JP2004351593A - Wheel shaft supporting device for grinding machine - Google Patents

Wheel shaft supporting device for grinding machine Download PDF

Info

Publication number
JP2004351593A
JP2004351593A JP2003154472A JP2003154472A JP2004351593A JP 2004351593 A JP2004351593 A JP 2004351593A JP 2003154472 A JP2003154472 A JP 2003154472A JP 2003154472 A JP2003154472 A JP 2003154472A JP 2004351593 A JP2004351593 A JP 2004351593A
Authority
JP
Japan
Prior art keywords
grinding wheel
grindstone
bearing device
shaft
wheel shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003154472A
Other languages
Japanese (ja)
Other versions
JP4151481B2 (en
Inventor
Yoshio Wakazono
賀生 若園
Masashi Yoritsune
昌史 頼経
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP2003154472A priority Critical patent/JP4151481B2/en
Priority to EP20040011216 priority patent/EP1481762A1/en
Priority to US10/842,487 priority patent/US7086937B2/en
Publication of JP2004351593A publication Critical patent/JP2004351593A/en
Application granted granted Critical
Publication of JP4151481B2 publication Critical patent/JP4151481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize a whole device and to increase centering accuracy of both wheel shafts at the time of recoupling, in a divided type wheel shaft supporting device allowing easy replacing of a grinding wheel. <P>SOLUTION: This device is provided with: a pair of right and left radial fluid bearing devices 42 and 43 fixed on a front part of a grinding wheel base 34; a pair of right and left wheel shafts 45 and 52 rotatably supported by pressure fluid generated by the bearing devices 42 and 43; a shaft coupling mechanism 60 installed between confronting ends of the wheel shafts 45 and 52 in order to selectively couple and separate the confronting ends; and a thrust bearing device 44 for supporting a thrust bearing end 45a of the wheel shaft 45 protruding from an axial outer end of one of the radial bearing devices along the thrust direction. A pulley 48 is fixed on the wheel shaft 45 between the thrust bearing device 44 and the radial fluid bearing device 42, and a rolling bearing 47 is provided on the thrust bearing device 44 in order to support the thrust bearing end 45a not only along the thrust direction but also along the radial direction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【発明の属する技術分野】
本発明は、研削盤、好適には円筒研削盤の砥石台前部に搭載される砥石軸受装置の構成に関するものである。
【0001】
【従来の技術】
研削盤において砥石の支持剛性を強化するため、砥石軸を両端支持する砥石軸受装置が特開昭59−161265号公報に記載されている。この公知の装置においては、砥石を中間に固定した砥石軸の両端を左右の流体軸受装置によりそれぞれ回転支持すると共に、一方の流体軸受装置に流体スラスト軸受機構を内蔵させている。また、他方の流体軸受装置側にプーリ用の軸受装置を別途設け、この軸受装置に回転支持されるプーリ軸をカップリングにより砥石軸に回転連結している。
【0002】
また、砥石の支持剛性の強化と小型化を実現し、かつ砥石の交換作業を容易にするために、分割砥石軸を回転支持する砥石軸受装置が特開平6−47662号公報及び特開平6−47663号公報に記載されている。これら公知の分割砥石軸受装置においては、同一軸線上の左右に配置された一対の砥石軸を砥石台の前部に搭載したそれぞれのラジアル軸受装置、特に流体軸受装置により回転自在に支持し、両砥石軸を対向端部において連結する連結手段を設け、この連結手段を非連結状態に操作して一方の砥石軸に対し他方の砥石軸を離間させ、砥石を前記一方の砥石軸から取り外し可能としている。
【0003】
これら公知の装置では、砥石軸のスラスト方向の位置は、一方の砥石軸の外端部を駆動モータの出力軸にカップリングにより結合することにより拘束している。また、両砥石軸の対向端部の結合は、一方の砥石軸の内端面に開口したテーパ内孔に他方の砥石軸の内端部から突出するテーパコーンを嵌合させ、前記一方の砥石軸の内端部外周に螺合する螺子リングによりテーパコーンをテーパ内孔に嵌合圧着する構成が採用されている。
【0004】
【特許文献1】
特開昭59−161265号公報 (図1、第1頁)
【特許文献2】
特開平6−47662号公報 (図1、第2頁右欄〜第3頁左欄)
【特許文献3】
特開平6−47663号公報 (図1、第3頁)
【0005】
【発明が解決しようとする課題】
しかしながら、上述した特許文献1に記載される装置においては、流体スラスト軸受機構とプーリ用の軸受装置とを独立して設け、かつプーリ軸と砥石軸とをカップリングを介して連結しているため、軸受装置全体が軸方向に大型化し、かつカップリングを構成する部材間の相対移動により振動等の加工精度上で好ましくない挙動が発生する等の不具合がある。
【0006】
一方、特許文献2及び3に記載される装置においては、砥石軸と同軸上に駆動モータを配置しているので、モータの外径よりも小径の砥石を使用する場合モータが研削盤の構成部分と干渉する恐れがあり、砥石交換等の取り扱いが容易な小径砥石を使用することができない。また、砥石軸のスラスト方向の位置は、駆動モータの出力軸のスラスト軸受精度及びモータ出力軸を砥石軸に回転連結するカップリングのスラスト位置決め精度に影響されるため、砥石軸、つまり砥石のスラスト方向位置の位置決め精度が低く、ワークの軸線方向寸法を高精度に加工できない。さらに、一方の砥石軸と他方の砥石軸との結合は、テーパ内孔とテーパコーンの結合であり、このような結合では、両砥石軸を再結合するとき、嵌合部のテーパ面当たりの変動により両砥石軸間の同芯性を高精度に再現できないと云った不具合が生じる。
従って、本発明の課題は、砥石の交換を容易にした分割式砥石軸受装置において、装置全体を小型化すると共に、両砥石軸の再結合時における同芯性を向上することにある。
【0007】
【課題を解決するための手段と作用及び発明の効果】
上記の課題を解決するため、請求項1に記載の発明の構成上の特徴は、同一軸線上で回転される左右一対の砥石軸を対向端部で一体結合し、この結合部近辺に砥石を固定し、一対の砥石軸を分離することにより砥石軸から砥石を取り外し可能とした研削盤における砥石軸受装置において、砥石台の前部に固定される左右一対のラジアル流体軸受装置と、これらラジアル流体軸受装置が発生する圧力流体によりそれぞれが回転自在に支持される左右一対の砥石軸と、これら砥石軸の対向端部を選択的に結合分離するためこれら対向端部間に内蔵した軸結合機構と、砥石台の前部に固定されラジアル軸受装置の一方の軸方向外方端から突出する砥石軸のスラスト軸受端部をスラスト方向に支持するスラスト軸受装置を設け、このスラスト軸受装置と隣接する一方のラジアル流体軸受装置との間に跨る砥石軸にはスラスト軸受装置と一方のラジアル流体軸受装置との間でプーリを固定し、さらにこのプーリに作用するベルトテンションに対抗するためスラスト軸受装置には、スラスト軸受端部をスラスト方向に加えてラジアル方向にも支持する転がりベアリングを設けたことである。
【0008】
この構成によれば、スラスト軸受装置が転がりベアリングによりスラスト軸受端部をスラスト方向に加えてラジアル方向にも支持し、スラスト軸受装置はベルトテンションに対向するラジアル軸受装置としても機能する。これによりプーリ用のラジアル軸受機構は砥石軸のスラスト軸受用の軸受機構に集約されるので、軸受装置全体を小型化でき、従来装置のように砥石軸線上に駆動モータを配置しないので、交換作業時における取り扱いが容易な小径砥石を使用することが可能となる。また、転がりベアリングは砥石軸の端部を直接支持するので、砥石軸のスラスト方向の位置決め剛性が向上され、また従来装置のようにカップリングを介在させることに伴う振動等の悪影響がない。このため、ワークの長手方向の加工精度が向上されると共に、表面精度も向上される。
【0009】
好ましくは、請求項2に記載されるように、スラスト軸受端部の径をラジアル軸受部よりも小径に形成し、この小径端部をスラスト軸受装置に設けられる転がりベアリングとしての一対のアンギュラコンタクトベアリングにて支持するように構成する。アンギュラコンタクトベアリングは、その軸受面がラジアル方向の支持とスラスト方向の支持を兼用し、砥石軸のスラスト方向の位置精度を確保しつつプーリに作用するラジアル方向のベルトテンションを隣接するラジアル流体軸受と分担して支持する。スラスト軸受端部をラジアル軸受部よりも小径に形成したので、小型のアンギュラコンタクトベアリングを使用でき、このベアリングの回転周速度が低下されて発熱が抑制され、これにより、砥石軸を駆動する駆動モータの消費動力が節約される省エネルギ効果も得られる。
【0010】
請求項3に記載の発明の構成上の特徴は、請求項1に記載のものにおいて、砥石軸の対向端部では一方の砥石軸の端部から突出するテーパ円筒を他方の砥石軸の端部に形成したテーパ穴に嵌合させると共に、一方の砥石軸のテーパ円筒の基部から径方向に延びる垂直端面を他方の砥石軸のテーパ穴が開口して径方向に延びる垂直端面と面接触させ、両砥石軸をテーパ面嵌合と垂直端面接触の2面で結合していることである。
この構成によれば、砥石に研削抵抗が作用するとき、連結状態にある両砥石軸は、テーパ嵌合部と垂直端面接触部とで砥石軸の折れ曲げ作用に対し強固に抵抗する。特に、垂直端面接触部は径方向の周縁部において両砥石軸を互いに支え合うので、大きな曲げモーメントに対し互いに反発して抵抗する。これにより、連結状態における両砥石軸の軸剛性が向上され、研削抵抗に対し砥石を切り込み位置に保持でき、寸法精度が向上される。
【0011】
請求項4に記載の発明の構成上の特徴は、請求項1又は3に記載のものにおいて、砥石軸の一方には他方の砥石軸と結合する端部に径方向外方に延出したフランジ部を形成し、砥石をこのフランジ部に固定手段により固定し、砥石の中心内孔に他方の砥石軸の端部外周面を嵌合させたことである。
この構成によれば、砥石は一方の砥石軸のフランジ部で支持されると共に、他方の砥石軸の端部外周面で支持される。これにより、砥石支持力が両砥石軸に分担されるので、砥石の支持強度が増強されると共に、砥石自体が両砥石軸の曲げモーメントに抵抗して矯正する矯正手段として作用する。この結果、両砥石軸の剛性が一層強化される。また、砥石軸に対する砥石の芯出しが容易となる。
【0012】
請求項5に記載の発明の構成上の特徴は、請求項3に記載のものにおいて、一方の砥石軸の他方の砥石軸に結合する端部には径方向外方に延出したフランジ部を形成し、砥石をこのフランジ部に固定手段により固定し、軸結合機構はテーパ円筒内の空間に内蔵すると共に径方向両端に操作部を備え、軸結合機構の操作部へのアクセスを可能にするために操作部と整列してフランジ部及びテーパ円筒に径方向に挿通する穴を形成したことである。
この構成によれば、フランジ部及びテーパ円筒に形成した径方向の挿通穴を通して例えば6角レンチのような適宜操作手段が挿入されて軸結合機構の操作部に係合され、この操作部を操作して軸結合機構が操作される。これにより、両砥石軸を互いに連結したり分離したりすることができる。砥石を固定するフランジ部に例えば6角レンチのような適宜操作手段の挿入用の挿通穴を形成したので、一方の砥石軸のラジアル軸受装置からのオーバハング量を少なくでき、この一方の砥石軸の支持剛性を向上できる。
【0013】
請求項6に記載の発明の構成上の特徴は、請求項1〜5のいずれかに記載のものにおいて、スラスト軸受されていない砥石軸の軸方向外方への移動を実質的に規制する規制部材をスラスト軸受されていない砥石軸の軸方向外方端部側に配置し、砥石軸の両方を軸方向にはスラスト軸受装置と規制部材との間に設けたことである。
