JP2004355975A - Manufacturing method of display device - Google Patents

Manufacturing method of display device Download PDF

Info

Publication number
JP2004355975A
JP2004355975A JP2003153051A JP2003153051A JP2004355975A JP 2004355975 A JP2004355975 A JP 2004355975A JP 2003153051 A JP2003153051 A JP 2003153051A JP 2003153051 A JP2003153051 A JP 2003153051A JP 2004355975 A JP2004355975 A JP 2004355975A
Authority
JP
Japan
Prior art keywords
organic layer
layer
blue
light emitting
green
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003153051A
Other languages
Japanese (ja)
Inventor
Takanobu Shibazaki
孝宜 芝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003153051A priority Critical patent/JP2004355975A/en
Publication of JP2004355975A publication Critical patent/JP2004355975A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a display device in which occurrence of defects of non-emission is prevented and the display quality can be improved. <P>SOLUTION: The total film thickness of a red color organic layer 16R, a green color organic layer 16G, and a blue color organic layer 16B are made in the order of the red color organic layer 16R, green color organic layer 16G, and blue color organic layer 16B from the thick side, and they are formed in the order from the color layer of the total film thickness. Thereby, occurrence of many defects of non-emission due to repeated contact with a vapor deposition mask 100 in the blue color organic layer 16B which becomes thinnest of the total film thickness when a resonator structure is introduced is prevented. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、表示装置の製造方法に係り、特に、有機発光素子を用いた表示装置の製造方法に関する。
【0002】
【従来の技術】
従来から、有機発光素子の有機層を各色別に形成するため蒸着マスクをアライメントすると、先に蒸着された有機層に蒸着マスクが接触してしまい、有機層に傷を生じたり、蒸着マスクの異物が有機層に転写され、その結果、先に蒸着された有機層には、後から蒸着される有機層よりもダークスポットあるいは非発光欠陥が発生しやすくなることが知られている。この対策としては、非発光欠陥の周囲の輝度が高いと目立ってしまうことを考慮して、輝度の低い色から順に有機層を形成するということが行われている。通常、全白を表示した場合には、輝度が高い方から緑色,赤色,青色の順になるので、有機層の形成は、逆に輝度の低い方から青色,赤色,緑色の順に行うようにしている。
【0003】
ところで、有機発光素子については、共振器構造を導入することによって、発光色の色純度を向上させたり、輝度を高めるなど、発光層で発生する光を制御する試みが行われてきた(例えば、特許文献1参照。)。
【0004】
【特許文献1】
国際公開第01/39554号パンフレット
【0005】
【発明が解決しようとする課題】
このような共振器構造を導入した有機発光素子では、発光波長に応じて有機層の総膜厚が制御され、厚い方から赤色,緑色,青色の順になる。しかしながら、有機層を形成する際に、従来のように輝度の低い方から青色,赤色,緑色の順にすると、総膜厚の比較的薄い青色の有機層が何度も蒸着マスクに接触してしまい、青色の有機発光素子に多くの非発光欠陥が生じてしまうおそれがあるという問題があった。
【0006】
本発明はかかる問題点に鑑みてなされたもので、その目的は、非発光欠陥の発生を防止し、表示品質を高めることができる表示装置の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明による表示装置の製造方法は、基板に、赤色発光層を含む赤色有機層を有する赤色有機発光素子と、緑色発光層を含む緑色有機層を有する緑色有機発光素子と、青色発光層を含む青色有機層を有する青色有機発光素子とを備え、赤色有機層,緑色有機層および青色有機層の総膜厚を互いに異ならせた表示装置を製造するものであって、赤色有機層のうち少なくとも赤色発光層と、緑色有機層のうち少なくとも緑色発光層と、青色有機層のうち少なくとも青色発光層とを、赤色有機層,緑色有機層および青色有機層の総膜厚の厚い色から順に、各色別に形成するものである。ここで「総膜厚」とは、赤色有機層,緑色有機層および青色有機層が、赤色発光層,緑色発光層または青色発光層を含む複数の層の積層構造を有する場合にはそれらの複数の層の積層方向の膜厚の和をいい、赤色発光層,緑色発光層または青色発光層のみを有する場合には赤色発光層,緑色発光層または青色発光層の積層方向の膜厚をいう。
【0008】
本発明による表示装置の製造方法では、赤色有機層のうち少なくとも赤色発光層と、緑色有機層のうち少なくとも緑色発光層と、青色有機層のうち少なくとも青色発光層とが、赤色有機層,緑色有機層および青色有機層の総膜厚の厚い色から順に、各色別に形成される。よって、総膜厚の最も薄い色の発光層が最後に形成され、非発光欠陥の発生が防止される。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
【0010】
図1ないし図5は、本発明の一実施の形態に係る表示装置の製造方法を表すものである。まず、図1(A)に示したように、例えばガラスなどの絶縁材料よりなる基板11を用意し、この基板11の上にTFT12を形成する。続いて、同じく図1(A)に示したように、例えばポリイミドを塗布、露光、現像および焼成することにより、平坦化膜13を形成する。露光の際には、コンタクトホール13Aを形成する。
【0011】
次に、図1(B)に示したように、平坦化膜13の上に、例えばスパッタ法により、例えばクロムよりなる膜を例えば100nm〜150nmの厚みで成膜する。続いて、レジストを塗布し、露光および現像することにより図示しないマスクを形成し、このマスクを用いてクロム膜を選択的にエッチングして第1電極14を形成する。そののち、マスクを剥離する。
【0012】
続いて、図1(C)に示したように、第1電極14の上に、例えばポリイミドを塗布、露光、現像および焼成することにより、素子分離のための絶縁膜15を形成すると共に、発光領域に対応して開口部15Aを形成する。絶縁膜15の厚みTは例えば1μm、開口部15Aの幅Wは例えば数十μm〜百数十μmとすることができる。
【0013】
そののち、窒素(N)雰囲気下でベークを行い、酸素(O)プラズマにより基板11の前処理を行う。
【0014】
続いて、図2(A)ないし図3(A)を参照して以下に詳細に説明するように、赤色有機発光素子10Rの形成予定位置に、赤色発光層を含む赤色有機層16Rを形成し、緑色有機発光素子10Gの形成予定位置に、緑色発光層を含む緑色有機層16Gを形成し、青色有機発光素子10Bの形成予定位置に、青色発光層を含む青色有機層16Bを形成する。赤色有機層16R,緑色有機層16Gおよび青色有機層16Bの構成材料としては、例えば低分子材料を用いることができ、その場合、赤色有機層16R,緑色有機層16Gおよび青色有機層16Bは、蒸着マスクを用いた蒸着法により、各色別に形成することが好ましい。
【0015】
ここで、本実施の形態では、赤色有機層16R,緑色有機層16Gおよび青色有機層16Bを形成する際に、それらの総膜厚を異ならせる。これは、赤色有機発光素子10R,緑色有機発光素子10Gおよび青色有機発光素子10Bが後述するような共振器構造を有するようにするためである。すなわち、発光波長に応じて赤色有機層16R,緑色有機層16Gおよび青色有機層16Bの総膜厚を制御し、厚い方から赤色有機層16R,緑色有機層16G,青色有機層16Bの順とする。本実施の形態では、赤色有機層16Rの総膜厚を例えば150nm、緑色有機層16Gの総膜厚を例えば110nm、青色有機層16Bの総膜厚を例えば70nmとする。
【0016】
また、本実施の形態では、赤色有機層16R,緑色有機層16Gおよび青色有機層16Bを、それらの総膜厚の厚い色から順に形成する。これは、共振器構造を導入した場合に総膜厚が最も薄くなる青色有機層16Bに多くの非発光欠陥が発生するのを防止するためである。すなわち、まず、総膜厚の最も厚い赤色有機層16Rを形成し、次に、総膜厚の二番目に厚い緑色有機層16Gを形成し、最後に、総膜厚の最も薄い青色有機層16Bを形成する。
【0017】
まず、真空を破らずに基板11を蒸着装置の蒸着室へと搬送し、図2(A)に示したように、蒸着マスク100をアライメントし、この蒸着マスク100を用いて、第1電極14の上に、赤色正孔注入層16AR,赤色正孔輸送層16BR,赤色発光層16CRおよび赤色電子輸送層16DRを順に積層し、赤色有機層16Rを形成する。赤色正孔注入層16ARは、リークを防止するためのバッファ層であり、リークが支障のないレベルであれば省略可能である。赤色正孔輸送層16BRは、赤色発光層16CRへの正孔注入効率を高めるためのものである。赤色発光層16CRは、電界をかけることにより電子と正孔との再結合が起こり、光を発生するものであり、絶縁膜15の開口部15Aに対応した領域で発光するようになっている。赤色電子輸送層16DRは、赤色発光層16CRへの電子注入効率を高めるためのものである。蒸着マスク100は、厚みが十数μmないし数十μmであり、例えばニッケル(Ni)あるいはニッケルを含む合金など、着磁性のある材料により構成されている。
【0018】
赤色正孔注入層16ARの構成材料としては例えば4,4’,4”−トリス(3−メチルフェニルフェニルアミノ)トリフェニルアミン(m−MTDATA)あるいは4,4’,4”−トリス(2−ナフチルフェニルアミノ)トリフェニルアミン(2−TNATA)を用い、厚みを例えば15nm以上300nm以下とすることができる。赤色正孔輸送層16BRの構成材料としては例えばビス[(N−ナフチル)−N−フェニル]ベンジジン(α−NPD)を用い、厚みを例えば15nm以上100nm以下とすることができる。赤色発光層16CRの構成材料としては例えば8−キノリノールアルミニウム錯体(Alq)に2,6−ビス[4−[N−(4−メトキシフェニル)−N−フェニル]アミノスチリル]ナフタレン−1,5−ジカルボニトリル(BSN−BCN)を40体積%混合したものを用い、厚みを例えば15nm以上100nm以下とすることができる。赤色電子輸送層16DRの構成材料としては例えばAlqを用い、厚みを例えば15nm以上100nm以下とすることができる。
