JP2004353554A - Control device of vehicular cooling fan - Google Patents

Control device of vehicular cooling fan Download PDF

Info

Publication number
JP2004353554A
JP2004353554A JP2003152163A JP2003152163A JP2004353554A JP 2004353554 A JP2004353554 A JP 2004353554A JP 2003152163 A JP2003152163 A JP 2003152163A JP 2003152163 A JP2003152163 A JP 2003152163A JP 2004353554 A JP2004353554 A JP 2004353554A
Authority
JP
Japan
Prior art keywords
cooling
vehicle
cooling fan
control device
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003152163A
Other languages
Japanese (ja)
Inventor
Akihiro Koike
章寛 小池
Satoshi Ogiwara
智 荻原
Makoto Fukubayashi
誠 福林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003152163A priority Critical patent/JP2004353554A/en
Publication of JP2004353554A publication Critical patent/JP2004353554A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently and rapidly perform cooling in a cabin when an air-conditioner switch is turned on. <P>SOLUTION: The ambient air temperature Tamb is detected by an ambient air temperature sensor 11, and it is determined that the rapid cooling is necessary if the ambient air temperature Tamb exceeds a predetermined value Tamb1 when an air-conditioner switch is turned on, and a cooling fan 3 is rotated at a medium or high speed by the control signal from a controller 10 (the initial control). It is determined that the rapid cooling is unnecessary if the ambient air temperature Tamb is not higher than the predetermined value Tamb1, and the cooling fan 3 is operated according to the cooling request from an engine 4 and the cooling request from a vehicular air-conditioner (the normal control). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ラジエータやコンデンサなどの熱交換器に冷却風を送風する車両用冷却ファンの制御装置に関する。
【0002】
【従来の技術】
従来、エアコンスイッチのオン/オフ、車速、エンジン冷却水温度、および冷媒吐出圧力に応じて冷却ファンの稼働を制御するようにした装置が知られている(例えば特許文献1参照)。これによれば、エアコンスイッチがオンされた時に冷媒吐出圧力が所定値より大きいとファンを低速で稼働し、エンジン冷却水温が所定温度(例えば100℃)以上になるとファンを高速で稼働する。
【0003】
【特許文献1】
特開平4−128511号公報
【0004】
【発明が解決しようとする課題】
上述したように従来の装置では、エアコンスイッチのオン後、エンジン冷却水温の上昇に伴い冷却ファンの稼働状態が低速から高速へと推移する。そのため、例えば夏場の車両放置後にエアコンスイッチをオンする場合、車室内の急速冷房が必要であるにも拘わらず、冷却ファンを即座に高速運転することができず、冷媒の冷却に時間がかかり、車室内の急速冷房(クールダウン)が困難であった。
【0005】
本発明は、車室内を効率的に急速冷房することができる車両用冷却ファンの制御装置を提供するものである。
【0006】
【課題を解決するための手段】
本発明による車両用冷却ファンの制御装置は、エンジンを冷却する冷却媒体の熱交換器と車両用空調装置の冷却媒体の熱交換器とに送風する冷却ファンと、車両が受ける熱量と相関関係を有する物理量を検出する熱量検出手段と、熱量検出手段により検出された物理量に応じて、空調開始指令が出力された際に車室内の急速冷房の要否を判定する判定手段と、判定手段により急速冷房が不要と判定されると、エンジンからの冷却要求および車両用空調装置からの冷却要求に応じて冷却ファンを制御し(以下、通常制御)、判定手段により急速冷房が必要と判定されると、エンジンからの冷却要求および前記車両用空調装置からの冷却要求に拘わらず、冷却媒体を急速冷却するように冷却ファンを制御する(以下、初期制御)、ファン制御手段とを備えることを特徴とする。
【0007】
【発明の効果】
本発明によれば、車両が受ける熱量に応じて車室内の急速冷却の要否を判定し、急速冷却が不要と判定されるとエンジンからの冷却要求および車両用空調装置からの冷却要求に応じて冷却ファンを制御し、急速冷却が必要と判定されるとエンジンからの冷却要求および車両用空調装置からの冷却要求に拘わらず冷却媒体を急速冷却するように冷却ファンを制御するので、短時間で冷媒を冷却することができ、車室内を効率的に急速冷房することができる。
【0008】
【発明の実施の形態】
−第1の実施の形態−
以下、図1〜図4を参照して本発明による車両用冷却ファンの制御装置の第1の実施の形態について説明する。
図1は、本実施の形態に係わる制御装置の全体構成を示す図である。車両前部にはコンデンサ1およびラジエータ2が略平行に並設され、これら熱交換器の通気面はそれぞれ車両前方に向けられている。ラジエータ2の後方には車幅方向に一対の冷却ファン3が配置されている。冷却ファン3は電動ファンであり、コントローラ10からの制御信号により回転し、車両前方から空気を吸い込む。なお、冷却ファン3は低、中、高の3段階に回転数を変更可能であり、低、中、高の回転数の比は例えば1:2:4である。冷却ファン3の後方にはエンジン4が配設されている。エンジン4とラジエータ2は配管(不図示)を介して接続され、エンジン4内を通過した冷却水は、ラジエータ2で外気と熱交換して放熱され、エンジン4に戻る。
【0009】
エンジン4には、エンジン4により駆動される空調用コンプレッサ5が連結されている。コンプレッサ5は、コンデンサ1、膨張弁6、エバポレータ7とともに冷凍サイクルを形成し、エアコンスイッチのオンによりコンプレッサ5は駆動する。コンプレッサ5の駆動により圧縮された冷媒は、コンデンサ1で外気と熱交換して放熱された後、膨張弁6で膨張される。そして、ブロアファン8から送風された空気と空調ダクト(不図示)内のエバポレータ7で熱交換して吸熱され、空調ダクト内の空気を冷却する。なお、空調ダクト内のエバポレータ7の下流には、図示しないヒータコアやエアミックスドアなどが配設されている。空調ダクトからの吹出温度は、温度調整ダイヤル等により設定された設定温度に応じて制御され、車室内温度は設定温度に近づけられる。以上が車両用空調装置の構成である。
【0010】
コントローラ10には、外気温Tambを検出する外気センサ11からの信号と、車室内温度Tcarを検出する内気センサ12からの信号と、エバポレータ下流の空気温度(吸込温度)Tintを検出する吸込温度センサ13からの信号と、日射量Qsunを検出する日射センサ14からの信号と、車速vを検出する車速センサ15からの信号と、エンジン冷却水温Twを検出する水温センサ16からの信号と、高圧側の冷媒圧力(冷媒吐出圧力)Pdを検出する圧力センサ17からの信号と、エンジンオイルの油温を検出する油温センサ18からの信号がそれぞれ入力される。コントローラ10はこれらからの入力信号に基づき、以下のような処理を実行して、冷却ファン3の稼働を制御する。
【0011】
図2は、コントローラ10内で実行される冷却ファン3の初期制御の一例を示すフローチャートである。このフローチャートは、エンジンキースイッチのオン後、エアコンスイッチがオンされるとスタートする。なお、エンジンキースイッチのオン後、エアコンスイッチがオンされないとき、またはエアコンスイッチがオフされたときは冷却ファン3の通常制御(ステップS2)を行う。
【0012】
エアコンスイッチがオンされると、ステップS1で外気センサ11により検出された外気温Tambと予め定めた所定値Tamb1およびTamb2との大小を比較する。ここで、所定値Tamb1,Tamb2は初期状態における車室内の急速冷却の要否を判定するための基準値である。すなわち外気温Tambが高いほど大気から車両が受ける熱量が大きく、初期の車両の熱負荷が大きくなるため、外気温Tambに基づいて急速冷却の要否を判定する。ステップS1で外気温Tambが所定値Tamb1以下、すなわち車両の熱負荷が小さいと判定されるとテップS2に進み、後述する通常制御を実行する。
【0013】
ステップS1で外気温Tambが所定値Tamb1より大きく、かつ、所定値Tamb2以下、すなわち車両の熱負荷が中程度と判定されるとステップS3に進み、冷却ファン3が中速で回転(Mid運転)するように冷却ファン駆動回路に制御信号を出力する。一方、ステップS1で外気温Tambが所定値Tamb2より大きい、すなわち車両の熱負荷が大きいと判定されるとステップS4に進み、冷却ファン3が高速で回転(Hi運転)するように冷却ファン駆動回路に制御信号を出力する。
【0014】
ステップS3またはステップS4の処理が終了するとステップS5に進み、圧力センサ17により検出された冷媒吐出圧力Pdと予め定めた所定値Pd1およびPd2との大小を比較する。ここで、所定値Pd1,Pd2は、冷媒の冷却の程度を判定するための基準値であり、冷媒吐出圧力Pdが所定値Pd1以下、すなわち冷媒の冷却が十分と判定されるとステップS2に進み、通常制御を実行する。
【0015】
ステップS5で冷媒吐出圧力Pdが所定値Pd1より大きく、かつ、所定値Pd2以下、すなわち冷媒の冷却がやや不足であると判定されるとステップS3に戻り、冷却ファン3が中速で回転するように制御信号を出力する。一方、ステップS5で冷媒吐出圧力Pdが所定値Pd2より大きい、すなわち冷媒の冷却が大きく不足していると判定されるとステップS4に戻り、冷却ファン3が高速で回転するように制御信号を出力する。
【0016】
ここで、ステップS2の通常制御について説明する。図3は、通常制御時の冷却ファン3の稼働状態を示す図である。通常制御時には、エアコンスイッチのオン/オフと、車速センサ15により検出された車速vと、水温センサ16により検出されたエンジン冷却水温Twと、圧力センサ17により検出された冷媒吐出圧力Pdに応じた制御信号が冷却ファン駆動回路に出力される。すなわちエンジン冷却水温Twから求まるエンジン4の冷却要求と冷媒吐出圧力Pdから求まる空調装置の冷却要求に応じて、以下のように冷却ファン3を稼働する。
【0017】
(1)v≦v1
車速vが所定値v1以下でエアコンスイッチがオフのとき、水温Twが所定値tw1以下ではファン回転をOFFし、水温Twが所定値tw1を越えると水温の上昇に伴いファン回転数Nfを徐々に増加させる(OFF→Lo→Mid→Hi)。エアコンスイッチがオンのときも、冷媒吐出圧力Pdが所定値Pd3未満(冷媒圧力小)であれば、水温Twが所定値tw1以下でファン回転をOFFし、所定値tw1を越えると水温の上昇に伴いファン回転数Nfを徐々に増加させる。一方、エアコンスイッチがオンのとき、冷媒吐出圧力Pdが所定値Pd3以上(冷媒圧力大)であれば、水温の上昇に伴いファン回転数NfをLoから徐々に増加させる(Lo→Mid→Hi)。
【0018】
(2)v1<v≦v2
車速vが所定値v1より大きく、かつ所定値v2以下で、エアコンスイッチがオフのとき、水温Twが所定値tw1以下ではファン回転をOFFし、水温Twが所定値tw1を越えると水温の上昇に伴いファン回転数Nfを徐々に増加させる(OFF→Lo→Mid→Hi)。エアコンスイッチがオンのときも、冷媒吐出圧力Pdが所定値Pd3未満であれば、水温Twが所定値tw1以下でファン回転をOFFし、所定値tw1を越えると水温の上昇に伴いファン回転数Nfを徐々に増加させる。一方、エアコンスイッチがオンのとき、冷媒吐出圧力Pdが所定値Pd3以上であれば、水温の上昇に伴いファン回転数NfをLoから徐々に増加させる(Lo→Mid→Hi)。なお、車速vがv1<v≦v2のときはv≦v1のときよりも、ファン回転数Nfを早期にHiまで増加させる。
【0019】
(3)v2<v
車速vが所定値v2より大きく、エアコンスイッチがオフのとき、走行風量が多いため、水温Twが所定値tw2に達するまでファン回転をOFFし、水温Twが所定値t2を越えると冷却ファン3をHiで回転させる(OFF→Hi)。エアコンスイッチがオンのときも、水温Twが所定値tw2以下ではファン回転をOFFし、水温Twが所定値tw2を越えると冷却ファン3をHiで回転させる。なお、以上の通常制御時の冷却ファン3の稼働は一例であり、これ以外の通常制御を行ってもよい。
【0020】
第1の実施の形態の特徴的な動作を説明する。
エアコンスイッチのオン時に、外気温Tambが所定温度Tamb1より高いときは車両の受けた熱量は大きいと推定し、冷却ファン3の初期制御を行う。この場合、外気温Tambが所定温度Tamb1より高く、かつ所定温度Tamb2以下のときは、冷却ファン3はMidで回転し(ステップS3)、外気温Tambが所定温度Tamb2より高いときは冷却ファン3はHiで回転する(ステップS4)。すなわち初期の車両の熱負荷が大きい場合には、冷媒の早期の冷却が要求され、冷却ファン3が直ちにMidまたはHiで回転する。これによりコンデンサ1での放熱量が増加し、冷媒の冷却が促進される。
【0021】
初期制御時に、冷媒吐出圧力Pdが所定値Pd1より大きく、かつ所定値Pd2以下であれば、冷却ファン3はMid運転を継続し(ステップS5→ステップS3)、冷媒吐出圧力Pdが所定値Pd2より大きければ冷却ファンはHi運転を継続する(ステップS5→ステップS4)。すなわち必要とされる冷媒の冷却の程度が小さい場合には冷却ファン3はMidで回転し、冷媒の冷却の程度が大きい場合にはHiで回転する。このように外気温Tambに応じて初期制御の要否を判定し、冷媒の冷却程度が十分となるまでファン回転を継続することで、夏場の車両放置後に冷媒を短時間で冷却することができ、車室内の急冷(クールダウン)が可能となる。初期制御により冷媒吐出圧力Pdが所定値Pd1以下となると、すなわち冷媒の冷却程度が十分となると初期制御を終了し、以降、通常制御によって冷却ファン3の回転を制御する(ステップS5→ステップS2)。
【0022】
一方、エアコンスイッチのオン時に外気温Tambが所定値Tamb1以下であれば、冷却ファン3の通常制御を行い、車速v、冷却水温Tw、冷媒吐出圧力Pdに応じて冷却ファン3の回転を制御する(ステップS2)。外気温が低ければ車室内を急冷する必要がないため、通常制御により冷却ファン3を回転させることで、ファン騒音および電力消費を低減する。初期制御時にエアコンスイッチがオフされたときは、車室内を急速冷房する必要がないため、通常制御を行う。
【0023】
エアコンスイッチのオン時に初期制御を行った場合の車速v、冷媒吐出圧力Pd、吸込温度Tint、および冷却ファン3の回転数Nfの変化の一例を図4のタイムチャートに実線で示す。なお、図4には、初期制御を行わずに通常制御を行った場合の特性を点線で示す。図4に示すように通常制御時にはエンジン冷却水温Twの上昇を待ってファン回転数Nfが上昇するため、エアコンスイッチのオン後、ファン回転数Nfが所定回転数(図ではMid)に上昇するまでに数十秒程度時間がかかる(時間t1)。これに対して初期制御を行う場合には即座にファン回転数NfがMid回転となり、冷媒吐出圧力Pdが早期に減少する。したがって、初期制御を行った場合の吸込温度Tintの減少は著しく、初期制御を行った場合には通常制御のみの場合よりも吸込温度Tintが所定時間t1(例えば3分)後にΔTint(例えば1℃)だけ低くなる。
【0024】
以上の第1の実施の形態によれば、以下のような作用効果を奏する。
(1)エアコンスイッチのオン時に、外気温Tambが所定値Tamb1より高ければ冷却ファン3の初期制御を行い、冷却ファン3を一気に所定回転数(MidまたはHi)で回転させるようにした。これにより初期の車両の熱負荷が大きい場合に、エンジン冷却水温Twや冷媒吐出圧力Pdの大きさに拘わらず、短時間で冷媒を必要レベルまで冷却することができる。その結果、車室内の急速クールダウンが可能となり、空調快適性が向上する。
(2)エアコンスイッチのオン時に、外気温Tambが所定値Tamb1以下であれば初期制御を行わず、通常制御により冷却ファン3を稼働するように。これにより車両の熱負荷が小さい場合に、必要以上に冷却ファン3を回転させることがなく、消費動力の増加による燃費の悪化を抑えることができる。
(3)冷媒吐出圧力Pdが所定値Pd1以下、すなわち冷媒の冷却程度が十分になると、初期制御を終了して通常制御に移行するようにしたので、消費動力を効果的に低減することができる。
(4)エアコンスイッチのオン時に、外気温Tabmが高いほど、すなわち車両が受ける熱量が大きいほど冷却ファン3の回転数Nfを高くするようにしたので、車室内を効率よくクールダウンすることができる。
【0025】
−第1の実施の形態の変形例−
図5〜図9を参照して第1の実施の形態の変形例について説明する。
上記第1の実施の形態では、外気温Tambに応じて初期制御時のファン回転を制御するようにしたが、車室内温度Tcarに応じて車両が受けた熱量の大小を推定し、ファン回転を制御するようにしてもよい。その一例を図5に示す。なお、図2と同一の箇所には同一の符号を付す。この場合、ステップS11で内気センサ12により検出された車室内温度Tcarと予め定めた所定値Tcar1およびTcar2との大小を比較し、Tcar≦Tcar1であればステップS2の通常制御に進み、Tcar1<Tcar≦Tcar2であればステップS3に進み、Tcar2<TcarであればステップS4に進む。これにより初期状態に車両が受ける熱量に応じて冷却ファン3が回転し、車室内を急速クールダウンすることができる。
【0026】
また、日射センサ14により検出された日射量Qsunから車室内の受熱量Raを検出し、受熱量Raに応じて初期制御時のファン回転を制御することもできる。その一例を図6に示す。なお、図2と同一の箇所には同一の符号を付す。この場合、ステップS21で、日射量Qsunから検出した受熱量Raと予め定めた所定値Ra1およびRa2との大小を比較し、Ra≦Ra1であればステップS2の通常制御に進み、Ra1<Ra≦Ra2であればステップS3に進み、Ra2<RaであればステップS4に進む。なお、ステップS21で受熱量Raの大きさを判定するのではなく、日射量Qsunの大きさを判定するようにしてもよい。
