JP2004347523A - Method for testing insulating property of coil - Google Patents

Method for testing insulating property of coil Download PDF

Info

Publication number
JP2004347523A
JP2004347523A JP2003146336A JP2003146336A JP2004347523A JP 2004347523 A JP2004347523 A JP 2004347523A JP 2003146336 A JP2003146336 A JP 2003146336A JP 2003146336 A JP2003146336 A JP 2003146336A JP 2004347523 A JP2004347523 A JP 2004347523A
Authority
JP
Japan
Prior art keywords
coil
electrode
insulating layer
movable electrode
main electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003146336A
Other languages
Japanese (ja)
Inventor
Shuya Hagiwara
修哉 萩原
Hiroyuki Kamiya
宏之 神谷
Tsunehiko Yamauchi
恒彦 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP2003146336A priority Critical patent/JP2004347523A/en
Publication of JP2004347523A publication Critical patent/JP2004347523A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for testing properties of the entire insulating layer of a coil, making the coil wherein the surface of the insulating layer becomes a floating potential a test object. <P>SOLUTION: A power source 41 is connected to a conductor 21 making the coil 1 wherein the surface 12 of the insulating layer 11 becomes the floating potential as the test object. A movable electrode 3A is pressed against a part of the surface 12 of the insulating layer 11. A main electrode 31 of the movable electrode 3A is connected to a dielectric loss tangent measuring device 43. An electric signal transmitted from the power source 41 to the main electrode 31 is measured by the measuring device 43 with applying an electric field between the conductor 21 and the main electrode 31. A dielectric loss tangent of the total of the insulating layer 11 is measured by repeating this measurement while changing a position of the movable electrode 3A, and the part having inferior properties is specified from each measurement result. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、コイルの絶縁特性試験方法に係り、特に、電磁石コイルなどの大型高電圧コイルの初期の特性管理や経時運転に伴う特性劣化を診断するに好適なコイルの絶縁特性試験方法に関する。
【0002】
【従来の技術】
高電圧コイルとしては、例えば、陽子加速器用電磁石コイルが知られており、この種の電磁石コイルの絶縁層の特性を評価する方法としては、絶縁層内部の高電圧導体と表面の接地電位層との間に所定の電圧を印加し、直流抵抗、誘電正接、部分放電などの非破壊電気特性を測定する方法が一般的である。
【0003】
一方、コイルの表面にプローブを当てて熱伝導率を測定し、測定値の変化から絶縁層の劣化を検知する方法が提案されている(特許文献1参照)。
【0004】
また、コイルの表面にプローブを当てて絶縁層のインピーダンスを測定する方法も提案されている(特許文献2参照)。
【0005】
さらに、コイルの表面に電極を当てて静電容量を測定する方法が提案されている(特許文献3参照)。
【0006】
【特許文献1】
特開2000−2744号公報(第2頁から第3頁、図1)
【特許文献2】
特開平9−163685号公報(第2頁から第3頁、図1)
【特許文献3】
特開平10−177053号公報(第3頁から第5頁、図1、図2)
【0007】
【発明が解決しようとする課題】
上記した従来の各種絶縁特性試験方法のうち、絶縁層に高電圧を印加する方法は、コイル表面に接地電位の電位層がある場合に限り実現することができる。すなわち、コイル表面の絶縁層に、接地電位の電位層がないとき、例えば、コイル表面の絶縁層に、低抵抗コロナシールドが施され、表面が浮動電位となるコイルを対象として絶縁層に高電圧を印加しても、絶縁層表面の電位が印加電圧に応じて変化するだけで、特性試験ができない。また絶縁層全体に一様に課電する方法であるため、特性に劣る部位を特定することが困難である。一方、絶縁層の熱伝導率や静電容量を測定する方法は、誘電正接や部分放電といった絶縁層の劣化を評価する実績のある指標に比べると、評価の信頼性や適応条件などに十分な配慮が必要である。
【0008】
本発明の課題は、絶縁層の表面が浮動電位となるコイルを試験対象として、このコイルの絶縁層全体の特性を試験することにある。
【0009】
【課題を解決するための手段】
前記課題を解決するために、本発明は、絶縁層の表面が浮動電位となるコイルを試験対象として、コイルの導体に電源、例えば直流または交流の電源を接続し、コイルの絶縁層の表面の一部に可動電極を圧接するとともに可動電極に測定器を接続し、電源からコイルの導体と絶縁層および可動電極を介して転送する電気信号を測定器で測定し、この測定を可動電極の位置を変えながら繰返すようにしたものである。
【0010】
このような測定を行うことで、絶縁特性として、非破壊電気的特性を試験することができる。この非破壊電気的特性としては、(a)直流抵抗、(b)誘電正接、(c)部分放電の電荷量、放電開始/消滅電圧、放電位相/電荷量/位相特性、(d)交流電流の電圧特性が挙げられる。
【0011】