【0019】
そののち、真空を破らずに基板11を別の蒸着装置または蒸着室へと搬送し、図2(B)に示したように、蒸着マスク100をアライメントし、この蒸着マスク100を用いた蒸着法により、第1電極14の上に、緑色正孔注入層16AG,緑色正孔輸送層16BG,緑色発光層16CGおよび緑色電子輸送層16DGを含む緑色有機層16Gを形成する。緑色正孔注入層16AGは、リークを防止するためのバッファ層であり、リークが支障のないレベルであれば省略可能である。緑色正孔輸送層16BGは、緑色発光層16CGへの正孔注入効率を高めるためのものである。緑色発光層16CGは、電界をかけることにより電子と正孔との再結合が起こり、光を発生するものであり、絶縁膜15の開口部15Aに対応した領域で発光するようになっている。緑色電子輸送層16DGは、緑色発光層16CGへの電子注入効率を高めるためのものである。なお、蒸着マスク100は、赤色有機層16Rの形成に用いたものと同じものを用いてもよいし、別のものを用いてもよい。
【0020】
緑色正孔注入層16AGの構成材料としては例えばm−MTDATAあるいは2−TNATAを用い、厚みを例えば15nm以上300nm以下とすることができる。緑色正孔輸送層16BGの構成材料としては例えばα−NPDを用い、厚みを例えば15nm以上100nm以下とすることができる。緑色発光層16CGの構成材料としては例えばAlqにクマリン6(Coumarin6)を3体積%混合したものを用い、厚みを例えば15nm以上100nm以下とすることができる。緑色電子輸送層16DGの構成材料としては例えばAlqを用い、厚みを例えば15nm以上100nm以下とすることができる。
【0021】
続いて、真空を破らずに基板11を更に別の蒸着装置または蒸着室へと搬送し、図3(A)に示したように、蒸着マスク100をアライメントし、この蒸着マスク100を用いた蒸着法により、第1電極14の上に、青色正孔注入層16AB,青色正孔輸送層16BB,青色発光層16CBおよび青色電子輸送層16DBを含む青色有機層16Bを形成する。青色正孔注入層16ABは、リークを防止するためのバッファ層であり、リークが支障のないレベルであれば省略可能である。青色正孔輸送層16BBは、青色発光層16CBへの正孔注入効率を高めるためのものである。青色発光層16CBは、電界をかけることにより電子と正孔との再結合が起こり、光を発生するものであり、絶縁膜15の開口部15Aに対応した領域で発光するようになっている。青色電子輸送層16DBは、青色発光層16CBへの電子注入効率を高めるためのものである。なお、蒸着マスク100は、赤色有機層16Rまたは緑色有機層16Gの形成に用いたものと同じものを用いてもよいし、別のものを用いてもよい。
【0022】
青色正孔注入層16ABの構成材料としては例えばm−MTDATAあるいは2−TNATAを用い、厚みを例えば15nm以上300nm以下とすることができる。青色正孔輸送層16BBの構成材料としては例えばα−NPDを用い、厚みを例えば15nm以上100nm以下とすることができる。青色発光層16CBの構成材料としては例えばスピロ6Φ(spiro6Φ)を用い、厚みを例えば15nm以上100nm以下とすることができる。青色電子輸送層16DBの構成材料としては例えばAlqを用い、厚みを例えば15nm以上100nm以下とすることができる。
【0023】
このような順序をとる場合、最初に形成される赤色有機層16Rの上で蒸着マスク100をアライメントしたり交換したりすることになる。しかし、赤色有機層16Rは総膜厚が厚いため、従来のように青色有機層16Bを最初に形成する場合に比較して蒸着マスク100の接触による悪影響が小さくてすむ。
【0024】
そののち、真空を破らずに基板11を更に別の蒸着装置または蒸着室へと搬送し、図3(B)に示したように、図示しない蒸着マスクを用いて、例えばフッ化リチウム(LiF)よりなる電子注入層17およびマグネシウム(Mg)−銀(Ag)合金よりなる半透過性電極18Aを順に形成する。電子注入層17の厚みは例えば1nm、半透過性電極18Aの厚みは例えば10nmとすることができる。
【0025】
続いて、真空を破らずに基板11を更に別の蒸着装置または蒸着室へと搬送し、図4(A)に示したように、半透過性電極18Aの形成に用いた蒸着マスクと同様の図示しない蒸着マスクを用いて、例えばインジウム(In)と亜鉛(Zn)と酸素(O)とを含む化合物(IZO;Indium Zinc Oxide )よりなる透明電極18Bを形成する。透明電極18Bは、半透過性電極18Aの電気抵抗を下げるためのものであり、その厚みは例えば100nmとすることができる。これにより、半透過性電極18Aと透明電極18Bとが積層された第2電極18を形成する。
【0026】
そののち、真空を破らずに基板11を更に別の蒸着装置または蒸着室へと搬送し、図4(B)に示したように、図示しない蒸着マスクを用いて、例えば窒化ケイ素(SiN)よりなる保護膜19を形成する。保護膜19の厚みは例えば1μmとすることができる。
【0027】
続いて、図5に示したように、保護膜19の上に例えば熱硬化性樹脂よりなる接着層20を形成し、この接着層20を介して、基板11とカラーフィルタ32が形成された封止用基板31とを貼り合わせる。そのとき、加熱などにより接着層20を硬化させる前に、カラーフィルタ32と赤色有機層16R,緑色有機層16Gおよび青色有機層16Bとをアライメントしておくことが望ましい。以上により、基板11に、赤色有機層16Rを有する赤色有機発光素子10R,緑色有機層16Gを有する緑色有機発光素子10Gおよび青色有機層16Bを有する青色有機発光素子10Bを備えた表示装置が完成する。
【0028】
このようにして形成された赤色有機発光素子10R,緑色有機発光素子10Gおよび青色有機発光素子10Bは、第1電極14の赤色発光層16CR,緑色発光層16CGまたは青色発光層16CB側の端面を第1端部P1、半透過性電極18Aの赤色発光層16CR,緑色発光層16CGまたは青色発光層16CB側の端面を第2端部P2とし、赤色有機層16R,緑色有機層16Gまたは青色有機層16Bを共振部として、赤色発光層16CR,緑色発光層16CGまたは青色発光層16CBで発生した光を共振させて第2端部P2の側から取り出す共振器構造を有している。このように共振器構造を有するようにすれば、赤色発光層16CR,緑色発光層16CGまたは青色発光層16CBで発生した光が多重干渉を起こし、一種の狭帯域フィルタとして作用することにより、取り出される光のスペクトルの半値幅が減少し、色純度を向上させることができるので好ましい。また、封止用基板31から入射した外光についても多重干渉により減衰させることができ、カラーフィルタ32との組合せにより赤色有機発光素子10R,緑色有機発光素子10Gおよび青色有機発光素子10Bにおける外光の反射率を極めて小さくすることができるので好ましい。
【0029】
そのためには、共振器の第1端部P1と第2端部P2との間の光学的距離Lは数2を満たすようにし、共振器の共振波長(取り出される光のスペクトルのピーク波長)と、取り出したい光のスペクトルのピーク波長とを一致させることが好ましい。光学的距離Lは、実際には、数2を満たす正の最小値となるように選択することが好ましい。
【0030】
【数2】
(2L)/λ+Φ/(2π)=m
(式中、Lは第1端部P1と第2端部P2との間の光学的距離、Φは第1端部P1で生じる反射光の位相シフトΦと第2端部P2で生じる反射光の位相シフトΦとの和(Φ=Φ+Φ)(rad)、λは第2端部P2の側から取り出したい光のスペクトルのピーク波長、mはLが正となる整数をそれぞれ表す。なお、数2においてLおよびλは単位が共通すればよいが、例えば(nm)を単位とする。)
【0031】
この表示装置では、第1電極14と第2電極18との間に所定の電圧が印加されると、赤色発光層16CR,緑色発光層16CGまたは青色発光層16CBに電流が注入され、正孔と電子とが再結合することにより、発光が起こる。この光は、第1端部P1と第2端部P2との間で多重反射し、第2電極18,カラーフィルタ32および封止用基板31を透過して取り出される。このとき、赤色有機層16R,緑色有機層16Gおよび青色有機層16Bのうち総膜厚の最も薄い青色有機層16Bが最後に形成されているので、蒸着マスク100との度重なる接触に起因する青色有機層16Bのキズあるいは異物混入が防止されている。よって、青色有機層16Bに多くの非発光欠陥が発生することが防止される。
【0032】
このように、本実施の形態では、赤色有機層16R,緑色有機層16Gおよび青色有機層16Bを、それらの総膜厚の厚い色から順に、各色別に形成するようにしたので、総膜厚の最も薄い青色有機層16Bを最後に形成し、非発光欠陥の発生を防止して表示品質を高めることができる。
【0033】
〔変形例1〜変形例3〕
以下、本実施の形態の変形例1〜変形例3について説明する。
【0034】
本実施の形態において、赤色有機層16R,緑色有機層16Gおよび青色有機層16Bのうち材料または厚みの同じ層がある場合には、赤色有機層16R,緑色有機層16Gおよび青色有機層16Bに共通に形成するようにしてもよい。このようにすることにより、材料が共通化されると共に製造工程が単純化されるので、製造効率を高めることができ、量産体制の確立に有利である。以下の変形例1ないし変形例3はその具体例であるが、必ずしもこれらに限られるものではない。
【0035】
(変形例1)
例えば、図6(A)に示したように、赤色正孔注入層16AR,緑色正孔注入層16BRおよび青色正孔注入層16ABの材料および厚みを同じにして、赤色有機層16R,緑色有機層16Gおよび青色有機層16Bに共通の連続正孔注入層46Aを形成する。そののち、図6(B)に示したように、赤色正孔輸送層16BR,赤色発光層16CRおよび赤色電子輸送層16DRを形成し、総膜厚の最も厚い赤色有機層16Rを形成する。次に、図7(A)に示したように、緑色正孔輸送層16BG,緑色発光層16CGおよび緑色電子輸送層16DGを形成し、総膜厚の二番目に厚い緑色有機層16Gを形成する。最後に、図7(B)に示したように、青色正孔輸送層16BB,青色発光層16CBおよび青色電子輸送層16DBを形成し、総膜厚の最も薄い青色有機層16Bを形成する。なお、連続正孔注入層46Aは赤色有機層16R,緑色有機層16Gおよび青色有機層16Bのすべてに形成する必要はなく、それらのうち必要な色のみ、少なくとも2色に共通であればよい。
【0036】
(変形例2)
あるいは、赤色電子輸送層16DR,緑色電子輸送層16DRおよび青色電子輸送層16DBの材料および厚みを同じにしてもよい。この場合、まず、図8(A)に示したように、総膜厚の最も厚い赤色有機層16Rのうち赤色正孔注入層16AR,赤色正孔輸送層16BRおよび赤色発光層16CRを形成する。次に、図8(B)に示したように、総膜厚の二番目に厚い緑色有機層16Gのうち緑色正孔注入層16AG,緑色正孔輸送層16BGおよび緑色発光層16CGを形成する。続いて、図9(A)に示したように、総膜厚の最も薄い青色有機層16Bのうち青色正孔注入層16AB,青色正孔輸送層16BBおよび青色発光層16CBを形成する。最後に、図9(B)に示したように、赤色有機層16R,緑色有機層16Gおよび青色有機層16Bに共通の連続電子輸送層46Dを形成する。なお、連続電子輸送層46Dは赤色有機層16R,緑色有機層16Gおよび青色有機層16Bのすべてに形成する必要はなく、それらのうち必要な色のみ、少なくとも2色に共通であればよい。
