced by boron. (A sintered body having the composition of HoB 5 obtained) was ground. Then, B and C were added and mixed so that the ratio of B to Ho of the pulverized product was 29 and the ratio of C to Ho was 4, and the resulting mixture was press-molded at 1700 ° C. in vacuum. Heated for 10 hours.
The holmium polyboride obtained as described above was measured by a chemical analysis. [B] / [Ho] = 28.5, [C] / [Ho] = 4, and HoB 24 + X C 4 + Y N It was confirmed that a holmium polyboride having an approximate composition of 1 + Z (X = 4.5, Y = 0, Z = -1) was obtained. The powder X-ray diffraction was able to assign an index to a triclinic system with lattice constants a = 5.64 ° and c = 56.88 ° (see FIG. 9).
[0022]
As described above, the magnetic memory element and the magnetic field sensor element of the present invention are stable as a magnetic element material even in an environment of nitric acid or sulfuric acid, and have a high melting point of about 2,000 ° C. Since the compound is used, it can be used in a poor environment such as a strong acidic environment or a high temperature environment, which has been conventionally difficult to use.
[Brief description of the drawings]
FIG. 1 shows HoB 28.5 C 4 which is an example of a polyboride represented by the general formula HoB 24 + X C 4 + Y N 1 + Z (−8 <X <8, −3 <Y <3, −1 <Z <1). 6 is a graph showing the hysteresis of FIG.
FIG. 2 shows HoB 28.5 C 4 which is an example of a polyboride represented by the general formula HoB 24 + X C 4 + Y N 1 + Z (−8 <X <8, −3 <Y <3, −1 <Z <1) 5 is a graph showing hysteresis in a small magnetic field.
FIG. 3 shows HoB 22 C 2 N which is an example of a polyboride represented by the general formula HoB 24 + X C 4 + Y N 1 + Z (−8 <X <8, −3 <Y <3, −1 <Z <1). It is a graph which shows hysteresis.
FIG. 4 shows HoB 22 C 2 N which is an example of a polyboride represented by the general formula HoB 24 + X C 4 + Y N 1 + Z (−8 <X <8, -3 <Y <3, −1 <Z <1) It is a graph which shows the hysteresis in a small magnetic field.
FIG. 5: ErB 28.5 C 4 which is an example of a polyboride represented by the general formula ErB 24 + X C 4 + Y N 1 + Z (−8 <X <8, −3 <Y <3, −1 <Z <1) 6 is a graph showing the hysteresis of FIG.
FIG. 6: ErB 28.5 C 4 which is an example of a polyboride represented by the general formula ErB 24 + X C 4 + Y N 1 + Z (−8 <X <8, −3 <Y <3, −1 <Z <1) 5 is a graph showing hysteresis in a small magnetic field.
FIG. 7 shows an example of ErB 22 C 2 N which is an example of a polyboride represented by the general formula ErB 24 + X C 4 + Y N 1 + Z (−8 <X <8, −3 <Y <3, −1 <Z <1). It is a graph which shows hysteresis.
FIG. 8 shows an example of ErB 22 C 2 N which is an example of a polyboride represented by the general formula ErB 24 + X C 4 + Y N 1 + Z (−8 <X <8, −3 <Y <3, −1 <Z <1). It is a graph which shows the hysteresis in a small magnetic field.
FIG. 9 is a graph showing an X-ray diffraction pattern of the polyboride obtained in the example.

Claims (8)