可動電極の位置に応じた測定結果から絶縁層の非破壊電気的特性を適正に評価するに際しては、可動電極として、剛性絶縁体のベースと、前記電気信号の伝送媒体として弾性導電体で構成されて前記ベースに固定された主電極と、前記主電極の周囲に前記主電極と間隙を保って配置されて前記ベースに固定されたガード電極とを備えたものを用い、主電極を測定器に接続し、ガード電極を接地する方法を採用することができる。
【0012】
また、可動電極として、剛性絶縁体のベースと、前記電気信号の伝送媒体として弾性導電体で構成されて前記ベースに固定された主電極と、前記主電極の周囲に前記主電極と一体となって配置されて前記ベースに固定された電位緩和電極とを備えたものを用い、主電極を測定器に接続する方法を採用することができる。
【0013】
また、非破壊電気的特性として、部分放電音を測定するに際しては、絶縁層の表面が浮動電位となるコイルを試験対象として、コイルの導体に電源を接続し、コイルの絶縁層の表面の一部に可動電極を圧接するとともに、可動電極の一部を接地し、電源からコイルへの電圧の印加に伴って発生する音を測定器で測定し、この測定を可動電極の位置を変えながら繰返すことで達成することができる。
【0014】
この場合、絶縁特性を適正に評価するに際しては、可動電極として、剛性絶縁体のベースと、前記電気信号の伝送媒体として弾性導電体で構成されて前記ベースに固定された主電極と、前記主電極の周囲に前記主電極と一体となって配置されて前記ベースに固定された電位緩和電極とを備えたものを用い、主電極を測定器に接続し、電位緩和電極を接地する方法を採用することができる。
【0015】
前記した手段によれば、絶縁層に電源からの高電圧を印加したときの非破壊特性を部分的に測定し、この測定を可動電極の位置を変えながら繰返すことで、絶縁層全体の特性を測定(試験)することができるとともに、各測定結果から絶縁層全体の特性を評価することができる。
【0016】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて説明する。図1は本発明の一実施形態を示す絶縁特性試験装置と電磁石用コイルの構成図である。図1において、電磁石用コイル1を試験対象とする絶縁特性試験装置は、電源41、結合コンデンサ42、誘電正接測定器43、可動電極3Aを備えて構成されている。
【0017】
可動電極3Aは、図2に示すように、電気信号の伝送媒体として、弾性導電体、例えば、SiC、カーボンを用いて円板状に形成された主電極31と、主電極31の周囲に主電極31と間隙を保って配置されて弾性導電体で形成された円環状のガード電極32と、剛性絶縁体を用いて円板状に形成された電極ベース33から構成されており、主電極31とガード電極32がそれぞれ電極ベース33の底面側に固定されている。主電極31は、リード線31aを介して誘電正接測定器43に接続され、ガード電極32は、リード線32aを介して接地されている。主電極31とガード電極32はコイル1の導体21の周囲を覆う絶縁層11の表面12の一部に配置され、電極ベース33の上方から電極ベース33に作用する外力34によって絶縁層11の表面12に圧接されている。
【0018】
電磁石用コイル1は、例えば、陽子加速器に用いられる電磁石コイルとして、図3に示す鞍型形状のコイル部材2が2個相対向して組み付けられるようになっている。各コイル部材2は、図4に示すように、巻線を構成する導体21の集合体であって、導体21が数十T(ターン)巻き付けられており、導体21の周囲が絶縁層11で覆われている。この絶縁層11は、マイカ、フィルム、ガラス繊維やそれらの混合物を有機レジンで固着して構成されており、その表面には低抵抗コロナシールドが施されている。すなわち、コイル1は、絶縁層11の表面が浮動電位となるコイルとして構成されている。
【0019】
また、大容量の電磁石コイルほど高い電圧が必要となり、導体21に磁界を発生するための励磁電流が流れると、導体21の対地電位は数kV以上となる。一方、絶縁層11の表面12には特別に電位を管理する方策を設けていないので、周辺の接地電位の構造体と絶縁層11とが電気的に接触した部分は接地電位となるため、導体21に高電圧が印加されたときには絶縁層11にも高い電界が加わることになる。
【0020】
ここで、工業的に生産される絶縁層においては、組成的に完全なものを製造することは極めて難しく、通常、ある程度のボイドや剥離といった欠陥を許容せざるを得ない。このような絶縁層に高電界が加わると欠陥部分で放電が生じ、長時間の運転中に欠陥が拡大し、ついにはコイルとして必要な絶縁性能を保持できなくなる恐れがある。このため、コイルとして製作した直後の絶縁層のできの良し悪しを評価したり、経時運転後の絶縁層の劣化の程度を診断するために、絶縁特性を評価する必要がある。
【0021】
絶縁特性の評価に当たっては、電界を印加した際の非破壊特性を測定する方法がある。非破壊特性としては、直流抵抗、交流の電圧特性、誘電正接、部分放電の電荷量、部分放電の電荷量と放電数の発生位相特性などがある。これらの非破壊特性を測定するためには、絶縁層に電界を印加しなければならない。
【0022】
ところが、コイル1の絶縁層11の表面12には、表面12を接地電位に管理するための方策が設けていない。すなわち、絶縁層11の表面には低抵抗コロナシールドが施され、絶縁層11の表面は浮動電位となっている。このため、このままでは絶縁層11に必要な電界を印加することができない。
【0023】
そこで、本実施形態においては、絶縁層11の表面12に可動電極3Aを取り付けて、導体21と可動電極3Aとの間に電界を加え、可動電極3Aの位置を順次移動(変更)しながら絶縁特性を測定し、各位置における測定結果からコイル1全体の特性を評価することとしている。
【0024】
以下、本発明に係る絶縁特性試験方法について説明する。まず、絶縁層11の誘電正接を測定するに際しては、図1に示すように、電源(交流電源)41をリード線21を介してコイル1の導体21に接続し、誘電正接測定器43をリード線31aを介して可動電極3Aの主電極31に接続し、ガード電極32をリード線32aを介して接地する。この状態で可動電極3Aの電極ベース33にその上方から外力34を与えて可動電極3Aを絶縁層11の表面12に圧接する。この状態で交流電源41からの交流電圧を導体21と主電極31との間に印加することで、絶縁層11に所定の電界が加わり、電源41からの低圧信号が結合コンデンサ42を介して誘電正接測定器43内部のブリッジ回路を介して接地される。交流電圧が導体21と可動電極3A間に印加されると、電源41から導体21、絶縁層11、主電極31に電気信号が伝送される。この電気信号を測定器43で測定することで、誘電正接を求めることができる。電気信号が導体21と絶縁層11および主電極31に電流が流れる過程では、絶縁層11内部に電界が形成されるが、ガード電極32が接地されているため、主電極31外周側の電界に、曲がりが生じるのを抑制することができ、誘電正接を正確に測定することができる。
【0025】
絶縁層11の一部の誘電正接が測定されたときには、可動電極3Aの位置を順次変えながらコイル1全体の誘電正接を測定する。そして各位置(部分)ごとの測定値をまとめることで、コイル1全体の特性(誘電正接)を評価することができる。例えば、各部分ごとの測定値を基に、コイル1の特性の不良部分を特定することができる。
【0026】
このように、本実施形態においては、コイル1の一部分の特性測定を順次繰返しながらコイル1全体の特性を評価するようにしたため、特性の劣る部分を容易に特定することができる。
【0027】
ここで、高電圧コイルとしてのコイル1の絶縁層11の電気的な非破壊特性は、一般に材料や製造工程に依存する特性のばらつきが大きく、非破壊特性の絶対値で製作の良否や経時運転による劣化を判定することが困難な場合もある。このような場合、部分的な特性測定値のばらつきを統計的に処理することで、例えば、測定値を正規分布にしたがって処理して良い部分と不良部分とに分けることで、製作不良や劣化を識別することができる。