【0037】
(変形例3)
更に、変形例1と変形例2とを重畳して行うようにしてもよい。例えば、赤色有機層16R,緑色有機層16Gおよび青色有機層16Bに共通の連続正孔注入層46Aを形成する。そののち、総膜厚の最も厚い赤色有機層16Rのうち赤色正孔輸送層16BRおよび赤色発光層16CRを形成し、次に、総膜厚の二番目に厚い緑色有機層のうち緑色正孔輸送層16BGおよび緑色発光層16CGを形成し、続いて、総膜厚の最も薄い青色有機層16Bのうち青色正孔輸送層16BBおよび青色発光層16CBを形成し、最後に、赤色有機層16R,緑色有機層16Gおよび青色有機層16Bに共通の連続電子輸送層46Dを形成する。
【0038】
【実施例】
更に、本発明の具体的な実施例について説明する。
【0039】
上記実施の形態と同様にして、表示装置を作製した。その際、赤色有機層16Rの総膜厚を150nm、緑色有機層16Gの総膜厚を110nm、青色有機層16Bの総膜厚を70nmとし、それらの総膜厚の厚い色から順に、すなわち赤色有機層16R,緑色有機層16G,青色有機層16Bの順で、各色別に形成した。
【0040】
本実施例に対する比較例として、従来のように輝度の低い色から順に、すなわち青色有機層16B,赤色有機層16R,緑色有機層16Gの順で、各色別に形成したことを除き、本実施例と同様にして表示装置を作製した。
【0041】
得られた実施例および比較例の表示装置について、所定の電流値で連続点灯させた場合の非発光欠陥の経時変化を調べた。その結果を図10に示す。図10では、比較例における360時間連続点灯させたときの青色の非発光欠陥の数を100として、実施例および比較例における各色の非発光欠陥の経時変化を表している。
【0042】
本実施例と比較例との初期特性を比較したところ、発光効率および色度は同等であったが、本実施例の方が比較例に比べて初期の非発光欠陥が少なかった。また、連続点灯させた場合の非発光欠陥の経時変化を比較したところ、比較例では特に青色で非発光欠陥が著しく増加したのに対して、本実施例では青色の非発光欠陥はほとんど増加せず、大幅に改善することができた。すなわち、赤色有機層,緑色有機層および青色有機層を、それらの総膜厚の厚い色から順に、各色別に形成するようにすれば、非発光欠陥の増加を抑えることができることが分かった。
【0043】
以上、実施の形態および実施例を挙げて本発明を説明したが、本発明は上記実施の形態および実施例に限定されるものではなく、種々変形が可能である。例えば、上記実施の形態では、赤色有機層16R,緑色有機層16Gおよび青色有機層16Bのすべての層を、総膜厚の厚い色から順に、各色別に形成するようにした場合について説明したが、赤色有機層16R,緑色有機層16Gおよび青色有機層16Bのうち材料または厚みの異なる層のみを、赤色有機層16R,緑色有機層16Gおよび青色有機層16Bの総膜厚の厚い色から順に、各色別に形成すれば足りる。
【0044】
具体的には、例えば、赤色有機層16Rのうち少なくとも赤色正孔輸送層16BRおよび赤色発光層16CRと、緑色有機層16Gのうち少なくとも緑色正孔輸送層16BGおよび緑色発光層16CGと、青色有機層16Bのうち少なくとも青色正孔輸送層16BBおよび青色発光層16CBとを、赤色有機層16R,緑色有機層16Gおよび青色有機層16Bの総膜厚の厚い色から順に、各色別に形成するようにしてもよい。なぜなら、赤色有機層16R,緑色有機層16Gおよび青色有機層16Bの総膜厚は、実際には、赤色正孔輸送層16BRおよび赤色発光層16CR,緑色正孔輸送層16BGおよび緑色発光層16CG,ならびに青色正孔輸送層16BBおよび青色発光層16CBの厚みのみを変えることにより、光学的距離Lが数2を満たすように制御することが可能な場合があるからである。また、赤色正孔注入層16AR,緑色正孔注入層16AGあるいは青色正孔注入層16AB、または赤色電子輸送層16BR,緑色電子輸送層16DGあるいは青色電子輸送層16DBは、しばしば省略され、あるいは、すべての色の有機発光素子に設けられるとは限らないからである。
【0045】
また、赤色有機層16R,緑色有機層16Gおよび青色有機層16Bの総膜厚を、赤色発光層16CR,緑色発光層16CGおよび青色発光層16CBの厚みのみを変えることにより、光学的距離Lが数2を満たすように制御することが可能な場合には、赤色有機層16Rのうち少なくとも赤色発光層16CRと、緑色有機層16Gのうち少なくとも緑色発光層16CGと、青色有機層16Bのうち少なくとも青色発光層16CBとを、赤色有機層16R,緑色有機層16Gおよび青色有機層16Bの総膜厚の厚い色から順に、各色別に形成するようにしてもよい。
【0046】
更にまた、上記実施の形態および実施例では、赤色有機層16R,緑色有機層16Gおよび青色有機層16Bを低分子材料により構成する場合について説明したが、本発明は、有機層に高分子材料を用いる場合にも適用することができる。ここで高分子材料とは、分子量10000以上のものである。この場合、例えば、赤色有機層は赤色正孔輸送層および赤色発光層を含み、緑色有機層は緑色正孔輸送層および緑色発光層を含み、青色有機層は青色正孔輸送層および青色発光層を含む構成とすることができる。また、共振器構造を導入する場合には、赤色有機層,緑色有機層および青色有機層の総膜厚は、赤色発光層,緑色発光層および青色発光層の厚みのみを変えることにより、光学的距離Lが数2を満たすように制御することが可能である。よって、赤色有機層のうち少なくとも赤色発光層と、緑色有機層のうち少なくとも緑色発光層と、青色有機層のうち少なくとも青色発光層とを、赤色有機層,緑色有機層および青色有機層の総膜厚の厚い色から順に、各色別に形成するようにすれば足りる。
【0047】
加えてまた、例えば、上記実施の形態において説明した各層の材料および厚み、または成膜方法および成膜条件などは限定されるものではなく、他の材料および厚みとしてもよく、または他の成膜方法および成膜条件としてもよい。例えば、上記実施の形態においては、基板11の上に、第1電極14,赤色有機層16R,緑色有機層16Gおよび青色有機層16B,ならびに第2電極18を基板11の側から順で積層し、封止用基板31の側から光を取り出すようにした場合について説明したが、積層順序を逆にして、基板11の上に、第2電極18,赤色有機層16R,緑色有機層16Gおよび青色有機層16B,ならびに第1電極14を基板11の側から順に積層し、基板11の側から光を取り出すようにすることもできる。
【0048】
更にまた、例えば、上記実施の形態では、第1電極14を陽極、第2電極18を陰極とする場合について説明したが、陽極および陰極を逆にして、第1電極14を陰極、第2電極18を陽極としてもよい。さらに、第1電極14を陰極、第2電極18を陽極とすると共に、基板11の上に、第2電極18,赤色有機層16R,緑色有機層16Gおよび青色有機層16B,ならびに第1電極14を基板11の側から順に積層し、基板11の側から光を取り出すようにすることもできる。
【0049】
加えてまた、上記実施の形態では、赤色有機発光素子10R,緑色有機発光素子10Gおよび青色有機発光素子10Bの構成を具体的に挙げて説明したが、全ての層を備える必要はなく、また、他の層を更に備えていてもよい。例えば、第1電極14と赤色有機層16R,緑色有機層16Gおよび青色有機層16Bとの間に、酸化クロム(III)(Cr),ITO(Indium−Tin Oxide:インジウム(In)およびスズ(Sn)の酸化物混合膜)などからなる正孔注入用薄膜層を備えていてもよい。また、例えば第1電極14を、誘電体多層膜またはAlなどの反射膜の上部に透明導電膜を積層した2層構造とすることもできる。この場合、この反射膜の発光層側の端面が共振部の端部を構成し、透明導電膜は共振部の一部を構成することになる。
【0050】
更にまた、上記実施の形態では、第2電極18が半透過性電極18Aと透明電極18Bとが第1電極14の側から順に積層されている場合について説明したが、第2電極14は、半透過性電極18Aのみを有する構成としてもよい。
【0051】
加えてまた、上記実施の形態において、半透過性電極18Aを一方の端部とし、透明電極18Bを挟んで半透過性電極18Aに対向する位置に他方の端部を設け、透明電極18Bを共振部とする共振器構造を形成するようにしてもよい。さらに、そのような共振器構造を設けた上で、赤色有機発光素子10R,緑色有機発光素子10Gおよび青色有機発光素子10Bを保護膜19で覆うようにし、この保護膜19を、透明電極18Aを構成する材料と同程度の屈折率を有する材料により構成すれば、保護膜19を共振部の一部とすることができ、好ましい。
【0052】
更にまた、本発明は、第2電極18を透明電極18Bにより構成すると共に、この透明電極18Bの赤色有機層16R,緑色有機層16Gおよび青色有機層16Bと反対側の端面の反射率が大きくなるように構成し、第1電極14の赤色発光層16R,緑色発光層16Gおよび青色発光層16B側の端面を第1端部、透明電極18Bの赤色有機層16R,緑色有機層16Gおよび青色有機層16Bと反対側の端面を第2端部とした共振器構造を構成した場合についても適用することができる。例えば、透明電極18Bを大気層に接触させ、透明電極18Bと大気層との境界面の反射率を大きくして、この境界面を第2端部としてもよい。また、接着層20との境界面での反射率を大きくして、この境界面を第2端部としてもよい。更に、保護膜19との境界面での反射率を大きくして、この境界面を第2端部としてもよい。
【0053】
【発明の効果】
以上説明したように本発明の表示装置の製造方法によれば、赤色有機層のうち少なくとも赤色発光層と、緑色有機層のうち少なくとも緑色発光層と、青色有機層のうち少なくとも青色発光層とを、赤色有機層,緑色有機層および青色有機層の総膜厚の厚い色から順に、各色別に形成するようにしたので、総膜厚の最も薄い色の発光層を最後に形成し、非発光欠陥の発生を防止して表示品質を高めることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る表示装置の製造方法を工程順に表す断面図である。
【図2】図1に続く工程を表す断面図である。
【図3】図2に続く工程を表す断面図である。
【図4】図3に続く工程を表す断面図である。
【図5】図4に続く工程を表す断面図である。
【図6】本発明の変形例1に係る表示装置の製造方法を工程順に表す断面図である。
【図7】図6に続く工程を表す断面図である。
【図8】本発明の変形例2に係る表示装置の製造方法を工程順に表す断面図である。
【図9】図8に続く工程を表す断面図である。
【図10】本発明の実施例および比較例における非発光欠陥の数の経時変化を表す図である。
【符号の説明】
10R…赤色有機発光素子、10G…緑色有機発光素子、10B…青色有機発光素子、11…基板、12…TFT、13…平坦化膜、13A…コンタクトホール、14…第1電極、15…絶縁膜、16R…赤色有機層、16AR…赤色正孔注入層、16BR…赤色正孔輸送層、16CR…赤色発光層、16DR…赤色電子輸送層、16G…緑色有機層、16AG…緑色正孔注入層、16BG…緑色正孔輸送層、16CG…緑色発光層、16DG…緑色電子輸送層、16B…青色有機層、16AB…青色正孔注入層、16BB…青色正孔輸送層、16CB…青色有機層、16DB…青色電子輸送層、17…電子注入層、18…第2電極、18A…半透過性電極、18B…透明電極、19…保護膜、20…接着層、31…封止用基板、32…カラーフィルタ、100…蒸着マスク
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a display device, and more particularly, to a method for manufacturing a display device using an organic light emitting device.