【0027】
第1の実施の形態では、冷媒吐出圧力Pdに応じて冷媒の冷却の程度を判定するようにしたが、車室内温度Tcarや吸込温度Tintに応じてこれを判定するようにしてもよい。車室内温度Tcarに応じて判定する例を図7に示す。なお、図2と同一の箇所には同一の符号を付す。この場合、ステップS15で車室内温度Tcarと予め定めた所定値Tcar1およびTcar2との大小を比較し、Tcar≦Tcarであれば初期制御を終了してステップS2に進み、Tcar1<Tcar≦Tcar2であればステップS3に進み、Tcar2<TcarであればステップS4に進む。これにより初期の必要冷却量が確保されると通常制御に移行し、消費動力を低減することができる。なお、図5,6のステップS5の処理を上述したステップS15の処理に置き換えることもできる。
【0028】
また、図8に示すように、冷媒が冷却されるのに要する時間(例えば5分程度)を予め設定し。この所定時間の経過を判定し(ステップS16)、所定時間経過前は初期制御を繰り返し(ステップS16→ステップS1)、所定時間経過後に通常制御に移行するようにしてもよい(ステップS16→ステップS2)。
【0029】
以上では初期制御の要否の判定と冷媒の冷却程度の判定を別々の処理で行うようにしたが、同一の処理で行うようにしてもよい。その一例を図9に示す。なお、図5と同一の箇所には同一の符号を付す。図9では、ステップS3またはステップS4の処理が終了するとステップS11に戻り、車室内温度Tcarが所定値Tcar以下となるまでこの処理を繰り返す。すなわち車室内温度Tcarに応じて熱負荷状態の判定と必要冷却量に達したかの判定を行う。なお、車室内温度Tcar以外の他の物理量、すなわち初期の車両の熱負荷状態と相関関係を有するとともに空調装置の運転に伴い検出値が変化するもの(外気温Tambや日射量Qsun以外であり、例えば吸込温度Tint)に応じて初期制御の要否の判定と冷媒の冷却程度の判定をを行うようにしてもよい。
【0030】
−第2の実施の形態−
図10,図11を参照して本発明による車両用冷却ファンの制御装置の第2の実施の形態について説明する。
第1の実施の形態では外気温Tambに応じて初期状態に車両が受けた熱量を推定し、初期制御の要否を判定するようにしたが、外気温Tambが一定であっても車両走行直後は冷却水温Twが高くファン回転数Nfが高いため、冷媒が冷えている。そのため、車両走行直後には冷却ファン3の初期制御を行う必要がなく、これを実現したのが第2の実施の形態である。なお、以下では第1の実施の形態との相違点を主に説明する。
【0031】
第2の実施の形態が第1の実施の形態と異なるのはコントローラ10内での処理である。図10は、第2の実施の形態に係わる制御装置を構成するコントローラ10内での処理の一例を示すフローチャートである。なお、図2と同一の箇所には同一の符号を付し、以下ではその相違点を主に説明する。図10に示すように、エアコンスイッチがオンされるとステップS31で水温センサ16により検出された冷却水温Twと予め定めた所定値Tw1,Tw2,Tw3との大小を比較する。ここで、所定値Tw1,Tw2は図2の外気温Tamb1,Tamb2に対応した値である。すなわち、車両放置時の冷却水温Twと外気温Tambはほぼ等しいため、所定値Tw1は外気温Tw1にほぼ等しく設定され、所定値Tw2は外気温Tw2にほぼ等しく設定される。所定値Tw3は、車両走行直後の冷却水温(例えば図3のtw2)に設定される。
【0032】
ステップS31で冷却水温Twが所定値Tw1以下と判定されると、または冷却水温Twが所定値Tw3より高いと判定されると、ステップS2の通常制御に進む。これにより初期の車両の熱負荷が小さい場合(Tw≦Tw1)、または冷媒が十分に冷却されている場合(Tw3<Tw)、必要以上に冷却ファン3を回転させることなく、消費動力を低減することができる。一方、ステップS31で冷却水温Twが所定値Tw1より大きく、かつ所定値Tw2以下の場合、ステップS3に進み、冷却水温Twが所定値Tw2より大きく、かつ所定値Tw3以下の場合、ステップS4に進む。これにより車両の熱負荷が大きく、かつ、冷媒の急冷が必要な場合には、冷却ファン3がMidまたはHiで回転し、車室内を急速クールダウンすることができる。
【0033】
このように第2の実施の形態では、冷却水温Twに応じて車両が受けた熱量を推定するとともに、車両が走行直後か否かを判定し、走行直後のときは冷却ファン3の通常制御を行うようにした。これにより車両走行直後で冷媒の急冷が不要な場合には、外気温Tambが高い場合であっても通常制御により冷却ファン3の稼働が制御され、消費動力を効果的に低減することができる。
【0034】
なお、冷却水温Twに応じて冷却ファン3の稼働を制御するのではなく、図11に示すようにエンジンオイルの油温Toilまたはトランスミッションオイルの油温Toilに応じて冷却ファン3の稼働を制御するようにしてもよい。図11のステップS41では、油温センサ18により検出された油温Toilと所定値Toil1,Toil2,Toil3との大小を比較する。そして、Toil≦Toil1またはToil3<ToilであればステップS2に進み、Toil1<Toil≦Toil2であればステップS3に進み、Toil2<Toil≦Toil3であればステップS4に進む。これにより車両走行直後で油温Toilが高い場合(Toil3<Toil)、冷却ファン3は通常制御により稼働し、消費動力を低減することができる。
【0035】
車両が受ける熱量と相関関係を有するとともに、車両走行に伴い検出値が変化するような特性を有する物理量に応じて冷却ファン3の稼働を制御するのであれば、冷却水温Twや油温Toil以外であっても、同様の効果が得られる。図10,11のステップS5では、冷媒吐出圧力Pdにより冷却の程度を判定するようにしたが、図7,8と同様、車室内温度Tcarや吸込温度Tint、または時間経過に応じてこれを判定してもよい。
【0036】
−第3の実施の形態−
図12,図13を参照して本発明による車両用冷却ファンの制御装置の第3の実施の形態について説明する。
第3の実施の形態では、車両が受ける熱量と相関関係を有する複数の物理量を用いて車両の熱負荷状態を総合的に判断する。以下では第1の実施の形態および第2の実施の形態との相違点を主に説明する。
【0037】
第3の実施の形態が第1の実施の形態および第2の実施の形態と異なるのはコントローラ10内での処理である。図12は、第3の実施の形態に係わる制御装置を構成するコントローラ10内での処理の一例を示すフローチャートである。エアコンスイッチがオンされるとステップS51に進み、外気温Tambに基づきファン駆動要求を演算する。この場合、外気温Tambと上述した所定値Tamb1,amb2との大小を比較し、Tamb≦Tamb1であれば冷却ファン3の通常制御を、Tamb1<Tamb≦Tamb2であればMid回転を、Tamb2<TambであればHi回転をそれぞれ要求する。次いで、同様にして、ステップS52で車室内温度Tcarに基づきファン駆動要求を演算し、ステップS53で油温Toilに基づきファン駆動要求を演算し、ステップS54で冷却水温Twに基づきファン駆動要求を演算し、ステップS55で日射量Qsunに基づきファン駆動要求を演算し、ステップS56で吸込温度Tintに基づきファン駆動要求を演算する。
【0038】
ステップS57ではステップS51〜ステップS56の全てで通常制御が要求されたか否かを判定する。ステップS51〜ステップS56の全てで通常制御が要求されているときはステップS2に進み、上述した通常制御を実行する。ステップS51〜ステップS56の1つでも通常制御以外が要求されているときはステップS58に進む。ステップS58ではステップS51〜ステップS56の要求のうち、最もファン回転数Nfの要求が高いものを選択し、選択したファン駆動要求に応じてファン3の稼働を制御する。
【0039】
このように第3の実施の形態では、車両の熱負荷に関連する複数のパラメータによりファン駆動要求を演算するようにしたので、車両の熱負荷状態を総合的に判断することができる。その結果、冷媒の冷却不足を確実に防止することができ、車室内を効率的にクールダウンすることができる。
【0040】
第3の実施の形態の変形例を図13に示す。図13は、所定の演算式によりファン駆動要求Fdを求める例である。図13において、まず、ステップS61で外気温Tamb、車室内温度Tcar、油温Toil、冷却水温Tw、受熱量Ra、吸込温度Tintの検出値をそれぞれ読み込む。次いで、ステップS62で各検出値にそれぞれ所定の係数C1〜C6を乗じたものを加算し、ファン駆動要求Fdを演算する。ステップS63ではファン駆動要求Fdの大きさを判定する。この場合、ファン駆動要求Fdが所定値Fd1以下と判定されると通常制御が要求されていると判定し、ステップS2に進む。一方、ステップS63でファン駆動要求Fdが所定値Fd1より大きく、かつ所定値Fd2以下と判定されるとステップS64に進み、冷却ファン3をMid回転させる。また、ファン駆動要求Fdが所定値Fd2より大きいと判定されると、ステップS64に進み、冷却ファン3をHi回転させる。これにより複数のパラメータによるファン駆動要求Fdを判断することができ、クールダウンを効率的に行える。なお、演算式の係数C1〜C6を適宜変更すれば、異なる車種への適用や気候が異なる地域での適用も容易である。演算式は上述したものに限らず、例えば各パラメータごとにファン駆動要求Fdの特性を予め記憶しておき、これらの特性に基づき全体のファン駆動要求Fdを求めるようにしてもよい。
【0041】
なお、上記実施の形態では、外気温Tamb、車室内温度Tcar、受熱量Ra、日射量Qsun等の物理量により冷却ファン3の初期制御の要否を判定するようにしたが、自然界(大気、太陽など)から受ける車両の熱量と相関間関係を有する他の物理量を検出し、この物理量に応じて判定手段が初期制御の要否を判定するようにしてもよい。すなわち熱量検出手段は上記実施の形態のものに限らない。初期制御時に、コントローラ10からの制御信号により冷却ファン3を中速または高速で回転させるようにしたが、冷媒を急速冷却するように冷却ファン3を制御するのであれば、ファン制御手段の構成は上述したものに限らない。
【0042】
上記実施の形態では、冷媒吐出圧力Pd、車室内温度Tcar、吸込温度Tint等に基づき冷媒の冷却程度を判定するようにしたが、冷却程度検出手段が、冷媒の冷却程度と相関関係のある他の物理量を検出し、この検出値に基づき冷媒の冷却の程度を判定するようにしてもよい。冷却ファンを3段階に変速可能としたが、Lo、Hiの2段階に変速可能としてもよい。この場合、初期制御時の回転数をHiにすればよい。冷却ファン3を電動ファンとしたが、他の駆動源(例えば油圧)によりファン3を駆動するようにしてもよい。すなわち本発明の特徴、機能を実現できる限り、本発明は実施の形態の車両用空調装置に限定されない。
【図面の簡単な説明】
【図1】本発明の実施の形態に係わる車両用冷却ファンの制御装置の構成を示す図。
【図2】本発明の第1の実施の形態に係わる制御装置の処理の一例を示すフローチャート。
【図3】図2の通常処理時の冷却ファンの稼働状態を示す図。
【図4】第1の実施の形態に係わる車両用冷却ファンの制御装置の動作の一例を示す図。
【図5】図2の変形例を示すフローチャート(その1)。
【図6】図2の変形例を示すフローチャート(その2)。
【図7】図2の変形例を示すフローチャート(その3)。
【図8】図2の変形例を示すフローチャート(その4)。
【図9】図2の変形例を示すフローチャート(その5)。
【図10】本発明の第2の実施の形態に係わる制御装置の処理の一例を示すフローチャート。
【図11】図10の変形例を示すフローチャート。
【図12】本発明の第3の実施の形態に係わる制御装置の処理の一例を示すフローチャート。
【図13】図12の変形例を示すフローチャート。
【符号の説明】
1 コンデンサ 2 ラジエータ
3 冷却ファン 4 エンジン
10 コントローラ 11 外気センサ
12 内気センサ 13 吸込温度センサ
14 日射センサ 15 車速センサ
16 水温センサ 17 圧力センサ
18油温センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control device for a vehicle cooling fan that sends cooling air to a heat exchanger such as a radiator or a condenser.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there has been known an apparatus that controls the operation of a cooling fan according to ON / OFF of an air conditioner switch, vehicle speed, engine coolant temperature, and refrigerant discharge pressure (for example, see Patent Document 1). According to this, when the refrigerant discharge pressure is larger than a predetermined value when the air conditioner switch is turned on, the fan operates at a low speed, and when the engine cooling water temperature becomes equal to or higher than a predetermined temperature (for example, 100 ° C.), the fan operates at a high speed.
[0003]
[Patent Document 1]
JP-A-4-128511
[0004]
[Problems to be solved by the invention]
As described above, in the conventional device, after the air conditioner switch is turned on, the operating state of the cooling fan changes from a low speed to a high speed as the engine cooling water temperature rises. Therefore, for example, when turning on the air conditioner switch after leaving the vehicle in summer, despite the need for rapid cooling of the vehicle interior, it is not possible to immediately operate the cooling fan at high speed, it takes time to cool the refrigerant, Rapid cooling (cool down) in the cabin was difficult.
[0005]
SUMMARY OF THE INVENTION The present invention provides a control device for a vehicle cooling fan capable of efficiently and rapidly cooling a vehicle interior.
[0006]
[Means for Solving the Problems]
The control device for a vehicle cooling fan according to the present invention has a correlation between a cooling fan that sends air to a heat exchanger of a cooling medium for cooling an engine and a heat exchanger of a cooling medium for a vehicle air conditioner, and a heat amount received by the vehicle. A heat quantity detecting means for detecting a physical quantity of the vehicle, a judgment means for judging the necessity of rapid cooling in the vehicle compartment when an air-conditioning start command is output according to the physical quantity detected by the heat quantity detecting means, If it is determined that cooling is unnecessary, the cooling fan is controlled in accordance with the cooling request from the engine and the cooling request from the vehicle air conditioner (hereinafter referred to as normal control). Fan control means for controlling a cooling fan to rapidly cool a cooling medium irrespective of a cooling request from an engine and a cooling request from the vehicle air conditioner (hereinafter, initial control) Characterized in that it comprises a.
[0007]
【The invention's effect】
According to the present invention, the necessity of rapid cooling in the vehicle compartment is determined according to the amount of heat received by the vehicle, and if it is determined that rapid cooling is not required, the cooling is performed in response to a cooling request from the engine and a cooling request from the vehicle air conditioner. If it is determined that rapid cooling is necessary, the cooling fan is controlled so as to rapidly cool the cooling medium regardless of the cooling request from the engine and the cooling request from the vehicle air conditioner. Can cool the refrigerant, and the vehicle interior can be efficiently cooled rapidly.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