【0028】
なお、前記実施形態においては、主電極31とガード電極32として円形形状のものを用いているが、これは、鋭角部での電界の集中を防ぐためであり、各電極を必ずしも真円状に形成する必要はない。ただし、各電極の輪郭はできるだけ滑らかな曲線状にすることが望ましい。
【0029】
また、前記実施形態においては、主電極31とガード電極32との組み合わせによってコイル1の誘電正接を測定するものについて述べたが、電源41として直流電源を用い、誘電正接測定器43の代わりに直流抵抗測定器を用いることで、絶縁層11の直流抵抗を測定することができる。
【0030】
次に、本発明の他の実施形態を図5および図6にしたがって説明する。本実施形態は、コイル1の絶縁層11の部分放電を測定するようにしたものであり、測定器として、誘電正接測定器43の代わりに放電測定器44を用い、可動電極3Aの代わりに可動電極3Bを用いるようにしたものであり、他の構成は前記実施形態のものと同様である。可動電極3Bは、可動電極3Aのガード電極32の代わりに電位緩和電極35を用いたものであり、導電性弾性材を用いて円板状に形成された主電極31と、主電極31の周囲に主電極31と一体となって配置されて、半導電性弾性材、例えば、SiC、カーボンを用いた電位緩和電極35が円板状の電極ベース3の底面側に固定され、主電極31がリード線31aを介して放電測定器44に接続されている。主電極31と電位緩和電極35はその両者が境界線35Aで電気的に結合されている。そして表面放電防止のために、主電極31と相対する輪郭線35Bとの間の電気的抵抗は10〜1011Ω程度に設定されている。
【0031】
交流電源41をリード線21aを介して導体21に接続し、主電極31をリード線31aを介して放電測定器44に接続し、可動電極3Bに外力34を与えて可動電極3Bの底面側をコイル1の絶縁層11の表面12の一部に圧接した状態で、導体21と主電極31との間に電界を加え、結合コンデンサ42と主電極31との間の放電信号を放電測定器44に取り込むことで、絶縁層11の部分放電を測定することができる。この際、絶縁層11表面12の過度な電位傾度で生じる表面放電を防止して精度の高い部分放電を測定するために、主電極31の周囲に電位緩和電極35が配置されている。すなわち、絶縁層11内部にボイドが生じると、ボイドのある部分では他の部分よりも低い電圧で部分放電が生じる。このため、電位緩和電極35にわずかな電流を流すことで、ボイドの放電に伴って絶縁層11表面に大きな放電が生じるのを緩和することができる。
【0032】
本実施形態においても、可動電極3Bの位置を変えながら部分放電を測定することで、絶縁層11全体の部分放電を測定することができる。
【0033】
このように、本実施形態においては、コイル1の一部分の特性測定を順次繰返しながらコイル1全体の特性を評価するようにしたため、特性の劣る部分を容易に特定することができる。
【0034】
本実施形態における測定データは、部分放電電荷量、電源電圧に対する放電位相、放電の発生数などが挙げられる。これらのデータを最大放電電荷量、総放電電荷量、放電電荷量−位相−放電数特性として絶縁特性の評価指標として用いることができる。この場合、可動電極3Bで1回に測定できるのは絶縁層11の局部的な特性であり、コイル1全体を順次移動しながら測定することで、局部的な特性のばらつきを含めたコイル1全体の特性を評価することができる。
【0035】
次に、本発明の第3実施形態を図7にしたがって説明する。本実施形態は部分放電に伴う放電音を測定するようにしたものであり、測定器としてマイク45、音響記録装置46、音響分析装置47を用い、可動電極として可動電極3Bを用いたものであり、他の構成は前記実施形態のものと同様である。
【0036】
部分放電に伴う放電音を測定するに際しては、交流電源41をリード線21aを介して導体21に接続し、主電極31をリード線31aを介して接地する。この状態で導体1と主電極31との間に電界を加えると、絶縁層11に内在する空隙(ボイド)や剥離に伴って部分放電が生じ、この部分放電に伴う音がマイク45で収録され、音響記録装置46に記録され、この記録結果が音響分析装置43で分析評価される。この分析は測定と同時に進めることも可能であり、測定時には記録のみに留め、その後分析することも可能である。
【0037】
また本実施形態においては、可動電極3Bの位置を順次変えながら部分放電に伴う音を収録することで、コイル1全体の部分放電に伴う放電音を測定することができる。
【0038】
本実施形態における評価指標としては、音圧レベルや周波数スペクトルであり、測定された音圧レベルや周波数スペクトルを基に、予め採取しておいたそれらの特性と絶縁特性の相関特性に則って評価することができる。
【0039】
前記各実施形態においては、可動電極3A、3Bとして、その表面が平板形状のものについて述べたが、図8に示すように、絶縁層11表面12の角部13が局面形状のときには、主電極31、ガード電極32または主電極31と電位緩和電極35で構成される可動電極として、その表面が局面形状の可動電極3Cを用いることで、角部13に対しても部分放電に伴う放電音、誘電正接など非破壊電気的特性を測定することができる。
【0040】
前記各実施形態においては、表面に接地電位層のない大型コイル1の表面にいずれかの可動電極3A、3B、3Cを当てて、絶縁層11に高電界を加えた状態で非破壊電気的特性を測定しているため、絶縁層11内部の欠陥を表す指標である誘電正接や部分放電を測定することができ、コイル1の製造不良や経時運転に伴う劣化を診断することができる。そして、コイル1の一部分の特性測定を順次繰返しながら全体を評価することで、特性の劣る部分を容易に特定することができる。
【0041】
【発明の効果】
以上説明したように、本発明によれば、絶縁層全体の特性を試験することができるとともに、各試験結果から絶縁層全体の特性を評価することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示す絶縁特性試験装置とコイルの構成図である。
【図2】可動電極の構成図である。
【図3】電磁石用コイルの斜視図である。
【図4】電磁石用コイルの要部断面図である。
【図5】本発明の第2実施形態を示す絶縁特性試験装置とコイルの構成図である。
【図6】可動電極の構成図である。
【図7】本発明の第3実施形態を示す絶縁特性試験装置とコイルの構成図である。
【図8】絶縁層の角部を測定するための可動電極の構成説明図である。
【符号の説明】
1 電磁石用コイル
3A、3B、3C 可動電極
11 絶縁層
12 表面
21 導体
31 主電極
32 ガード電極
33 電極ベース
35 電位緩和電極
41 電源
42 結合コンデンサ
43 誘電正接測定器
44 放電測定器
45 マイク
46 音響記録装置
47 音響分析装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a coil insulation characteristic test method, and more particularly to a coil insulation characteristic test method suitable for initial characteristic management of large-sized high-voltage coils such as electromagnet coils and diagnosis of characteristic deterioration due to aging operation.