この構成によれば、万一、回転動作中に他方の主軸が一方の主軸から離間する方向に軸動するような事態が生じる場合でも、規制部材が他方の主軸のこのような離間方向の軸動を阻止する。このため、規制部材は、軸結合機構の結合操作忘れ、不完全な結合操作、或いは万一の故障が生じる事態に対する保安手段として働く。
【0014】
請求項7に記載の発明の構成上の特徴は、同軸上で回転される左右一対の砥石軸を対向端部で一体結合し、この結合部近辺に砥石を固定し、一対の砥石軸を分離することにより砥石軸から砥石を取り外し可能とした研削盤における砥石軸受装置において、砥石台の前部に固定される左右一対のラジアル流体軸受装置と、これらラジアル流体軸受装置の一方において圧力流体により回転自在に支持された一方の砥石軸と、この一方の砥石軸の他方のラジアル流体軸受装置と対向する端部に径方向外方に延出され砥石が固着されるフランジ部と、他方のラジアル流体軸受装置において圧力流体により回転自在に支持され一方の砥石軸との対向端部の外周が砥石の中心内孔に嵌合される他方の砥石軸と、これら一方及び他方の砥石軸の対向端部を選択的に結合分離するためこれら対向端部間に内蔵した軸結合機構と、他方の砥石軸の対向端部の外周と砥石の中心内孔との嵌合面への異物の侵入を防止するため他方のラジアル流体軸受装置とこれに対向する砥石の端面との間に配置されたテレスコピック式のカバー機構とにより構成したことである。
【0015】
この構成によれば、砥石は他方の砥石軸をその内孔に嵌合した状態で一方の砥石軸のフランジ部に固定され、両砥石軸により分担支持される。このため、請求項4の発明が奏する効果と同一の効果が奏せられる。加えて、テレスコピック式のカバー機構が、他方のラジアル流体軸受装置とこれに対向する砥石の端面との間の他方の砥石軸の外周を包囲し、この他方の砥石軸が砥石の内孔に嵌合する嵌合面への砥粒、研削屑、研削液等の異物が侵入することを防止する。これにより、この嵌合面の損傷が防止されるので、他方の砥石軸を砥石に嵌合させる際に両者の同芯性が容易に再現されるようになる。
【0016】
請求項8に記載の発明の構成上の特徴は、請求項7記載のものにおいて、テレスコピック式のカバー機構は、他方のラジアル流体軸受装置に固定されこの軸受装置近辺における他方の砥石軸の外周を隙間を有して包囲する固定円筒カバーと、軸方向の一端部がこの固定円筒カバー上でスライド位置調整可能に案内され他端部が砥石端面に形成された環状溝と非接触係合して迷路を形成するラビリンスシール部を形成して他方の砥石軸の砥石端面近辺の外周を包囲する可動円筒カバーと、により構成したことである。
この構成によれば、可動円筒カバーは、他方の砥石軸の砥石端面近辺の外周を包囲し、また、砥石交換の際には、固定円筒カバー上でスライドして砥石に対し後退動作し、砥石の着脱作業を容易にする。また、可動円筒カバーの他端部はラビリンスシール部が形成され、このシール部にて砥石端面に形成された環状溝と非接触係合して迷路を形成し、異物が他方の砥石軸と砥石の中心内孔との嵌合面に侵入することを確実に防止する。
【0017】
【実施の形態】
以下、本発明の第1実施形態に係る砥石軸受装置を備えた研削盤について図面を参照して説明する。図1において、11は円筒研削盤を示し、円筒研削盤11は、ベッド12を有する。ベッド12は、図示左側の前部側の上面にワーク支持駆動装置20を搭載し、図示右側の後部側の上面に砥石台装置30を搭載している。ワーク支持駆動装置20は、ベッド12上に固定のワークテーブル21から立設されたサポート22の側面に一対のリニアガイド23に沿って紙面と垂直方向に位置調整可能に搭載固定されている。ワーク支持駆動装置20は、主軸台24と図略の心押台とで構成され、ワークWを水平軸線の周りに回転自在に支持し、主軸モータ25により回転できるように構成されている。
【0018】
一方、砥石台装置30は、ベッド12の後部上面で紙面と垂直方向に延びて固定された一対のリニアガイド31に沿ってリニアモータ32より左右方向に移動されるスライド33を備える。砥石台34は、スライド33上で図示左右方向に伸びる一対のリニアガイド35(1つのみ図示)に沿って図略のリニアモータにより進退できるように搭載されている。砥石台34の前部には砥石軸受ユニット40が搭載され、砥石Gを固着した後述する砥石軸が回転自在に支持されている。この砥石軸は、砥石台34の後部に搭載された駆動モータ36の出力軸に固着したプーリ36aとベルト37を介して回転連結され、駆動モータ36の回転動力を砥石Gに伝達できるようにしている。なお、符号38はベルトテンション調整機構、39は研削液供給ノズル、39aは同ノズル39へ研削液を給送する給送管路をそれぞれ示す。
【0019】
さて、砥石軸受ユニット40の正面図及び拡大水平断面図をそれぞれ示す図2及び図3において、砥石軸受ユニット40は、ユニットベース41、正面から観て右側及び左側に配置され各々四角でボルト締めされたラジアル軸受装置42、43、及び右端のスラスト軸受装置44を主要構成要素としている。ユニットベース41は、前面中央部に砥石周縁部を受け入れる弧状空間41aが形成され、この弧状空間41aの右側の前面に右ラジアル軸受装置42が固着されている。
【0020】
この軸受装置42は、ワークWの水平回転軸線と平行な軸線上で、主砥石軸45を軸受金46の内周面に発生される圧油のような圧力流体の静圧力により回転自在に支持する静圧流体軸受の構成となっている。この主砥石軸45は、右端にスラスト軸受端部としての小径部45aが形成され、この小径部45aにおいてユニットベース41に固着されたスラスト軸受装置44の一対のアンギュラコンタクトベアリング47により回転支持されている。転がり軸受としてのこの一対のアンギュラコンタクトベアリング47は、小径部45aをラジアル方向に回転自在に支持すると共に、スラスト方向にも回転支持し、主砥石軸45を軸方向移動不能に支持している。
【0021】
これにより、スラスト軸受装置44と隣接するラジアル軸受装置42との間に跨って延びる主砥石軸45には、スラスト軸受装置44とラジアル軸受装置42との間でプーリ48がキー止めされ、このプーリ48に作用するベルトテンションをラジアル軸受装置42の静圧力とスラスト軸受装置44のアンギュラコンタクトベアリング47により分担して両持支持し、ベルトテンションに対する大きな抵抗力を発揮できるようにしている。また、小径部44aをスラスト軸受するようにしたので、アンギュラコンタクトベアリング47の外形を小さくでき、これらベアリング47の回転周速度を下げて発熱を抑制し、駆動モータ36の回転動力の消費を低減させる省エネルギ効果が得られる。
【0022】
一方、主砥石軸44の左端部には径方向外方に拡大されたフランジ部45bが形成されると共に、軸連結機構60が組み込まれている。フランジ44bの側面には、砥石Gが複数本の取り付けボルト49により着脱可能に固着されている。砥石Gは、例えば、金属製の砥石基板50aの外周に超砥粒として例えばCBN砥粒層50bを固着して構成されている。軸連結機構60は、副砥石軸52を主砥石軸45に一体的に連結し、これにより、砥石Gをこの砥石Gの右側及び左側に配置した主・副のラジアル軸受装置42、43により両側から支持するようにしている。
【0023】
すなわち、弧状空間41aを挟んだユニットベース41の左側前面には、副ラジアル軸受装置43が固着され、この軸受装置43は、前記主砥石軸45の回転軸線上でこれと同芯に副砥石軸52を軸受金53の内周面に発生される圧力流体の静圧力により回転自在に支持する静圧流体軸受の構成となっている。副砥石軸52は左端側から円筒形の内部空間が形成され、この空間内に自動バランス取り装置54が組み込まれている。このバランス取り装置54は公知のもので、前記軸連結機構60により一体結合される主及び副砥石軸45、52及びこれに取り付けられた砥石Gを含む回転系のバランスを自動修正する。簡単に説明すれば、バランス取り装置54は、2個の錘体を内蔵しそれぞれ独立した電動機により円周方向に割り出し、上記回転系のアンバランス量が最大となる角度位相位置と反対の角度位相にアンバランス量と等量の補正バランス量を形成するように動作する。副砥石軸52の左端の開口部には、回転送受信装置55aが固着されている。回転送受信装置55aは、バランス取り装置54に内蔵される前記電動機を駆動制御する駆動制御回路を内蔵している。また、回転送受信装置55aは、バランス取り装置54に取り付けられたAEサンサの信号を出力し、砥石GとワークWの接触検知を行えるように構成されている。
【0024】
非回転送受信装置55bは、回転送受信装置55aの左端面と微小隙間Tmを有して対向する右端面を有し、両端面間で信号及びモータ駆動電力の授受を無線で非接触により可能にしている。すなわち、非回転送受信装置55bは、回転送受信装置55aに対し、前記電動機に対する駆動電力を供給すると共に、ユニットベース41上の適宜箇所、好ましくは砥石Gに接近した背部に固定配置した振動センサVSからの検出信号を伝達するようにしている。また、非回転送受信装置55bは回転送受信装置55aから前記AEセンサの出力を受け取り、研削盤を制御する図略のCNC装置へ入力する。非回転送受信装置55bは、支持板57に固定されている。支持板57は、長穴57aを挿通するボルト58により、ユニットベース41に固定されている。これにより、ボルト58を緩めることにより、非回転送受信装置55bを取り付けた支持板57を左右方向にスライド可能としている。
【0025】
図4は、軸連結機構60を内蔵する主副砥石軸45、52の連結部近辺の拡大断面図を示す。副砥石軸52の右端部には、テーパ円筒部61が突出され、このテーパ円筒部61には、円筒穴62と拡大穴63が形成され、テーパ円筒部61の基部から径方向外方に延びる垂直端面52tが形成されている。一方、主砥石軸45の左端部には、テーパ円筒部61の外周面と密着嵌合するテーパ内孔65が形成され、このテーパ内孔65を開口する端面は、前記垂直端面52tと密着結合される垂直端面45tが形成されている。テーパ内孔65には、基部が主砥石軸45に一体固着された概略円筒状の結合ヘッド66の連結部が臨んでいる。連結部は、直径方向の両端部に収容溝が形成され、これら収容溝にそれぞれ連結駒67、67を径方向に出没可能に収容している。連結駒67、67は、連結部に直径方向に挿通された螺子ピン68の両端部に形成された一対の螺子部に螺子係合している。これら一対の螺子部は互いに逆方向のリードとして形成されている。螺子ピン68の両端面には、操作部が形成され、この操作部として例えば6角のレンチ穴が穿孔されている。また、このレンチ穴と同心にフランジ部45b及びテーパ円筒部61には直径方向に横断するレンチ挿入用の挿通穴45h及び61hがそれぞれ開口されている。
【0026】
従って、これら挿通穴45h及び61hを通して図略のレンチの先端を螺子ピン68のレンチ穴に挿入して螺子ピン68を回転することにより、連結駒67、67を径方向外方にせり出して前記テーパ円筒部61の拡大穴63に係合する連結位置と、前記連結部の収容溝内に完全に埋没する連結解除位置とに選択的に割り出し可能としている。また、連結駒67、67の一方の内方部の側面には斜面が形成され、これに喰い付き解除ピン69が係合している。従って、連結駒67、67を収容溝内に完全に埋没させて連結を解除するとき、喰い付き解除ピン69が軸動されて副砥石軸52の円筒穴62の奥底端面を押圧し、テーパ円筒部61の外周面とテーパ内孔65との喰い付き状態を解除するようにしている。
【0027】
さらに、砥石Gと副ラジアル軸受装置43との間には、テレスコピック式のカバー機構70が装着されている。このカバー機構70においては、固定円筒カバー71がそのフランジ部を副ラジアル軸受装置43に固定した状態で副砥石軸52の外周を包囲する円筒部を砥石G側に張り出している。また、可動円筒カバー72は、固定円筒カバー71の円筒部の外周にスライド位置調整可能に嵌合される共に、外周環状溝が形成された先端部を砥石Gの砥石基板50aの側面に開口された内周面環状溝50cと非接触で係合して迷路を形成するラビリンスシール部72aとして構成している。これにより、砥石基板50aの内周面と副砥石軸52との嵌合面に研削屑、砥粒及び研削液等の異物が侵入しないようにしている。可動スリーブ72は通常は子螺子73により固定されている。なお、図4中、符号75はシールリングを示す。
【0028】
次に、上記のように構成された実施形態の動作を説明する。
研削作業が指令されると、主軸台24に支持されたワークWが回転され、スライド33の左右位置決め送り及び砥石台33の前進送りが行われて、回転中の砥石GがワークWに係合し、ワークWの円筒面が研削される。砥石台33が前進送りを開始すると同時に、研削液が図略の研削液供給装置から給送管路39aへ送出され、研削液供給ノズル39からワークWと砥石Gとの接触点である研削点近辺に向けて吐出される。
【0029】
一方、駆動モータ36は、この研削盤への電源投与と同時に回転駆動され、以降常時回転が維持される。主砥石軸45は、駆動モータ36により駆動されるベルト37の回転動力をプーリ48により受け、回転駆動される。この場合、プーリ48に作用するベルトの張力は、その左側の大形のラジアル軸受42及び右側のアンギュラコンタクトベアリング47により、分担して支持され、これにより、主砥石軸45の傾きが防止され、加工精度への悪影響を排除している。軸連結機構60が副砥石軸52を主砥石軸44に対し一体結合しているため、主砥石軸45の回転が副砥石軸52へ伝達され、両者は一体回転される。砥石Gは、主砥石軸45の回転力を受けてこれと共に一体回転する。この場合、砥石Gは、砥石基板50aの内孔が副砥石軸52に嵌合されると共に、両砥石軸45、54が一体結合されているので、左右のラジアル軸受装置43、42によりラジアル方向に両側支持され、ワークWが砥石Gに及ぼす研削抵抗に対し強固かつ大きな剛性で砥石Gを左右のラジアル軸受装置43、42の回転中心に保持する。
【0030】