-1st Embodiment-
Hereinafter, a first embodiment of a control device for a vehicle cooling fan according to the present invention will be described with reference to FIGS.
FIG. 1 is a diagram showing an overall configuration of a control device according to the present embodiment. A condenser 1 and a radiator 2 are arranged substantially in parallel at the front of the vehicle, and the ventilation surfaces of these heat exchangers are directed toward the front of the vehicle. A pair of cooling fans 3 are arranged behind the radiator 2 in the vehicle width direction. The cooling fan 3 is an electric fan, which is rotated by a control signal from the controller 10 and sucks air from the front of the vehicle. The rotation speed of the cooling fan 3 can be changed in three stages of low, middle and high, and the ratio of the low, middle and high rotation speeds is, for example, 1: 2: 4. An engine 4 is provided behind the cooling fan 3. The engine 4 and the radiator 2 are connected via a pipe (not shown), and the cooling water that has passed through the engine 4 exchanges heat with the outside air at the radiator 2 to be radiated and returns to the engine 4.
[0009]
An air conditioning compressor 5 driven by the engine 4 is connected to the engine 4. The compressor 5 forms a refrigeration cycle together with the condenser 1, the expansion valve 6, and the evaporator 7, and the compressor 5 is driven by turning on the air conditioner switch. The refrigerant compressed by the driving of the compressor 5 exchanges heat with the outside air in the condenser 1 to be radiated, and then expanded by the expansion valve 6. The air blown from the blower fan 8 exchanges heat with the evaporator 7 in the air conditioning duct (not shown) to absorb heat, thereby cooling the air in the air conditioning duct. Note that a heater core, an air mix door, and the like (not shown) are provided downstream of the evaporator 7 in the air conditioning duct. The temperature of the air blown from the air-conditioning duct is controlled according to the set temperature set by a temperature adjustment dial or the like, and the temperature in the vehicle compartment approaches the set temperature. The above is the configuration of the vehicle air conditioner.
[0010]
The controller 10 includes a signal from an outside air sensor 11 that detects an outside air temperature Tamb, a signal from an inside air sensor 12 that detects a vehicle interior temperature Tcar, and a suction temperature sensor that detects an air temperature (suction temperature) Tint downstream of the evaporator. 13, a signal from a solar radiation sensor 14 for detecting a solar radiation amount Qsun, a signal from a vehicle speed sensor 15 for detecting a vehicle speed v, a signal from a water temperature sensor 16 for detecting an engine cooling water temperature Tw, and a high pressure side. A signal from a pressure sensor 17 for detecting the refrigerant pressure (refrigerant discharge pressure) Pd and a signal from an oil temperature sensor 18 for detecting the oil temperature of the engine oil are input. The controller 10 controls the operation of the cooling fan 3 by executing the following processing based on the input signals from these.
[0011]
FIG. 2 is a flowchart illustrating an example of initial control of the cooling fan 3 executed in the controller 10. This flowchart starts when the air conditioner switch is turned on after the engine key switch is turned on. After the engine key switch is turned on, when the air conditioner switch is not turned on or when the air conditioner switch is turned off, normal control of the cooling fan 3 is performed (step S2).
[0012]
When the air conditioner switch is turned on, in step S1, the magnitude of the outside air temperature Tamb detected by the outside air sensor 11 is compared with the predetermined values Tamb1 and Tamb2. Here, the predetermined values Tamb1 and Tamb2 are reference values for determining whether or not rapid cooling of the vehicle interior in the initial state is necessary. That is, the higher the outside temperature Tamb, the larger the amount of heat received by the vehicle from the atmosphere and the larger the initial heat load of the vehicle. Therefore, it is determined whether rapid cooling is necessary based on the outside temperature Tamb. If it is determined in step S1 that the outside air temperature Tamb is equal to or less than the predetermined value Tamb1, that is, it is determined that the heat load of the vehicle is small, the process proceeds to step S2, and normal control described below is executed.
[0013]
If it is determined in step S1 that the outside air temperature Tamb is higher than the predetermined value Tamb1 and equal to or lower than the predetermined value Tamb2, that is, the heat load of the vehicle is determined to be moderate, the process proceeds to step S3, in which the cooling fan 3 rotates at a medium speed (Mid operation). To output a control signal to the cooling fan drive circuit. On the other hand, if it is determined in step S1 that the outside air temperature Tamb is larger than the predetermined value Tamb2, that is, it is determined that the heat load of the vehicle is large, the process proceeds to step S4, and the cooling fan drive circuit causes the cooling fan 3 to rotate at high speed (Hi operation). To output a control signal.
[0014]
When the process of step S3 or step S4 is completed, the process proceeds to step S5, and the magnitude of the refrigerant discharge pressure Pd detected by the pressure sensor 17 is compared with predetermined values Pd1 and Pd2. Here, the predetermined values Pd1 and Pd2 are reference values for determining the degree of cooling of the refrigerant, and when the refrigerant discharge pressure Pd is equal to or less than the predetermined value Pd1, that is, when it is determined that the cooling of the refrigerant is sufficient, the process proceeds to step S2. The normal control is executed.
[0015]
If it is determined in step S5 that the refrigerant discharge pressure Pd is higher than the predetermined value Pd1 and equal to or lower than the predetermined value Pd2, that is, it is determined that the cooling of the refrigerant is slightly insufficient, the process returns to step S3, and the cooling fan 3 rotates at a medium speed. To output a control signal. On the other hand, if it is determined in step S5 that the refrigerant discharge pressure Pd is larger than the predetermined value Pd2, that is, it is determined that the cooling of the refrigerant is significantly insufficient, the process returns to step S4 and outputs a control signal so that the cooling fan 3 rotates at a high speed. I do.
[0016]
Here, the normal control in step S2 will be described. FIG. 3 is a diagram showing the operating state of the cooling fan 3 during normal control. At the time of normal control, it depends on ON / OFF of an air conditioner switch, a vehicle speed v detected by a vehicle speed sensor 15, an engine cooling water temperature Tw detected by a water temperature sensor 16, and a refrigerant discharge pressure Pd detected by a pressure sensor 17. A control signal is output to the cooling fan drive circuit. That is, the cooling fan 3 is operated as follows in response to a request for cooling the engine 4 obtained from the engine cooling water temperature Tw and a request for cooling the air conditioner obtained from the refrigerant discharge pressure Pd.
[0017]
(1) v ≦ v1
When the vehicle speed v is equal to or lower than the predetermined value v1 and the air conditioner switch is off, the fan rotation is turned off when the water temperature Tw is equal to or lower than the predetermined value tw1, and when the water temperature Tw exceeds the predetermined value tw1, the fan rotation speed Nf is gradually increased as the water temperature increases. Increase (OFF → Lo → Mid → Hi). Even when the air conditioner switch is on, if the refrigerant discharge pressure Pd is lower than the predetermined value Pd3 (low refrigerant pressure), the fan rotation is turned off when the water temperature Tw is equal to or lower than the predetermined value tw1, and the water temperature rises when the water temperature Tw exceeds the predetermined value tw1. Accordingly, the fan speed Nf is gradually increased. On the other hand, when the air conditioner switch is on, if the refrigerant discharge pressure Pd is equal to or higher than the predetermined value Pd3 (the refrigerant pressure is high), the fan rotation speed Nf is gradually increased from Lo as the water temperature increases (Lo → Mid → Hi). .