[0002]
[Prior art]
As a high-voltage coil, for example, an electromagnet coil for a proton accelerator is known.As a method for evaluating the characteristics of the insulating layer of this type of electromagnet coil, a high-voltage conductor inside the insulating layer and a ground potential layer on the surface are used. A common method is to apply a predetermined voltage during the measurement and measure non-destructive electrical characteristics such as DC resistance, dielectric loss tangent, and partial discharge.
[0003]
On the other hand, a method has been proposed in which a probe is applied to the surface of a coil to measure thermal conductivity, and a change in the measured value is used to detect deterioration of the insulating layer (see Patent Document 1).
[0004]
A method of measuring the impedance of an insulating layer by applying a probe to the surface of a coil has also been proposed (see Patent Document 2).
[0005]
Furthermore, there has been proposed a method of measuring the capacitance by applying an electrode to the surface of a coil (see Patent Document 3).
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-2744 (Pages 2 to 3, FIG. 1)
[Patent Document 2]
Japanese Patent Application Laid-Open No. 9-163885 (pages 2 to 3, FIG. 1)
[Patent Document 3]
JP-A-10-177053 (pages 3 to 5, FIGS. 1 and 2)
[0007]
[Problems to be solved by the invention]
Among the above-mentioned various conventional methods for testing the insulation characteristics, the method of applying a high voltage to the insulating layer can be realized only when a ground potential layer is present on the coil surface. That is, when there is no potential layer of the ground potential in the insulating layer on the coil surface, for example, a low-resistance corona shield is applied to the insulating layer on the coil surface, and a high voltage is applied to the insulating layer for a coil whose surface has a floating potential. Is applied, only the potential of the insulating layer surface changes according to the applied voltage, and the characteristic test cannot be performed. In addition, since the method uniformly applies power to the entire insulating layer, it is difficult to specify a portion having poor characteristics. On the other hand, the method of measuring the thermal conductivity and the capacitance of the insulating layer is not sufficient for the reliability and adaptation conditions of the evaluation, compared with the proven index of evaluating the deterioration of the insulating layer such as dielectric loss tangent and partial discharge. Care must be taken.
[0008]
An object of the present invention is to test the characteristics of the entire insulating layer of a coil, with a coil whose floating surface has a floating potential as a test object.
[0009]
[Means for Solving the Problems]
In order to solve the problem, the present invention relates to a test in which a coil having a floating potential on the surface of an insulating layer is connected to a power supply, for example, a DC or AC power supply, to a conductor of the coil. A part of the movable electrode is pressed into contact with the movable electrode, and a measuring device is connected to the movable electrode.Electrical signals transferred from the power supply through the coil conductor and the insulating layer and the movable electrode are measured by the measuring device. Is to be repeated while changing.
[0010]
By performing such a measurement, non-destructive electrical characteristics can be tested as insulation characteristics. The non-destructive electrical characteristics include (a) DC resistance, (b) dielectric loss tangent, (c) charge amount of partial discharge, discharge start / disappearance voltage, discharge phase / charge amount / phase characteristic, (d) AC current Voltage characteristics.
[0011]
When properly evaluating the non-destructive electrical characteristics of the insulating layer from the measurement results according to the position of the movable electrode, the movable electrode is composed of a rigid insulator base and an elastic conductor as a transmission medium of the electric signal. Using a main electrode fixed to the base, and a guard electrode fixed to the base arranged around the main electrode with a gap between the main electrode, the main electrode to a measuring instrument A method of connecting and grounding the guard electrode can be adopted.
[0012]
Further, as a movable electrode, a base of a rigid insulator, a main electrode formed of an elastic conductor as a transmission medium of the electric signal and fixed to the base, and integrally formed with the main electrode around the main electrode. And a method in which the main electrode is connected to a measuring instrument using an electrode provided with a potential relaxation electrode fixed to the base.
[0013]
When measuring the partial discharge noise as a non-destructive electrical characteristic, a power supply is connected to the coil conductor, and a test is performed on a coil whose surface of the insulating layer has a floating potential. The movable electrode is pressed against the part and the part of the movable electrode is grounded, the sound generated by applying the voltage from the power supply to the coil is measured with a measuring instrument, and this measurement is repeated while changing the position of the movable electrode That can be achieved.
[0014]
In this case, when properly evaluating the insulation characteristics, a base of a rigid insulator as a movable electrode, a main electrode formed of an elastic conductor as a transmission medium of the electric signal, and fixed to the base, A method is used in which a main electrode is provided integrally with the main electrode around the electrode and provided with a potential relaxation electrode fixed to the base, the main electrode is connected to a measuring instrument, and the potential relaxation electrode is grounded. can do.
[0015]
According to the above-described means, the non-destructive characteristics when a high voltage from a power supply is applied to the insulating layer are partially measured, and the measurement is repeated while changing the position of the movable electrode, whereby the characteristics of the entire insulating layer are measured. Measurement (test) can be performed, and the characteristics of the entire insulating layer can be evaluated from each measurement result.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of an insulation characteristic test apparatus and an electromagnet coil according to an embodiment of the present invention. In FIG. 1, an insulation property test apparatus for testing an electromagnet coil 1 includes a power supply 41, a coupling capacitor 42, a dielectric loss tangent measuring instrument 43, and a movable electrode 3A.
[0017]
As shown in FIG. 2, the movable electrode 3 </ b> A has a main electrode 31 formed in a disc shape using an elastic conductor, for example, SiC or carbon, as a transmission medium of an electric signal, and a main electrode 31 around the main electrode 31. The main electrode 31 includes an annular guard electrode 32 formed of an elastic conductor and arranged with a gap between the electrode 31 and an electrode base 33 formed in a disk shape using a rigid insulator. And the guard electrode 32 are fixed to the bottom side of the electrode base 33, respectively. The main electrode 31 is connected to a dielectric loss tangent measuring instrument 43 via a lead wire 31a, and the guard electrode 32 is grounded via a lead wire 32a. The main electrode 31 and the guard electrode 32 are arranged on a part of the surface 12 of the insulating layer 11 that covers the periphery of the conductor 21 of the coil 1, and the surface of the insulating layer 11 is applied from above the electrode base 33 by an external force 34 acting on the electrode base 33. 12.