また、砥石Gは主砥石軸45のフランジ部45bに固着されて支持されると共に、副砥石軸52の端部外周面に嵌合されて支持される。これにより、砥石支持力が両砥石軸45、52に分担されるので、砥石Gの支持強度が増強されると共に、砥石自体が両砥石軸45、52に作用する曲げモーメントに抵抗して矯正する矯正手段として作用する。この結果、砥石軸に対する砥石の芯出しが容易となることに加えて、両砥石軸の剛性が一層強化される。このため、ワークに対する切り込み速度を増加した重研削或いは高能率研削を実現できると共に、研削抵抗に屈して砥石Gが逃げないので、高い寸法精度の研削を遂行できる。また、一体結合状態における主及び副砥石軸45及び52のスラスト荷重は、アンギュラコンタクトベアリング47により支持される。このアンギュラコンタクトベアリング47は、静圧スラスト軸受のように静圧流体膜を介在させずに小径部45aを直接支持するので、スラスト剛性を強固にでき、また小径部45に対応して小径のベアリングを使用できるので、発熱が小さく、駆動モータ36の消費動力を節約できる省エネルギ効果を奏する。
【0031】
両砥石軸45、52が一体回転している間、砥石Gと左ラジアル軸受装置43との間に配置したカバー機構70は、可動円筒カバー72をシールリング75を介して固定円筒カバー71外周に液密嵌合させると共に、その先端部のラビリンスシール部72aを砥石基板50aの内周面環状溝50cに非接触で係合してラビリンスシールを構成する。このため、砥石G及び砥石軸45、52周囲に飛散しこれらと共に周回する砥粒、研削屑及び研削液等の異物が副砥石軸52と砥石基板50a内孔50hとの嵌合部に侵入することが防止される。これにより、副砥石軸52と砥石基板50aの内孔50hの嵌合面が損傷されることが防止され、両者の嵌合を永続的に高精度に維持できる。
【0032】
両砥石軸45、52が一体回転する間、副砥石軸52に内蔵した自動バランス取り装置54が動作し、砥石G及び両砥石軸45、52を含む回転系のアンバランスを自動修正する。すなわち、ユニットベース41上に固着した振動センサVSの出力が非回転送受信装置55bから無接触で回転送受信装置55aに伝達され、これにより回転送受信装置55aは自動バランス取り装置54に内蔵の2つの電動機の駆動を制御し、2つの錘体の位相を調整して前記回転系のアンバランスを除去する。この電動機による錘体の位相調整動作は、振動センサVSの出力信号が所定の閾値以下にするように自動制御される。本実施の形態においては、自動バランス取り装置54が従動側の副砥石軸54に内蔵されているので、回転系全体のアンバランスを正確に反応し、特に軸連結部の緩みが原因するアンバランス振動を正確に補正できる効果が奏せられる。
【0033】
また、副砥石軸52に内蔵の図略のAEセンサの出力信号は、回転送受信装置55aから無接触で非回転送受信装置55bに伝達される。この信号が適宜処理されることにより、砥石台34の切り込み送り動作において砥石GがワークWに対し接触される瞬間が検出され、この検出動作信号に基づいて、例えば砥石台34の切り込み送り速度を変更する等の制御が行われる。
【0034】
さて、砥石Gの砥粒層50bの消耗または、加工すべきワークWの種類変更に伴って砥石Gの交換が必要となる。この場合、図5(A)に示すように、可動スリーブ72はその子螺子73(図4)が緩められて図示左方の交換位置へ戻され、砥石Gはボルトが取り外されて主砥石軸45のフランジ部45bとの結合から解除され、図示左方へシフトされる。この状態において、フランジ部45b、テーパ円筒部61の挿通穴45h及び61hを通して図5(A)に示すレンチWRの先端を螺子ピン68のレンチ穴に挿入し、螺子ピン68を回転する。これにより、連結駒67、67が拡大穴63に密着係合する連結位置から前記連結部の収容溝内に完全に埋没する連結解除位置へ移動され、これと共に喰い付き解除ピン69が軸動されて副砥石軸52の円筒穴62の奥底端面を押圧して、テーパ円筒部61の外周面とテーパ内孔65との喰い付き状態が解除される。
【0035】
また、支持板57を固定しているボルト58を緩めて、長穴57aの範囲内でユニットベース41に対し支持板57を図5(B)に示すように左方の後退位置へ非回転送受信装置55bと共に後退させる。この状態においては、副砥石軸52は左ラジアル軸受装置43の軸受金53の内周面に発生されている圧力流体の静圧力により回転支持された状態で軸方向移動が可能である。従って、砥石Gを適宜仮受け手段で保持した状態で、副砥石軸52を後部から引っ張ることにより、副砥石軸52を図5(B)に示すように左方へ移動でき、砥石Gから副砥石軸52の先端部を抜いて、砥石Gが取り外される。
【0036】
そして、砥石Gを新たなものと交換し、上記とは逆の手順により、新たな砥石が図3に示すように再び両砥石軸45、52に取り付けされる。この場合、副砥石軸52の内方端外周が砥石Gの中心内孔50hに嵌合された状態で、砥石Gが主砥石軸45のフランジ部45bにボルト49により固着される。砥石Gの固着が完了した状態で、軸連結機構60がレンチWRを用いて操作され、連結駒67、67が外方に張り出されてテーパ円筒部61の拡大穴63内に押圧密着される。これにより、テーパ円筒部61とテーパ内孔65との密着嵌合がなされ、かつ垂直端面45t、52t同士の密着結合がなされ、これら2面結合により副砥石軸52が主砥石軸45に一体結合される。そして、密着結合される垂直端面45t、52tの周縁部同士は互いに反発して砥石軸に作用する曲げモーメントに強力に抵抗する。
【0037】
スラスト軸受装置44は、プーリ48を走行するベルトの上下部分間に延びる略水平の脚部によりユニットベース41に固着されているので、ベルト37の交換に際しては、ベルト37のループ内にスラスト軸受装置44を入れた状態で、ベルトの掛け外しができる。
【0038】
なお、上記の動作説明では、主砥石軸45のフランジ部45bから砥石Gを取り外した後、副砥石軸52を左方へシフトして砥石Gを副砥石軸52から外すようにしているが、砥石Gを主砥石軸45のフランジ部45bにボルト49結合した状態で副砥石軸52を砥石Gから外し、その後ボルト49を外して砥石Gをフランジ部45bとの結合から解除するようにしてもよい。
上記した実施形態においては砥石軸45のスラストを一対のアンギュラコンタクトベアリング47で支持するようにしているが、これらに代えて、ラジアルベアリングとスラストベアリングを組み合わせて構成してもよい。
【0039】
上記した実施形態においてはユニットベース41に各軸受装置42、43、44を固着し、このユニットベース41を砥石台34の前部に搭載しているが、ユニットベース41を除去して、砥石台34の前部に各軸受装置42、43、44を直接固着するようにしてもよい。
また、砥石G、軸連結機構60の各々は、上記実施形態では主砥石軸45側に固定或いは設置するようにしたが、副砥石軸52側に固定或いは設置するようにしてもよい。
また、振動センサVSを左ラジアル軸受装置43に設置する場合では、自動バランス取り装置54を副砥石軸52内に内蔵する技術的効果が一層有効に発揮される。
【0040】
【図面の簡単な説明】
【図1】本発明の実施形態に係わる砥石軸受装置を備えた円筒研削盤の側面図。
【図2】実施形態に係わる砥石軸受装置の正面図。
【図3】実施形態に係わる砥石軸受装置の水平断面図。
【図4】砥石軸受装置に内蔵される軸連結機構及び連結部保護のためのテレスコピック式カバー機構の縦断面図。
【図5】(A)及び(B)は砥石交換動作を説明するための説明図。
【符号の説明】
11・・・円筒研削盤、34・・・砥石台、G・・・研削砥石、W・・・ワーク、40・・・砥石軸受装置、41・・・ユニットベース、42・・・右ラジアル軸受装置、43・・・左ラジアル軸受装置、44・・・スラスト軸受装置、45・・・主砥石軸、45b・・・フランジ部、45t、52t・・・垂直端面、47・・・アンギュラコンタクトベアリング(転がりベアリング)、48・・・プーリ、49・・・ボルト(固定手段)、50h・・・砥石中心内孔、52・・・副砥石軸、54・・・自動バランス取り装置、VS・・・振動センサ、55a・・・回転送受信装置、55b・・・非回転送受信装置(規制部材)、57・・・支持板、60・・・軸連結機構、、61・・・テーパ円筒、65・・・テーパ穴、67、67・・・連結駒、68・・・操作ピン、45h、61h・・・挿通穴、70・・・テレスコピック式カバー機構、71・・・固定円筒カバー、72・・・可動円筒カバー。72a・・・ラビリンスシール部。
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a configuration of a grinding wheel bearing device mounted on a grinding machine, preferably a front portion of a grinding wheel head of a cylindrical grinding machine.
[0001]
[Prior art]
Japanese Patent Laid-Open Publication No. Sho 59-161265 discloses a grinding wheel bearing device that supports a grinding wheel shaft at both ends in order to enhance the support rigidity of the grinding wheel in a grinding machine. In this known device, both ends of a grindstone shaft having a grindstone fixed in the middle are rotatably supported by left and right fluid bearing devices, respectively, and one fluid bearing device has a built-in fluid thrust bearing mechanism. A pulley bearing device is separately provided on the other hydrodynamic bearing device side, and a pulley shaft rotatably supported by the bearing device is rotatably connected to the grindstone shaft by a coupling.
[0002]
Further, in order to realize the enhancement of the support rigidity and the miniaturization of the grindstone, and to facilitate the work of replacing the grindstone, a grindstone bearing device for rotatingly supporting the divided grindstone shaft is disclosed in Japanese Patent Laid-Open Nos. 6-47662 and 6-47662. No. 47663. In these known split grinding wheel bearing devices, a pair of grinding wheel shafts arranged on the left and right on the same axis are rotatably supported by respective radial bearing devices mounted on the front portion of the grinding wheel head, particularly a fluid bearing device. Providing a connecting means for connecting the grinding wheel shaft at the opposite end, operating this connecting means in a non-connected state to separate the other grinding wheel shaft with respect to one grinding wheel shaft, and removing the grinding wheel from the one grinding wheel shaft. I have.
[0003]
In these known devices, the position of the grinding wheel shaft in the thrust direction is constrained by coupling the outer end of one of the grinding wheel shafts to the output shaft of the drive motor by coupling. The coupling of the opposite ends of the two grinding wheel shafts is performed by fitting a taper cone projecting from the inner end of the other grinding wheel shaft into a tapered inner hole opened on the inner end surface of one grinding wheel shaft. A configuration is adopted in which a taper cone is fitted and press-fitted into a tapered inner hole by a screw ring screwed into the outer periphery of the inner end portion.
[0004]
[Patent Document 1]
JP-A-59-161265 (FIG. 1, page 1)
[Patent Document 2]
JP-A-6-47662 (FIG. 1, right column on page 2 to left column on page 3)
[Patent Document 3]
JP-A-6-47663 (FIG. 1, page 3)
[0005]
[Problems to be solved by the invention]