一般式HoB24+X4+Y1+Z(−8<X<8,−3<Y<3,−1<Z<1)又はErB24+X4+Y1+Z(−8<X<8,−3<Y<3,−1<Z<1)で示される多ホウ化物を使用した磁気メモリー素子。Formula HoB 24 + X C 4 + Y N 1 + Z (-8 <X <8, -3 <Y <3, -1 <Z <1) or ErB 24 + X C 4 + Y N 1 + Z (-8 <X <8, -3 <Y < 3, a magnetic memory element using a polyboride represented by <1 <Z <1). 前記多ホウ化物が、一般式HoB26+X4+Y1+Z(−6<X<6,−2<Y<2,−1<Z<1)又はErB26+X4+Y1+Z(−6<X<6,−2<Y<2,−1<Z<1)で示される多ホウ化物である請求項1記載の磁気メモリー素子。The polyboride has a general formula of HoB 26 + X C 4 + Y N 1 + Z (−6 <X <6, −2 <Y <2, −1 <Z <1) or ErB 26 + X C 4 + Y N 1 + Z (−6 <X <6 2. The magnetic memory element according to claim 1, wherein the magnetic memory element is a polyboride represented by the formula: -2 <Y <2, -1 <Z <1). 前記多ホウ化物が、一般式HoB28+X4+Y1+Z(−4<X<4,−2<Y<2,−1<Z<1)又はErB28+X4+Y1+Z(−4<X<4,−2<Y<2,−1<Z<1)で示される多ホウ化物である請求項1記載の磁気メモリー素子。The multi boride, formula HoB 28 + X C 4 + Y N 1 + Z (-4 <X <4, -2 <Y <2, -1 <Z <1) or ErB 28 + X C 4 + Y N 1 + Z (-4 <X <4 2. The magnetic memory element according to claim 1, wherein the magnetic memory element is a polyboride represented by the formula: -2 <Y <2, -1 <Z <1). 前記多ホウ化物が、HoB28.5、HoB22N、HoB17CN、ErB28.5、ErB22N及びErB17CNのうちの何れかである請求項1記載の磁気メモリー素子。The multi boride, HoB 28.5 C 4, HoB 22 C 2 N, HoB 17 CN, ErB 28.5 C 4, ErB 22 C 2 N and ErB claim 1, wherein either of the 17 CN Magnetic memory element. 一般式HoB24+X4+Y1+Z(−8<X<8,−3<Y<3,−1<Z<1)又はErB24+X4+Y1+Z(−8<X<8,−3<Y<3,−1<Z<1)で示される多ホウ化物を使用した磁場センサー素子。Formula HoB 24 + X C 4 + Y N 1 + Z (-8 <X <8, -3 <Y <3, -1 <Z <1) or ErB 24 + X C 4 + Y N 1 + Z (-8 <X <8, -3 <Y < 3, a magnetic field sensor element using a polyboride represented by <Z <1). 前記多ホウ化物が、一般式HoB26+X4+Y1+Z(−6<X<6,−2<Y<2,−1<Z<1)又はErB26+X4+Y1+Z(−6<X<6,−2<Y<2,−1<Z<1)で示される多ホウ化物である請求項5記載の磁場センサー素子。The polyboride has a general formula of HoB 26 + X C 4 + Y N 1 + Z (−6 <X <6, −2 <Y <2, −1 <Z <1) or ErB 26 + X C 4 + Y N 1 + Z (−6 <X <6 The magnetic field sensor element according to claim 5, which is a polyboride represented by the formula: -2 <Y <2, -1 <Z <1). 前記多ホウ化物が、一般式HoB28+X4+Y1+Z(−4<X<4,−2<Y<2,−1<Z<1)又はErB28+X4+Y1+Z(−4<X<4,−2<Y<2,−1<Z<1)で示される多ホウ化物である請求項5記載の磁場センサー素子。The multi boride, formula HoB 28 + X C 4 + Y N 1 + Z (-4 <X <4, -2 <Y <2, -1 <Z <1) or ErB 28 + X C 4 + Y N 1 + Z (-4 <X <4 The magnetic field sensor element according to claim 5, which is a polyboride represented by the formula: -2 <Y <2, -1 <Z <1). 前記多ホウ化物が、HoB28.5、HoB22N、HoB17CN、ErB28.5、ErB22N及びErB17CNのうちの何れかである請求項5記載の磁場センサー素子。The multi boride, HoB 28.5 C 4, HoB 22 C 2 N, HoB 17 CN, ErB 28.5 C 4, ErB 22 C 2 N and ErB claim 5, wherein either of the 17 CN Magnetic field sensor element.
JP2003152590A 2003-05-29 2003-05-29 Magnetic memory element and magnetic field sensor element employing polyboride Pending JP2004356404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003152590A JP2004356404A (en) 2003-05-29 2003-05-29 Magnetic memory element and magnetic field sensor element employing polyboride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003152590A JP2004356404A (en) 2003-05-29 2003-05-29 Magnetic memory element and magnetic field sensor element employing polyboride

Publications (1)

Publication Number Publication Date
JP2004356404A true JP2004356404A (en) 2004-12-16

Family

ID=34047764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003152590A Pending JP2004356404A (en) 2003-05-29 2003-05-29 Magnetic memory element and magnetic field sensor element employing polyboride

Country Status (1)