[0018]
The electromagnet coil 1 is configured such that two saddle-shaped coil members 2 shown in FIG. 3 are opposed to each other, for example, as electromagnet coils used in a proton accelerator. As shown in FIG. 4, each coil member 2 is an aggregate of conductors 21 constituting a winding, and the conductors 21 are wound around several tens of T (turns). Covered. The insulating layer 11 is formed by fixing mica, film, glass fiber, or a mixture thereof with an organic resin, and has a low-resistance corona shield on the surface. That is, the coil 1 is configured as a coil in which the surface of the insulating layer 11 has a floating potential.
[0019]
In addition, a higher voltage is required for a large-capacity electromagnet coil, and when an exciting current for generating a magnetic field flows through the conductor 21, the potential of the conductor 21 to the ground becomes several kV or more. On the other hand, since no special measures for controlling the potential are provided on the surface 12 of the insulating layer 11, a portion where the surrounding ground potential structure and the insulating layer 11 are in electrical contact is at the ground potential. When a high voltage is applied to 21, a high electric field is also applied to insulating layer 11.
[0020]
Here, it is extremely difficult to manufacture an insulating layer that is industrially produced, which is completely compositional, and usually, some degree of defects such as voids and peeling must be allowed. When a high electric field is applied to such an insulating layer, a discharge occurs at a defective portion, and the defect expands during a long-time operation, and eventually, the insulating performance required as a coil may not be maintained. For this reason, it is necessary to evaluate the insulation characteristics in order to evaluate the quality of the insulation layer immediately after being manufactured as a coil and to diagnose the degree of deterioration of the insulation layer after the operation over time.
[0021]
In evaluating the insulation characteristics, there is a method of measuring nondestructive characteristics when an electric field is applied. The non-destructive characteristics include a DC resistance, an AC voltage characteristic, a dielectric tangent, a partial discharge charge amount, a partial discharge charge amount and a generation phase characteristic of the number of discharges, and the like. To measure these non-destructive properties, an electric field must be applied to the insulating layer.
[0022]
However, no measure is provided on the surface 12 of the insulating layer 11 of the coil 1 for managing the surface 12 to the ground potential. That is, a low-resistance corona shield is applied to the surface of the insulating layer 11, and the surface of the insulating layer 11 has a floating potential. Therefore, a required electric field cannot be applied to the insulating layer 11 as it is.
[0023]
Therefore, in the present embodiment, the movable electrode 3A is attached to the surface 12 of the insulating layer 11, an electric field is applied between the conductor 21 and the movable electrode 3A, and the position of the movable electrode 3A is sequentially moved (changed) while insulating. The characteristics are measured, and the characteristics of the entire coil 1 are evaluated from the measurement results at each position.
[0024]
Hereinafter, a method for testing insulation properties according to the present invention will be described. First, when measuring the dielectric loss tangent of the insulating layer 11, as shown in FIG. 1, a power supply (AC power supply) 41 is connected to the conductor 21 of the coil 1 via the lead wire 21, and the dielectric loss tangent measurement device 43 is connected to the lead. The guard electrode 32 is connected to the main electrode 31 of the movable electrode 3A via a wire 31a, and grounded via a lead wire 32a. In this state, an external force 34 is applied to the electrode base 33 of the movable electrode 3A from above, and the movable electrode 3A is pressed against the surface 12 of the insulating layer 11. In this state, by applying an AC voltage from the AC power supply 41 between the conductor 21 and the main electrode 31, a predetermined electric field is applied to the insulating layer 11, and a low-voltage signal from the power supply 41 is transmitted through the coupling capacitor 42 to the dielectric layer. It is grounded via a bridge circuit inside the tangent measuring device 43. When an AC voltage is applied between the conductor 21 and the movable electrode 3A, an electric signal is transmitted from the power supply 41 to the conductor 21, the insulating layer 11, and the main electrode 31. By measuring this electric signal with the measuring device 43, the dielectric loss tangent can be obtained. When an electric signal flows through the conductor 21, the insulating layer 11 and the main electrode 31, an electric field is formed inside the insulating layer 11. However, since the guard electrode 32 is grounded, the electric field on the outer peripheral side of the main electrode 31 is reduced. In addition, the occurrence of bending can be suppressed, and the dielectric loss tangent can be accurately measured.
[0025]
When the dielectric loss tangent of a part of the insulating layer 11 is measured, the dielectric loss tangent of the entire coil 1 is measured while sequentially changing the position of the movable electrode 3A. Then, by collecting the measured values for each position (portion), the characteristics (dielectric tangent) of the entire coil 1 can be evaluated. For example, it is possible to identify a defective portion of the characteristics of the coil 1 based on the measured value of each portion.
[0026]
As described above, in the present embodiment, the characteristics of the entire coil 1 are evaluated while sequentially measuring the characteristics of a part of the coil 1, so that a portion having poor characteristics can be easily specified.
[0027]
Here, the electrical non-destructive characteristics of the insulating layer 11 of the coil 1 as a high-voltage coil generally vary greatly depending on the material and the manufacturing process. In some cases, it is difficult to determine the deterioration due to aging. In such a case, by partially processing the variation of the measured characteristic value statistically, for example, by dividing the measured value into a portion that can be processed according to a normal distribution and a defective portion, it is possible to reduce manufacturing defects and deterioration. Can be identified.
[0028]
In the above embodiment, the main electrode 31 and the guard electrode 32 have circular shapes, but this is to prevent the electric field from being concentrated at the acute angle portion, and the electrodes are not necessarily formed in a perfect circle. It does not need to be formed. However, it is desirable that the contour of each electrode be as smooth as possible.
[0029]
Further, in the above-described embodiment, the case where the dielectric loss tangent of the coil 1 is measured by the combination of the main electrode 31 and the guard electrode 32 has been described. However, a DC power supply is used as the power supply 41, and the DC By using the resistance measuring device, the DC resistance of the insulating layer 11 can be measured.