[0002]
[Prior art]
Conventionally, when an evaporation mask is aligned in order to form an organic layer of an organic light emitting element for each color, the evaporation mask comes into contact with the previously deposited organic layer, causing damage to the organic layer or foreign matter in the evaporation mask. It is known that dark spots or non-light-emitting defects are more likely to occur in an organic layer that has been transferred to an organic layer, and as a result, an organic layer that has been deposited earlier than an organic layer that is deposited later. As a countermeasure, an organic layer is formed in order from a color having a low luminance in consideration of the fact that the luminance around a non-luminous defect becomes prominent when the luminance is high. Normally, when displaying all white, the luminance becomes higher in the order of green, red and blue, so that the organic layer is formed in the order of blue, red and green in the order of lower luminance. I have.
[0003]
By the way, with respect to the organic light emitting device, attempts have been made to control the light generated in the light emitting layer, for example, by improving the color purity of the emitted light or increasing the luminance by introducing a resonator structure (for example, See Patent Document 1.).
[0004]
[Patent Document 1]
International Publication No. 01/39554 pamphlet
[0005]
[Problems to be solved by the invention]
In an organic light-emitting device incorporating such a resonator structure, the total thickness of the organic layer is controlled according to the emission wavelength, and the order of red, green, and blue is from the thicker. However, when forming the organic layer, if the order of blue, red, and green is as low as the conventional one, the blue organic layer having a relatively thin total thickness comes into contact with the deposition mask many times. There is a problem that many non-light emitting defects may occur in the blue organic light emitting element.
[0006]
The present invention has been made in view of such a problem, and an object of the present invention is to provide a method for manufacturing a display device capable of preventing non-light-emitting defects from occurring and improving display quality.
[0007]
[Means for Solving the Problems]
The method for manufacturing a display device according to the present invention includes a substrate, a red organic light emitting element having a red organic layer including a red light emitting layer, a green organic light emitting element having a green organic layer including a green light emitting layer, and a blue light emitting layer. A display device comprising a blue organic light-emitting element having a blue organic layer, wherein the total thickness of the red organic layer, the green organic layer, and the blue organic layer is different from each other. The light-emitting layer, at least the green light-emitting layer of the green organic layer, and at least the blue light-emitting layer of the blue organic layer are arranged in order from the color having the largest total thickness of the red organic layer, the green organic layer, and the blue organic layer for each color. To form. Here, the “total film thickness” means a plurality of layers when the red organic layer, the green organic layer, and the blue organic layer have a laminated structure of a plurality of layers including a red light emitting layer, a green light emitting layer, and a blue light emitting layer. In the case of having only a red light emitting layer, a green light emitting layer, or a blue light emitting layer, it refers to a film thickness in the stacking direction of a red light emitting layer, a green light emitting layer, or a blue light emitting layer.
[0008]
In the method for manufacturing a display device according to the present invention, at least the red light emitting layer of the red organic layer, at least the green light emitting layer of the green organic layer, and at least the blue light emitting layer of the blue organic layer are formed of a red organic layer and a green organic layer. The layers are formed for each color in order from the color having the largest total film thickness of the layer and the blue organic layer. Therefore, the light emitting layer having the lightest color in the total film thickness is formed last, and the occurrence of non-light emitting defects is prevented.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0010]
1 to 5 show a method for manufacturing a display device according to an embodiment of the present invention. First, as shown in FIG. 1A, a substrate 11 made of an insulating material such as glass is prepared, and a TFT 12 is formed on the substrate 11. Subsequently, as shown in FIG. 1A, for example, a flattening film 13 is formed by applying, exposing, developing, and firing polyimide. At the time of exposure, a contact hole 13A is formed.
[0011]
Next, as shown in FIG. 1B, a film made of, for example, chromium is formed on the flattening film 13 by, for example, a sputtering method so as to have a thickness of, for example, 100 nm to 150 nm. Subsequently, a resist (not shown) is formed by applying a resist, exposing and developing, and the chrome film is selectively etched using the mask to form the first electrode 14. After that, the mask is peeled off.
[0012]
Subsequently, as shown in FIG. 1C, an insulating film 15 for element isolation is formed on the first electrode 14 by applying, exposing, developing, and firing polyimide, for example, and light emission is performed. An opening 15A is formed corresponding to the region. The thickness T of the insulating film 15 can be, for example, 1 μm, and the width W of the opening 15A can be, for example, several tens μm to one hundred and several tens μm.
[0013]
After that, nitrogen (N 2 Bake) in an atmosphere and oxygen (O 2 2.) Pre-treating the substrate 11 with plasma.
[0014]
Subsequently, as described in detail below with reference to FIGS. 2A to 3A, a red organic layer 16R including a red light emitting layer is formed at a position where the red organic light emitting element 10R is to be formed. The green organic layer 16G including the green light emitting layer is formed at the position where the green organic light emitting element 10G is to be formed, and the blue organic layer 16B including the blue light emitting layer is formed at the position where the blue organic light emitting element 10B is to be formed. As a constituent material of the red organic layer 16R, the green organic layer 16G, and the blue organic layer 16B, for example, a low molecular material can be used. In this case, the red organic layer 16R, the green organic layer 16G, and the blue organic layer 16B are formed by evaporation. It is preferable to form each of the colors by an evaporation method using a mask.
[0015]
Here, in the present embodiment, when forming the red organic layer 16R, the green organic layer 16G, and the blue organic layer 16B, the total thickness thereof is made different. This is because the red organic light emitting element 10R, the green organic light emitting element 10G, and the blue organic light emitting element 10B have a resonator structure as described later. That is, the total thickness of the red organic layer 16R, the green organic layer 16G, and the blue organic layer 16B is controlled according to the emission wavelength, and the red organic layer 16R, the green organic layer 16G, and the blue organic layer 16B are arranged in order from the thicker. . In the present embodiment, the total thickness of the red organic layer 16R is, for example, 150 nm, the total thickness of the green organic layer 16G is, for example, 110 nm, and the total thickness of the blue organic layer 16B is, for example, 70 nm.
[0016]
Further, in the present embodiment, the red organic layer 16R, the green organic layer 16G, and the blue organic layer 16B are formed in order from the color having the larger total thickness. This is to prevent the occurrence of many non-light emitting defects in the blue organic layer 16B having the smallest total film thickness when the resonator structure is introduced. That is, first, the red organic layer 16R having the largest total thickness is formed, the green organic layer 16G having the second largest total thickness is formed, and finally, the blue organic layer 16B having the smallest total thickness is formed. To form
[0017]
First, the substrate 11 is transported to the deposition chamber of the deposition apparatus without breaking the vacuum, and the deposition mask 100 is aligned as shown in FIG. On top of this, a red hole injection layer 16AR, a red hole transport layer 16BR, a red light emitting layer 16CR, and a red electron transport layer 16DR are sequentially stacked to form a red organic layer 16R. The red hole injection layer 16AR is a buffer layer for preventing a leak, and can be omitted as long as the leak does not cause a problem. The red hole transport layer 16BR is for increasing the efficiency of hole injection into the red light emitting layer 16CR. The red light-emitting layer 16CR generates light by recombination of electrons and holes when an electric field is applied, and emits light in a region corresponding to the opening 15A of the insulating film 15. The red electron transport layer 16DR is for increasing the efficiency of injecting electrons into the red light emitting layer 16CR. The vapor deposition mask 100 has a thickness of about several tens μm to several tens μm, and is made of a magnetizable material such as nickel (Ni) or an alloy containing nickel.
[0018]
As a constituent material of the red hole injection layer 16AR, for example, 4,4 ', 4 "-tris (3-methylphenylphenylamino) triphenylamine (m-MTDATA) or 4,4', 4" -tris (2- Using (naphthylphenylamino) triphenylamine (2-TNATA), the thickness can be, for example, 15 nm or more and 300 nm or less. As a constituent material of the red hole transport layer 16BR, for example, bis [(N-naphthyl) -N-phenyl] benzidine (α-NPD) is used, and the thickness can be, for example, 15 nm or more and 100 nm or less. As a constituent material of the red light emitting layer 16CR, for example, an 8-quinolinol aluminum complex (Alq 3 ) Is mixed with 40% by volume of 2,6-bis [4- [N- (4-methoxyphenyl) -N-phenyl] aminostyryl] naphthalene-1,5-dicarbonitrile (BSN-BCN). The thickness can be, for example, 15 nm or more and 100 nm or less. As a constituent material of the red electron transport layer 16DR, for example, Alq 3 And the thickness can be, for example, 15 nm or more and 100 nm or less.
[0019]
After that, the substrate 11 is transferred to another evaporation apparatus or evaporation chamber without breaking the vacuum, and as shown in FIG. 2B, the evaporation mask 100 is aligned, and the evaporation method using the evaporation mask 100 is performed. Thereby, a green organic layer 16G including a green hole injection layer 16AG, a green hole transport layer 16BG, a green light emitting layer 16CG, and a green electron transport layer 16DG is formed on the first electrode 14. The green hole injection layer 16AG is a buffer layer for preventing leakage, and can be omitted as long as the leakage does not hinder. The green hole transport layer 16BG is for increasing the efficiency of hole injection into the green light emitting layer 16CG. In the green light emitting layer 16CG, the recombination of electrons and holes occurs when an electric field is applied to generate light, and light is emitted in a region corresponding to the opening 15A of the insulating film 15. The green electron transport layer 16DG is for increasing the efficiency of injecting electrons into the green light emitting layer 16CG. In addition, the same thing as the thing used for formation of the red organic layer 16R may be used for the vapor deposition mask 100, and another thing may be used.
[0020]
As a constituent material of the green hole injection layer 16AG, for example, m-MTDATA or 2-TNATA is used, and the thickness can be, for example, 15 nm or more and 300 nm or less. As the constituent material of the green hole transport layer 16BG, for example, α-NPD is used, and the thickness can be, for example, 15 nm or more and 100 nm or less. As a constituent material of the green light emitting layer 16CG, for example, Alq 3 And a thickness of, for example, 15 nm or more and 100 nm or less, which is obtained by mixing coumarin 6 with 3% by volume. As a constituent material of the green electron transport layer 16DG, for example, Alq 3 And the thickness can be, for example, 15 nm or more and 100 nm or less.