However, in the device described in Patent Document 1 described above, the fluid thrust bearing mechanism and the bearing device for the pulley are provided independently, and the pulley shaft and the grinding wheel shaft are connected via the coupling. However, there is a problem in that the entire bearing device becomes large in the axial direction, and undesired behavior such as vibration occurs on machining accuracy due to relative movement between members constituting the coupling.
[0006]
On the other hand, in the apparatuses described in Patent Literatures 2 and 3, the drive motor is arranged coaxially with the grinding wheel axis. Therefore, when a grinding wheel having a smaller diameter than the outer diameter of the motor is used, the motor is a component of the grinding machine. Therefore, it is not possible to use a small-diameter grindstone that is easy to handle such as a whetstone replacement. In addition, the position of the grinding wheel shaft in the thrust direction is affected by the thrust bearing accuracy of the output shaft of the drive motor and the thrust positioning accuracy of the coupling that rotationally connects the motor output shaft to the grinding wheel shaft. The positioning accuracy of the directional position is low, and the axial dimension of the work cannot be processed with high accuracy. Further, the connection between one of the grinding wheel shafts and the other grinding wheel shaft is a connection between the tapered bore and the tapered cone. This causes a problem that concentricity between both grinding wheel axes cannot be reproduced with high accuracy.
Accordingly, it is an object of the present invention to provide a split-type grinding wheel bearing device that facilitates replacement of a grinding wheel, to reduce the size of the entire device, and to improve concentricity when the two grinding wheel shafts are reconnected.
[0007]
Means and Functions for Solving the Problems and Effects of the Invention
In order to solve the above problem, a structural feature of the invention according to claim 1 is that a pair of left and right grinding wheel shafts that are rotated on the same axis are integrally joined at opposed ends, and a grinding wheel is provided near this joint. In a grinding wheel bearing device in a grinding machine which is fixed and a grinding wheel can be detached from a grinding wheel shaft by separating a pair of grinding wheel shafts, a pair of left and right radial fluid bearing devices fixed to a front portion of a grinding wheel base, and these radial fluids A pair of left and right grindstone shafts each rotatably supported by a pressure fluid generated by the bearing device, and a shaft coupling mechanism built in between these opposed ends to selectively couple and separate the opposed ends of the grindstone shafts. A thrust bearing device for supporting a thrust bearing end of a grinding wheel shaft, which is fixed to a front portion of a grinding wheel stand and protrudes from one axially outer end of the radial bearing device, in a thrust direction; A pulley is fixed between the thrust bearing device and one radial fluid bearing device on the grinding wheel shaft straddling between one adjacent radial fluid bearing device, and further a thrust bearing for opposing belt tension acting on the pulley. The device is provided with a rolling bearing that supports the end of the thrust bearing in the thrust direction and also in the radial direction.
[0008]
According to this configuration, the thrust bearing device supports the end of the thrust bearing in the thrust direction and also in the radial direction by the rolling bearing, and the thrust bearing device also functions as a radial bearing device facing the belt tension. As a result, the radial bearing mechanism for the pulley is concentrated on the bearing mechanism for the thrust bearing of the grinding wheel shaft, so that the entire bearing device can be downsized and the drive motor is not arranged on the grinding wheel axis unlike the conventional device, so replacement work is required. It is possible to use a small-diameter whetstone that is easy to handle at the time. Further, since the rolling bearing directly supports the end of the grinding wheel shaft, the positioning rigidity of the grinding wheel shaft in the thrust direction is improved, and there is no adverse effect such as vibration caused by the interposition of the coupling as in the conventional device. For this reason, the processing accuracy in the longitudinal direction of the work is improved, and the surface accuracy is also improved.
[0009]
Preferably, as described in claim 2, the diameter of the end of the thrust bearing is formed to be smaller than the diameter of the radial bearing, and the pair of angular contact bearings as rolling bearings provided in the thrust bearing device is formed on the small diameter end. It is configured to be supported by. Angular contact bearings have a bearing surface that serves both radial support and thrust support, ensuring radial positioning of the grinding wheel shaft in the thrust direction and radial belt tension acting on the pulley with the adjacent radial fluid bearing. Share and support. Since the end of the thrust bearing is formed with a smaller diameter than the radial bearing, a small angular contact bearing can be used, the rotational peripheral speed of this bearing is reduced, and heat generation is suppressed, whereby the drive motor that drives the grinding wheel shaft The energy saving effect of saving power consumption is also obtained.
[0010]
A feature of the invention according to claim 3 is that, in the device according to claim 1, a tapered cylinder protruding from an end of one of the grinding wheel shafts is formed at an opposite end of the grinding wheel shaft at an end of the other grinding wheel shaft. Along with fitting into the tapered hole formed in, the vertical end face extending in the radial direction from the base of the tapered cylinder of one of the grinding wheel shafts is brought into surface contact with the vertical end surface in which the tapered hole of the other grinding wheel shaft opens and extends in the radial direction, That is, the two grinding wheel shafts are connected by two surfaces, that is, a tapered surface fitting and a vertical end surface contact.