[0030]
Next, another embodiment of the present invention will be described with reference to FIGS. In the present embodiment, a partial discharge of the insulating layer 11 of the coil 1 is measured. As a measuring device, a discharge measuring device 44 is used instead of the dielectric loss tangent measuring device 43, and a movable device is used instead of the movable electrode 3A. The third embodiment uses the electrode 3B, and the other configuration is the same as that of the above-described embodiment. The movable electrode 3B uses a potential relaxation electrode 35 instead of the guard electrode 32 of the movable electrode 3A, and includes a main electrode 31 formed in a disk shape using a conductive elastic material, and a periphery of the main electrode 31. Is arranged integrally with the main electrode 31, a potential relaxation electrode 35 using a semiconductive elastic material, for example, SiC or carbon, is fixed to the bottom side of the disk-shaped electrode base 3, and the main electrode 31 is It is connected to a discharge measuring device 44 via a lead wire 31a. The main electrode 31 and the potential relaxation electrode 35 are electrically coupled to each other at a boundary line 35A. In order to prevent surface discharge, the electric resistance between the main electrode 31 and the opposing contour 35B is set to about 10 5 Ω to 10 11 Ω.
[0031]
The AC power supply 41 is connected to the conductor 21 via the lead wire 21a, the main electrode 31 is connected to the discharge measuring device 44 via the lead wire 31a, and an external force 34 is applied to the movable electrode 3B so that the bottom surface of the movable electrode 3B is An electric field is applied between the conductor 21 and the main electrode 31 in a state of being pressed against a part of the surface 12 of the insulating layer 11 of the coil 1, and a discharge signal between the coupling capacitor 42 and the main electrode 31 is measured by a discharge measuring device 44. , The partial discharge of the insulating layer 11 can be measured. At this time, a potential relaxation electrode 35 is arranged around the main electrode 31 in order to prevent a surface discharge caused by an excessive potential gradient on the surface 12 of the insulating layer 11 and to measure a highly accurate partial discharge. That is, when a void is generated inside the insulating layer 11, a partial discharge occurs at a voltage lower in the portion where the void exists than in the other portion. Therefore, by passing a small current through the potential relaxation electrode 35, it is possible to reduce the occurrence of a large discharge on the surface of the insulating layer 11 due to the void discharge.
[0032]
Also in the present embodiment, the partial discharge of the entire insulating layer 11 can be measured by measuring the partial discharge while changing the position of the movable electrode 3B.
[0033]
As described above, in the present embodiment, the characteristics of the entire coil 1 are evaluated while sequentially measuring the characteristics of a part of the coil 1, so that a portion having poor characteristics can be easily specified.
[0034]
The measurement data in the present embodiment includes a partial discharge charge amount, a discharge phase with respect to a power supply voltage, the number of occurrences of discharge, and the like. These data can be used as a maximum discharge charge amount, a total discharge charge amount, a discharge charge amount-phase-discharge number characteristic as an evaluation index of insulation characteristics. In this case, what can be measured at a time with the movable electrode 3B is the local characteristic of the insulating layer 11, and by measuring while moving the entire coil 1, the entire coil 1 including the local characteristic variation is measured. Can be evaluated.
[0035]
Next, a third embodiment of the present invention will be described with reference to FIG. The present embodiment is designed to measure a discharge sound accompanying partial discharge, and uses a microphone 45, a sound recording device 46, and a sound analyzer 47 as a measuring device, and uses the movable electrode 3B as a movable electrode. The other configuration is the same as that of the above embodiment.
[0036]
When measuring the discharge sound accompanying the partial discharge, the AC power supply 41 is connected to the conductor 21 via the lead wire 21a, and the main electrode 31 is grounded via the lead wire 31a. When an electric field is applied between the conductor 1 and the main electrode 31 in this state, a partial discharge occurs due to a void (void) or peeling in the insulating layer 11, and a sound associated with the partial discharge is recorded by the microphone 45. Are recorded in the acoustic recording device 46, and the recorded result is analyzed and evaluated by the acoustic analyzing device 43. This analysis can be performed at the same time as the measurement, and can be recorded only at the time of the measurement and then analyzed.
[0037]
Further, in the present embodiment, by recording the sound accompanying the partial discharge while sequentially changing the position of the movable electrode 3B, the discharge sound accompanying the partial discharge of the entire coil 1 can be measured.
[0038]
The evaluation index in the present embodiment is a sound pressure level or a frequency spectrum. Based on the measured sound pressure level or the frequency spectrum, the evaluation is performed based on a correlation characteristic between the previously collected characteristics and the insulation characteristic. can do.
[0039]
In each of the above embodiments, the movable electrodes 3A and 3B are described as having a flat surface, but as shown in FIG. 8, when the corner 13 of the surface 12 of the insulating layer 11 has a surface shape, the main electrode By using the movable electrode 3 </ b> C having a surface shape as a movable electrode composed of the guard electrode 32, the main electrode 31 and the potential relaxation electrode 35, the discharge noise accompanying the partial discharge also to the corner 13, Non-destructive electrical characteristics such as dielectric loss tangent can be measured.
[0040]
In each of the above-described embodiments, any one of the movable electrodes 3A, 3B, and 3C is applied to the surface of the large coil 1 having no ground potential layer on the surface, and the non-destructive electric characteristics are obtained in a state where a high electric field is applied to the insulating layer 11. Is measured, the dielectric loss tangent and the partial discharge, which are indices indicating the defects inside the insulating layer 11, can be measured, and it is possible to diagnose the production failure of the coil 1 and the deterioration due to the operation over time. Then, by repeating the characteristic measurement of a part of the coil 1 sequentially and evaluating the whole, it is possible to easily specify a part having poor characteristics.
[0041]
【The invention's effect】
As described above, according to the present invention, the characteristics of the entire insulating layer can be tested, and the characteristics of the entire insulating layer can be evaluated from each test result.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an insulation characteristic test apparatus and a coil according to a first embodiment of the present invention.
FIG. 2 is a configuration diagram of a movable electrode.
FIG. 3 is a perspective view of an electromagnet coil.
FIG. 4 is a sectional view of a main part of an electromagnet coil.
FIG. 5 is a configuration diagram of an insulation characteristic test apparatus and a coil according to a second embodiment of the present invention.
FIG. 6 is a configuration diagram of a movable electrode.