[0021]
Subsequently, the substrate 11 is transported to another vapor deposition apparatus or vapor deposition chamber without breaking vacuum, and the vapor deposition mask 100 is aligned as shown in FIG. The blue organic layer 16B including the blue hole injection layer 16AB, the blue hole transport layer 16BB, the blue light emitting layer 16CB, and the blue electron transport layer 16DB is formed on the first electrode 14 by the method. The blue hole injection layer 16AB is a buffer layer for preventing a leak, and can be omitted as long as the leak does not cause a problem. The blue hole transport layer 16BB is for increasing the efficiency of hole injection into the blue light emitting layer 16CB. In the blue light emitting layer 16CB, the recombination of electrons and holes occurs when an electric field is applied, and light is generated. The blue light emitting layer 16CB emits light in a region corresponding to the opening 15A of the insulating film 15. The blue electron transport layer 16DB is for increasing the efficiency of injecting electrons into the blue light emitting layer 16CB. Note that the same evaporation mask as that used for forming the red organic layer 16R or the green organic layer 16G may be used, or another evaporation mask may be used.
[0022]
As a constituent material of the blue hole injection layer 16AB, for example, m-MTDATA or 2-TNATA is used, and the thickness can be, for example, 15 nm or more and 300 nm or less. As a constituent material of the blue hole transport layer 16BB, for example, α-NPD is used, and the thickness can be, for example, 15 nm or more and 100 nm or less. As a constituent material of the blue light emitting layer 16CB, for example, spiro 6Φ (spiro6Φ) is used, and the thickness can be, for example, 15 nm or more and 100 nm or less. As a constituent material of the blue electron transport layer 16DB, for example, Alq 3 And the thickness can be, for example, 15 nm or more and 100 nm or less.
[0023]
In such an order, the deposition mask 100 is to be aligned or replaced on the red organic layer 16R to be formed first. However, since the total thickness of the red organic layer 16R is large, the adverse effect due to the contact with the deposition mask 100 is smaller than in the case where the blue organic layer 16B is first formed as in the related art.
[0024]
Thereafter, the substrate 11 is transported to another vapor deposition apparatus or vapor deposition chamber without breaking the vacuum, and as shown in FIG. 3B, for example, lithium fluoride (LiF) An electron injection layer 17 made of and a semi-permeable electrode 18A made of a magnesium (Mg) -silver (Ag) alloy are formed in order. The thickness of the electron injection layer 17 can be, for example, 1 nm, and the thickness of the translucent electrode 18A can be, for example, 10 nm.
[0025]
Subsequently, the substrate 11 is transported to another vapor deposition apparatus or vapor deposition chamber without breaking the vacuum, and as shown in FIG. 4A, the same as the vapor deposition mask used to form the semi-transparent electrode 18A. Using a vapor deposition mask (not shown), a transparent electrode 18B made of, for example, a compound containing indium (In), zinc (Zn), and oxygen (O) (IZO; Indium Zinc Oxide) is formed. The transparent electrode 18B is for lowering the electric resistance of the semi-transmissive electrode 18A, and the thickness thereof can be, for example, 100 nm. Thereby, the second electrode 18 in which the semi-transparent electrode 18A and the transparent electrode 18B are stacked is formed.
[0026]
After that, the substrate 11 is transported to another vapor deposition apparatus or vapor deposition chamber without breaking the vacuum, and as shown in FIG. 4B, for example, silicon nitride (SiN x ) Is formed. The thickness of the protective film 19 can be, for example, 1 μm.
[0027]
Subsequently, as shown in FIG. 5, an adhesive layer 20 made of, for example, a thermosetting resin is formed on the protective film 19, and the sealing substrate on which the substrate 11 and the color filter 32 are formed is formed via the adhesive layer 20. The stop substrate 31 is bonded. At this time, it is desirable that the color filter 32 be aligned with the red organic layer 16R, the green organic layer 16G, and the blue organic layer 16B before the adhesive layer 20 is cured by heating or the like. As described above, a display device including the red organic light emitting element 10R having the red organic layer 16R, the green organic light emitting element 10G having the green organic layer 16G, and the blue organic light emitting element 10B having the blue organic layer 16B on the substrate 11 is completed. .
[0028]
The red organic light-emitting element 10R, the green organic light-emitting element 10G, and the blue organic light-emitting element 10B formed as described above have the first electrode 14 on the side of the red light-emitting layer 16CR, the green light-emitting layer 16CG, or the blue light-emitting layer 16CB. One end P1, the end face of the translucent electrode 18A on the side of the red light emitting layer 16CR, the green light emitting layer 16CG or the blue light emitting layer 16CB is a second end P2, and the red organic layer 16R, the green organic layer 16G or the blue organic layer 16B. Is used as a resonance portion, a resonator structure is provided that resonates light generated in the red light emitting layer 16CR, the green light emitting layer 16CG, or the blue light emitting layer 16CB and extracts the light from the second end P2 side. With such a resonator structure, light generated in the red light emitting layer 16CR, the green light emitting layer 16CG or the blue light emitting layer 16CB causes multiple interference, and acts as a kind of narrow band filter, thereby being extracted. This is preferable because the half width of the light spectrum can be reduced and the color purity can be improved. External light incident from the sealing substrate 31 can also be attenuated by multiple interference, and in combination with the color filter 32, external light in the red organic light emitting element 10R, the green organic light emitting element 10G, and the blue organic light emitting element 10B. Is preferable because the reflectance of the film can be extremely reduced.
[0029]
For this purpose, the optical distance L between the first end P1 and the second end P2 of the resonator is set so as to satisfy Equation 2, and the resonance wavelength of the resonator (the peak wavelength of the extracted light spectrum) It is preferable to match the peak wavelength of the spectrum of the light to be extracted. In practice, it is preferable that the optical distance L is selected so as to be a positive minimum value that satisfies Expression 2.
[0030]
(Equation 2)
(2L) / λ + Φ / (2π) = m
(Where L is the optical distance between the first end P1 and the second end P2, and Φ is the phase shift Φ of the reflected light generated at the first end P1. 1 And the phase shift Φ of the reflected light generated at the second end P2 2 (Φ = Φ 1 + Φ 2 ), (Rad) and λ are peak wavelengths of the spectrum of light to be extracted from the side of the second end P2, and m is an integer where L is positive. Note that, in Expression 2, L and λ may have the same unit, but for example, the unit is (nm). )
[0031]
In this display device, when a predetermined voltage is applied between the first electrode 14 and the second electrode 18, a current is injected into the red light emitting layer 16CR, the green light emitting layer 16CG, or the blue light emitting layer 16CB, and holes and holes are removed. Light is emitted by recombination with electrons. This light is multiple-reflected between the first end P1 and the second end P2, passes through the second electrode 18, the color filter 32, and the sealing substrate 31, and is extracted. At this time, since the blue organic layer 16B having the smallest total thickness among the red organic layer 16R, the green organic layer 16G, and the blue organic layer 16B is formed last, the blue color resulting from repeated contact with the deposition mask 100 is obtained. The organic layer 16B is prevented from being scratched or mixed with foreign matter. Therefore, generation of many non-light-emitting defects in the blue organic layer 16B is prevented.
[0032]
As described above, in the present embodiment, the red organic layer 16R, the green organic layer 16G, and the blue organic layer 16B are formed for each color in order from the color having the largest total film thickness. The thinnest blue organic layer 16B is formed last, thereby preventing non-light emitting defects from occurring and improving display quality.
[0033]
[Modifications 1 to 3]
Hereinafter, Modification Examples 1 to 3 of the present embodiment will be described.
[0034]
In the present embodiment, when there is a layer having the same material or thickness among the red organic layer 16R, the green organic layer 16G, and the blue organic layer 16B, the red organic layer 16R, the green organic layer 16G, and the blue organic layer 16B are common. May be formed. By doing so, the material is shared and the manufacturing process is simplified, so that the manufacturing efficiency can be increased and it is advantageous for establishing a mass production system. The following Modifications 1 to 3 are specific examples, but are not necessarily limited thereto.
[0035]
(Modification 1)
For example, as shown in FIG. 6A, the materials and thicknesses of the red hole injection layer 16AR, the green hole injection layer 16BR, and the blue hole injection layer 16AB are the same, and the red organic layer 16R and the green organic layer 16AR. A continuous hole injection layer 46A common to 16G and the blue organic layer 16B is formed. After that, as shown in FIG. 6B, a red hole transport layer 16BR, a red light emitting layer 16CR, and a red electron transport layer 16DR are formed, and a red organic layer 16R having the largest total film thickness is formed. Next, as shown in FIG. 7A, a green hole transport layer 16BG, a green light emitting layer 16CG, and a green electron transport layer 16DG are formed, and a green organic layer 16G having the second largest total thickness is formed. . Finally, as shown in FIG. 7B, a blue hole transport layer 16BB, a blue light emitting layer 16CB, and a blue electron transport layer 16DB are formed, and a blue organic layer 16B having the smallest total thickness is formed. The continuous hole injection layer 46A does not need to be formed on all of the red organic layer 16R, the green organic layer 16G, and the blue organic layer 16B, and it is sufficient that only necessary colors among them are common to at least two colors.
[0036]
(Modification 2)
Alternatively, the materials and thicknesses of the red electron transport layer 16DR, the green electron transport layer 16DR, and the blue electron transport layer 16DB may be the same. In this case, first, as shown in FIG. 8A, a red hole injection layer 16AR, a red hole transport layer 16BR, and a red light emitting layer 16CR of the red organic layer 16R having the largest total film thickness are formed. Next, as shown in FIG. 8B, a green hole injection layer 16AG, a green hole transport layer 16BG, and a green light emitting layer 16CG of the second thickest green organic layer 16G having the total thickness are formed. Subsequently, as shown in FIG. 9A, a blue hole injection layer 16AB, a blue hole transport layer 16BB, and a blue light emitting layer 16CB are formed among the blue organic layers 16B having the smallest total thickness. Finally, as shown in FIG. 9B, a continuous electron transport layer 46D common to the red organic layer 16R, the green organic layer 16G, and the blue organic layer 16B is formed. The continuous electron transport layer 46D does not need to be formed on all of the red organic layer 16R, the green organic layer 16G, and the blue organic layer 16B, and it is sufficient that only necessary colors among them are common to at least two colors.
[0037]
(Modification 3)
Further, Modification 1 and Modification 2 may be performed in an overlapping manner. For example, a continuous hole injection layer 46A common to the red organic layer 16R, the green organic layer 16G, and the blue organic layer 16B is formed. After that, the red hole transport layer 16BR and the red light emitting layer 16CR of the red organic layer 16R having the largest total film thickness are formed, and then the green hole transport layer of the second thickest green organic layer having the total film thickness is formed. A blue hole transport layer 16BB and a blue light emitting layer 16CB of a blue organic layer 16B having the smallest total thickness, and finally, a red organic layer 16R and a green light emitting layer 16CG. A continuous electron transport layer 46D common to the organic layer 16G and the blue organic layer 16B is formed.