[0018]
(2) v1 <v ≦ v2
When the vehicle speed v is higher than the predetermined value v1 and equal to or lower than the predetermined value v2 and the air conditioner switch is turned off, the fan rotation is turned off when the water temperature Tw is equal to or lower than the predetermined value tw1, and the water temperature rises when the water temperature Tw exceeds the predetermined value tw1. Accordingly, the fan speed Nf is gradually increased (OFF → Lo → Mid → Hi). Even when the air conditioner switch is on, if the refrigerant discharge pressure Pd is lower than the predetermined value Pd3, the fan rotation is turned off when the water temperature Tw is equal to or lower than the predetermined value tw1. Gradually increase. On the other hand, when the air conditioner switch is on, if the refrigerant discharge pressure Pd is equal to or higher than the predetermined value Pd3, the fan rotation speed Nf is gradually increased from Lo as the water temperature rises (Lo → Mid → Hi). When the vehicle speed v is v1 <v ≦ v2, the fan rotation speed Nf is increased to Hi earlier than when v ≦ v1.
[0019]
(3) v2 <v
When the vehicle speed v is higher than the predetermined value v2 and the air conditioner switch is off, the running air volume is large. Therefore, the fan rotation is turned off until the water temperature Tw reaches the predetermined value tw2, and the cooling fan 3 is turned off when the water temperature Tw exceeds the predetermined value t2. Rotate with Hi (OFF → Hi). Also when the air conditioner switch is on, the fan rotation is turned off when the water temperature Tw is equal to or lower than the predetermined value tw2, and the cooling fan 3 is rotated at Hi when the water temperature Tw exceeds the predetermined value tw2. The operation of the cooling fan 3 during the normal control described above is an example, and other normal controls may be performed.
[0020]
The characteristic operation of the first embodiment will be described.
When the outside air temperature Tamb is higher than the predetermined temperature Tamb1 when the air conditioner switch is turned on, it is estimated that the amount of heat received by the vehicle is large, and the cooling fan 3 is initially controlled. In this case, when the outside air temperature Tamb is higher than the predetermined temperature Tamb1 and equal to or lower than the predetermined temperature Tamb2, the cooling fan 3 rotates at Mid (step S3). When the outside air temperature Tamb is higher than the predetermined temperature Tamb2, the cooling fan 3 is turned off. Rotate at Hi (step S4). That is, when the initial heat load of the vehicle is large, early cooling of the refrigerant is required, and the cooling fan 3 immediately rotates at Mid or Hi. As a result, the amount of heat radiation in the condenser 1 increases, and cooling of the refrigerant is promoted.
[0021]
At the time of the initial control, if the refrigerant discharge pressure Pd is higher than the predetermined value Pd1 and equal to or lower than the predetermined value Pd2, the cooling fan 3 continues the Mid operation (step S5 → step S3), and the refrigerant discharge pressure Pd becomes higher than the predetermined value Pd2. If it is larger, the cooling fan continues the Hi operation (step S5 → step S4). That is, when the required degree of cooling of the refrigerant is small, the cooling fan 3 rotates at Mid, and when the degree of cooling of the refrigerant is large, it rotates at Hi. In this manner, the necessity of the initial control is determined according to the outside air temperature Tamb, and the rotation of the fan is continued until the degree of cooling of the refrigerant is sufficient, so that the refrigerant can be cooled in a short time after leaving the vehicle in summer. This allows rapid cooling (cool down) of the vehicle interior. When the refrigerant discharge pressure Pd becomes equal to or less than the predetermined value Pd1 by the initial control, that is, when the degree of cooling of the refrigerant becomes sufficient, the initial control is terminated, and thereafter, the rotation of the cooling fan 3 is controlled by the normal control (step S5 → step S2). .
[0022]
On the other hand, if the outside air temperature Tamb is equal to or less than the predetermined value Tamb1 when the air conditioner switch is turned on, the normal control of the cooling fan 3 is performed, and the rotation of the cooling fan 3 is controlled according to the vehicle speed v, the cooling water temperature Tw, and the refrigerant discharge pressure Pd. (Step S2). If the outside air temperature is low, it is not necessary to rapidly cool the cabin. Therefore, by rotating the cooling fan 3 under normal control, fan noise and power consumption are reduced. When the air conditioner switch is turned off during the initial control, normal control is performed because there is no need to rapidly cool the vehicle interior.
[0023]
An example of changes in the vehicle speed v, the refrigerant discharge pressure Pd, the suction temperature Tint, and the rotation speed Nf of the cooling fan 3 when initial control is performed when the air conditioner switch is turned on is shown by a solid line in the time chart of FIG. In FIG. 4, the characteristics in the case where the normal control is performed without performing the initial control are indicated by dotted lines. As shown in FIG. 4, during normal control, the fan rotation speed Nf increases after waiting for an increase in the engine cooling water temperature Tw. Therefore, after the air conditioner switch is turned on, until the fan rotation speed Nf increases to a predetermined rotation speed (Mid in the figure). Takes several tens of seconds (time t1). On the other hand, when the initial control is performed, the fan rotation speed Nf immediately becomes the Mid rotation, and the refrigerant discharge pressure Pd decreases promptly. Therefore, the suction temperature Tint decreases remarkably when the initial control is performed, and when the initial control is performed, the suction temperature Tint becomes ΔTint (for example, 1 ° C.) after a predetermined time t1 (for example, 3 minutes) as compared with the case where only the normal control is performed. ) Only lower.
[0024]
According to the above-described first embodiment, the following operation and effect can be obtained.
(1) When the air conditioner switch is turned on, if the outside air temperature Tamb is higher than the predetermined value Tamb1, initial control of the cooling fan 3 is performed, and the cooling fan 3 is rotated at a predetermined rotation speed (Mid or Hi). Thus, when the initial thermal load of the vehicle is large, the refrigerant can be cooled to the required level in a short time regardless of the engine cooling water temperature Tw and the refrigerant discharge pressure Pd. As a result, rapid cooling down of the vehicle interior becomes possible, and air conditioning comfort is improved.
(2) When the outside air temperature Tamb is equal to or less than the predetermined value Tamb1 when the air conditioner switch is turned on, the initial control is not performed, and the cooling fan 3 is operated by the normal control. Accordingly, when the heat load of the vehicle is small, the cooling fan 3 is not rotated more than necessary, and it is possible to suppress deterioration of fuel efficiency due to an increase in power consumption.
(3) When the refrigerant discharge pressure Pd is equal to or less than the predetermined value Pd1, that is, when the degree of cooling of the refrigerant becomes sufficient, the initial control is terminated and the control is shifted to the normal control, so that power consumption can be reduced effectively. .
(4) When the air conditioner switch is turned on, the rotation speed Nf of the cooling fan 3 is increased as the outside air temperature Tabm increases, that is, as the amount of heat received by the vehicle increases, so that the vehicle interior can be cooled down efficiently. .
[0025]
-Modification of the first embodiment-
A modified example of the first embodiment will be described with reference to FIGS.