Country Link
JP (1) JP2004356404A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053259A (en) * 2005-08-18 2007-03-01 National Institute For Materials Science CARBON, NITROGEN DOPED RARE EARTH MULTI-BORIDE BASED HIGH TEMPERATURE ACID RESISTANT n-TYPE THERMOELECTRIC CONVERSION MATERIAL AND ITS PRODUCTION PROCESS
JP2008094653A (en) * 2006-10-11 2008-04-24 National Institute For Materials Science Disprosium boron carbonitride and its producing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220130A (en) * 2000-01-31 2001-08-14 National Institute For Materials Science Rare-earth multiboride containing carbon and nitrogen and its manufacturing method
JP2001270712A (en) * 2000-03-27 2001-10-02 National Institute For Materials Science Silicon-containing gadolinium polyboride and method for producing the same
JP2002068729A (en) * 2000-08-28 2002-03-08 National Institute For Materials Science Rare earth borocarbide and its manufacturing method
JP2002068730A (en) * 2000-08-28 2002-03-08 National Institute For Materials Science Rare earth polyborides containing carbon and nitrogen, or only carbon, and its manufacturing method
JP2003137535A (en) * 2001-10-30 2003-05-14 National Institute For Materials Science Rare earth borosilicide and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220130A (en) * 2000-01-31 2001-08-14 National Institute For Materials Science Rare-earth multiboride containing carbon and nitrogen and its manufacturing method
JP2001270712A (en) * 2000-03-27 2001-10-02 National Institute For Materials Science Silicon-containing gadolinium polyboride and method for producing the same
JP2002068729A (en) * 2000-08-28 2002-03-08 National Institute For Materials Science Rare earth borocarbide and its manufacturing method
JP2002068730A (en) * 2000-08-28 2002-03-08 National Institute For Materials Science Rare earth polyborides containing carbon and nitrogen, or only carbon, and its manufacturing method
JP2003137535A (en) * 2001-10-30 2003-05-14 National Institute For Materials Science Rare earth borosilicide and its manufacturing method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAKAO MORI, ANDREAS LEITHE-JASPER: "Magnetism of the trigonal B12 cluster compound REB17CN(RE=Er,Ho)", JOURNAL OF APPLIED PHYSICS, vol. 93, no. 10, JPN6008025957, 15 May 2003 (2003-05-15), US, pages 7664 - 7666, XP012058251, ISSN: 0001053423, DOI: 10.1063/1.1543853 *
森 孝雄: "新しいスピングラス系;希土類B12ホウ素クラスター化合物", 日本物理学会講演概要集, vol. Vol.58, No.1-3, JPN6008025958, 6 March 2003 (2003-03-06), JP, pages 477, ISSN: 0001053424 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053259A (en) * 2005-08-18 2007-03-01 National Institute For Materials Science CARBON, NITROGEN DOPED RARE EARTH MULTI-BORIDE BASED HIGH TEMPERATURE ACID RESISTANT n-TYPE THERMOELECTRIC CONVERSION MATERIAL AND ITS PRODUCTION PROCESS
JP2008094653A (en) * 2006-10-11 2008-04-24 National Institute For Materials Science Disprosium boron carbonitride and its producing method

Similar Documents

Publication Publication Date Title
Liu et al. Preparation of Ca3Co4O9 and improvement of its thermoelectric properties by spark plasma sintering
Cox et al. Structure, heat capacity, and high-temperature thermal properties of Yb14Mn1− x Al x Sb11
Takenaka et al. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides
Martin et al. Optimization of the thermoelectric properties of Ba8Ga16Ge30
Shenoy et al. Vanadium: A protean dopant in snte for augmenting its thermoelectric performance
Hayashi et al. Fabrication of iodine-doped pentacene thin films for organic thermoelectric devices
Fukuoka et al. High-pressure synthesis and structure of a new silicon clathrate Ba24Si100
KR101663183B1 (en) Thermoelectric materials, and thermoelectric module and thermoelectric device comprising same
Perez et al. Improved power factor and mechanical properties of composites of Yb14MgSb11 with iron
Takagiwa et al. Effect of electron doping on thermoelectric properties for narrow-bandgap intermetallic compound RuGa2
Kim et al. Valence states and electronic structures of Co and Mn substituted spin gapless semiconductor PbPdO2
Shi et al. Enhanced power factor of higher manganese silicide via melt spin synthesis method
JP6365950B2 (en) Thermoelectric material and manufacturing method thereof
Turiansky et al. Prospects for n-type conductivity in cubic boron nitride
Sauerschnig et al. Thermoelectric properties of phase pure boron carbide prepared by a solution-based method
Park et al. Thermoelectric properties of Ca 0.8 Dy 0.2 MnO 3 synthesized by solution combustion process
Zhu et al. Controllable 2H/3R phase transition and conduction behavior change in MoSe2: Nb substitution by high pressure synthesis for promising thermoelectric conversion
Saeed et al. Thermoelectric performance of electron and hole doped PtSb2
JP2004356404A (en) Magnetic memory element and magnetic field sensor element employing polyboride
Xu et al. Thermoelectric properties of Heusler-type compound Fe2V1− xNbxAl
JP4081547B2 (en) Terbium multiboride thermoelectric element represented by TbB44Si2
KR101635638B1 (en) Thermoelectric materials and their manufacturing method
Takarabe et al. Structural study of FeSi2 under pressure
JP3427180B2 (en) Gd polyboride containing silicon and method for producing the same
JP4900580B2 (en) Dysprodium borocarbonitride and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303