FIG. 7 is a configuration diagram of an insulation characteristic test apparatus and a coil according to a third embodiment of the present invention.
FIG. 8 is a configuration explanatory view of a movable electrode for measuring a corner of an insulating layer.
[Explanation of symbols]
1 Electromagnet coil 3A, 3B, 3C Movable electrode 11 Insulating layer 12 Surface 21 Conductor 31 Main electrode 32 Guard electrode 33 Electrode base 35 Potential alleviation electrode 41 Power supply 42 Coupling capacitor 43 Dielectric loss tangent measuring instrument 44 Discharge measuring instrument 45 Microphone 46 Sound recording Device 47 Acoustic analyzer

Claims (6)

巻線を構成する導体の周囲を覆う絶縁層の表面が浮動電位となるコイルを試験対象として、前記コイルの導体に電源を接続し、前記コイルの絶縁層の表面の一部に可動電極を圧接するとともに前記可動電極に測定器を接続し、前記電源から前記コイルの導体と絶縁層および前記可動電極を介して伝送する電気信号を前記測定器で測定し、この測定を前記可動電極の位置を変えながら繰り返すコイルの絶縁特性試験方法。A power supply is connected to the conductor of the coil, and a movable electrode is pressed into contact with a part of the surface of the insulating layer of the coil, with the test object being a coil whose surface of the insulating layer covering the periphery of the conductor constituting the winding has a floating potential. At the same time, a measuring instrument is connected to the movable electrode, an electric signal transmitted from the power supply through the conductor and the insulating layer of the coil and the movable electrode is measured by the measuring instrument, and the measurement is performed by measuring the position of the movable electrode. A method of testing coil insulation characteristics that is repeated while changing. 請求項1に記載のコイルの絶縁特性試験方法において、前記可動電極は、剛性絶縁体のベースと、前記電気信号の伝送媒体として弾性導電体で構成されて前記ベースに固定された主電極と、前記主電極の周囲に前記主電極と間隙を保って配置されて前記ベースに固定されたガード電極とを備え、前記主電極を前記測定器に接続し、前記ガード電極を接地することを特徴とするコイルの絶縁特性試験方法。The method for testing the insulation properties of a coil according to claim 1, wherein the movable electrode includes a base made of a rigid insulator, and a main electrode formed of an elastic conductor as a transmission medium for the electric signal and fixed to the base, A guard electrode disposed around the main electrode with a gap therebetween and fixed to the base, wherein the main electrode is connected to the measuring instrument, and the guard electrode is grounded. Method for testing the insulation properties of coils to be used. 請求項1に記載のコイルの絶縁特性試験方法において、前記可動電極は、剛性絶縁体のベースと、前記電気信号の伝送媒体として弾性導電体で構成されて前記ベースに固定された主電極と、前記主電極の周囲に前記主電極と一体となって配置されて前記ベースに固定された電位緩和電極とを備え、前記主電極を前記測定器に接続することを特徴とするコイルの絶縁特性試験方法。The method for testing the insulation properties of a coil according to claim 1, wherein the movable electrode includes a base made of a rigid insulator, and a main electrode formed of an elastic conductor as a transmission medium for the electric signal and fixed to the base, A coil insulation property test, comprising: a potential relaxation electrode fixed to the base and disposed integrally with the main electrode around the main electrode, and connecting the main electrode to the measuring instrument. Method. 巻線を構成する導体の周囲を覆う絶縁層の表面が浮動電位となるコイルを試験対象として、前記コイルの導体に電源を接続し、前記コイルの絶縁層の表面の一部に可動電極を圧接するとともに前記可動電極の一部を接地し、前記電源から前記コイルへの電圧の印加に伴って発生する音を測定器で測定し、この測定を前記可動電極の位置を変えながら繰り返すコイルの絶縁特性試験方法。A power supply is connected to the conductor of the coil, and a movable electrode is pressed into contact with a part of the surface of the insulating layer of the coil, with the test object being a coil whose surface of the insulating layer covering the periphery of the conductor constituting the winding has a floating potential. At the same time, part of the movable electrode is grounded, a sound generated by applying a voltage from the power supply to the coil is measured by a measuring instrument, and the measurement is repeated while changing the position of the movable electrode. Characteristic test method. 請求項4に記載のコイルの絶縁特性試験方法において、前記可動電極は、剛性絶縁体のベースと、前記電気信号の伝送媒体として弾性導電体で構成されて前記ベースに固定された主電極と、前記主電極の周囲に前記主電極と一体となって配置されて前記ベースに固定された電位緩和電極とを備え、前記主電極を前記測定器に接続し、前記電位緩和電極を接地することを特徴とするコイルの絶縁特性試験方法。The method for testing the insulation properties of a coil according to claim 4, wherein the movable electrode includes a base made of a rigid insulator, and a main electrode formed of an elastic conductor as a transmission medium for the electric signal and fixed to the base, A potential relaxation electrode fixed integrally with the base and arranged integrally with the main electrode around the main electrode, connecting the main electrode to the measuring instrument, and grounding the potential relaxation electrode. Characteristic method for testing coil insulation characteristics. 請求項1、2、3、4または5のうちいずれか1項に記載のコイルの絶縁特性試験方法において、前記絶縁層の表面が平板形状のときには、前記可動電極としてその表面が平板形状のものを用い、前記絶縁層の表面が曲面形状のときには、前記可動電極としてその表面が曲面形状のものを用いることを特徴とするコイルの絶縁特性試験方法。6. The method for testing the insulation properties of a coil according to claim 1, wherein the movable electrode has a flat surface when the surface of the insulating layer is flat. A method of testing the insulation characteristics of a coil, wherein when the surface of the insulating layer has a curved surface, the movable electrode has a curved surface.