In the first embodiment, the fan rotation during the initial control is controlled according to the outside air temperature Tamb. However, the magnitude of the amount of heat received by the vehicle is estimated according to the vehicle interior temperature Tcar, and the fan rotation is controlled. You may make it control. An example is shown in FIG. The same parts as those in FIG. 2 are denoted by the same reference numerals. In this case, the magnitude of the vehicle interior temperature Tcar detected by the inside air sensor 12 in step S11 is compared with the predetermined values Tcar1 and Tcar2. If Tcar ≦ Tcar1, the process proceeds to the normal control in step S2, and Tcar1 <Tcar. If ≤Tcar2, the process proceeds to step S3, and if Tcar2 <Tcar, the process proceeds to step S4. As a result, the cooling fan 3 rotates according to the amount of heat received by the vehicle in the initial state, and the vehicle interior can be rapidly cooled down.
[0026]
Further, it is also possible to detect the amount of heat received Ra in the vehicle cabin from the amount of solar radiation Qsun detected by the solar radiation sensor 14 and control the rotation of the fan at the time of the initial control according to the amount of received heat Ra. One example is shown in FIG. The same parts as those in FIG. 2 are denoted by the same reference numerals. In this case, in step S21, the magnitude of the received heat amount Ra detected from the insolation amount Qsun and the predetermined values Ra1 and Ra2 are compared. If Ra ≦ Ra1, the process proceeds to the normal control in step S2, and Ra1 <Ra ≦ If Ra2, the process proceeds to step S3, and if Ra2 <Ra, the process proceeds to step S4. Instead of determining the magnitude of the heat reception amount Ra in step S21, the magnitude of the solar radiation amount Qsun may be determined.
[0027]
In the first embodiment, the degree of cooling of the refrigerant is determined according to the refrigerant discharge pressure Pd. However, the degree of cooling may be determined according to the vehicle interior temperature Tcar or the suction temperature Tint. FIG. 7 shows an example in which the determination is made according to the vehicle interior temperature Tcar. The same parts as those in FIG. 2 are denoted by the same reference numerals. In this case, in step S15, the magnitude of the vehicle interior temperature Tcar and the predetermined values Tcar1 and Tcar2 are compared, and if Tcar ≦ Tcar, the initial control is terminated and the process proceeds to step S2, and if Tcar1 <Tcar ≦ Tcar2. If Tcar2 <Tcar, the process proceeds to step S3. As a result, when the initial required cooling amount is secured, the control shifts to the normal control, and the power consumption can be reduced. Note that the processing in step S5 in FIGS. 5 and 6 can be replaced with the processing in step S15 described above.
[0028]
Further, as shown in FIG. 8, the time required for cooling the refrigerant (for example, about 5 minutes) is set in advance. The elapse of the predetermined time may be determined (step S16), and the initial control may be repeated before the elapse of the predetermined time (step S16 → step S1), and the control may be shifted to the normal control after the elapse of the predetermined time (step S16 → step S2). ).
[0029]
In the above, the determination of the necessity of the initial control and the determination of the degree of cooling of the refrigerant are performed in separate processes, but may be performed in the same process. One example is shown in FIG. The same parts as those in FIG. 5 are denoted by the same reference numerals. In FIG. 9, when the processing in step S3 or step S4 ends, the process returns to step S11, and this processing is repeated until the vehicle interior temperature Tcar becomes equal to or lower than the predetermined value Tcar. That is, the determination of the heat load state and the determination of whether the required cooling amount has been reached are performed in accordance with the vehicle interior temperature Tcar. It should be noted that other physical quantities other than the vehicle interior temperature Tcar, that is, those having a correlation with the initial thermal load state of the vehicle and whose detected values change with the operation of the air conditioner (other than the outside air temperature Tamb and the amount of solar radiation Qsun, For example, the determination of the necessity of the initial control and the determination of the cooling degree of the refrigerant may be performed according to the suction temperature Tint).
[0030]
-2nd Embodiment-
A second embodiment of the control device for a vehicle cooling fan according to the present invention will be described with reference to FIGS.
In the first embodiment, the amount of heat received by the vehicle in the initial state is estimated according to the outside air temperature Tamb, and it is determined whether or not the initial control is necessary. However, even if the outside air temperature Tamb is constant, immediately after the vehicle runs. Since the cooling water temperature Tw is high and the fan speed Nf is high, the refrigerant is cold. Therefore, it is not necessary to perform the initial control of the cooling fan 3 immediately after the vehicle travels, and this is realized in the second embodiment. In the following, differences from the first embodiment will be mainly described.
[0031]
The difference between the second embodiment and the first embodiment is the processing in the controller 10. FIG. 10 is a flowchart illustrating an example of processing in the controller 10 configuring the control device according to the second embodiment. The same parts as those in FIG. 2 are denoted by the same reference numerals, and the differences will be mainly described below. As shown in FIG. 10, when the air conditioner switch is turned on, the magnitude of the cooling water temperature Tw detected by the water temperature sensor 16 and the predetermined values Tw1, Tw2, Tw3 are compared in step S31. Here, the predetermined values Tw1 and Tw2 are values corresponding to the outside air temperatures Tamb1 and Tamb2 in FIG. That is, since the cooling water temperature Tw when the vehicle is left undisturbed and the outside temperature Tamb are substantially equal, the predetermined value Tw1 is set substantially equal to the outside temperature Tw1, and the predetermined value Tw2 is set substantially equal to the outside temperature Tw2. The predetermined value Tw3 is set to a cooling water temperature immediately after the vehicle travels (for example, tw2 in FIG. 3).
[0032]
If it is determined in step S31 that the cooling water temperature Tw is equal to or lower than the predetermined value Tw1, or if it is determined that the cooling water temperature Tw is higher than the predetermined value Tw3, the process proceeds to normal control in step S2. Thereby, when the initial heat load of the vehicle is small (Tw ≦ Tw1) or when the refrigerant is sufficiently cooled (Tw3 <Tw), the power consumption is reduced without rotating the cooling fan 3 more than necessary. be able to. On the other hand, if the cooling water temperature Tw is higher than the predetermined value Tw1 and equal to or lower than the predetermined value Tw2 in step S31, the process proceeds to step S3. If the cooling water temperature Tw is higher than the predetermined value Tw2 and equal to or lower than the predetermined value Tw3, the process proceeds to step S4. . Accordingly, when the heat load of the vehicle is large and the refrigerant needs to be rapidly cooled, the cooling fan 3 rotates at Mid or Hi, and the vehicle interior can be rapidly cooled down.
[0033]
As described above, in the second embodiment, the amount of heat received by the vehicle is estimated according to the cooling water temperature Tw, and it is determined whether or not the vehicle has just run, and the normal control of the cooling fan 3 is performed immediately after the run. I did it. As a result, when it is not necessary to rapidly cool the refrigerant immediately after traveling of the vehicle, the operation of the cooling fan 3 is controlled by the normal control even when the outside temperature Tamb is high, and the power consumption can be reduced effectively.
[0034]
Note that, instead of controlling the operation of the cooling fan 3 according to the cooling water temperature Tw, as shown in FIG. 11, the operation of the cooling fan 3 is controlled according to the oil temperature Toil of the engine oil or the oil temperature Toil of the transmission oil. You may do so. In step S41 of FIG. 11, the oil temperature Toil detected by the oil temperature sensor 18 is compared with a predetermined value Toil1, Toil2, Toil3. If Toil ≦ Toil1 or Toil3 <Toil, the process proceeds to step S2. If Toil1 <Toil ≦ Toil2, the process proceeds to step S3. If Toil2 <Toil ≦ Toil3, the process proceeds to step S4. As a result, when the oil temperature Toil is high immediately after traveling of the vehicle (Toil3 <Toil), the cooling fan 3 operates by the normal control, and power consumption can be reduced.