[0038]
【Example】
Further, specific examples of the present invention will be described.
[0039]
A display device was manufactured in the same manner as in the above embodiment. At that time, the total thickness of the red organic layer 16R is 150 nm, the total thickness of the green organic layer 16G is 110 nm, and the total thickness of the blue organic layer 16B is 70 nm. An organic layer 16R, a green organic layer 16G, and a blue organic layer 16B were formed in this order for each color.
[0040]
As a comparative example with respect to the present embodiment, the present embodiment is different from the present embodiment except that the color is formed for each color in order from the color having the lowest luminance, that is, in the order of the blue organic layer 16B, the red organic layer 16R, and the green organic layer 16G. A display device was manufactured in the same manner.
[0041]
With respect to the obtained display devices of the example and the comparative example, the change with time of the non-light-emitting defect when continuously lit at a predetermined current value was examined. The result is shown in FIG. FIG. 10 shows the change over time of the non-light emitting defect of each color in the example and the comparative example, with the number of blue non-light emitting defects in the comparative example being continuously lit for 360 hours as 100.
[0042]
When the initial characteristics of this example and the comparative example were compared, the luminous efficiency and the chromaticity were equivalent, but the initial non-light-emitting defect was smaller in this example than in the comparative example. Further, when the non-light-emitting defects in the case of continuous lighting were compared with time, the non-light-emitting defects in blue in the comparative example increased remarkably, whereas the non-light-emitting defects in blue hardly increased in this example. But could be greatly improved. That is, it has been found that the non-light-emitting defect can be suppressed from increasing by forming the red organic layer, the green organic layer, and the blue organic layer in order from the color having the largest total thickness of each color.
[0043]
As described above, the present invention has been described with reference to the embodiment and the example. However, the present invention is not limited to the above-described embodiment and example, and can be variously modified. For example, in the above-described embodiment, a case has been described in which all of the red organic layer 16R, the green organic layer 16G, and the blue organic layer 16B are formed for each color in order from the color having the largest total film thickness. Of the red organic layer 16R, the green organic layer 16G, and the blue organic layer 16B, only layers having different materials or thicknesses are arranged in order from the color having the larger total thickness of the red organic layer 16R, the green organic layer 16G, and the blue organic layer 16B. It is sufficient if it is formed separately.
[0044]
Specifically, for example, at least the red hole transport layer 16BR and the red light emitting layer 16CR of the red organic layer 16R, at least the green hole transport layer 16BG and the green light emitting layer 16CG of the green organic layer 16G, and the blue organic layer At least the blue hole transport layer 16BB and the blue light emitting layer 16CB of the 16B are formed for each color in order from the color having the largest total thickness of the red organic layer 16R, the green organic layer 16G, and the blue organic layer 16B. Good. This is because the total thickness of the red organic layer 16R, the green organic layer 16G, and the blue organic layer 16B is actually the red hole transport layer 16BR and the red light emitting layer 16CR, the green hole transport layer 16BG, and the green light emitting layer 16CG, Also, by changing only the thicknesses of the blue hole transport layer 16BB and the blue light emitting layer 16CB, it may be possible to control the optical distance L to satisfy Equation 2. Further, the red hole injection layer 16AR, the green hole injection layer 16AG, or the blue hole injection layer 16AB, or the red electron transport layer 16BR, the green electron transport layer 16DG, or the blue electron transport layer 16DB is often omitted, or all of them are omitted. This is because the color is not necessarily provided in the organic light emitting element of the color.
[0045]
Further, by changing the total thickness of the red organic layer 16R, the green organic layer 16G, and the blue organic layer 16B only by changing the thicknesses of the red light emitting layer 16CR, the green light emitting layer 16CG, and the blue light emitting layer 16CB, the optical distance L is reduced. 2, it is possible to control at least the red light emitting layer 16CR of the red organic layer 16R, at least the green light emitting layer 16CG of the green organic layer 16G, and at least the blue light emitting of the blue organic layer 16B. The layer 16CB may be formed for each color in order from the color having the largest total thickness of the red organic layer 16R, the green organic layer 16G, and the blue organic layer 16B.
[0046]
Furthermore, in the above-described embodiments and examples, the case where the red organic layer 16R, the green organic layer 16G, and the blue organic layer 16B are made of a low molecular material has been described. It can also be applied when used. Here, the polymer material has a molecular weight of 10,000 or more. In this case, for example, the red organic layer includes a red hole transport layer and a red light emitting layer, the green organic layer includes a green hole transport layer and a green light emitting layer, and the blue organic layer includes a blue hole transport layer and a blue light emitting layer. May be included. When a resonator structure is introduced, the total thickness of the red organic layer, the green organic layer, and the blue organic layer is changed by changing only the thicknesses of the red, green, and blue light emitting layers. It is possible to control so that the distance L satisfies Equation 2. Therefore, at least a red light emitting layer of the red organic layer, at least a green light emitting layer of the green organic layer, and at least a blue light emitting layer of the blue organic layer are formed as a total film of a red organic layer, a green organic layer, and a blue organic layer. It is sufficient to form each color in order from the thickest color.
[0047]
In addition, for example, the material and thickness of each layer described in the above embodiment, or the film forming method and the film forming conditions are not limited, and other materials and thicknesses may be used. The method and the film forming conditions may be used. For example, in the above-described embodiment, the first electrode 14, the red organic layer 16R, the green organic layer 16G and the blue organic layer 16B, and the second electrode 18 are sequentially stacked on the substrate 11 from the substrate 11 side. Although the case where light is extracted from the side of the sealing substrate 31 has been described, the stacking order is reversed, and the second electrode 18, the red organic layer 16R, the green organic layer 16G, and the blue The organic layer 16 </ b> B and the first electrode 14 may be sequentially stacked from the substrate 11 side, and light may be extracted from the substrate 11 side.
[0048]
Further, for example, in the above embodiment, the case where the first electrode 14 is an anode and the second electrode 18 is a cathode has been described. However, the anode and the cathode are reversed, and the first electrode 14 is a cathode, and the second electrode 18 is a cathode. 18 may be used as the anode. Further, while the first electrode 14 is a cathode and the second electrode 18 is an anode, the second electrode 18, the red organic layer 16R, the green organic layer 16G and the blue organic layer 16B, and the first electrode 14 are formed on the substrate 11. Can be stacked in order from the substrate 11 side, and light can be extracted from the substrate 11 side.
[0049]
In addition, in the above-described embodiment, the configurations of the red organic light emitting element 10R, the green organic light emitting element 10G, and the blue organic light emitting element 10B have been specifically described. However, it is not necessary to include all the layers. Other layers may be further provided. For example, between the first electrode 14 and the red organic layer 16R, the green organic layer 16G, and the blue organic layer 16B, chromium (III) oxide (Cr 2 O 3 ), ITO (Indium-Tin Oxide: mixed oxide film of indium (In) and tin (Sn)) or the like. Further, for example, the first electrode 14 may have a two-layer structure in which a transparent conductive film is laminated on a dielectric multilayer film or a reflective film such as Al. In this case, the end face of the reflection film on the light emitting layer side constitutes the end of the resonance part, and the transparent conductive film constitutes a part of the resonance part.
[0050]
Furthermore, in the above-described embodiment, the case where the second electrode 18 has the semi-transmissive electrode 18A and the transparent electrode 18B laminated in order from the side of the first electrode 14 has been described. A configuration having only the transmissive electrode 18A may be adopted.
[0051]
In addition, in the above-described embodiment, the semi-transmissive electrode 18A is used as one end, and the other end is provided at a position facing the semi-transmissive electrode 18A with the transparent electrode 18B interposed therebetween. A resonator structure serving as a portion may be formed. Further, after providing such a resonator structure, the red organic light-emitting element 10R, the green organic light-emitting element 10G, and the blue organic light-emitting element 10B are covered with a protective film 19, and the protective film 19 is covered with a transparent electrode 18A. It is preferable that the protective film 19 be made of a material having the same refractive index as the constituent material, since the protective film 19 can be a part of the resonance part.
[0052]
Furthermore, in the present invention, the second electrode 18 is constituted by the transparent electrode 18B, and the reflectance of the transparent electrode 18B at the end face on the side opposite to the red organic layer 16R, the green organic layer 16G, and the blue organic layer 16B is increased. The first light emitting layer 16R, the green light emitting layer 16G, and the blue light emitting layer 16B side of the first electrode 14 have the first end, the red organic layer 16R, the green organic layer 16G, and the blue organic layer of the transparent electrode 18B. The present invention can also be applied to a case where a resonator structure having the end face opposite to 16B as the second end is formed. For example, the transparent electrode 18B may be brought into contact with the atmosphere layer to increase the reflectance at the interface between the transparent electrode 18B and the atmosphere layer, and this interface may be used as the second end. Alternatively, the reflectance at the interface with the adhesive layer 20 may be increased, and this interface may be used as the second end. Further, the reflectance at the interface with the protective film 19 may be increased, and this interface may be used as the second end.
[0053]
【The invention's effect】
As described above, according to the display device manufacturing method of the present invention, at least the red light emitting layer of the red organic layer, at least the green light emitting layer of the green organic layer, and at least the blue light emitting layer of the blue organic layer , Red organic layer, green organic layer, and blue organic layer are formed for each color in order from the color having the largest total thickness. Can be prevented and display quality can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a method of manufacturing a display device according to an embodiment of the present invention in the order of steps.
FIG. 2 is a cross-sectional view illustrating a process following the process in FIG.
FIG. 3 is a sectional view illustrating a step following the step of FIG. 2;
FIG. 4 is a sectional view illustrating a step following FIG. 3;
FIG. 5 is a sectional view illustrating a step following FIG. 4;
FIG. 6 is a cross-sectional view illustrating a method of manufacturing a display device according to Modification Example 1 of the present invention in the order of steps.
FIG. 7 is a cross-sectional view illustrating a process following the process in FIG.
FIG. 8 is a cross-sectional view illustrating a method of manufacturing a display device according to Modification 2 of the present invention in the order of steps.
FIG. 9 is a cross-sectional view illustrating a process following the process in FIG.
FIG. 10 is a diagram illustrating a change over time in the number of non-light-emitting defects in an example of the present invention and a comparative example.