According to this configuration, when a grinding resistance acts on the grindstone, the two grindstone shafts in the connected state strongly resist the bending action of the grindstone shaft at the taper fitting portion and the vertical end surface contact portion. In particular, the vertical end face contact portion supports the two grinding wheel shafts at the radial peripheral portion, and thus repels and resists a large bending moment. Thereby, the shaft rigidity of both grinding wheel shafts in the connected state is improved, the grinding wheel can be held at the cutting position with respect to the grinding resistance, and the dimensional accuracy is improved.
[0011]
A structural feature of the invention according to claim 4 is that, in the one according to claim 1 or 3, a flange that extends radially outward at one end of the grinding wheel shaft that is coupled to the other grinding wheel shaft. A part is formed, the grindstone is fixed to the flange part by fixing means, and the outer peripheral surface of the end of the other grindstone shaft is fitted into the central bore of the grindstone.
According to this configuration, the grindstone is supported by the flange portion of one of the grindstone shafts, and is supported by the end outer peripheral surface of the other grindstone shaft. As a result, the grinding wheel supporting force is shared between the two grinding wheel shafts, so that the supporting strength of the grinding wheels is increased, and the grinding wheels themselves act as correction means for correcting the bending moment of the both grinding wheel shafts. As a result, the rigidity of both grinding wheel shafts is further enhanced. In addition, the centering of the grindstone with respect to the grindstone axis becomes easy.
[0012]
A structural feature of the invention according to claim 5 is that, in the structure according to claim 3, a flange portion extending radially outward is provided at an end portion of one of the grinding wheel shafts connected to the other grinding wheel shaft. Forming and fixing the whetstone to this flange portion by fixing means, the shaft coupling mechanism is built in the space inside the tapered cylinder and has operating portions at both ends in the radial direction, enabling access to the operating portion of the shaft coupling mechanism Therefore, a hole is formed in the flange portion and the tapered cylinder in a radial direction so as to be aligned with the operation portion.
According to this configuration, appropriate operation means such as a hexagon wrench is inserted through the flange portion and the radial insertion hole formed in the tapered cylinder to engage with the operation portion of the shaft coupling mechanism, and operate this operation portion. Then, the shaft coupling mechanism is operated. Thereby, both grinding wheel shafts can be connected or separated from each other. Since a through hole for inserting an appropriate operation means such as a hexagon wrench is formed in the flange portion for fixing the grindstone, the amount of overhang from the radial bearing device of one grindstone shaft can be reduced, and the other grindstone shaft can be used. Support rigidity can be improved.
[0013]
According to a sixth aspect of the present invention, there is provided a method as set forth in any one of the first to fifth aspects, wherein the thrust bearing is substantially restricted from moving axially outward of a grinding wheel shaft which is not provided with a thrust bearing. The member is arranged on the axially outer end side of the grindstone shaft that is not provided with a thrust bearing, and both of the grindstone shafts are provided between the thrust bearing device and the regulating member in the axial direction.
According to this configuration, even in the event that the other main shaft moves in a direction away from the one main shaft during the rotation operation, the regulating member can move the other main shaft in such a separated direction. Block movement. For this reason, the restricting member functions as a security means against a situation where the coupling operation of the shaft coupling mechanism is forgotten, incomplete coupling operation, or a failure should occur.
[0014]
A structural feature of the invention according to claim 7 is that a pair of left and right grinding wheel shafts that are coaxially rotated are integrally connected at opposite ends, a grinding wheel is fixed near this joint, and the pair of grinding wheel shafts is separated. In a grinding wheel bearing device in a grinding machine capable of removing a grinding wheel from a grinding wheel shaft, a pair of left and right radial fluid bearing devices fixed to a front portion of a grinding wheel head, and one of these radial fluid bearing devices rotated by pressure fluid One of the freely supported grindstone shafts, a flange portion extending radially outward to an end of the one grindstone shaft facing the other radial fluid bearing device to which the grindstone is fixed, and the other radial fluid The other grinding wheel shaft rotatably supported by the pressure fluid in the bearing device and having the outer circumference of the opposite end to the one grinding wheel shaft fitted into the central bore of the grinding wheel, and the opposite end portions of these one and the other grinding wheel shafts Choose A shaft coupling mechanism built in between these opposed ends for the purpose of coupling and separation, and the other in order to prevent foreign matter from entering the fitting surface between the outer periphery of the opposed end of the other grinding wheel shaft and the central bore of the grinding wheel And a telescopic cover mechanism disposed between the radial fluid bearing device and the end face of the grindstone facing the radial fluid bearing device.
[0015]
According to this configuration, the grindstone is fixed to the flange portion of one grindstone shaft in a state where the other grindstone shaft is fitted in the inner hole, and is shared and supported by both grindstone shafts. Therefore, the same effect as the effect of the invention of claim 4 can be obtained. In addition, a telescopic cover mechanism surrounds the outer circumference of the other wheel spindle between the other radial fluid bearing device and the end face of the opposite wheel, and the other wheel axis fits into the inner hole of the wheel. It prevents foreign matter such as abrasive grains, grinding dust, and grinding fluid from entering the mating fitting surface. This prevents the fitting surface from being damaged, so that when the other grindstone shaft is fitted to the grindstone, the concentricity between the two can be easily reproduced.
[0016]
According to an eighth aspect of the present invention, in the configuration of the seventh aspect, the telescopic cover mechanism is fixed to the other radial fluid bearing device, and the outer periphery of the other grindstone shaft near the bearing device is provided. A fixed cylindrical cover that surrounds with a gap, and one end in the axial direction is guided on this fixed cylindrical cover so that the slide position can be adjusted, and the other end is in non-contact engagement with an annular groove formed on the end face of the grindstone. A labyrinth seal portion forming a maze, and a movable cylindrical cover surrounding the outer periphery of the other grindstone shaft near the grindstone end face.
According to this configuration, the movable cylindrical cover surrounds the outer periphery near the grinding wheel end face of the other grinding wheel shaft, and when the grinding wheel is replaced, slides on the fixed cylindrical cover and retreats with respect to the grinding wheel. Facilitates attaching and detaching work. A labyrinth seal portion is formed at the other end of the movable cylindrical cover, and a non-contact engagement with an annular groove formed on the end surface of the grindstone at the seal portion forms a maze, and foreign matter is formed between the other grindstone shaft and the grindstone. Intrusion into the fitting surface with the center inner hole of the diaper.
[0017]
Embodiment
Hereinafter, a grinder provided with a grindstone bearing device according to a first embodiment of the present invention will be described with reference to the drawings. In FIG. 1, reference numeral 11 denotes a cylindrical grinder, and the cylindrical grinder 11 has a bed 12. The bed 12 has a work supporting and driving device 20 mounted on the upper surface on the front side on the left side in the figure, and a grindstone device 30 on the upper surface on the rear side on the right side in the figure. The work supporting / driving device 20 is mounted and fixed on a side surface of a support 22 erected from a work table 21 fixed on the bed 12 along a pair of linear guides 23 so as to be able to adjust the position in a direction perpendicular to the paper surface. The work supporting / driving device 20 includes a headstock 24 and a tailstock (not shown), and is configured to rotatably support the work W around a horizontal axis and rotate by a spindle motor 25.
[0018]
On the other hand, the grindstone head device 30 includes a slide 33 that is moved in the left-right direction by a linear motor 32 along a pair of linear guides 31 that extend in a direction perpendicular to the paper surface on the rear upper surface of the bed 12 and are fixed. The grindstone base 34 is mounted on a slide 33 along a pair of linear guides 35 (only one is shown) extending in the left-right direction in the figure so as to be able to advance and retreat by a linear motor (not shown). A grindstone bearing unit 40 is mounted on a front portion of the grindstone stand 34, and a grindstone shaft to which a grindstone G is fixed, which will be described later, is rotatably supported. This grindstone shaft is rotationally connected via a belt 37 to a pulley 36a fixed to an output shaft of a drive motor 36 mounted on the rear portion of the grindstone base 34 so that the rotational power of the drive motor 36 can be transmitted to the grindstone G. I have. Reference numeral 38 denotes a belt tension adjusting mechanism, 39 denotes a grinding liquid supply nozzle, and 39a denotes a feed pipe for feeding the grinding liquid to the nozzle 39.
[0019]
2 and 3, which respectively show a front view and an enlarged horizontal cross-sectional view of the grindstone bearing unit 40, the grindstone bearing unit 40 is disposed on the unit base 41, on the right and left sides as viewed from the front, and is each bolted with a square. The radial bearing devices 42 and 43 and the right end thrust bearing device 44 are main components. The unit base 41 has an arc-shaped space 41a formed in the center of the front surface for receiving the peripheral edge of the grindstone, and a right radial bearing device 42 is fixed to the right front surface of the arc-shaped space 41a.
[0020]
The bearing device 42 rotatably supports the main grindstone shaft 45 on the axis parallel to the horizontal rotation axis of the work W by the static pressure of a pressure fluid such as pressure oil generated on the inner peripheral surface of the bearing metal 46. The configuration of the hydrostatic bearing is as follows. The main grindstone shaft 45 has a small-diameter portion 45a as a thrust bearing end formed at the right end. The small-diameter portion 45a is rotatably supported by a pair of angular contact bearings 47 of a thrust bearing device 44 fixed to the unit base 41. I have. The pair of angular contact bearings 47 as rolling bearings supports the small-diameter portion 45a rotatably in the radial direction and also rotatably supports in the thrust direction, and supports the main grindstone shaft 45 so as not to move in the axial direction.
[0021]
Thus, the pulley 48 is keyed to the main grinding wheel shaft 45 extending between the thrust bearing device 44 and the adjacent radial bearing device 42 between the thrust bearing device 44 and the radial bearing device 42. The belt tension acting on the belt bearing 48 is shared by the static pressure of the radial bearing device 42 and the angular contact bearing 47 of the thrust bearing device 44 so that the belt is supported at both ends so that a large resistance to the belt tension can be exerted. Further, since the small-diameter portion 44a is made to be a thrust bearing, the outer shape of the angular contact bearing 47 can be reduced, the rotational peripheral speed of these bearings 47 is reduced, heat generation is suppressed, and the consumption of rotational power of the drive motor 36 is reduced. Energy saving effect can be obtained.