[0035]
If the operation of the cooling fan 3 is controlled in accordance with a physical quantity having a characteristic such that the detected value changes as the vehicle travels while having a correlation with the amount of heat received by the vehicle, other than the cooling water temperature Tw and the oil temperature Toil. Even so, the same effect can be obtained. In step S5 of FIGS. 10 and 11, the degree of cooling is determined based on the refrigerant discharge pressure Pd. However, as in FIGS. 7 and 8, this is determined according to the vehicle interior temperature Tcar, the suction temperature Tint, or the passage of time. May be.
[0036]
-Third embodiment-
A third embodiment of the control device for a vehicle cooling fan according to the present invention will be described with reference to FIGS.
In the third embodiment, the thermal load state of the vehicle is comprehensively determined using a plurality of physical quantities having a correlation with the quantity of heat received by the vehicle. The following mainly describes differences from the first embodiment and the second embodiment.
[0037]
The third embodiment differs from the first and second embodiments in the processing in the controller 10. FIG. 12 is a flowchart illustrating an example of processing in the controller 10 configuring the control device according to the third embodiment. When the air conditioner switch is turned on, the process proceeds to step S51, and a fan drive request is calculated based on the outside temperature Tamb. In this case, the magnitude of the outside air temperature Tamb is compared with the above-mentioned predetermined values Tamb1 and amb2, and if Tamb ≦ Tamb1, the normal control of the cooling fan 3 is performed. If so, each Hi rotation is requested. Next, similarly, a fan drive request is calculated based on the vehicle interior temperature Tcar in step S52, a fan drive request is calculated based on the oil temperature Toil in step S53, and a fan drive request is calculated based on the cooling water temperature Tw in step S54. Then, in step S55, a fan drive request is calculated based on the amount of solar radiation Qsun, and in step S56, a fan drive request is calculated based on the suction temperature Tint.
[0038]
In step S57, it is determined whether or not normal control has been requested in all of steps S51 to S56. When normal control is requested in all of steps S51 to S56, the process proceeds to step S2, and the above-described normal control is executed. If at least one of steps S51 to S56 requires a control other than the normal control, the process proceeds to step S58. In step S58, among the requests in steps S51 to S56, the request with the highest fan rotation speed Nf is selected, and the operation of the fan 3 is controlled according to the selected fan drive request.
[0039]
As described above, in the third embodiment, since the fan drive request is calculated based on a plurality of parameters related to the heat load of the vehicle, the state of the heat load of the vehicle can be comprehensively determined. As a result, insufficient cooling of the refrigerant can be reliably prevented, and the vehicle interior can be efficiently cooled down.
[0040]
FIG. 13 shows a modification of the third embodiment. FIG. 13 is an example in which the fan drive request Fd is obtained by a predetermined arithmetic expression. In FIG. 13, first, in step S61, detected values of the outside air temperature Tamb, the vehicle interior temperature Tcar, the oil temperature Toil, the cooling water temperature Tw, the heat reception amount Ra, and the suction temperature Tint are respectively read. Next, in step S62, a value obtained by multiplying each detection value by a predetermined coefficient C1 to C6 is added to calculate a fan drive request Fd. In step S63, the magnitude of the fan drive request Fd is determined. In this case, when it is determined that the fan drive request Fd is equal to or smaller than the predetermined value Fd1, it is determined that the normal control is requested, and the process proceeds to step S2. On the other hand, if it is determined in step S63 that the fan drive request Fd is larger than the predetermined value Fd1 and equal to or smaller than the predetermined value Fd2, the process proceeds to step S64, and the cooling fan 3 is rotated at the mid speed. When it is determined that the fan drive request Fd is larger than the predetermined value Fd2, the process proceeds to step S64, and the cooling fan 3 is rotated to Hi. As a result, the fan drive request Fd based on a plurality of parameters can be determined, and the cool down can be efficiently performed. It should be noted that if the coefficients C1 to C6 of the arithmetic expressions are appropriately changed, application to different vehicle types and application to regions with different climates are easy. The arithmetic expression is not limited to the one described above. For example, characteristics of the fan drive request Fd may be stored in advance for each parameter, and the entire fan drive request Fd may be obtained based on these characteristics.
[0041]
In the above embodiment, the necessity of the initial control of the cooling fan 3 is determined based on physical quantities such as the outside air temperature Tamb, the vehicle interior temperature Tcar, the heat reception amount Ra, and the solar radiation Qsun. , Etc.), another physical quantity having a correlation with the heat quantity of the vehicle received from the vehicle may be detected, and the determination means may determine whether or not the initial control is necessary according to the physical quantity. That is, the calorific value detecting means is not limited to the above embodiment. At the time of the initial control, the cooling fan 3 is rotated at a medium speed or a high speed by a control signal from the controller 10. However, if the cooling fan 3 is controlled to rapidly cool the refrigerant, the configuration of the fan control means is as follows. It is not limited to the above.
[0042]
In the above-described embodiment, the cooling degree of the refrigerant is determined based on the refrigerant discharge pressure Pd, the vehicle interior temperature Tcar, the suction temperature Tint, and the like. May be detected, and the degree of cooling of the refrigerant may be determined based on the detected value. Although the cooling fan can be shifted in three stages, it may be shifted in two stages, Lo and Hi. In this case, the rotation speed during the initial control may be set to Hi. Although the cooling fan 3 is an electric fan, the fan 3 may be driven by another driving source (for example, hydraulic pressure). That is, the present invention is not limited to the vehicle air conditioner of the embodiment as long as the features and functions of the present invention can be realized.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a control device for a vehicle cooling fan according to an embodiment of the present invention.
FIG. 2 is a flowchart illustrating an example of a process of a control device according to the first embodiment of the present invention.
FIG. 3 is a diagram showing an operation state of a cooling fan during normal processing in FIG. 2;
FIG. 4 is a diagram showing an example of an operation of the control device for the vehicle cooling fan according to the first embodiment.
FIG. 5 is a flowchart (part 1) showing a modification of FIG. 2;
FIG. 6 is a flowchart (part 2) showing a modification of FIG. 2;
FIG. 7 is a flowchart (part 3) showing a modification of FIG. 2;
FIG. 8 is a flowchart (part 4) showing a modification of FIG. 2;
FIG. 9 is a flowchart (part 5) showing a modification of FIG. 2;
FIG. 10 is a flowchart illustrating an example of processing of a control device according to a second embodiment of the present invention.
FIG. 11 is a flowchart showing a modification of FIG. 10;
FIG. 12 is a flowchart illustrating an example of a process of a control device according to a third embodiment of the present invention.
FIG. 13 is a flowchart showing a modification of FIG. 12;
[Explanation of symbols]
1 condenser 2 radiator
3 Cooling fan 4 Engine
10 Controller 11 Outside air sensor
12 Inside air sensor 13 Suction temperature sensor
14 Solar radiation sensor 15 Vehicle speed sensor
16 Water temperature sensor 17 Pressure sensor
18 Oil temperature sensor