JP2003146336A 2003-05-23 2003-05-23 Method for testing insulating property of coil Pending JP2004347523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003146336A JP2004347523A (en) 2003-05-23 2003-05-23 Method for testing insulating property of coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003146336A JP2004347523A (en) 2003-05-23 2003-05-23 Method for testing insulating property of coil

Publications (1)

Publication Number Publication Date
JP2004347523A true JP2004347523A (en) 2004-12-09

Family

ID=33533212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003146336A Pending JP2004347523A (en) 2003-05-23 2003-05-23 Method for testing insulating property of coil

Country Status (1)

Country Link
JP (1) JP2004347523A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093323A1 (en) * 2005-03-02 2006-09-08 Toyota Jidosha Kabushiki Kaisha Insulation inspecting apparatus
JP2008281563A (en) * 2007-05-11 2008-11-20 General Electric Co <Ge> System, method, and device for measuring capacitance of stator component
JP2010237011A (en) * 2009-03-31 2010-10-21 Honda Motor Co Ltd Apparatus and method for inspecting coil quality
JP2013134133A (en) * 2011-12-26 2013-07-08 Nissin Electric Co Ltd Partial discharge measurement instrument
CN106291122A (en) * 2016-08-04 2017-01-04 广东电网有限责任公司电力科学研究院 The method of testing of a kind of oil immersed type condenser bushing watered and wetting defect and system
CN106526375A (en) * 2016-10-28 2017-03-22 桂林理工大学 Electrical insulation film pulse voltage accelerated aging experiment electromagnetic acting force generating device
JPWO2022085358A1 (en) * 2020-10-19 2022-04-28
WO2022153821A1 (en) * 2021-01-14 2022-07-21 三菱電機株式会社 Defect detection device, defect detection method, defect detection system, and method for manufacturing dynamo-electrical machine
WO2023160696A1 (en) * 2022-02-28 2023-08-31 宁德时代新能源科技股份有限公司 Electric leakage detection method and electric leakage detection device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1870721A1 (en) * 2005-03-02 2007-12-26 Toyota Jidosha Kabushiki Kaisha Insulation inspecting apparatus
JPWO2006093323A1 (en) * 2005-03-02 2008-08-07 トヨタ自動車株式会社 Insulation inspection equipment
US7688076B2 (en) 2005-03-02 2010-03-30 Toyota Jidosha Kabushiki Kaisha Insulation inspection apparatus
JP4749416B2 (en) * 2005-03-02 2011-08-17 トヨタ自動車株式会社 Insulation inspection equipment
EP1870721A4 (en) * 2005-03-02 2012-05-09 Toyota Motor Co Ltd Insulation inspecting apparatus
WO2006093323A1 (en) * 2005-03-02 2006-09-08 Toyota Jidosha Kabushiki Kaisha Insulation inspecting apparatus
JP2008281563A (en) * 2007-05-11 2008-11-20 General Electric Co <Ge> System, method, and device for measuring capacitance of stator component
JP2010237011A (en) * 2009-03-31 2010-10-21 Honda Motor Co Ltd Apparatus and method for inspecting coil quality
JP2013134133A (en) * 2011-12-26 2013-07-08 Nissin Electric Co Ltd Partial discharge measurement instrument
CN106291122B (en) * 2016-08-04 2019-02-12 广东电网有限责任公司电力科学研究院 A kind of test method and system of oil immersed type condenser bushing watered and wetting defect
CN106291122A (en) * 2016-08-04 2017-01-04 广东电网有限责任公司电力科学研究院 The method of testing of a kind of oil immersed type condenser bushing watered and wetting defect and system
CN106526375A (en) * 2016-10-28 2017-03-22 桂林理工大学 Electrical insulation film pulse voltage accelerated aging experiment electromagnetic acting force generating device
CN106526375B (en) * 2016-10-28 2023-04-07 桂林理工大学 Electromagnetic acting force generating device for electrical insulation film pulse voltage accelerated aging experiment
JPWO2022085358A1 (en) * 2020-10-19 2022-04-28
WO2022085358A1 (en) * 2020-10-19 2022-04-28 三菱電機株式会社 Inspection device for magnet wire coating, inspection method for magnet wire coating, and manufacturing method for electrical machine
JP7329698B2 (en) 2020-10-19 2023-08-18 三菱電機株式会社 Apparatus for inspecting magnet wire coating, method for inspecting magnet wire coating, and method for manufacturing electric machine
WO2022153821A1 (en) * 2021-01-14 2022-07-21 三菱電機株式会社 Defect detection device, defect detection method, defect detection system, and method for manufacturing dynamo-electrical machine
JPWO2022153821A1 (en) * 2021-01-14 2022-07-21
JP7378649B2 (en) 2021-01-14 2023-11-13 三菱電機株式会社 Defect detection device, defect detection method, defect detection system, and manufacturing method for rotating electrical machinery
WO2023160696A1 (en) * 2022-02-28 2023-08-31 宁德时代新能源科技股份有限公司 Electric leakage detection method and electric leakage detection device

Similar Documents

Publication Publication Date Title
Nattrass Partial discharge measurement and interpretation
Liu et al. Partial discharge behavior and ground insulation life expectancy under different voltage frequencies
Bartnikas Partial discharges. Their mechanism, detection and measurement
Hudon et al. Partial discharge signal interpretation for generator diagnostics
Ahmed et al. On-line partial discharge detection in cables
JP5315814B2 (en) Insulation coated conductor inspection method and apparatus
JP2002530681A (en) A method for diagnosing poor insulation in underground cables.
JP2004347523A (en) Method for testing insulating property of coil
Mason Discharge detection and measurements
JPH03209180A (en) Method and device for inspecting insulating system condition
El-Hag et al. An intelligent system for acoustic inspection of outdoor insulators
Wang et al. A measurements-based discharge location algorithm for plain disc winding power transformers
Samimi et al. Effect of terminating and shunt resistors on the FRA method sensitivity
JP2002148300A (en) Method and device for nondestructive insulation testing of small-sized electric machine
JPH10177053A (en) Degradation detection method and device for stator coil of rotary electric machine
Najafi et al. Effect of carbonized patterns on oil-impregnated aramid pressboards surface on acoustic emission signals at inhomogeneous electric field
Polyakov et al. Research of partial discharge characteristics in XLPE-insulated cables with single and multiple defects
Terase et al. A new AC current testing method for non-destructive insulation tests
JP3246679B2 (en) Insulation characteristics measurement device
Abd Halim et al. Condition assessment of medium voltage underground PILC cables using partial discharge mapping and polarization index test results
US2194303A (en) Radio noise testing equipment
JP7523061B2 (en) Diagnosis method for insulation deterioration of molded transformers
Samimi et al. Effect of different terminating resistors on the FRA method sensitivity
JP2013148481A (en) Method for determining deterioration of motor coil
Prasad et al. PD Measurement of Rotating Machine for Condition Monitoring