[0022]
On the other hand, at the left end of the main grindstone shaft 44, a flange portion 45b which is enlarged radially outward is formed, and a shaft connecting mechanism 60 is incorporated. A grindstone G is detachably fixed to the side surface of the flange 44b by a plurality of mounting bolts 49. The grindstone G is configured by, for example, fixing a CBN abrasive grain layer 50b as superabrasive grains on the outer periphery of a metal grindstone substrate 50a. The shaft connecting mechanism 60 integrally connects the sub-grinding wheel shaft 52 to the main grindstone shaft 45, and thereby, the main and sub radial bearing devices 42, 43 that arrange the grindstone G on the right and left sides of the grindstone G on both sides. I try to support from.
[0023]
That is, a sub-radial bearing device 43 is fixed to the left front surface of the unit base 41 with the arc-shaped space 41a interposed therebetween, and the bearing device 43 is coaxial with the main grinding wheel shaft 45 on the rotation axis thereof. The hydrostatic bearing 52 has a configuration in which the bearing 52 is rotatably supported by the static pressure of the pressure fluid generated on the inner peripheral surface of the bearing 53. The auxiliary grinding wheel shaft 52 has a cylindrical internal space formed from the left end side, and an automatic balancing device 54 is incorporated in this space. This balancing device 54 is a known device, and automatically corrects the balance of the rotating system including the main and auxiliary grinding wheel shafts 45 and 52 integrally connected by the shaft connecting mechanism 60 and the grinding wheel G attached thereto. In brief, the balancing device 54 has two built-in weights, is indexed in the circumferential direction by independent motors, and has an angular phase opposite to the angular phase position at which the amount of unbalance of the rotary system is maximized. In order to form a correction balance amount equal to the unbalance amount. A rotation transmitting / receiving device 55a is fixed to an opening at the left end of the auxiliary grinding wheel shaft 52. The rotation transmitting / receiving device 55a includes a drive control circuit that drives and controls the electric motor incorporated in the balance device 54. Further, the rotation transmitting / receiving device 55a is configured to output a signal of the AE sensor attached to the balancer 54 and detect contact between the grindstone G and the work W.
[0024]
The non-rotating transmission / reception device 55b has a right end surface facing the left end surface of the rotation transmission / reception device 55a with a small gap Tm, and enables wireless transmission and reception of signals and motor drive power between both end surfaces. I have. That is, the non-rotational transmission / reception device 55b supplies driving power to the electric motor to the rotation transmission / reception device 55a, and receives the vibration power from the vibration sensor VS fixedly disposed at an appropriate position on the unit base 41, preferably at a back portion close to the grindstone G. Is transmitted. The non-rotating transmitting / receiving device 55b receives the output of the AE sensor from the rotating transmitting / receiving device 55a and inputs the output to a CNC device (not shown) that controls the grinding machine. The non-rotating transmitting / receiving device 55b is fixed to the support plate 57. The support plate 57 is fixed to the unit base 41 by bolts 58 inserted through the elongated holes 57a. Thus, by loosening the bolt 58, the support plate 57 to which the non-rotating transmitting / receiving device 55b is attached can be slid in the left-right direction.
[0025]
FIG. 4 is an enlarged cross-sectional view of the vicinity of the connection between the main and auxiliary grinding wheel shafts 45 and 52 having the shaft connection mechanism 60 built therein. A tapered cylindrical portion 61 protrudes from the right end of the sub-grinding shaft 52, and a cylindrical hole 62 and an enlarged hole 63 are formed in the tapered cylindrical portion 61, and extend radially outward from the base of the tapered cylindrical portion 61. A vertical end surface 52t is formed. On the other hand, a tapered inner hole 65 is formed at the left end of the main grindstone shaft 45 so as to closely fit with the outer peripheral surface of the tapered cylindrical portion 61. The end surface of the tapered inner hole 65 is tightly connected to the vertical end surface 52t. A vertical end surface 45t to be formed is formed. A connecting portion of a substantially cylindrical connecting head 66 whose base is integrally fixed to the main grindstone shaft 45 faces the tapered inner hole 65. The connecting portion has accommodating grooves formed at both ends in the diameter direction, and accommodates the connecting pieces 67, 67 in these accommodating grooves so as to be able to protrude and retract in the radial direction. The connecting pieces 67, 67 are screw-engaged with a pair of screw portions formed at both ends of a screw pin 68 that is diametrically inserted through the connecting portion. These paired screw portions are formed as leads in mutually opposite directions. An operation section is formed on both end faces of the screw pin 68, and for example, a hexagonal wrench hole is formed as the operation section. The flange portion 45b and the tapered cylindrical portion 61 are provided with wrench insertion holes 45h and 61h, respectively, which are diametrically transverse to the wrench hole.
[0026]
Therefore, by inserting the tip of a wrench (not shown) into the wrench hole of the screw pin 68 through these insertion holes 45 h and 61 h and rotating the screw pin 68, the connecting pieces 67, 67 are protruded outward in the radial direction, and the taper is formed. It can be selectively indexed into a connection position where it engages with the enlarged hole 63 of the cylindrical portion 61 and a connection release position where it is completely buried in the accommodation groove of the connection portion. Further, a slope is formed on a side surface of one of the inner sides of the connecting pieces 67, 67, and a biting release pin 69 is engaged with the slope. Therefore, when the connection pieces 67, 67 are completely buried in the accommodation groove to release the connection, the biting release pin 69 is axially moved to press the inner bottom end face of the cylindrical hole 62 of the sub-grinding wheel shaft 52, and the tapered cylinder is formed. The biting state between the outer peripheral surface of the portion 61 and the tapered inner hole 65 is released.
[0027]
Further, a telescopic cover mechanism 70 is mounted between the grindstone G and the sub-radial bearing device 43. In the cover mechanism 70, the cylindrical portion surrounding the outer periphery of the sub-grinding wheel shaft 52 projects toward the grindstone G with the fixed cylindrical cover 71 having its flange fixed to the sub-radial bearing device 43. Further, the movable cylindrical cover 72 is fitted to the outer periphery of the cylindrical portion of the fixed cylindrical cover 71 so as to be able to adjust the sliding position, and has a distal end formed with an outer peripheral annular groove formed on the side surface of the grindstone substrate 50a of the grindstone G. The labyrinth seal portion 72a that forms a maze by engaging with the inner peripheral surface annular groove 50c in a non-contact manner. This prevents foreign substances such as grinding dust, abrasive grains, and grinding fluid from entering the fitting surface between the inner peripheral surface of the grinding wheel substrate 50a and the sub-grinding wheel shaft 52. The movable sleeve 72 is normally fixed by a screw 73. In FIG. 4, reference numeral 75 denotes a seal ring.
[0028]
Next, the operation of the embodiment configured as described above will be described.
When a grinding operation is instructed, the work W supported by the headstock 24 is rotated, the slide 33 is moved right and left and the grindstone base 33 is moved forward, and the rotating grindstone G is engaged with the work W. Then, the cylindrical surface of the work W is ground. At the same time as the grindstone base 33 starts to move forward, the grinding fluid is sent from a not-shown grinding fluid supply device to a feed pipe 39a, and the grinding fluid is supplied from the grinding fluid supply nozzle 39 to a grinding point, which is a contact point between the workpiece W and the grindstone G. It is discharged toward the vicinity.
[0029]
On the other hand, the drive motor 36 is driven to rotate at the same time that power is supplied to the grinding machine, and thereafter the rotation is constantly maintained. The main grinding wheel shaft 45 receives the rotational power of the belt 37 driven by the driving motor 36 by the pulley 48 and is driven to rotate. In this case, the belt tension acting on the pulley 48 is shared and supported by the large radial bearing 42 on the left side and the angular contact bearing 47 on the right side, thereby preventing the inclination of the main grinding wheel shaft 45, Eliminates adverse effects on processing accuracy. Since the shaft connecting mechanism 60 integrally connects the sub-grinding wheel shaft 52 to the main grindstone shaft 44, the rotation of the main grindstone shaft 45 is transmitted to the sub-grinding wheel shaft 52, and both are rotated integrally. The grinding wheel G receives the rotational force of the main grinding wheel shaft 45 and rotates integrally therewith. In this case, the grindstone G has the inner hole of the grindstone substrate 50a fitted to the sub-grindstone shaft 52, and the two grindstone shafts 45, 54 are integrally connected. , And holds the grindstone G at the center of rotation of the left and right radial bearing devices 43 and 42 with strong and large rigidity against the grinding resistance exerted on the grindstone G by the work W.
[0030]
The grindstone G is fixed to and supported by the flange 45 b of the main grindstone shaft 45, and is fitted and supported on the outer peripheral surface of the end of the sub-grindstone shaft 52. As a result, the grinding wheel supporting force is shared between the two grinding wheel shafts 45 and 52, so that the support strength of the grinding wheel G is increased, and the grinding wheel itself corrects by resisting the bending moment acting on the both grinding wheel shafts 45 and 52. Acts as a correction means. As a result, the centering of the grindstone with respect to the grindstone shaft is facilitated, and the rigidity of both grindstone shafts is further enhanced. For this reason, heavy grinding or high-efficiency grinding with an increased cutting speed for the workpiece can be realized, and the grinding wheel G does not escape due to the grinding resistance, so that grinding with high dimensional accuracy can be performed. Further, the thrust loads of the main and auxiliary grinding wheel shafts 45 and 52 in the integrally connected state are supported by the angular contact bearing 47. Since the angular contact bearing 47 directly supports the small-diameter portion 45a without interposing a hydrostatic fluid film unlike a hydrostatic thrust bearing, the thrust rigidity can be increased, and a small-diameter bearing corresponding to the small-diameter portion 45 is provided. Can be used, the heat generation is small, and the energy saving effect of saving the power consumption of the drive motor 36 is achieved.
[0031]
The cover mechanism 70 disposed between the grindstone G and the left radial bearing device 43 moves the movable cylindrical cover 72 around the fixed cylindrical cover 71 via the seal ring 75 while the two grindstone shafts 45 and 52 rotate integrally. The labyrinth seal is formed by engaging the labyrinth seal portion 72a at the distal end thereof in a non-contact manner with the annular groove 50c on the inner peripheral surface of the grindstone substrate 50a. For this reason, foreign substances such as abrasive grains, grinding dust, and grinding fluid that scatter around the grinding wheel G and the grinding wheel shafts 45 and 52 and enter therewith enter the fitting portion between the sub-grinding wheel shaft 52 and the inner hole 50h of the grinding wheel substrate 50a. Is prevented. This prevents the fitting surface between the sub-grinding wheel shaft 52 and the inner hole 50h of the grinding wheel substrate 50a from being damaged, and the fitting between the two can be maintained permanently with high precision.