Claims (9)

エンジンを冷却する冷却媒体の熱交換器と車両用空調装置の冷却媒体の熱交換器とに送風する冷却ファンと、
車両が受ける熱量と相関関係を有する物理量を検出する熱量検出手段と、
前記熱量検出手段により検出された物理量に応じて、空調開始指令が出力された際に車室内の急速冷房の要否を判定する判定手段と、
前記判定手段により急速冷房が不要と判定されると、前記エンジンからの冷却要求および前記車両用空調装置からの冷却要求に応じて前記冷却ファンを制御し(以下、通常制御)、
前記判定手段により急速冷房が必要と判定されると、前記エンジンからの冷却要求および前記車両用空調装置からの冷却要求に拘わらず、前記冷却媒体を急速冷却するように前記冷却ファンを制御する(以下、初期制御)、ファン制御手段とを備えることを特徴とする車両用冷却ファンの制御装置。
A cooling fan for blowing air to a heat exchanger of a cooling medium for cooling an engine and a heat exchanger of a cooling medium for a vehicle air conditioner;
Calorie detecting means for detecting a physical quantity having a correlation with the quantity of heat received by the vehicle,
According to the physical quantity detected by the calorie detection means, when the air conditioning start command is output, the determination means to determine whether rapid cooling in the vehicle compartment is necessary,
When the determination unit determines that rapid cooling is unnecessary, the cooling fan is controlled according to a cooling request from the engine and a cooling request from the vehicle air conditioner (hereinafter, normal control),
If the determination means determines that rapid cooling is necessary, the cooling fan is controlled to rapidly cool the cooling medium regardless of the cooling request from the engine and the cooling request from the vehicle air conditioner ( A control device for a vehicle cooling fan, comprising: a fan control unit;
請求項1に記載の車両用冷却ファンの制御装置において、
前記ファン制御手段は、前記判定手段により急速冷房が必要と判定されると、前記車両が受ける熱量が大きいほど前記冷却ファンの風量が増加するように前記冷却ファンを制御することを特徴とする車両用冷却ファンの制御装置。
The control device for a vehicle cooling fan according to claim 1,
The vehicle, wherein when the determination unit determines that rapid cooling is required, the fan control unit controls the cooling fan such that the larger the amount of heat received by the vehicle, the greater the air flow of the cooling fan. Cooling fan control device.
請求項1または2に記載の車両用冷却ファンの制御装置において、
前記ファン制御手段は、前記初期制御による冷媒の冷却程度を検出する冷却程度検出手段を有し、検出された冷却程度が所定の冷却程度に達すると、前記通常制御により前記冷却ファンを制御することを特徴とする車両用冷却ファンの制御装置。
The control device for a vehicle cooling fan according to claim 1 or 2,
The fan control means includes a cooling degree detecting means for detecting a cooling degree of the refrigerant by the initial control, and when the detected cooling degree reaches a predetermined cooling degree, controls the cooling fan by the normal control. A control device for a vehicle cooling fan, comprising:
請求項1または2に記載の車両用冷却ファンの制御装置において、
前記ファン制御手段は、前記判定手段により急速冷房が必要と判定されると、前記初期制御を所定時間実行し、所定時間が経過すると前記通常制御を実行することを特徴とする車両用冷却ファンの制御装置。
The control device for a vehicle cooling fan according to claim 1 or 2,
The fan control unit executes the initial control for a predetermined time when the determination unit determines that rapid cooling is necessary, and executes the normal control when a predetermined time has elapsed. Control device.
請求項1〜4のいずれか1項記載の車両用冷却ファンの制御装置において、
前記物理量は、車両が受ける熱量と相関関係を有するとともに、車両走行に伴い検出値が変化するような特性を有し、
前記判定手段は、車両が受ける熱量と車両走行による前記冷却媒体の冷却の程度に基づいて車室内の急速冷房の要否を判定することを特徴とする車両用冷却ファンの制御装置。
The control device for a vehicle cooling fan according to any one of claims 1 to 4,
The physical quantity has a correlation with the amount of heat received by the vehicle, and has a characteristic such that the detection value changes with the travel of the vehicle,
The control device for a cooling fan for a vehicle, wherein the determination unit determines whether rapid cooling in the vehicle compartment is necessary based on the amount of heat received by the vehicle and the degree of cooling of the cooling medium due to the traveling of the vehicle.
請求項1〜4のいずれか1項記載の車両用冷却ファンの制御装置において、
前記物理量は、外気温であることを特徴とする車両用冷却ファンの制御装置。
The control device for a vehicle cooling fan according to any one of claims 1 to 4,
The control device for a vehicle cooling fan, wherein the physical quantity is an outside air temperature.
請求項1〜4のいずれか1項記載の車両用冷却ファンの制御装置において、
前記物理量は、車室内温度であることを特徴とする車両用冷却ファンの制御装置。
The control device for a vehicle cooling fan according to any one of claims 1 to 4,
The control device for a vehicle cooling fan, wherein the physical quantity is a vehicle interior temperature.
請求項5に記載の車両用冷却ファンの制御装置において、
前記物理量は、エンジン冷却用の冷却媒体の温度であることを特徴とする車両用冷却ファンの制御装置。
The control device for a vehicle cooling fan according to claim 5,
The control device for a vehicle cooling fan, wherein the physical quantity is a temperature of a cooling medium for cooling the engine.
請求項3に記載の車両用冷却ファンの制御装置において、
前記冷却程度検出手段は、空調用コンプレッサの冷媒吐出圧力に基づいて冷媒の冷却程度を検出することを特徴とする車両用冷却ファンの制御装置。
The control device for a vehicle cooling fan according to claim 3,
The cooling fan control device for a vehicle according to claim 1, wherein the cooling degree detecting means detects a cooling degree of the refrigerant based on a refrigerant discharge pressure of an air conditioning compressor.
JP2003152163A 2003-05-29 2003-05-29 Control device of vehicular cooling fan Pending JP2004353554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003152163A JP2004353554A (en) 2003-05-29 2003-05-29 Control device of vehicular cooling fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003152163A JP2004353554A (en) 2003-05-29 2003-05-29 Control device of vehicular cooling fan