[Explanation of symbols]
10R: Red organic light emitting element, 10G: Green organic light emitting element, 10B: Blue organic light emitting element, 11: Substrate, 12: TFT, 13: Flattening film, 13A: Contact hole, 14: First electrode, 15: Insulating film , 16R: red organic layer, 16AR: red hole injection layer, 16BR: red hole transport layer, 16CR: red light emitting layer, 16DR: red electron transport layer, 16G: green organic layer, 16AG: green hole injection layer, 16BG: green hole transport layer, 16CG: green light emitting layer, 16DG: green electron transport layer, 16B: blue organic layer, 16AB: blue hole injection layer, 16BB: blue hole transport layer, 16CB: blue organic layer, 16DB ... blue electron transport layer, 17 ... electron injection layer, 18 ... second electrode, 18A ... semi-transparent electrode, 18B ... transparent electrode, 19 ... protective film, 20 ... adhesive layer, 31 ... sealing substrate, 32 ... color Filter, 100 ... deposition mask

Claims (8)

基板に、赤色発光層を含む赤色有機層を有する赤色有機発光素子と、緑色発光層を含む緑色有機層を有する緑色有機発光素子と、青色発光層を含む青色有機層を有する青色有機発光素子とを備え、前記赤色有機層,前記緑色有機層および前記青色有機層の総膜厚を互いに異ならせた表示装置の製造方法であって、
前記赤色有機層のうち少なくとも前記赤色発光層と、前記緑色有機層のうち少なくとも前記緑色発光層と、前記青色有機層のうち少なくとも前記青色発光層とを、前記赤色有機層,前記緑色有機層および前記青色有機層の総膜厚の厚い色から順に、各色別に形成する
ことを特徴とする表示装置の製造方法。
On the substrate, a red organic light emitting element having a red organic layer including a red light emitting layer, a green organic light emitting element having a green organic layer including a green light emitting layer, and a blue organic light emitting element having a blue organic layer including a blue light emitting layer A method for manufacturing a display device, wherein the total thickness of the red organic layer, the green organic layer, and the blue organic layer is different from each other,
At least the red light emitting layer of the red organic layer, at least the green light emitting layer of the green organic layer, and at least the blue light emitting layer of the blue organic layer, the red organic layer, the green organic layer and A method for manufacturing a display device, comprising forming a blue organic layer for each color in order from the color having the largest total thickness.
前記赤色有機発光素子,前記緑色有機発光素子および前記青色有機発光素子は、前記赤色発光層,前記緑色発光層および前記青色発光層で発生した光を第1端部と第2端部との間で共振させる共振器構造を有するものである
ことを特徴とする請求項1記載の表示装置の製造方法。
The red organic light emitting element, the green organic light emitting element, and the blue organic light emitting element emit light generated in the red light emitting layer, the green light emitting layer, and the blue light emitting layer between a first end and a second end. 2. The method for manufacturing a display device according to claim 1, wherein the method has a resonator structure that resonates at a time.
前記第1端部で生じる反射光の位相シフトと前記第2端部で生じる反射光の位相シフトとの和をΦ、前記第1端部と前記第2端部との間の光学的距離をL、前記第2端部の側から取り出したい光のスペクトルのピーク波長をλとすると、前記光学的距離が数1を満たすようにする
ことを特徴とする請求項2記載の表示装置の製造方法。
Figure 2004355975
The sum of the phase shift of the reflected light generated at the first end and the phase shift of the reflected light generated at the second end is Φ, and the optical distance between the first end and the second end is Φ. 3. The method of manufacturing a display device according to claim 2, wherein the optical distance satisfies Equation 1 where L is a peak wavelength of a spectrum of light to be extracted from the side of the second end. .
Figure 2004355975
前記赤色有機層,前記緑色有機層および前記青色有機層の総膜厚を、厚い方から赤色有機層,緑色有機層,青色有機層の順とする
ことを特徴とする請求項3記載の表示装置の製造方法。
4. The display device according to claim 3, wherein the total thickness of the red organic layer, the green organic layer, and the blue organic layer is, in order from a thicker one, a red organic layer, a green organic layer, and a blue organic layer. Manufacturing method.
前記赤色有機層のうち少なくとも前記赤色発光層および赤色正孔輸送層と、前記緑色有機層のうち少なくとも前記緑色発光層および緑色正孔輸送層と、前記青色有機層のうち少なくとも前記青色発光層および青色正孔輸送層とを、前記赤色有機層,前記緑色有機層および前記青色有機層の総膜厚の厚い色から順に、各色別に形成する
ことを特徴とする請求項1記載の表示装置の製造方法。
At least the red light emitting layer and the red hole transport layer of the red organic layer, at least the green light emitting layer and the green hole transport layer of the green organic layer, and at least the blue light emitting layer of the blue organic layer 2. The manufacturing method of a display device according to claim 1, wherein the blue hole transport layer is formed for each color in order from a color having a larger total thickness of the red organic layer, the green organic layer, and the blue organic layer. Method.
前記赤色有機層,前記緑色有機層および前記青色有機層のうち材料および厚みの同じ層を、前記赤色有機層,前記緑色有機層および前記青色有機層のうち少なくとも2色に共通の連続層として形成する
ことを特徴とする請求項1記載の表示装置の製造方法。
A layer having the same material and thickness among the red organic layer, the green organic layer, and the blue organic layer is formed as a continuous layer common to at least two colors of the red organic layer, the green organic layer, and the blue organic layer. The method for manufacturing a display device according to claim 1, wherein:
前記赤色有機層,前記緑色有機層および前記青色有機層を、低分子材料により構成する
ことを特徴とする請求項1記載の表示装置の製造方法。
2. The method according to claim 1, wherein the red organic layer, the green organic layer, and the blue organic layer are made of a low molecular material.
前記赤色有機層,前記緑色有機層および前記青色有機層を、蒸着マスクを用いた蒸着法により、各色別に形成する
ことを特徴とする請求項1記載の表示装置の製造方法。
The method according to claim 1, wherein the red organic layer, the green organic layer, and the blue organic layer are formed for each color by an evaporation method using an evaporation mask.
JP2003153051A 2003-05-29 2003-05-29 Manufacturing method of display device Pending JP2004355975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153051A JP2004355975A (en) 2003-05-29 2003-05-29 Manufacturing method of display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153051A JP2004355975A (en) 2003-05-29 2003-05-29 Manufacturing method of display device

Publications (1)

Publication Number Publication Date
JP2004355975A true JP2004355975A (en) 2004-12-16

Family

ID=34048115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153051A Pending JP2004355975A (en) 2003-05-29 2003-05-29 Manufacturing method of display device

Country Status (1)

Country Link
JP (1) JP2004355975A (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033472A1 (en) * 2004-09-24 2006-03-30 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
WO2006095728A1 (en) * 2005-03-11 2006-09-14 Idemitsu Kosan Co., Ltd. Organic electroluminescent color light-emitting device
JP2006260779A (en) * 2005-03-15 2006-09-28 Seiko Epson Corp Manufacturing method of electrooptical device, droplet discharge device, electrooptical device and electronic apparatus
JP2007026852A (en) * 2005-07-15 2007-02-01 Seiko Epson Corp Organic electroluminescent device, manufacturing method of organic electroluminescent device, and electronic equipment
KR100796602B1 (en) 2006-08-08 2008-01-21 삼성에스디아이 주식회사 Organic light emitting display device and fabrication method thereof
WO2008120714A1 (en) * 2007-03-29 2008-10-09 Dai Nippon Printing Co., Ltd. Organic electroluminescent element and process for producing the same
KR100879476B1 (en) 2007-09-28 2009-01-20 삼성모바일디스플레이주식회사 Organic light emitting device
JP2009064703A (en) * 2007-09-07 2009-03-26 Sony Corp Organic light-emitting display device
JP2009117343A (en) * 2007-10-18 2009-05-28 Seiko Epson Corp Light emitting device and electronic equipment
US7973467B2 (en) 2007-11-15 2011-07-05 Samsung Mobile Display Co., Ltd. Organic light emitting device
JP2011233521A (en) * 2010-04-28 2011-11-17 Samsung Mobile Display Co Ltd Thin film deposition device, method for manufacturing organic light-emitting display device utilizing the device, and organic light-emitting display device manufactured by using the method
US8102111B2 (en) 2005-07-15 2012-01-24 Seiko Epson Corporation Electroluminescence device, method of manufacturing electroluminescence device, and electronic apparatus
US8142910B2 (en) 2008-03-04 2012-03-27 Samsung Mobile Display Co., Ltd. Organic light-emitting device
JP2012156136A (en) * 2012-03-09 2012-08-16 Sony Corp Organic light emitting display device
US8274212B2 (en) 2007-12-28 2012-09-25 Samsung Mobile Display Co., Ltd. Organic light emitting device including first hole injection layer and second hole injection layer
US8557398B2 (en) 2007-12-24 2013-10-15 Samsung Display Co., Ltd. Organic light emitting device
US8633473B2 (en) 2004-12-28 2014-01-21 Semiconductor Energy Laboratory Co., Ltd. High contrast light emitting device and method for manufacturing the same
US8729795B2 (en) 2005-06-30 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
US8852687B2 (en) 2010-12-13 2014-10-07 Samsung Display Co., Ltd. Organic layer deposition apparatus
US8859325B2 (en) 2010-01-14 2014-10-14 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8859043B2 (en) 2011-05-25 2014-10-14 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8865252B2 (en) 2010-04-06 2014-10-21 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8871542B2 (en) 2010-10-22 2014-10-28 Samsung Display Co., Ltd. Method of manufacturing organic light emitting display apparatus, and organic light emitting display apparatus manufactured by using the method
US8876975B2 (en) 2009-10-19 2014-11-04 Samsung Display Co., Ltd. Thin film deposition apparatus
US8882556B2 (en) 2010-02-01 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8882922B2 (en) 2010-11-01 2014-11-11 Samsung Display Co., Ltd. Organic layer deposition apparatus
US8906731B2 (en) 2011-05-27 2014-12-09 Samsung Display Co., Ltd. Patterning slit sheet assembly, organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus, and the organic light-emitting display apparatus
US8916237B2 (en) 2009-05-22 2014-12-23 Samsung Display Co., Ltd. Thin film deposition apparatus and method of depositing thin film
US8951610B2 (en) 2011-07-04 2015-02-10 Samsung Display Co., Ltd. Organic layer deposition apparatus
US8968829B2 (en) 2009-08-25 2015-03-03 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8973525B2 (en) 2010-03-11 2015-03-10 Samsung Display Co., Ltd. Thin film deposition apparatus
JP2015120982A (en) * 2010-04-28 2015-07-02 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Thin film deposition device, method for manufacturing organic light-emitting display device utilizing the device, and organic light-emitting display device manufactured by using the method
US9121095B2 (en) 2009-05-22 2015-09-01 Samsung Display Co., Ltd. Thin film deposition apparatus
US9249493B2 (en) 2011-05-25 2016-02-02 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display apparatus by using the same
US9279177B2 (en) 2010-07-07 2016-03-08 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
CN105590947A (en) * 2014-11-07 2016-05-18 三星显示有限公司 Organic light emitting display device
US9388488B2 (en) 2010-10-22 2016-07-12 Samsung Display Co., Ltd. Organic film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US9450140B2 (en) 2009-08-27 2016-09-20 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same
US9748483B2 (en) 2011-01-12 2017-08-29 Samsung Display Co., Ltd. Deposition source and organic layer deposition apparatus including the same