[0032]
While the two grindstone shafts 45 and 52 rotate integrally, the automatic balancing device 54 built in the sub-grindstone shaft 52 operates to automatically correct the imbalance of the rotating system including the grindstone G and the two grindstone shafts 45 and 52. That is, the output of the vibration sensor VS fixed on the unit base 41 is transmitted from the non-rotating transmission / reception device 55b to the rotation transmission / reception device 55a in a non-contact manner, whereby the rotation transmission / reception device 55a is connected to two motors built in the automatic balancing device 54. Is controlled, and the phases of the two weights are adjusted to remove the imbalance of the rotating system. The phase adjustment operation of the weight by the electric motor is automatically controlled so that the output signal of the vibration sensor VS is equal to or less than a predetermined threshold. In the present embodiment, since the automatic balancing device 54 is incorporated in the sub-grinding wheel shaft 54 on the driven side, it accurately reacts to the unbalance of the entire rotating system, and in particular, the unbalance caused by the looseness of the shaft connecting portion. The effect that the vibration can be corrected accurately can be obtained.
[0033]
Further, an output signal of an AE sensor (not shown) built in the sub-grinding wheel shaft 52 is transmitted from the rotary transmission / reception device 55a to the non-rotational transmission / reception device 55b in a non-contact manner. By processing this signal appropriately, the moment when the grinding wheel G comes into contact with the workpiece W in the cutting and feeding operation of the grinding wheel base 34 is detected, and based on this detection operation signal, for example, the cutting and feeding speed of the grinding wheel base 34 is adjusted. Control such as change is performed.
[0034]
Now, it is necessary to replace the grindstone G with the consumption of the abrasive layer 50b of the grindstone G or the change of the type of the work W to be processed. In this case, as shown in FIG. 5 (A), the movable sleeve 72 is returned to the replacement position on the left side in the drawing by loosening its thread screw 73 (FIG. 4), and the grindstone G is removed from the bolt and the main grindstone shaft 45 is removed. Is released from the connection with the flange portion 45b, and is shifted leftward in the figure. In this state, the tip of the wrench WR shown in FIG. 5A is inserted into the wrench hole of the screw pin 68 through the insertion holes 45h and 61h of the tapered cylindrical portion 61 and the screw pin 68 is rotated. Thereby, the connecting pieces 67, 67 are moved from the connecting position where they are closely engaged with the enlarged hole 63 to the connecting releasing position where they are completely buried in the accommodating groove of the connecting portion, and the biting release pin 69 is also axially moved together with this. By pressing the inner bottom end surface of the cylindrical hole 62 of the sub-grinding wheel shaft 52, the biting state between the outer peripheral surface of the tapered cylindrical portion 61 and the tapered inner hole 65 is released.
[0035]
Further, the bolt 58 fixing the support plate 57 is loosened, and the support plate 57 is non-rotated to the left retreat position with respect to the unit base 41 within the range of the elongated hole 57a as shown in FIG. 5B. It is retracted with the device 55b. In this state, the sub-grinding wheel shaft 52 can move in the axial direction while being rotationally supported by the static pressure of the pressure fluid generated on the inner peripheral surface of the bearing metal 53 of the left radial bearing device 43. Accordingly, the auxiliary grinding wheel shaft 52 can be moved to the left as shown in FIG. 5 (B) by pulling the sub-grinding wheel shaft 52 from the rear while the grinding wheel G is appropriately held by the temporary receiving means. The tip of the grinding wheel shaft 52 is pulled out, and the grinding wheel G is removed.
[0036]
Then, the grindstone G is replaced with a new grindstone, and a new grindstone is attached to both grindstone shafts 45 and 52 again as shown in FIG. In this case, the grindstone G is fixed to the flange portion 45b of the main grindstone shaft 45 by the bolt 49 in a state where the outer periphery of the inner end of the sub-grindstone shaft 52 is fitted into the center bore 50h of the grindstone G. In a state in which the grinding wheel G is completely fixed, the shaft connecting mechanism 60 is operated using the wrench WR, and the connecting pieces 67, 67 are protruded outward and pressed and adhered into the enlarged holes 63 of the tapered cylindrical portion 61. . As a result, the tapered cylindrical portion 61 and the tapered inner hole 65 are tightly fitted to each other, and the vertical end surfaces 45t and 52t are tightly bonded to each other. Is done. The peripheral edges of the vertical end surfaces 45t and 52t that are tightly joined to each other repel each other and strongly resist the bending moment acting on the grinding wheel shaft.
[0037]
Since the thrust bearing device 44 is fixed to the unit base 41 by a substantially horizontal leg extending between the upper and lower portions of the belt running on the pulley 48, the thrust bearing device is inserted into the loop of the belt 37 when the belt 37 is replaced. With 44 inserted, the belt can be removed.
[0038]
In the above description of the operation, after removing the grindstone G from the flange portion 45b of the main grindstone shaft 45, the auxiliary grindstone shaft 52 is shifted to the left to remove the grindstone G from the auxiliary grindstone shaft 52. In a state where the grindstone G is connected to the flange portion 45b of the main grindstone shaft 45 by the bolt 49, the sub grindstone shaft 52 is removed from the grindstone G, and then the bolt 49 is removed to release the grindstone G from the connection with the flange portion 45b. Good.
In the above-described embodiment, the thrust of the grinding wheel shaft 45 is supported by the pair of angular contact bearings 47. However, instead of these, a combination of a radial bearing and a thrust bearing may be used.
[0039]
In the embodiment described above, the bearing devices 42, 43, and 44 are fixed to the unit base 41, and the unit base 41 is mounted on the front portion of the grindstone base 34. The bearing devices 42, 43, 44 may be directly fixed to the front part of the bearing 34.
In addition, in the above embodiment, the grindstone G and the shaft connecting mechanism 60 are fixed or installed on the main grindstone shaft 45 side, but may be fixed or installed on the sub-grindstone shaft 52 side.
When the vibration sensor VS is installed in the left radial bearing device 43, the technical effect of incorporating the automatic balancing device 54 in the sub-grinding wheel shaft 52 is more effectively exhibited.
[0040]
[Brief description of the drawings]
FIG. 1 is a side view of a cylindrical grinder provided with a grindstone bearing device according to an embodiment of the present invention.
FIG. 2 is a front view of the grindstone bearing device according to the embodiment.
FIG. 3 is a horizontal sectional view of the grindstone bearing device according to the embodiment.
FIG. 4 is a vertical cross-sectional view of a shaft connecting mechanism incorporated in the grinding wheel bearing device and a telescopic cover mechanism for protecting the connecting portion.
FIGS. 5A and 5B are explanatory diagrams for explaining a whetstone changing operation; FIGS.
[Explanation of symbols]
11: Cylindrical grinding machine, 34: Grinding wheel, G: Grinding wheel, W: Work, 40: Grinding wheel bearing device, 41: Unit base, 42: Right radial bearing Device, 43: Left radial bearing device, 44: Thrust bearing device, 45: Main grindstone shaft, 45b: Flange portion, 45t, 52t: Vertical end face, 47: Angular contact bearing (Rolling bearing), 48: pulley, 49: bolt (fixing means), 50h: inner hole of grinding wheel center, 52: auxiliary grinding wheel shaft, 54: automatic balancing device, VS ... -Vibration sensor, 55a-Rotating transmitting and receiving device, 55b-Non-rotating transmitting and receiving device (regulating member), 57-Support plate, 60-Shaft coupling mechanism, 61-Tapered cylinder, 65- ..Taper holes, 67, 67 ... Yuikoma, 68 ... operating pin, 45h, 61h ... insertion holes, 70 ... telescopic cover mechanism, 71 ... fixed cylinder cover, 72 ... movable cylinder cover. 72a ... Labyrinth seal part.