Publications (1)

Publication Number Publication Date
JP2004353554A true JP2004353554A (en) 2004-12-16

Family

ID=34047453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003152163A Pending JP2004353554A (en) 2003-05-29 2003-05-29 Control device of vehicular cooling fan

Country Status (1)

Country Link
JP (1) JP2004353554A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112091A1 (en) * 2005-04-07 2006-10-26 Hitachi Construction Machinery Co., Ltd. Cooling device for construction machine
US9242532B2 (en) 2013-12-18 2016-01-26 Hyundai Motor Company Air conditioner system control method for vehicle
KR101594272B1 (en) * 2014-05-14 2016-02-15 가부시키가이샤 고마쓰 세이사쿠쇼 Work vehicle
US9592718B2 (en) 2014-09-05 2017-03-14 Hyundai Motor Company Integrated cooling system control method
KR101724504B1 (en) 2015-11-27 2017-04-18 현대자동차 주식회사 Control apparatus and method for cooling fan of vehicle
CN106812584A (en) * 2015-11-27 2017-06-09 现代自动车株式会社 Apparatus and method for controlling the cooling fan of vehicle
JP2017105426A (en) * 2015-12-10 2017-06-15 現代自動車株式会社Hyundai Motor Company Method for control of vehicular cooling fan
CN112060903A (en) * 2020-08-25 2020-12-11 长城汽车股份有限公司 Vehicle cooling control method and system and vehicle

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006112091A1 (en) * 2005-04-07 2008-11-27 日立建機株式会社 Construction machine cooling system
AU2005330847B2 (en) * 2005-04-07 2009-07-02 Hitachi Construction Machinery Co., Ltd. Cooling device for construction machine
US7685816B2 (en) 2005-04-07 2010-03-30 Hitachi Construction Machinery Co., Ltd. Cooling system for construction machine
JP4842264B2 (en) * 2005-04-07 2011-12-21 日立建機株式会社 Construction machine cooling system
KR101134275B1 (en) * 2005-04-07 2012-04-12 히다찌 겐끼 가부시키가이샤 Cooling device for construction machine
WO2006112091A1 (en) * 2005-04-07 2006-10-26 Hitachi Construction Machinery Co., Ltd. Cooling device for construction machine
US9242532B2 (en) 2013-12-18 2016-01-26 Hyundai Motor Company Air conditioner system control method for vehicle
US9662958B2 (en) 2014-05-14 2017-05-30 Komatsu Ltd. Work vehicle
KR101594272B1 (en) * 2014-05-14 2016-02-15 가부시키가이샤 고마쓰 세이사쿠쇼 Work vehicle
US9592718B2 (en) 2014-09-05 2017-03-14 Hyundai Motor Company Integrated cooling system control method
KR101724504B1 (en) 2015-11-27 2017-04-18 현대자동차 주식회사 Control apparatus and method for cooling fan of vehicle
CN106812584A (en) * 2015-11-27 2017-06-09 现代自动车株式会社 Apparatus and method for controlling the cooling fan of vehicle
KR101786685B1 (en) * 2015-11-27 2017-10-18 현대자동차 주식회사 Control apparatus and method for cooling fan of vehicle
JP2017105426A (en) * 2015-12-10 2017-06-15 現代自動車株式会社Hyundai Motor Company Method for control of vehicular cooling fan
US9840163B2 (en) 2015-12-10 2017-12-12 Hyundai Motor Company Cooling fan control method for vehicle
CN112060903A (en) * 2020-08-25 2020-12-11 长城汽车股份有限公司 Vehicle cooling control method and system and vehicle

Similar Documents

Publication Publication Date Title
US6523361B2 (en) Air conditioning systems
JP4127230B2 (en) Air conditioner for vehicles
KR101534708B1 (en) Air conditioner system control method for vehicle
JP4526755B2 (en) Air conditioner for vehicles
JP4003320B2 (en) Refrigeration cycle equipment
JP2003326962A (en) Vehicle air conditioner
JP4134399B2 (en) Refrigeration cycle controller
JP2005271696A (en) Air conditioner for vehicle
JP4669640B2 (en) Air conditioner for vehicles
JP5786484B2 (en) Air conditioner for vehicles
JP2004066847A (en) Air conditioner for vehicle
JP2004353554A (en) Control device of vehicular cooling fan
JP4435350B2 (en) Air conditioner for vehicles
JP2003237360A (en) Air-conditioning system for vehicle
JP2001088541A (en) Air conditioner for vehicle
JP2003054250A (en) Vehicular cooling fan control device
JP7221789B2 (en) Vehicle air conditioner
JP3824824B2 (en) Air conditioner for vehicles
JP4014760B2 (en) Air conditioner for vehicles
JPH08244447A (en) Air conditioning control device for vehicle
JP3947671B2 (en) Air conditioner for vehicles
JP2003211953A (en) Air conditioner for vehicle
JP4465907B2 (en) Control device for vehicle cooling fan
JP2004231097A (en) Air-conditioning control device for vehicle
JPH11115447A (en) Air-conditioning device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060403

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20081209

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407