US9905809B2 (en) 2005-01-21 2018-02-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US10246769B2 (en) 2010-01-11 2019-04-02 Samsung Display Co., Ltd. Thin film deposition apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323277A (en) * 1999-05-12 2000-11-24 Pioneer Electronic Corp Organic electroluminescent multi-color display and its manufacture
WO2001039554A1 (en) * 1999-11-22 2001-05-31 Sony Corporation Display device
JP2002367787A (en) * 2001-06-05 2002-12-20 Tohoku Pioneer Corp Organic el display device and its manufacturing method
JP2003142277A (en) * 2001-10-31 2003-05-16 Tohoku Pioneer Corp Organic el color display, and manufacturing method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323277A (en) * 1999-05-12 2000-11-24 Pioneer Electronic Corp Organic electroluminescent multi-color display and its manufacture
WO2001039554A1 (en) * 1999-11-22 2001-05-31 Sony Corporation Display device
JP2002367787A (en) * 2001-06-05 2002-12-20 Tohoku Pioneer Corp Organic el display device and its manufacturing method
JP2003142277A (en) * 2001-10-31 2003-05-16 Tohoku Pioneer Corp Organic el color display, and manufacturing method of the same

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8450755B2 (en) 2004-09-24 2013-05-28 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7601988B2 (en) 2004-09-24 2009-10-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7875893B2 (en) 2004-09-24 2011-01-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8188491B2 (en) 2004-09-24 2012-05-29 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8723196B2 (en) 2004-09-24 2014-05-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
WO2006033472A1 (en) * 2004-09-24 2006-03-30 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US9147820B2 (en) 2004-12-28 2015-09-29 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method for manufacturing the same
US8633473B2 (en) 2004-12-28 2014-01-21 Semiconductor Energy Laboratory Co., Ltd. High contrast light emitting device and method for manufacturing the same
US9905809B2 (en) 2005-01-21 2018-02-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US10333108B2 (en) 2005-01-21 2019-06-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
WO2006095728A1 (en) * 2005-03-11 2006-09-14 Idemitsu Kosan Co., Ltd. Organic electroluminescent color light-emitting device
TWI411350B (en) * 2005-03-11 2013-10-01 Idemitsu Kosan Co Organic electroluminescent light - emitting device
JP2006253015A (en) * 2005-03-11 2006-09-21 Idemitsu Kosan Co Ltd Organic electroluminescence color light-emitting device
US7956529B2 (en) 2005-03-11 2011-06-07 Idemitsu Kosan Co., Ltd. Organic electroluminescent color light-emitting apparatus with organic electroluminescent devices with adjusted optical distances between electrodes
KR101232592B1 (en) * 2005-03-11 2013-02-12 이데미쓰 고산 가부시키가이샤 Organic Electroluminescent Color Light-Emitting Device
JP2006260779A (en) * 2005-03-15 2006-09-28 Seiko Epson Corp Manufacturing method of electrooptical device, droplet discharge device, electrooptical device and electronic apparatus
US8729795B2 (en) 2005-06-30 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
US9391128B2 (en) 2005-06-30 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
JP2007026852A (en) * 2005-07-15 2007-02-01 Seiko Epson Corp Organic electroluminescent device, manufacturing method of organic electroluminescent device, and electronic equipment
US8102111B2 (en) 2005-07-15 2012-01-24 Seiko Epson Corporation Electroluminescence device, method of manufacturing electroluminescence device, and electronic apparatus
JP4548253B2 (en) * 2005-07-15 2010-09-22 セイコーエプソン株式会社 ORGANIC ELECTROLUMINESCENT DEVICE AND METHOD FOR MANUFACTURING ORGANIC ELECTROLUMINESCENT DEVICE
KR100796602B1 (en) 2006-08-08 2008-01-21 삼성에스디아이 주식회사 Organic light emitting display device and fabrication method thereof
JP5333211B2 (en) * 2007-03-29 2013-11-06 大日本印刷株式会社 Organic electroluminescence device and method for manufacturing the same
WO2008120714A1 (en) * 2007-03-29 2008-10-09 Dai Nippon Printing Co., Ltd. Organic electroluminescent element and process for producing the same
US8471461B2 (en) 2007-03-29 2013-06-25 Dai Nippon Printing Co., Ltd. Organic electroluminescent device and method for producing the same
JPWO2008120714A1 (en) * 2007-03-29 2010-07-15 大日本印刷株式会社 Organic electroluminescence device and method for manufacturing the same
JP2009064703A (en) * 2007-09-07 2009-03-26 Sony Corp Organic light-emitting display device
KR100879476B1 (en) 2007-09-28 2009-01-20 삼성모바일디스플레이주식회사 Organic light emitting device
JP2009117343A (en) * 2007-10-18 2009-05-28 Seiko Epson Corp Light emitting device and electronic equipment
US7973467B2 (en) 2007-11-15 2011-07-05 Samsung Mobile Display Co., Ltd. Organic light emitting device
US8557398B2 (en) 2007-12-24 2013-10-15 Samsung Display Co., Ltd. Organic light emitting device
US8274212B2 (en) 2007-12-28 2012-09-25 Samsung Mobile Display Co., Ltd. Organic light emitting device including first hole injection layer and second hole injection layer
US8142910B2 (en) 2008-03-04 2012-03-27 Samsung Mobile Display Co., Ltd. Organic light-emitting device
US8916237B2 (en) 2009-05-22 2014-12-23 Samsung Display Co., Ltd. Thin film deposition apparatus and method of depositing thin film
US9873937B2 (en) 2009-05-22 2018-01-23 Samsung Display Co., Ltd. Thin film deposition apparatus
US11624107B2 (en) 2009-05-22 2023-04-11 Samsung Display Co., Ltd. Thin film deposition apparatus
US11920233B2 (en) 2009-05-22 2024-03-05 Samsung Display Co., Ltd. Thin film deposition apparatus
US10689746B2 (en) 2009-05-22 2020-06-23 Samsung Display Co., Ltd. Thin film deposition apparatus
US9121095B2 (en) 2009-05-22 2015-09-01 Samsung Display Co., Ltd. Thin film deposition apparatus
US8968829B2 (en) 2009-08-25 2015-03-03 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US9450140B2 (en) 2009-08-27 2016-09-20 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same
US9224591B2 (en) 2009-10-19 2015-12-29 Samsung Display Co., Ltd. Method of depositing a thin film
US8876975B2 (en) 2009-10-19 2014-11-04 Samsung Display Co., Ltd. Thin film deposition apparatus
US10246769B2 (en) 2010-01-11 2019-04-02 Samsung Display Co., Ltd. Thin film deposition apparatus
US10287671B2 (en) 2010-01-11 2019-05-14 Samsung Display Co., Ltd. Thin film deposition apparatus
US8859325B2 (en) 2010-01-14 2014-10-14 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8882556B2 (en) 2010-02-01 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8973525B2 (en) 2010-03-11 2015-03-10 Samsung Display Co., Ltd. Thin film deposition apparatus
US9453282B2 (en) 2010-03-11 2016-09-27 Samsung Display Co., Ltd. Thin film deposition apparatus
US8865252B2 (en) 2010-04-06 2014-10-21 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
JP2011233521A (en) * 2010-04-28 2011-11-17 Samsung Mobile Display Co Ltd Thin film deposition device, method for manufacturing organic light-emitting display device utilizing the device, and organic light-emitting display device manufactured by using the method
US8894458B2 (en) 2010-04-28 2014-11-25 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
JP2015120982A (en) * 2010-04-28 2015-07-02 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Thin film deposition device, method for manufacturing organic light-emitting display device utilizing the device, and organic light-emitting display device manufactured by using the method
US9136310B2 (en) 2010-04-28 2015-09-15 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US9279177B2 (en) 2010-07-07 2016-03-08 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8871542B2 (en) 2010-10-22 2014-10-28 Samsung Display Co., Ltd. Method of manufacturing organic light emitting display apparatus, and organic light emitting display apparatus manufactured by using the method
US9388488B2 (en) 2010-10-22 2016-07-12 Samsung Display Co., Ltd. Organic film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8882922B2 (en) 2010-11-01 2014-11-11 Samsung Display Co., Ltd. Organic layer deposition apparatus
US8852687B2 (en) 2010-12-13 2014-10-07 Samsung Display Co., Ltd. Organic layer deposition apparatus
US9748483B2 (en) 2011-01-12 2017-08-29 Samsung Display Co., Ltd. Deposition source and organic layer deposition apparatus including the same
US9249493B2 (en) 2011-05-25 2016-02-02 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display apparatus by using the same
US8859043B2 (en) 2011-05-25 2014-10-14 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8906731B2 (en) 2011-05-27 2014-12-09 Samsung Display Co., Ltd. Patterning slit sheet assembly, organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus, and the organic light-emitting display apparatus
US8951610B2 (en) 2011-07-04 2015-02-10 Samsung Display Co., Ltd. Organic layer deposition apparatus
JP2012156136A (en) * 2012-03-09 2012-08-16 Sony Corp Organic light emitting display device
CN105590947A (en) * 2014-11-07 2016-05-18 三星显示有限公司 Organic light emitting display device

Similar Documents

Publication Publication Date Title
JP2004355975A (en) Manufacturing method of display device
US7923920B2 (en) Organic light-emitting elements of LED with light reflection layers in each spaced on opposite sides of transparent conductive layer
JP5109303B2 (en) Organic light emitting device and display device
US7339315B2 (en) Full color organic light-emitting device having color modulation layer
US7750559B2 (en) Organic electroluminescent element array
US7126269B2 (en) Organic electroluminescence device
TWI392128B (en) Organic light emitting device, method for producing thereof and array comprising a plurality of organic light emitting devices
JP5574450B2 (en) ORGANIC LIGHT EMITTING DEVICE, ORGANIC LIGHT EMITTING DEVICE, ORGANIC DISPLAY PANEL, ORGANIC DISPLAY DEVICE, AND ORGANIC LIGHT EMITTING DEVICE MANUFACTURING METHOD
US8384102B2 (en) OLED or group of adjacent OLEDs with a light-extraction layer efficient over a large range of wavelengths
KR100805141B1 (en) Organic el device manufacturing method and organic el device
US7230374B2 (en) Full color organic light-emitting device having color modulation layer
US20060181204A1 (en) Flexible organic light emitting devices
WO2011039950A1 (en) Light-emitting element and display device using same
US8183564B2 (en) Multicolor display apparatus
US20150008417A1 (en) Display device
JP2006073219A (en) Display device and its manufacturing method
JP2011018468A (en) Organic el display device
US20080081105A1 (en) Method of fabricating full color organic light-emtting device having color modulation layer using liti method
JP4479250B2 (en) Display device manufacturing method and display device
US8188500B2 (en) Organic light-emitting element and light-emitting device using the same
US8063558B2 (en) Multi-color display apparatus
JP4736284B2 (en) Display device and manufacturing method thereof
WO2020194411A1 (en) Light-emitting element and light-emitting device
JP2010010111A (en) Organic el display device and method of manufacturing the same
JP2003045659A (en) Display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518