Claims (8)

同一軸線上で回転される左右一対の砥石軸を対向端部で一体結合し、この結合部近辺に砥石を固定し、前記一対の砥石軸を分離することにより前記砥石軸から前記砥石を取り外し可能とした研削盤における砥石軸受装置において、砥石台の前部に固定される左右一対のラジアル流体軸受装置と、これらラジアル流体軸受装置が発生する圧力流体によりそれぞれが回転自在に支持される前記左右一対の砥石軸と、これら砥石軸の前記対向端部を選択的に結合分離するためこれら対向端部間に内蔵した軸結合機構と、前記砥石台の前部に固定され前記ラジアル軸受装置の一方の軸方向外方端から突出する砥石軸のスラスト軸受端部をスラスト方向に支持するスラスト軸受装置を設け、このスラスト軸受装置と隣接する前記一方のラジアル流体軸受装置との間に跨る前記砥石軸には前記スラスト軸受装置と前記一方のラジアル流体軸受装置との間でプーリを固定し、さらにこのプーリに作用するベルトテンションに対抗するため前記スラスト軸受装置には、前記スラスト軸受端部をスラスト方向に加えてラジアル方向にも支持する転がりベアリングを設けたことを特徴とする研削盤における砥石軸受装置。A pair of left and right grindstone shafts rotated on the same axis are integrally joined at opposite ends, a grindstone is fixed near this joint, and the pair of grindstone shafts can be separated from the grindstone shaft by detaching the pair of grindstone shafts. A pair of left and right radial fluid bearing devices fixed to the front of the grindstone table, and the pair of right and left radially supported by the pressure fluid generated by these radial fluid bearing devices. A grinding wheel shaft, a shaft coupling mechanism built in between the facing ends to selectively couple and separate the facing ends of the grinding wheel shafts, and one of the radial bearing devices fixed to the front of the grinding wheel head. A thrust bearing device for supporting a thrust bearing end of a grinding wheel shaft protruding from an axially outer end in a thrust direction; and the one radial fluid bearing adjacent to the thrust bearing device A pulley is fixed between the thrust bearing device and the one radial hydrodynamic bearing device on the grinding wheel shaft straddling between the thrust bearing device and the thrust bearing device to counter belt tension acting on the pulley. And a rolling bearing for supporting the end of the thrust bearing in the thrust direction and also in the radial direction. 請求項1に記載の装置において、前記スラスト軸受端部をラジアル軸受部よりも小径に形成し、この小径端部を前記スラスト軸受装置に設けられる前記転がりベアリングとしての一対のアンギュラコンタクトベアリングにて支持するようにしたことを特徴とする研削盤における砥石軸受装置。2. The device according to claim 1, wherein the end of the thrust bearing is formed to have a smaller diameter than the radial bearing, and the small-diameter end is supported by a pair of angular contact bearings provided as the rolling bearings provided in the thrust bearing. A grinding wheel bearing device in a grinding machine, characterized in that: 請求項1に記載の装置において、前記砥石軸の対向端部では一方の砥石軸の端部から突出するテーパ円筒を他方の砥石軸の端部に形成したテーパ穴に嵌合させると共に前記一方の砥石軸のテーパ円筒の基部から径方向に延びる垂直端面を前記他方の砥石軸の前記テーパ穴が開口して径方向に延びる垂直端面と面接触させ、前記両砥石軸がテーパ面嵌合と垂直端面接触の2面で結合されていることを特徴とする研削盤における砥石軸受装置。2. The apparatus according to claim 1, wherein a tapered cylinder protruding from an end of one of the grinding wheel shafts at an opposite end of the grinding wheel shaft is fitted into a tapered hole formed at an end of the other grinding wheel shaft. The vertical end face extending in the radial direction from the base of the tapered cylinder of the grinding wheel shaft is brought into surface contact with the vertical end surface in which the tapered hole of the other grinding wheel axis is opened and extends in the radial direction, and the two grinding wheel shafts are perpendicular to the tapered surface fitting. A grinding wheel bearing device in a grinding machine, wherein the grinding wheel bearing device is connected at two end contact surfaces. 請求項1又は3に記載の装置において、前記砥石軸の一方には他方の砥石軸と結合する端部に径方向外方に延出したフランジ部が形成され、前記砥石はこのフランジ部に固定手段により固定され、前記砥石の中心内孔に前記他方の砥石軸の端部外周面が嵌合されることを特徴とする研削盤における砥石軸受装置。4. The apparatus according to claim 1, wherein one of the grinding wheel shafts is formed with a flange portion extending radially outward at an end portion connected to the other grinding wheel shaft, and the grinding wheel is fixed to the flange portion. A grinding wheel bearing device in a grinding machine, wherein the grinding wheel is fixed by means, and an end outer peripheral surface of the other grinding wheel shaft is fitted into a central bore of the grinding wheel. 請求項3に記載の装置において、前記一方の砥石軸の他方の砥石軸との結合する端部には径方向外方に延出したフランジ部が形成され、前記砥石はこのフランジ部に固定手段により固定され、前記軸結合機構は前記テーパ円筒内の空間に内蔵されると共に径方向両端に操作部を有し、前記軸結合機構の前記操作部へのアクセスを可能にするために前記操作部と整列して径方向に挿通する穴が前記フランジ部及び前記テーパ円筒に形成されていることを特徴とする研削盤における砥石軸受装置。4. An apparatus according to claim 3, wherein a flange portion extending radially outward is formed at an end of said one grinding wheel shaft connected to the other grinding wheel shaft, and said grinding wheel is fixed to said flange portion. The shaft coupling mechanism is fixed in the space inside the tapered cylinder and has operation parts at both ends in the radial direction. The operation part is provided to enable the shaft coupling mechanism to access the operation part. A hole that is radially inserted in alignment with the flange is formed in the flange portion and the tapered cylinder. 請求項1〜5のいずれかに記載の装置において、スラスト軸受されていない前記砥石軸の前記軸方向外方への移動を実質的に規制する部材を前記スラスト軸受されていない砥石軸の軸方向外方端部側に配置し、前記砥石軸の両方を軸方向には前記スラスト軸受装置と前記部材との間に設けたことを特徴とする研削盤における砥石軸受装置。The apparatus according to any one of claims 1 to 5, wherein a member that substantially restricts the axial movement of the grinding wheel shaft that is not supported by a thrust bearing in the axial direction is defined by an axial direction of the grinding wheel shaft that is not supported by the thrust bearing. A grindstone bearing device in a grinding machine, wherein the grindstone bearing device is arranged on an outer end side, and both of the grindstone shafts are provided in the axial direction between the thrust bearing device and the member. 同軸上で回転される左右一対の砥石軸を対向端部で一体結合し、この結合部近辺に砥石を固定し、前記一対の砥石軸を分離することにより前記砥石軸から前記砥石を取り外し可能とした研削盤における砥石軸受装置において、砥石台の前部に固定される左右一対のラジアル流体軸受装置と、これらラジアル流体軸受装置の一方において圧力流体により回転自在に支持された一方の砥石軸と、この一方の砥石軸の他方のラジアル流体軸受装置と対向する端部に径方向外方に延出され前記砥石が固着されるフランジ部と、前記他方のラジアル流体軸受装置において圧力流体により回転自在に支持され前記一方の砥石軸との対向端部の外周が前記砥石の中心内孔に嵌合される他方の砥石軸と、これら一方及び他方の砥石軸の前記対向端部を選択的に結合分離するためこれら対向端部間に内蔵した軸結合機構と、前記他方の砥石軸の前記対向端部の外周と前記砥石の中心内孔との嵌合面への異物の侵入を防止するため前記他方のラジアル流体軸受装置とこれに対向する前記砥石の端面との間に配置されたテレスコピック式のカバー機構とからなることを特徴とする研削盤における砥石軸受装置。A pair of left and right grinding wheel shafts that are rotated coaxially are integrally joined at opposite ends, a grinding wheel is fixed near this joint, and the grinding wheel can be removed from the grinding wheel shaft by separating the pair of grinding wheel shafts. In a grinding wheel bearing device in a grinding machine, a pair of left and right radial fluid bearing devices fixed to the front of the grinding wheel head, and one of the radial fluid bearing devices, one of the grinding wheel shaft rotatably supported by pressure fluid, A flange portion, which extends radially outward to the end of the one grinding wheel shaft facing the other radial fluid bearing device and to which the grindstone is fixed, is rotatable by pressure fluid in the other radial fluid bearing device. The other wheel axis, which is supported and the outer periphery of the opposite end to the one wheel axis is fitted into the center bore of the wheel, and selectively opposes the opposite ends of the one and the other wheel axes. A shaft coupling mechanism built in between these opposed ends for separation and separation, and to prevent foreign matter from entering the fitting surface between the outer periphery of the opposed end of the other grinding wheel shaft and the center bore of the grinding stone. A grindstone bearing device in a grinding machine, comprising: a telescopic cover mechanism disposed between the other radial fluid bearing device and an end surface of the grindstone facing the other radial fluid bearing device. 請求項7記載の装置において、前記テレスコピック式のカバー機構は、前記他方のラジアル流体軸受装置に固定されこの軸受装置近辺における前記他方の砥石軸の外周を隙間を有して包囲する固定円筒カバーと、軸方向の一旦部がこの固定円筒カバー上でスライド位置調整可能に案内され他端部が前記砥石端面に形成された環状溝と係合して迷路を形成するラビリンスシール部を形成して前記他方の砥石軸の前記砥石端面近辺の外周を包囲する可動円筒カバーと、からなることを特徴とする研削盤における砥石軸受装置。The device according to claim 7, wherein the telescopic cover mechanism is fixed to the other radial fluid bearing device, and has a fixed cylindrical cover that surrounds the outer periphery of the other grinding wheel shaft near the bearing device with a gap. A part in the axial direction is guided so as to be able to adjust the slide position on the fixed cylindrical cover, and the other end is engaged with an annular groove formed in the end face of the grinding stone to form a labyrinth seal part forming a maze. A movable cylindrical cover surrounding an outer periphery of the other grinding wheel shaft near the grinding wheel end face, the grinding wheel bearing device in a grinding machine.
JP2003154472A 2003-05-30 2003-05-30 Wheel bearing device in grinding machine Expired - Fee Related JP4151481B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003154472A JP4151481B2 (en) 2003-05-30 2003-05-30 Wheel bearing device in grinding machine
EP20040011216 EP1481762A1 (en) 2003-05-30 2004-05-11 Wheel shaft supporting apparatus for grinding machine
US10/842,487 US7086937B2 (en) 2003-05-30 2004-05-11 Wheel shaft supporting apparatus for grinding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003154472A JP4151481B2 (en) 2003-05-30 2003-05-30 Wheel bearing device in grinding machine

Publications (2)

Publication Number Publication Date
JP2004351593A true JP2004351593A (en) 2004-12-16
JP4151481B2 JP4151481B2 (en) 2008-09-17

Family

ID=34049120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003154472A Expired - Fee Related JP4151481B2 (en) 2003-05-30 2003-05-30 Wheel bearing device in grinding machine

Country Status (1)

Country Link
JP (1) JP4151481B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167872A (en) * 2004-12-16 2006-06-29 Jtekt Corp Grinding method and grinder
JP2006175550A (en) * 2004-12-22 2006-07-06 Jtekt Corp Grinder
JP2012006103A (en) * 2010-06-24 2012-01-12 Toyo Advanced Technologies Co Ltd Rotating shaft structure of grinding machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167872A (en) * 2004-12-16 2006-06-29 Jtekt Corp Grinding method and grinder
JP2006175550A (en) * 2004-12-22 2006-07-06 Jtekt Corp Grinder
JP2012006103A (en) * 2010-06-24 2012-01-12 Toyo Advanced Technologies Co Ltd Rotating shaft structure of grinding machine

Also Published As

Publication number Publication date
JP4151481B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
EP2563639B1 (en) Apparatus for final finishing a wheel hub of a knuckle assembly and related method
EP1201353B1 (en) Rotating table apparatus
US8132991B2 (en) Protection device for a motor spindle
KR20050024333A (en) Self-Propelled Road Milling Machine
CN101327566B (en) Centrifugal force assisted tool clamping system
JP2003127043A (en) Workpiece holder
US11260460B2 (en) Stop for a drilling, milling or countersinking tool
JP4320241B2 (en) Index table
EP0759831B1 (en) Drive transmitting device
US11273528B2 (en) Motor spindle
JP2004351593A (en) Wheel shaft supporting device for grinding machine
JP2010158757A (en) Grinding machine
CN107932314B (en) Closed internal feedback static pressure rotary table device for vertical grinder
CN219767778U (en) Grinding device and grinding machine comprising same
JP5009838B2 (en) Work support device and rotary indexer
JP4036150B2 (en) Wheel bearing device in grinding machine
JP4069384B2 (en) Wheel bearing device in grinding machine
CN212444773U (en) Main shaft mechanism of grinding machine
KR101885478B1 (en) Sleeve of machine tool spindle without shirink-fitting and machine tool having the sleeve
JPH0847832A (en) Bearing clamp device of turning jig
JPH10193202A (en) Tail stock
CN216938442U (en) Lathe main shaft bearing structure convenient to adjustment
JPH02237764A (en) Grinding aligning round work piece
JP2001269803A (en) Main spindle device for machine tool
CN111761513A (en) Main shaft mechanism of grinding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050629

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees